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Abstract

We propose a 2-party UC-secure protocol that can compute any function securely. The protocol
requires only two messages, communication that is poly-logarithmic in the size of the circuit description
of the function, and the workload for one of the parties is also only poly-logarithmic in the size of the
circuit. This implies, for instance, delegatable computation that requires no expensive off-line phase
and remains secure even if the server learns whether the client accepts its results. To achieve this, we
define two new notions of extractable hash functions, propose an instantiation based on the knowledge
of exponent in an RSA group, and build succinct zero-knowledge arguments in the CRS model.

1 Introduction

This paper shows feasibility of generic two-party secure computation with (i) a single round of communi-
cation, (ii) polylogarithmic communication complexity in the circuit-size that computes the specified func-
tionality, (iii) UC security against malicious behavior, and (iv) asymmetric workload, where almost all work
can be shifted to one of the players.

In the setting of secure two-party computation, two parties with private inputs wish to jointly com-
pute some function of their inputs while preserving certain security properties like privacy, correctness
and more. Despite the stringent requirements of the standard simulation-based security definitions [Bea91,
GL90, Can00], it has been shown that any probabilistic polynomial-time two-party functionality can be se-
curely computed in the presence of malicious adversaries who follow an arbitrary strategy [Yao86, GMW87,
Gol04]. These works demonstrate the feasibility of secure computation in the two-party setting and do not
aim to present optimized constructions. Following these works there has been many constructions that im-
prove the efficiency of computation, trying to minimize the workload of the parties [JS07, LP07, IPS08,
IPS09, PSSW09, NO09, LP11, IKO+11]. A recent work by Gordon et al. [GKK+11] shows an approach
that uses oblivious RAM for computing any functionality, with polylogarithmic amortized workload over-
head. The best round complexity is obtained by [IPS08, IKO+11] who show a single round protocol in the
non-interactive setting, discussed more thoroughly below.

The communication complexity of these constructions depends heavily on the size of the computed
circuit. To the best of our knowledge, all works that try to minimize the communication complexity do
so for particular tasks of interests such as private information retrieval (PIR) [KO97], functions captured
by branching programs and random access memory machines [NN01], data mining [LP02], kth ranked
element [AMP04], Hamming distance [FIM+06] and more.
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A notable observation about these works is that the overall workload of the parties is somewhat balanced
and is (at least) equivalent to the amount of work that has to be put in evaluating the specified circuit. More
specifically, these constructions are appropriate for settings in which the amount of resources allocated for
both devices running the protocol is essentially the same, and offer no solution for “asymmetric settings”
in which one of the devices is strictly (computationally) weaker than the other (e.g., smartcards, mobile
devices). In this paper we will be interested in solutions for such asymmetric settings, so we want to
minimize the workload for one of the parties.

If one is willing to assume only honest-but-curious attacks then fully homomorphic encryption [Gen09,
BV11a] can be used to design a simple one round protocol with sublinear communication complexity. Here
one party, say P1, sends its encrypted input to party P2, who uses the homomorphic property to compute
ciphertexts that contain the output of the specified circuit when evaluated on P1’s (encrypted) input and his
own private input. These ciphertexts are sent to P1 who can decrypt and learn the result. Obviously, this
solution breaks down under malicious attacks. The obvious solution is to have P2 give non-interactive zero-
knowledge proof (NIZK) that his response is correct, but this will not solve our problem. Even though such
a proof can be made very short [Gro11], P1 would have to work as hard as P2 to heck the NIZK, and hence
the computational complexity for both parties would be linear in the circuit description of the function to
compute. This does not fit our scenario where we want to minimize the work for one party, and in any case it
seems unsatisfactory that we go from a honest-but-curious solution, where only one party has to evaluate the
function, to a protocol where both parties must do it. There seems to be no compelling reason why having
security against malicious attacks should force us to do this.

To get a solution where the work for one party is minimized, one needs a protocol by which a prover
can give a short zero-knowledge argument for an NP statement, where the verifier only needs to do a small
amount of work. More precisely, the amount of work needed for the verifier is polynomial in the security
parameter and the size of the statement but only poly-logarithmic in the time needed to check a witness in the
standard way. Such proofs or arguments are usually called succinct. The history of such protocols starts with
the work of Kilian [Kil92] who suggested the idea of having the prover commit to a PCP for the statement in
question using a Merkle hash tree, and then have the verifier (obliviously) check selected bits from the PCP.
This protocol is succinct and zero-knowledge but requires several rounds and so cannot be used towards
our goal of a 2-message protocol. Subsequent work in this direction has concentrated on protocols where
only a succinct non-interactive argument (and not zero-knowedge) is required. This is known as a SNARG.
Micali [Mic00] suggested one-message solution based on Kilian’s protocol and the Fiat-Shamir heuristic.
In [ABOR00] Aiello at al. suggested a two-message protocol where the verifier accesses bits of the PCP via
a private information retrieval scheme (PIR). In such a scheme a client can retrieve an entry in a database
held by a server without the server learning which entry was accessed. It seems intuitively appealing that
if the prover does not know which bits of the PCP the verifier is looking at, soundness of the PCP should
imply soundness of the overall argument. However, it was shown in [DLN+04] that this intuition is not
sound unless the prover is committed to one single PCP string. To solve this problem, Di Crescenzo and
Lipmaa [CL08] suggested using as commitment the root of a Merkle tree as in Kilian’s protocol, but to prove
security, they made a very strong type of extractability assumption saying essentially that the fact that the
prover outputs the root of the hash tree already implies that one can extract an entire PCP from the prover.

1.1 Our Contribution

Compared to the work on SNARGs just discussed, our work makes two contributions: first, we show how
to achieve simulation based privacy also for the prover, even if the verifier is malicious. We need this
since our goal is UC-secure 2-party computation and we must have privacy for both parties, even under
malicious attacks. This is the reason we need a set-up assumption allowing parties to give non-interactive
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zero-knowledge proofs of knowledge of their inputs. Also, to get a zero-knowledge SNARG, we do not
use the PCP+PIR approach from earlier work for a general PIR, instead we build a PIR-like scheme based
on FHE, allowing the prover to compute NIZKs “inside the ciphertexts”. Second, we suggest two notions
of “extractable hash function” that are more natural and milder than the assumption of Di Crescenzo and
Lipmaa but still allow succinct arguments.

Based on these techniques we present a two-party protocol that computes any PPT functionality f with
UC security in the presence of malicious adversaries. Our protocol is the first to additionally achieve the
following strong properties: Polylogarithmic communication complexity in the size of the circuit C that
computes f . One round complexity, i.e., a single message in each direction assuming an appropriate trusted
setup. We prove our protocol in the common reference string model. Polylogarithmic workload in the size
of the circuit C that computes f , for one of the parties.

Our protocol is based on fully homomorphic encryption, non-interactive zero-knowledge proofs and the
existence of extractable hash functions. While the first two notions are fairly standard, we explain in more
detail the new notions of extractability:

The first extractability assumption (EHF1) considers a collision intracable hash function H mapping
into a small subset of a large domain and essentially asserts that the only way to generate an element in
Im(H) is to compute the function on a given input. More precisely, we require that for every adversary
outputting a value h there exists an efficient extractor that (given the same randomness) outputs a preimage
of h, whenever h ∈ Im(H). We propose an instantiation of EHF1-extractable and collision intractable hash
functions based on a knowledge of exponent assumption (Damgård [Dam91]) in Z∗

N where N is an RSA
modulus.

The second extractability assumption (EHF2) makes a weaker demand on the hash function H: again
we require that for each adversary outputting h, there exists an extractor that tries to find a preimage. This
time, however, the extractor is allowed to fail even if h ∈ Im(H). The demand, however, is that if the
extractor fails, the adversary cannot find a preimage either, even if he continues his computation with fresh
randomness and auxiliary data that was not known to the extractor.

It is easy to verify that EHF1 implies EHF2: under EHF1, the extractor only fails if it is impossible
to find a preimage. The more interesting direction is whether EHF2 implies EHF1. In the concurrent and
independent work of Bitansky et al. [BCCT11], the consider a variant of EHF1 where the hash function has
a stronger notion of collision intractability, so-called proximity collision resistance. They then show that
proximity EHF1 is equivalent to proximity EHF2 and furthermore existence of such functions is equivalent
to the existence of non-interactive arguments of knowledge (SNARKs). Whether our EHF2 notion implies
EHF1 is an interesting open question.

Note that EHF2 is true in the random oracle model, where we let the random oracle play the role of H .
In this case it is easy to see that no matter how the adversary produces a string h, there are only two cases:
either h was output by the random oracle or not. In the former case a preimage is easy to extract, in the latter
case no one can produce a preimage except with negligible probability. So the extractor can safely fail in
this case.

Finally, it is interesting to note that EHF2 opens the possibility to use many more candidate hash func-
tions, whereas previously only rather slow functions based number theoretic assumptions seemed to apply.
This is because standard hash functions such as SHA (are throught to) behave similarly to a random ora-
cle, and such a function does not satisfy EHF1. However, using, e.g., the random oracle preserving EMD
transform from [BR06], one gets interesting candidates for efficient functions satisfying EHF2.

We wish to warn the reader that extractability assumptions are regarded as controversial by some; on the
other hand such assumptions have recently been studied quite intensively [BP04, CL08, Gro10b, BCCT11,
GLR11]. Moreover, Gentry and Wichs [GW11] have recently shown that SNARGs cannot be shown se-
cure via a black-box reduction to a falsifiable assumption [Nao03]. Even more to the point, as mention
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above, [BCCT11], shown that existence of SNARGs that are also proofs of knowledge imply existence of
extractable hash functions. This seems to suggest that non-standard assumptions such as knowledge of ex-
ponent may be necessary in this setting. Finally, as we pointed out above, the EHF2 assumption is true in
the random oracle model and is implied only by the fact that one must call the oracle to get a valid output.
In other words, we only use one of the many “magic properties” that the random oracle model has, and this
particular one is in fact satisfied in the standard model, if our assumption holds. Therefore, we believe that
the assumption on extractable hash functions should be regarded as much less controversial than using the
random oracle model.

Applications. Our construction is useful for various settings. We briefly describe some of these applica-
tions here, for further details see Section 5.

1. NON-INTERACTIVE SECURE COMPUTATION. In the non-interactive setting a receiver wishes to
publish an encryption of its secret input x so that any other sender, holding a secret input y, will be
able to obliviously evaluate f(x, y) and reveal it to the receiver. This problem is useful for many
web applications in which a server publishes its information and many clients respond back. A recent
work by Ishai et al. [IKO+11] presents the first general protocol in this model with only black-box
calls to a pseudorandom generator (PRG). In contrast, our protocol makes non black-box use of the
fully homomorphic encryption but only requires polylogarithmic communication complexity.

2. SERVER-AIDED SECURE COMPUTATION. In the server-aided setting there is an untrusted server S
in addition to the two parties who wish to evaluate functionality f . This server does not have any
input/output with respect to the computation computing f and is computationally stronger than the
other two parties. The goal in this setting is to design protocols that minimize the computation over-
head of the parties and instead, rely on the extended resources of the server. The main motivation
for this setting is cloud computing. The server-aided setting has been considered previously in the
literature [FKN94, IK97, NPS99, BCD+09], but these works either consider restricted class of func-
tionalities or do not improve the overhead of the clients. Our construction can be easily modified to
obtain server-aided computation.

3. DELEGATABLE COMPUTATION. In this setting, a computationally weak client wishes to outsource
its computation to a more powerful server, with the aim that the server performs this computation
privately and correctly. An important requirement in this scenario is that the amount of work put by
the client in order to verify the correctness of the computation is substantially smaller than running
this computation by itself. It is also important that the overall amount of work invested by the server
grows linearly with the original computation. Lately, the problem has received a lot of attention;
see [AIK10, CKV10, GGP10, BGV11] for just a few examples. Our construction implies delegatable
computation and can be simplified here because P1 (the client) is usually assumed to be honest, and
P2 (the server) does not contribute any input y to the computation. Therefore we do not need a set-
up assumption, and in contrast to earlier work, the scheme requires no expensive off-line phase and
remains secure even if the server learns whether the client accepts its results.

4. SHORT NON-INTERACTIVE ZERO-KNOWLEDGE ARGUMENTS OF KNOWLEDGE. Non-interactive
zero-knowledge proofs [BFM88] constitute a fundamental building block in many applications such
as, chosen ciphertexts secure encryption schemes [NY90, DDN00], digital signature schemes [BW06,
CGS07] and leakage resilient primitives [KV09, DHLAW10]. Much of the recent work in this area
has concentrated in designing generic short proofs (or arguments) so that the size of the proof grows
linearly with the size of the witness [Gen09] or sub-linearly with the circuit-size used for verifica-
tion [GOS06b, GOS06a, Gro09, Gro10b, Gro10a]. None of these proofs, however, is a proof of
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knowledge (a notable different example is the construction in [BCCT11] that relies on PCP of knowl-
edge). Our construction implies non-interactive zero-knowledge with the benefits that (i) the proof
size is polylogarithmic in the verification code for L and (ii) the construction is a proof of knowledge
as well.

1.2 Concurrent Related Work

In recent work that is independent from and concurrent with ours, Bitanski et al [BCCT11] and Goldwasser
et al. [GLR11] both define notions of extractable hash function that are technically slightly different from
our EHF1 notion, but similar in spirit. They each propose instantiations different from ours. They then
build SNARGs based on this assumption, and [BCCT11] also build SNARGs that are in addition proofs of
knowledge (SNARK’s), and show the very interesting result that SNARKs imply (their notion of) extractable
hash functions. Privacy for the prover is not considered in [GLR11]. In [BCCT11] zero-knowledge SNARKs
and secure computation based on this. They consider only stand-alone rather than UC security as we do,
on the other hand they obtain a protocol whose communication complexity does not depend on the input of
one of the parties. Some recent related work on secure computing should also be mentioned: in [MSas11]
show a multiparty computation protocol based on FHE with small communication and round complexity.
This construction, however, is only for the honest majority setting and does not allow shifting most of the
work to one player. For a general study of multiparty computation with minimal round complexity, see
[KK07, IKP10].

2 Notations and Definitions

In this section, we review standard notations. We denote the security parameter by n and adopt the conven-
tion whereby a machine is said to run in polynomial-time if its number of steps is polynomial in its security
parameter. For convenient we use a single security parameter for all our primitives and proofs. A function
µ(·) is negligible if for every polynomial p(·) there exists a value N such that for all n > N it holds that
µ(n) < 1

p(n) . For an integer t, we denote by [t] the set {1, . . . , t}, and by {0, 1}<t the set of all binary
strings of length at most t−1. If X is a random variable then we write x← X for the value that the random
variable takes when sampled according to the distribution of X . If A is a probabilistic algorithm running on
input z, then we write x← A(z) for the output of A when run on input z.

Definition 2.1 (Computational indistinguishability) Let X = {Xn(a)}n∈N,a∈{0,1}∗ and Y = {Yn(a)}n∈N,a∈{0,1}∗
be distribution ensembles. We say that X and Y are computationally indistinguishable, denoted X ≈c Y ,
if for every family {Cn}n∈N of polynomial-size circuites, there exists a negligible function µ(·) such that for
all a ∈ {0, 1}∗, |Pr[Cn(Xn(a)) = 1]− Pr[Cn(Yn(a)) = 1]| < µ(n).

2.1 Public Key Encryption Schemes

We specify the standard definitions of public key encryption scheme and semantic security.

Definition 2.2 (PKE) We say that ΠE = (KeyGen,Enc,Dec) is a public key encryption scheme (PKE)
if KeyGen,Enc,Dec are algorithms specified as follows.

• KeyGen, given a security parameter n (in unary), outputs keys (pk, sk), where pk is a public key and
sk is a secret key. We denote this by (pk, sk)← KeyGen(1n).
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• Enc, given the public key pk and a plaintext message m, outputs a ciphertext c encrypting m. We
denote this by c ← Encpk(m); and when emphasizing the randomness R used for encryption, we
denote this by c← Encpk(m;R).

• Dec, given the secret key sk and a ciphertext c, outputs a plaintext message m s.t. Decsk(Encpk(m)) =
m.

The security notion we consider here is semantic security.

Definition 2.3 (Semantic security) We say that a public key encryption scheme ΠE = (KeyGen,Enc,Dec)
is semantically secure if for every PPT adversary A = (A1,A2) there exists a negligible function
negl such that the probability CPA− INDΠE,A(n) = Pr[ExpCPA−IND

ΠE,A (n) = 1] − 1/2 for the experiment
ExpCPA−IND

ΠE,A (n) defined below is negl(n).

• Semantic security game ExpCPA−IND
ΠE,A (n).

(pk, sk)← KeyGen(1n)

(m0,m1, history)← A1(pk), s.t. |m0| = |m1|
c← Encpk(mb), where b← {0, 1}
b′ ← A2(c, history)

If b′ = b then output 1; otherwise output 0.

2.2 Fully Homomorphic Encryption Schemes

We define fully homomorphic encryption and additional desired properties. We will say that a bit string pk
is a well-formed public key, if it can be generated as output from the KeyGen algorithm on input the security
parameter and a set of random coins in the range specified for the key generation algorithm. Similarly, a
bit string c is a well-formed ciphertext if c = Encpk(m; r) for message m and random coins r is the range
specified for the encryption algorithm.

Definition 2.4 (FHE) We say that ΠE = (KeyGen,Enc,Dec,Eval) is a fully homomorphic encryption
scheme (FHE) if KeyGen,Enc,Dec are algorithms specified as in Definition 2.2 and Eval is an algorithm
specified as follows.

• Eval, given a well-formed public key pk, a boolean circuit C with fan-in of size t and well-formed
ciphertexts c1, . . . , cℓ encrypting m1, . . . ,mℓ respectively, outputs a ciphertext c such that Decsk(c) =
C(m1, . . . ,mℓ).

We further require the existence of a refresh algorithm Refresh so that for well-formed pk, c1, ..., cℓ, the
following distributions are statistically close,

{pk,Refreshpk(Evalpk(C, c1, . . . , cℓ))} ≡s {pk,Refreshpk(Encpk(C(m1, . . . ,mℓ)))}

Typically, Refresh is defined by running Eval again with ciphertext Evalpk(C, c1, . . . , cℓ), an appropriately
chosen encryption of zero and an addition gate. The idea is that the randomness for the encryption of zero
is chosen large enough to “drown” the randomness coming from the original encryptions. We need that
Refresh is correct, in the sense that on input well-formed pk, c1, ..., cℓ as above, it outputs with probability
1 a ciphertext that decrypts to C(m1, . . . ,mℓ). We also require that ΠE is semantically secure. Finally,
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we note that we require compactness in the sense that the output of Eval is upper bounded by some fixed
polynomial regardless of C or the input length.

We note that our requirements on correctness of the Eval and Refresh algorithms are stronger than what
is usually assumed by existing schemes in the literature: we want them to generate output of the expected
form with probability 1 whenever the input is well-formed, whereas other definitions only require correct
behavior on average over the distribution we expect the input to have. We need the stronger requirement
because we need Eval and Refresh to behave correctly even on adversarially generated input where we
cannot assume a particular distribution. All we can require is a ZK proof that the input is well formed.
However, the stronger requirement can be assumed for all FHE schemes we are aware of [Gen09, vDGHV10,
BV11a, BV11b]: typically, the key generation and encryption involves choosing randomness according to a
(discrete) Gaussian distribution. Using a standard tail inequality, we can assume that randomness with the
correct distribution is in some small range except with negligible probability and define well-formed public
keys and ciphertexts to be those that can be produced using randomness that is in range. Since the probability
of being out of range is negligible, this will not affect the security of honestly generated ciphertext, on the
other hand, the guaranteed bound on the randomness will give us room to evaluate and refresh without
creating incorrect results.

2.3 Efficient Probabilistic Checkable Proofs (PCP)

A PCP system Π = ⟨Provpcp,Verpcp⟩ for a language L consists of two PPT algorithms: the prover Provpcp
and the verifier Verpcp. The prover Provpcp takes as input an instance x ∈ L and a witness w for x and
computes a proof π of length ℓ := poly(|x|, |w|). The verifier Verpcp inputs a potential member x and
tries to decide whether x ∈ L given oracle access to the proof π. In this work, we are interested in PCP
systems where the verifier only has non-adaptive access to the proof system. To model this, we define the
PCP verifier Verpcp as a tuple of algorithms (Ver1pcp,Ver

2
pcp): the first has no access to the PCP π and uses

only polylog(|x|) bits of randomness to compute t := O(1) positions specifying where to read the PCP. The
second machine, Ver2pcp, is deterministic and takes as input the bit values of the PCP at these t positions.
It outputs whether to accept or reject π. We note that non-adaptivity is required due to issues raised in the
security proof for the case that the party playing the role of the verifier is corrupted. The reason for that is
because privacy may not hold in case of an adaptive corrupted verifier, as it can conclude some information
about the proof from observing the locations from which answers to its queries are taken.

Formally, we require the following two properties to hold:

Definition 2.5 (PCP) A probabilistically checkable proof (PCP) system ⟨Provpcp, (Ver1pcp,Ver2pcp)⟩ for a
language L is a triple of (probabilistic) polynomial-time machines, satisfying

• Completeness: If x ∈ L, π ← Provpcp(x,w) and (q1, . . . , qt) ← Ver1pcp(x, ℓ; r) with qi ∈ [ℓ], then
Pr[Ver2pcp(x, π[q1], . . . , π[qt], q1, . . . , qt) = 1] = 1.

• Soundness: If x /∈ L, then for all π we have

Pr[(q1, . . . , qt)← Ver1pcp(x, |π|; r) : Ver2pcp(x, π[q1], . . . , π[qt], q1, . . . , qt) = 1] < negl(n),

for some negligible function negl(·), where the probability is taken over the verifier’s internal coins.

Notice that standard definitions of PCP systems usually require the soundness error to be smaller than 1/2.
We can get a negligible soundness error by simple amplification.

In this paper, we are interested in PCP’s for NP languages such that the verifier accepts or rejects after
using only polylog(|x|) bits of randomness and accessing only O(1) bits of π. Moreover, we are interested
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in efficient protocols and, hence, require that the (probabilistic) prover runs in poly(|x|, |w|) time. PCP
proof systems with efficient verifiers were introduced in the seminal work of Babai, Fortnow, Levin and
Szegedy [BFLS91]. More efficient candidates have for instance been proposed in [PS94, AS98, BSS05,
Din07]. Most PCP systems require only a non-adaptive verifier and, hence satisfy our additional property
from above.

2.4 Collision Resistant Hashing and Merkle Trees

Let in the following {Hn}n∈N = {H : {0, 1}p(n) → {0, 1}p′(n)}n be a family of hash functions, where p(·)
and p′(·) are polynomials so that p′(n) ≤ p(n) for sufficiently large n ∈ N. For a hash function H ← Hn

a Merkle hash tree [Mer87] is a data structure that allows to commit to ℓ = 2d messages by a single hash
value h such that revealing any message requires only to reveal O(d) hash values. A Merkle hash tree is
represented by a binary tree of depth d where the ℓ messages m1, . . . ,mℓ are assigned to the leaves of the
tree. The values that are assigned to the internal nodes are computed using the underlying hash function
H . The single hash value h that commits to the ℓ messages m1, . . . ,mℓ is assigned to the root of the tree.
To open the commitment to a message mi, one reveals mi together with all the values assigned to nodes
on the path from the root to mi, and the values assigned to the siblings of these nodes. We denote the
algorithm of committing to ℓ messages m1, . . . ,mℓ by h = Commit(m1, . . . ,mℓ) and the opening of mi

by (mi, path(i)) = Open(h, i). Verifying the opening of mi is carried out by essentially recomputing the
entire path bottom-up while comparing the final outcome (i.e., the root) to the value given at the commitment
phase. For simplicity, we abuse notation and denote by path(i) both the values assigned to the nodes in the
path from the root to decommitted value mi, together with the values assigned to their siblings.

In the following, we often require to talk about the value assigned to a particular node. To this end,
we introduce a labeling scheme for the nodes of a tree. We denote the root of the tree by ε. For a node
w ∈ {0, 1}<d, we label its left child by w0 and its right child by w1. The value that is assigned to a node
with a label w is typically denoted by hw. We also consider incomplete Merkle trees. An incomplete Merkle
tree is a Merkle tree where some nodes w, with |w| < d, have no leaves. We say that a (possibly incomplete)
Merkle tree T with max depth d is valid if for all its nodes w with two children, we have H(hw0||hw1) = hw.
We further say that a path path(i) is consistent with a Merkle tree T (or in T ) if all the values assigned to
the nodes w in path(i) are also assigned to the corresponding nodes in T , i.e., hw = vw, where vw denotes
the value assigned to node w in path(i).

The standard security property of a Merkle hash tree is collision resistance. Intuitively, this says that it
is infeasible to efficiently find a pair (x1, x2) so that H(x1) = H(x2), where H ← Hn for sufficiently large
n. One can show that collision resistance of {Hn}n∈N carries over to the Merkle hashing. Formally,

Definition 2.6 (Collision Resistance) A family of hash functions {Hn}n is collision resistant if for all
PPT adversaries A there exists a negligible function negl such that for sufficiently large n ∈ N

Pr[HashA,Hn(n) = 1] ≤ negl(n)

where game HashA,Hn(n) is defined as follows:

1. A hash function H is sampled H ← Hn.

2. The adversary A is given H and outputs x, x′.

3. The output of the game is 1 if and only if x ̸= x′ and H(x) = H(x′).
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2.5 Non-Interactive Zero-Knowledge Proofs

In the following we repeat the definition of non-interactive zero-knowledge proof.

Definition 2.7 A non-interactive zero-knowledge proof for a language L is a tuple of three PPT algo-
rithms ⟨CRSGen,P,V⟩, such that the following properties are satisfied:

Completeness: For every (x, ω) ∈ RL (for RL the witness relation of L)

Pr[crs← CRSGen(1n) : V(crs, x,P(crs, x, ω)) = 1] = 1.

Soundness: For every PPT algorithm A there exists a negligible function negl such that for all x /∈ L

Pr[(x, π)← A(crs), crs← CRSGen(1n) : V(crs, x, π) = 1 ] ≤ negl(n).

Zero-Knowledge: there exists a PPT simulator S = (S1, S2) such that for all (x, ω) ∈ RL the distributions
(i) {P (crs, x, ω)} and (ii) {S2(crs, x, td)} are computationally indistinguishable, where in (i) crs ←
CRSGen(1n) and in (ii) (crs, td)← S1(1

n).

2.6 Extractable Hash Functions

In this work, we are interested in hash functions that are extractable – so-called extractable hash function
(EHF). We provide two flavors of extractable hash functions. The first extractability assumption (EHF1)
considers a hash function H mapping into a small subset of a large domain and essentially asserts that the
only way to generate an element in Im(H) is to compute the function on a given input. More precisely,
we require that for every adversary outputting a value h there exists an efficient extractor that (given the
same randomness) outputs a preimage of h, whenever h ∈ Im(H). We propose later an instantiation of
EHF1-extractable and collision intractable hash functions based on a knowledge of exponent assumption
(Damgård [Dam91]) in Z∗

N where N is an RSA modulus. We continue with the formal assumption. For
simplicity, we assume that the algorithms below are keeping their state.

Definition 2.8 (Extractable hash function 1 (EHF1)) Let A and E be PPT algorithms then consider the
following game:

• EHF1A,E,Hn
(1n, z).

H ← Hn

Repeat until A halts:
h← A(1n, H, z;R)

z ← E(1n,H, z,R, h;R′)

If h ∈ Im(H) and H(z) ̸= h return 1, else reply A with z

Return 0

for R and R′ the randomness used by A and E respectively. Then the family {Hn}n∈N satisfies the first
extractability assumption (EHF1) if for every PPT adversary A there exists a PPT extractor E such that for
any sufficiently large n ∈ N and any auxiliary information z ∈ {0, 1}∗

Pr[EHF1A,E,Hn(1
n, z) = 1] ≤ negl(n).

for a negligible function negl, the probability is over the randomness of the game.

9



In the above definition, we require that it should be feasible to verify that a value h is in the image of H; we
call this function Im(H).

The second extractability assumption (EHF2) makes a weaker demand on the hash function H: as
before, we require that for each adversary outputting h, there exists an extractor that tries to find a preimage.
This time, however, the extractor is allowed to fail even if h ∈ Im(H). Specifically, the demand is that if
the extractor fails, the adversary cannot output a preimage either. For this definition not to be vacuous, one
clearly needs that when the adversary tries to “beat” the extractor, it is given randomness/auxiliary input that
is not known to the extractor. Otherwise the extractor could simulate the adversary and output whatever the
adversary does. To formalize this, we assume a probabilistic algorithm G that outputs a pair (ζ, ζ ′), sampled
from some joint distribution. ζ is given to both the adversary and the extractor, while ζ ′ is only given to the
adversary later when she tries to “beat” the extractor. In our case, ζ is a public key for an encryption scheme
and ζ ′ is its corresponding secret key. Notice that our demand on G is weak as G does not depend on the
choice of the hash function.

Finally, we note that in [BCCT11] a simpler definition is considered, where the adversary runs an arbi-
trary algorithm in the last stage of the game and the extractor is required to work for any such algorithm. In
particular, it must work for an adversary that knows something not known to the extractor. This is a much
stronger demand that may exclude some potential constructions of extractable hash functions.1

Definition 2.9 (Extractable hash function 2 (EHF2)) Let A and E be PPT algorithms then consider the
following game:

• EHF2A,G,E,Hn(1
n, z).

i = 0,H ← Hn, (ζ, ζ
′)← G(1n)

Repeat until A halts:
i = i+ 1

hi ← A(1n, H, z, ζ;R)

zi ← E(1n,H, z,R, hi, ζ;R
′)

(zA1 , . . . , zAi )← A(1n,H, z,R, ζ ′;R′′)

If ∃ 1 ≤ j ≤ i, s.t. H(zj) ̸= hj ∧H(zAj ) = hj return 1, else return 0

Then {Hn}n∈N satisfies the EHF2 assumption if for every PPT adversary A and any PPT algorithm G
there exists a PPT extractor E such that for any sufficiently large n ∈ N and any auxiliary information
z ∈ {0, 1}∗

Pr[EHF2A,G,E,Hn(1
n, z) = 1] ≤ negl(n).

for a negligible function negl, the probability is over the randomness of the game.

When we talk in the following of an extractable hash function, then we mean that it satisfies the property
given in Definition 2.9, i.e., any PPT adversary has a negligible advantage in EHF2A,G,E,Hn .

Note that EHF2 is true in the random oracle model, where we let the random oracle play the role of H .
In this case it is easy to see that no matter how the adversary produces a string h, there are only two cases:
either h was output by the random oracle or not. In the former case a preimage is easy to extract, in the latter
case no one can produce a preimage except with negligible probability. So the extractor can safely fail in
this case.

It is easy to verify that EHF1 implies EHF2: under EHF1, the extractor only fails if it is impossible to
find a preimage.

1[BCCT11] also considers weaker variants. While the basic idea of EHF2 is a contribution of this paper, the precise formulation
was in part inspired by discussions with the authors of [BCCT11].
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2.7 The Knowledge of Exponent Assumption

The knowledge of exponent assumption proposed by Damgård [Dam91] was previously used in designing
3-round zero-knowledge proofs [HT98], plaintext-aware encryption [BP04, Den06] and more. It was orig-
inally defined with respect to prime order groups; here we consider its variant for composite order groups.
Say N is a product of two safe primes p = 2p′ + 1 and q = 2q′ + 1, we will then use the group of so-called
signed quadratic residues QR+

N . It consists of all numbers in ZN with Jacobi symbol 1 that are in the inter-
val [0, . . . , (N − 1)/2]. The product of a, b ∈ QR+

N is defined to be ab mod N if ab mod N ≤ (N − 1)/2
and N − ab mod N otherwise. QR+

N is isomorphic to the group of quadratic residues mod N and so has
order p′q′, and has the nice property that membership in QR+

N is easy to check. We let g, g′ be generators
forQR+

N where g′ = gx and x is picked at random from Z∗
p′q′ . Informally, the assumption says that for any

PPT algorithm A(N, g, g′) that outputs h, h′ such that h = gy and h′ = gxy there exists an extractor E such
that (h, h′, y)← E(N, g, g′) with overwhelming probability.

We use the notation of [BP04] which defines a game with an adversary A, interacting with an extractor
E, that is required to find the discrete logarithm of the element queried by the adversary. Bellare et al. [BP04]
distinct two assumptions based on the number of queries the adversary submits to the extractor. Their first
formalization is for an assumption in which the adversary queries the oracle extractor only once. In a
second assumption, they considered an extended variant in which the adversary queries its oracle multiple
times adaptively. Here we focus on their extended variant and adapt it for composite order groups.

Let (p, q, g) ← G(1n) be an algorithm that given a security parameter n, returns two safe primes and
a generator g for the quadratic residues subgroup. Then define the knowledge of exponent assumption as
follows.

Definition 2.10 (Knowledge of exponent (KOE) assumption) Let A and E be PPT algorithms then con-
sider the following game:

• KOEA,E(1
n).

(p, q, g)← G(1n), state = ∅
Repeat until A halts:

(h, h′)← A(N, g, gx;R), s.t. x← Z∗
p′q′

(y, state)← E(N, g, gx, h, h′, state,R;R′)

If h′ = hx, h ∈ QR+
N and h ̸= gy return 1, else reply A with y

Return 0

for R and R′ the randomness used by A and E respectively. ThenQR+
N satisfies the KOE assumption if for

every PPT adversary A there exists a PPT extractor E such that

Pr[KOEA,E(1
n) = 1] ≤ negl(n).

for some negligible function negl, where the probability is over the randomness of the experiment.

Extractable hash function based on factoring and KOE. Based on the knowledge of exponent assump-
tion, we can construct an extractable hash function according to Definition 2.8. Moreover, under the factor-
ing assumption our construction is collision resistant. The public parameters of our family of hash functions
are a composite N which is the product of two safe primes p = 2p′ + 1 and q = 2q′ + 1 and two gen-
erators g, h for QR+

N . For some concrete N, p, q, g, h, we compute the hash function on some input z as
H(z) = (gz mod N,hz mod N). Collision resistance follows from factoring, since for every z ̸= z′ such
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that H(z) = H(z′) it holds that p′q′ divides z − z′. Moreover, if one knows x such that h = gx mod N ,
then one can check membership of a pair (a, b) in the image of H by checking whether a ∈ QR+

N and
ax mod N = b. Finally we note that H is an EHF1, which follows from the knowledge of exponent
assumption.

2.8 Two-party Secure Computation

Even though we claim UC security, we use for simplicity the simpler definition below. However, the simula-
tor we construct for our protocol is straight-line (i.e., never rewinds the adversary) and uses only black-box
access to the adversary, in particular we do not need to use extractability in the simulation, this is only
used in the reduction showing that the simulator works. Therefore, to show UC security, one uses the same
simulator and reduction, replacing everywhere our adversary by the environment.

A two-party protocol problem is cast by specifying a random process that maps pairs of inputs to pairs
of outputs (one for each party). We refer to such a process as a functionality and denote it f : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for every pair of inputs (x, y), the output-vector
is a random variable (f1(x, y), f2(x, y) ranging over pairs of strings where P0 receives f1(x, y) and P1

receives f2(x, y). We sometimes denote such a functionality by (x, y) 7→ (f1(x, y), f2(x, y)). Thus, for
example, the oblivious transfer functionality is denoted by ((x0, x1), σ) 7→ (λ, xσ), where (x0, x1) is the
first party’s input, σ is the second party’s input, and λ denotes the empty string (meaning that the first party
has no output).

Adversarial behavior. Loosely speaking, the aim of a secure multiparty protocol is to protect honest
parties against dishonest behavior by other parties. In this section, we outline the definition for malicious
adversaries who control some subset of the parties and may instruct them to arbitrarily deviate from the
specified protocol. We also consider static corruptions, meaning that the set of corrupted parties is fixed at
the onset.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an adversary
can do in a real protocol execution to what it can do in an ideal scenario that is secure by definition. This is
formalized by considering an ideal computation involving an incorruptible trusted third party to whom the
parties send their inputs. The trusted party computes the functionality on the inputs and returns to each party
its respective output. Loosely speaking, a protocol is secure if any adversary interacting in the real protocol
(where no trusted third party exists) can do no more harm than if it was involved in the above-described ideal
computation. One technical detail that arises when considering the setting of no honest majority is that it is
impossible to achieve fairness or guaranteed output delivery [Cle86]. That is, it is possible for the adversary
to prevent the honest party from receiving outputs. Furthermore, it may even be possible for the adversary
to receive output while the honest party does not. We consider malicious adversaries and static corruptions
in this paper.

Execution in the ideal model. In an ideal execution, the parties send their inputs to the trusted party who
computes the output. An honest party just sends the input that it received whereas a corrupted party can
replace its input with any other value of the same length. Since we do not consider fairness, the trusted party
first sends the output of the corrupted parties to the adversary, and the adversary then decides whether the
honest parties receive their (correct) outputs or an abort symbol⊥. Let f be a two-party functionality where
f = (f1, f2), let A be a non-uniform probabilistic polynomial-time machine, and let I ⊆ [2] be the set of
corrupted parties (either P0 is corrupted or P1 is corrupted or neither). Then, the ideal execution of f on

12



inputs (x, y), auxiliary input z to A and security parameter n, denoted IDEALf,A(z),I(x, y, n), is defined
as the output pair of the honest party and the adversary A from the above ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties interact
directly. The adversaryA sends all messages in place of the the corrupted party, and may follow an arbitrary
polynomial-time strategy. In contrast, the honest parties follow the instructions of the specified protocol π.

Let f be as above and let π be a two-party protocol for computing f . Furthermore, let A be a non-
uniform probabilistic polynomial-time machine and let I be the set of corrupted parties. Then, the real exe-
cution of π on inputs (x, y), auxiliary input z toA and security parameter n, denoted REALπ,A(z),I(x, y, n),
is defined as the output vector of the honest parties and the adversary A from the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and real models,
we can now define security of protocols. Loosely speaking, the definition asserts that a secure party protocol
(in the real model) emulates the ideal model (in which a trusted party exists). This is formulated by saying
that adversaries in the ideal model are able to simulate executions of the real-model protocol.

Definition 2.11 (Secure Two-Party Computation) Let f and π be as above. Protocol π is said to securely
compute f with abort in the presence of malicious adversaries if for every non-uniform probabilistic
polynomial-time adversary A for the real model, there exists a non-uniform probabilistic polynomial-time
adversary S for the ideal model, such that for every I ⊆ [2],{

IDEALf,S(z),I(x, y, n)
}
x,y,z∈{0,1}∗,n∈N ≈c

{
REALπ,A(z),I(x, y, n)

}
x,y,z∈{0,1}∗,n∈N

where |x| = |y|.

3 Secure Two-Party Computation with Low Communication

Consider two parties P1 with input x and P2 with input y, respectively, who wish to jointly compute a
function f(x, y). Without loss if generality we only consider single-output functions and assume that only
P1 learns the output f(x, y) (the general case can be easily obtained from this special case [Gol04] but this
requires additional communication). We are interested in protocols that allow P1 and P2 to securely com-
pute f(x, y) in the presence of malicious adversaries that follow arbitrary behavior. Our proof of security
guarantees the strongest notion of simulation based UC security [Can01] in the presence of static malicious
adversaries. Moreover, we require that our protocol achieves the following strong properties: Polylogarith-
mic communication complexity in the circuit-size C that computes f . One round complexity, i.e., a single
message in each direction assuming an appropriate trusted setup. In this work we prove our protocol in the
common reference string model. Polylogarithmic workload for P1 in the circuit-size C that computes f .

We introduce our main construction step-by-step. Our starting point is a standard protocol secure against
honest-but-curious adversaries for which party P1 sends its encrypted input to party P2, who uses the homo-
morphic property to compute ciphertexts that contain that the output of the specified circuit when evaluated
on P1’s (encrypted) input and his own private input. These ciphtertexts are sent to P1 who can decrypt and
learn the result. Obviously, this solution completely breaks down against malicious attacks. So additional
cryptographic tools must be used in order to ensure correct behavior of the players. We then use this protocol
as a building block in our main construction, adding new tools to protect against an increasingly powerful
adversary. Namely, we first show how to prove security in the presence of a corrupted P2 and then prove
simulation based security for both corruption cases. For completeness, we formally describe the standard
protocol with security against honest-but-curious adversaries.
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3.1 Security against Honest-But-Curious Adversaries

We begin with a standard protocol with security in the face of honest-but-curious adversaries. The main
building block here is fully homomorphic encryption ΠE = (KeyGen,Enc,Dec,Eval,Refresh).

Protocol 1 (Honest-but-curious adversaries.)

• Inputs: Input x for party P1 and input y for party P2. A description of function f for both.

• The protocol:

1. P1(x) generates a key pair (pkcomp, skcomp)← KeyGen(1n) for a fully homomorphic encryption scheme,
computes ex = Encpkcomp(x) and sends (pkcomp, ex) to P2.

2. P2(y) computes d = Evalpkcomp(Cf , y, ex) and sends c = Refreshpkcomp(d) to P1.

3. P1 decrypts c and obtains the result of the computation f(x, y) = Decskcomp(c).

Security of P1 follows by the semantic security of the encryption scheme ΠE. Similarly, security of P2

follows from the ability to refresh the ciphertext sent back to P1 so that it only encrypts the outcome. It is
easy to see that the communication complexity is independent of the complexity of the circuit-size C that
computes f , and only depends on its inputs and outputs lengths, and the security parameter.

3.2 Security against a Malicious P1

We extend the above protocol and allow P1 to be malicious (if corrupted), while P2 remains honest-but-
curious. To this end, we use standard techniques to achieve security in the malicious setting by relying on
NIZK proof systems ⟨CRSGen,P,V⟩ and an idealized setup. Specifically, we let P1 send two encryptions
encrypted under two different keys (one public key for which P1 knows the secret key and the other public
key is placed in the common reference string), so that the same plaintext is encrypted. This enables the
simulator to extract x using the trapdoor of the common reference string. In addition to that, P1 must
prove that its public key, together with the ciphertexts, are well-formed. Note that the statement proved
below asserts that each ciphertext is produced from a message and randomness of the expected range, so
it is implicitly asserted that these ciphertexts are well-formed. Nevertheless, we still need to prove well-
formness of pkcomp. This is essentially immediate when specifying the random coins used to generate it as
part of the witness, since all it takes is to verify whether these coins are of the expected range. In order to
formalize this proof we define language L as follows.

L := {(ex, e′x, pkcomp, pkx) : ∃ (skcomp, rpk, rx, r′x, x) s.t. ex = Encpkcomp(x; rx) ∧ e′x = Encpkx(x; r
′
x)

∧(pkcomp, skcomp)← KeyGen(1n, rpk)∧ rpk yields a well formed pkcomp}.

This proof is utilized in Step 1b of Protocol 2. The complete protocol follows.

Protocol 2 (Malicious P1.)

• Setup: Generate keys (pkx, skx) ← KeyGen(1n). Set the common reference string crs = (pkx, σ), where
σ ← CRSGen(1n) is the common reference string used for proving membership in L.

• Input: Input x for party P1 and input y for party P2. A description of function f for both.

• The protocol:

1. First message computed by party P1.
(a) Setup. Generate a key pair (pkcomp, skcomp) ← KeyGen(1n) for a fully homomorphic encryption

scheme and compute ex = Encpkcomp(x).
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(b) Proof of consistency. Compute e′x = Encpkx(x) and a NIZK proof πL proving that pkcomp and ex
are well-formed and that ex and e′x encrypt the same plaintext x.

(c) The complete message. Send (ex, e
′
x, pkcomp, pkx, πL) to P2.

2. Second message computed by party P2.
(a) Verification of NIZK. Upon receiving message (ex, e

′
x, pkcomp, pkx, πL) from P1, verify πL by run-

ning V((ex, e′x, pkcomp, pkx), πL). If it outputs 0, then abort.
(b) Circuit evaluation. Compute d = Evalpkcomp(Cf , y, ex) for Cf a PPT circuit computing f , and

refresh the ciphertext to get c = Refreshpkcomp(d).
(c) The complete message. Send the result c to P1.

3. The output. P1 decrypts c and obtains the result of the computation f(x, y) = Decskcomp(c).

Clearly, if both parties behave honestly P1 learns the correct output. We state the following theorem.

Theorem 3.1 (One-Sided Security) Under the assumptions that ΠE = (KeyGen,Enc,Dec,Eval,Refresh)
is semantically secure and ⟨CRSGen,P,V⟩ is a non-interactive zero-knowledge proof, Protocol 2 securely
evaluates f in the presence of malicious P1 and honest-but-curious P2 with constant communication in the
circuit-size for f .

Intuitively, security against malicious P1 follows from the soundness of proof πL. A simulator S1
for an adversary corrupting P1 can be designed by first verifying the proof πL and aborting if it is not
verified correctly. Next, S1 extracts the adversary’s input x′ using the secret key skx. S1 sends x′ to the
trusted party computing f and receives the outcome. It then encrypts this value and sends it back to the
adversary. Security against corrupted P2 follows from the semantic security property of ΠE. Communication
complexity depends only on the input/output length of f .

3.3 Security against Malicious Adversaries

In this section we present our full protocol that protects against malicious adversarial attacks. Our protocol
uses Protocol 2 as a building block but adds additional tools. This essentially amounts to a SNARG allowing
P1 to verify the correctness of the output issued by P2. More precisely:

1. We first add a PCP system ⟨Provpcp, (Ver1pcp,Ver2pcp)⟩ (cf. Definition 2.5), used by P2 for proving
membership in the language L1. Formally, L1 is defined by

L1 := {(c, ex, pkcomp, ey, pky, f) :∃ (d, rd, ry, y) s.t. d = Evalpkcomp(Cf , y, ex)

∧ c = Refreshpkcomp(d; rd) ∧ ey = Encpky(y; ry)}.

Namely, the PCP shows that if one decrypts c it gets the desired result f(x, y), where x is the plaintext
contained in ex and y is the plaintext in ey. This proof is utilized in Step 2c of Protocol 3. We recall
that the statement proved asserts that ey is produced from a message and randomness of the expected
range so it is implicitly asserted that ey is well-formed.

We further let P2 commit to this proof using a Merkle hash tree instantiated with an extractable
collision resistance hash function H : {0, 1}∗ → {0, 1}τ (cf. Definition 2.9). The main problem
with this is that hashing the proof does not necessarily conceal it, unless a special hiding property is
required form the underlying hash function. We fix that by hashing the committed PCP instead, and
then prove that the values embedded within these commitments correspond to a valid proof.
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2. Furthermore, since the verifier must not see the queried bits from the proof (due to privacy consider-
ations), we consider an NP statement claiming that if the PCP verifier Ver2pcp is run on Decskx(cq1),
. . . ,Decskx(cqt), denoting the ciphertexts encrypting (Γq1 , . . . ,Γqt) – the openings for the PCP queries
(q1, . . . , qt), then it will accept. That is,

L2 :=
{
(zpcp, (q1, . . . , qt), (cq1 , . . . , cqt)) :

∃ (Γq1 , γq1 , . . . ,Γqt , γqt , rpk) s.t.
(
∀i ∈ [t] : cqi = Encpky(Γqi ; γqi)

)
∧ Ver2pcp

(
zpcp,Γq1 , . . . ,Γqt , q1, . . . , qt

)
= 1

}
for the instance zpcp ∈ L1. In our protocol, (q⃗, cq1 , . . . , cqt) are all encrypted under FHE with respect
to public key pkpro, enabling P1 to verify this proof. Note that the code of Ver2pcp is independent of
the strategy followed by a malicious P1. Furthermore, notice that the we do not explicitly need to
include checks of well-formedness for the ciphertext cq1 , . . . , cqt since these are implied by the fact
that the ciphertext are possible outputs on proper inputs Γqi , γqi .

This proof is utilized in Step 2f in Protocol 3. Importantly, the number of queries asked by P1 is
polylogarithmic in the PCP size (and hence in the circuit-size that computes f ).

The above implies that P1 has to provide encryptions of the queries q1, . . . , qt. In order to ensure correctness
of these queries, we add a non-interactive zero-knowledge proof for which P1 proves that the queries were
indeed sampled from the correct range. This is formalized in Step 1c of Protocol 3 below.

An overview of our protocol. We summarize the discussion above. (1) At first, P1 sends its input x
encrypted under two distinct public keys together with the encrypted PCP queries and a proof of correct
behavior. (2) P2 then replies with ciphertexts that contain the output of the specified circuit, as generated
above. It then produces a PCP for this computation and commits to it using a Merkle tree. Finally, P2

computes ciphertexts that contain the answers for the PCP queries by opening the corresponding paths in
the Merkle tree generated above (note that this step is performed obliviously within the fully homomorphic
encryption scheme). P2 sends the computation of f(x, y) and answers to PCP queries together with a non-
interactive zero-knowledge proof for backing up its computations.

Intuitively, the overall communication complexity depends on the number of PCP queries, the answers
to these queries and the overhead induced by the non-interactive zero-knowledge proofs. Recall first that
PCP systems are sound even after observing only polylogarithmic bits of the proof. Moreover, each answer
to such a query requires providing the corresponding path in the hashed Merkle tree of the PCP which
includes logarithmic number of elements (in the proof’s size). Finally, we utilize zero-knowledge proofs
with communication that is polynomial in the size of the witness. All these tools ensure that the overall
communication is polylogarithmic in the circuit’s size.

3.3.1 The Complete Construction

We are now ready to present our protocol in detail.

Protocol 3 (Malicious adversaries.)

• Setup: Generate keys (pkx, skx) ← KeyGen(1n) and (pky, sky) ← KeyGen(1n).2 Set the common reference
string crs = (pkx, pky, σ), where σ is a joint common reference string used by P1 for proving membership in L
and by P2 for proving membership in L1 and L2. Pick an extractable collision-resistant hash function H ← Hn

for H : {0, 1}p(n) → {0, 1}p′(n).

2We note that these public keys do not have to be associated with the fully homomorphic encryption scheme. For convenience,
we assume that they do in order to avoid overload of parameters.
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• Input: Input x for party P1 and input y for party P2. A description of function f for both.

• The protocol:

1. First message computed by party P1.

(a) Setup. Generate key pairs (pkcomp, skcomp)← KeyGen(1n) and (pkpro, skpro)← KeyGen(1n) for a
fully homomorphic encryption scheme and compute ex = Encpkcomp(x).

(b) Proof of consistency. Compute e′x = Encpkx(x) and a NIZK proof πL proving that pkpro, pkcomp, ex
are well-formed and that ex and e′x encrypt the same plaintext x.

(c) Queries for PCP. Sample t positions (q1, . . . , qt)← Ver1pcp(zpcp, ℓ) and for each i encrypt them as
bi = Encpkpro(qi). Moreover, for each i compute a NIZK proof πi that qi lies in the correct range [ℓ].

(d) The complete message. Send m1 := ((ex, e
′
x, pkcomp, pkpro, πL), (bi, πi)i∈[t]) to P2.

2. Second message computed by party P2.
(a) Verification of NIZK’s. Upon receiving message m1 from P1, verify πL by running V((ex, e′x, pkcomp,

pkx), πL). If it outputs 0, then abort.
(b) Circuit evaluation. Compute d = Evalpkcomp(Cf , y, ex) and refresh it to get c = Refreshpkcomp(d; rd).

Also, compute ey = Encpky (y; ry).
(c) Compute PCP. Compute a PCP Γ = Provpcp(zpcp, ωpcp) of length ℓ = poly(n), where ωpcp :=

(d, rd, ry, y) forms an NP witness for the instance zpcp := (c, ex, pkcomp, ey, pky, f) ∈ L1.
(d) Commit to PCP. For i ∈ [ℓ] compute ciphertexts ci = Encpky (Γi; γi) and compute the Merkle hash

root using H , for h = Commit(c1, . . . , cℓ), where for simplicity we let ℓ be a power of 2.
(e) Answer PCP queries. Compute pqi = Encpkpro(path(qi); ρqi) for i ∈ [t] by running Evalpkpro on

input bi (sent by P1) and (c1, . . . , cℓ) (computed above), where path(qi) = Open(h, i).
(f) Proving correctness. Compute an encrypted proof cπL2

= Encpkpro(πL2) for proving that (zpcp, (q1, . . . , qt),
(cq1 , . . . , cqt)) ∈ L2. This is done by running Evalpkpro on input zpcp, (b1, . . . , bt), (c1, . . . , cℓ),
(γ1, ..., γℓ).

(g) The complete message. Send m2 := (c, ey, h, (pq1 , . . . , pqt), cπL2
) to P1. Notice that cqi is part of

path(qi) which is contained in pqi .

3. Verifying the second message m2. P1 decrypts c and obtains the result of the computation f(x, y) =
Decskcomp(c). For each i ∈ [t] it also decrypts path(qi) = Decskpro(pqi) and verifies that path(qi) is
correct with respect to the root h. It then uses the leaves cq1 , . . . , cqt and πL2 = Decskpro(cπL2

) together
with the common reference string σ and verifies the correctness of πL2 . If all these checks succeed, then
it outputs f(x, y), otherwise it aborts.

Then we claim the following theorem.

Theorem 3.2 (Main) Assuming that ΠE = (KeyGen,Enc,Dec,Eval,Refresh) is semantically secure, ⟨CRSGen,P,V⟩
is a non-interactive zero-knowledge proof, ⟨Provpcp, (Ver1pcp,Ver2pcp)⟩ is a PCP system, {Hn}n∈N is collision-
resistant and satisfies the EHF2 assumption, Protocol 3 evaluates f securely against malicious adversaries
with polylogarithmic communication in the circuit-size of f .

3.3.2 Proof Outline

We give a brief overview of our proof. We distinct two corruption cases. Let P1 be controlled by an ad-
versary A. In this case we face the difficulty of protecting the privacy of P2, since revealing bits from Γ so
that the PCP verifier will be able to validate the proof is insecure. Loosely speaking, privacy follows due to
hashing the committed proof rather than the proof itself. Thus, secrecy is obtained from the hiding property
of the commitment scheme. SimulatingA’s view requires from the simulator to verify the correctness of the
message m1 received fromA as the honest P2 would. Then it extractsA’s input, forwarding it to the trusted
party. Finally, upon receiving from the trusted party f(x, y), it encrypts this value under pkcomp and sends it
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back to A. Now, since the simulator does not use the real honest party’s input, y, it cannot construct a valid
proof Γ and therefore has to build the hash tree on commitments to the zero string. It further simulates the
NIZK proof for L2. Indistinguishability follows due to: (1) Zero-knowledge property of the proof system
of L2. (2) Semantic security of ΠE. (3) Refresh algorithm of ΠE that produces a ciphertext indistinguish-
able from a ciphertext that encrypts f(x, y) directly (without going through homomorphic evaluation). (4)
Soundness of the proof system of L.

We now consider the case where P2 is corrupt. Intuitively, security should follow from semantic security
of encryptions under pkpro, soundness of the PCP and the fact that P2 is committed to a PCP string via
sending the root of the Merkle tree: by soundness of the PCP, the only way P2 could cheat would be to
look at the encrypted PCP queries and adapt the PCP string it commits to, to the specific queries that are
asked. Supposedly, this is not possible by semantic security. The technical difficulty, however, is that to
have P2 help us conclude anything on which queries have been encrypted in a given ciphertext (to make a
reduction to semantic security), we would need to see the responses P2 sends back. Unfortunately, these are
encrypted under the same key pkpro, and if we want to do a reduction to semantic security, we cannot know
skpro and so cannot see the responses directly. This is solved by first observing that by the extractability of
the hash function, we can extract a Merkle tree T based on the root of the tree sent by P2, and hence also
a PCP string (we can assume we know sky so we can decrypt the commitments containing PCP bits). We
then show that the encrypted paths path(qi) must be contained in T , or else we could break extractability or
collision resistance ofHn. So the responses we want to see will be embedded in the tree we can extract. The
reduction to semantic security can therefore ask for an encryption of one of two sets of queries q⃗0 or q⃗1. It
shows the ciphertext to P2 and extracts a PCP string from the root sent by P2. Then if q⃗b leads to accept with
the extracted PCP P1 would also accept in a real execution, so we guess that q⃗b was the encrypted plaintext.

4 The Proof of Theorem 3.2

Let
{
REALπ,A(z),I(x, y, n)

}
x,y,z∈{0,1}∗,n∈N denote a random variable distributed over the outputs of par-

ties P1 and P2 and an adversary A controlling one of these parties, when engaging in an execution of
Protocol 3. So that the honest party returns it output from the protocol and a corrupted party outputs its
view. Moreover, let

{
IDEALf,S(z),I(x, y, n)

}
x,y,z∈{0,1}∗,n∈N denote the corresponding random variable

ranging over the parties’s outputs in a simulated execution. We prove security separately in the case when
Px and Py are corrupted. Thus, it should be clear from the context which party is controlled by A. For ease
of notation, we omit to give explicitly the auxiliary information z as input to the algorithms, i.e., as input for
the adversary and the simulator.

4.1 Party P1 is corrupted

LetA denote an adversary controlling party P1. We construct a simulator S that simulatesA’s environment
by taking the role of P2. More formally, S works as follows:

1. First, generate keys (pkx, skx)← KeyGen(1n) and (pky, sky)← KeyGen(1n) and simulate the com-
mon reference string (σ, td) ← S1(1

n) together with a trapdoor. The latter is done using the NIZK
simulator S1 from Definition 2.7. Also, pick an extractable collision-resistant hash function H ← Hn

for H : {0, 1}p(n) → {0, 1}p′(n).

2. Upon receiving (ex, e
′
x, pkcomp, pkpro, πL) and (bi, πi), for i ∈ [t], from P1, it verifies the proofs πL

and {πi}i∈[t]. If verification fails, then it aborts as in the real execution of the protocol.
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3. S computes x = Decskx(e
′
x) and sends it to the ideal functionality to obtain f(x, y). It then computes

c = Encpkcomp(f(x, y)).

4. S computes a Merkel hash root h for an incorrect PCP by computing an encryption of zero rather than
the real input y. It then prepares a false instance zSpcp for language L1 and generates ciphertexts ci =
Encpky(0) for i ∈ [ℓ]. Finally, S simulates the NIZK proof πL2 for the instance (zpcp, (q1, . . . , qt), (cq1 , . . . , cqt))
with the NIZK simulator. Notice that the simulation of the NIZK can be done since it requires to run
Ver2pcp on the plaintexts in cqi , where the qi’s are encrypted with pkpro.

Clearly, S runs in polynomial-time. We prove now that the simulated and real views are computationally
indistinguishable. Recall that the differences between the executions are as follows. First, S prepares a fake
instance zpcp by encrypting zero instead of y. Then, S commits to zero rather than the correct PCP and
invokes the simulator for the NIZK for L2. Finally, S generates a fresh encryption of f(x, y) rather than
evaluating f on the encryption of x together with y. Our proof follows by a sequence of hybrid games.

GAME0: S0 knows y and runs against A as in the real protocol.

GAME1: S1 generates all values as in the last game, but instead of using crs ← CRSGen(1n) it runs the
NIZK simulator (crs, td) ← S1(1

n) to generate the crs together with a trapdoor td. When S needs
to compute a NIZK proof πL2 for the language L2, it uses the NIZK simulator S2(crs, td) to simulate
the proof. Indistinguishability follows from the zero-knowledge property for the proof system of L2.

GAME2: S2 prepares an incorrect instance zSpcp for L1 by encrypting zero instead of y under pky. It
then commits to this PCP using the same public key pky. Indistinguishability here easily follows
from semantic security of the encryption scheme under public key pky since S never uses sky in the
simulation.

GAME3: Instead of computing c = Refreshpkcomp(d; rd), S3 computes c = Refreshpkcomp(Encpkcomp(f(x, y)))
as an independent encryption using fresh randomness. Note first that since the public keys and cipher-
texts produced by P1 are shown to be well-formed by the NIZK, c contains the correct result f(x, y)
except with negligible probability. Therefore indistinguishability here follows from statistical indis-
tinguishability of the encryption scheme of a refreshed ciphertext and a newly generated and refreshed
ciphertext.

GAME4: In this game S4 does not know y. Instead, it is interacting with a trusted party that computes f .
Specifically, S3 extracts x by decrypting e′x and sends it to the trusted party. It then encrypts the reply
from the trusted party under pkcomp and completes the execution as before, outputting whatever the
adversary does. The potential difference between games 3 and 4 is due to sending ciphertexts ex, e′x
encrypting two different plaintexts. By the soundness of the proof for L this event only occurs with
negligible probability.

4.2 Party P2 is corrupted

LetA denote an adversary controlling party P2. We construct a simulator S that simulatesA’s environment
by taking the role of P1. More formally, S works as follows:

Simulator S:

1. Setup. S generates keys (pkx, skx)← KeyGen(1n) and (pky, sky)← KeyGen(1n) and simulates the
common reference string (σ, td)← S1(1

n) together with a trapdoor. The latter is done using the NIZK
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simulator S1 from Definition 2.7. Furthermore, it generates key pairs (pkcomp, skcomp)← KeyGen(1n)
and (pkpro, skpro)← KeyGen(1n) as in the real protocol. Also, pick an extractable collision-resistant
hash function H ← Hn for H : {0, 1}p(n) → {0, 1}p′(n).

2. Proof of Consistency. Computes ex = Encpkcomp(0) and e′x = Encpkx(0) and a NIZK πL proving that
ex and e′x encrypt the same plaintext x.

3. Queries for PCP. Samples t positions (q1, . . . , qt)← Ver1pcp(zpcp, ℓ), encrypts them as bi = Encpkpro(qi)
and generates a NIZK proof πi that qi lies in the correct range.

4. The complete message. Sends m1 := (ex, e
′
x, pkcomp, pkpro, πL) and for each i ∈ [t]: (bi, πi) to A.

5. Compute result. When A replies with m2 := (c, ey, h, pq1 , . . . , pqt , cπL2
), S verifies the proof en-

crypted in cπL2
and the correctness of the paths path(q1), . . . , path(qt) with respect to the root h. If

the proofs are incorrect then abort. Otherwise, S decrypts ey to obtain y and hands it to the trusted
party computing f .

We now define a series of games GAME0 to GAME5, and prove that for each i ∈ [0, 4] we have{
GAMEi

f,Si(z)
(x, y, n)

}
x,y,z∈{0,1}∗,n∈N

≈c

{
GAMEi+1

f,Si+1(z)
(x, y, n)

}
x,y,z∈{0,1}∗,n∈N

. (1)

Furthermore, since we show that{
GAME0

f,S0(z)
(x, y, n)

}
x,y,z∈{0,1}∗,n∈N

≡
{
REALπ,A(z),I(x, y, n)

}
x,y,z∈{0,1}∗,n∈N{

GAME5
f,S5(z)

(x, y, n)
}
x,y,z∈{0,1}∗,n∈N

≡
{
IDEALf,S(z),I(x, y, n)

}
x,y,z∈{0,1}∗,n∈N ,

Theorem 3.2 follows. We proceed with describing the games.

GAME0: In this game, simulator S0 obtains x from the game and simulates A’s view as in the real
execution of the protocol.

GAME1: When simulator S1 generates the keys (pky, sky) ← KeyGen(1n) as in the setup step, it stores
the secret key sky. It proceeds as in GAME0.

GAME2: We proceed as in GAME1, but instead of computing the CRS as crs ← CRSGen(1n), S2
generates the CRS by running (crs, td) ← S1(1

n) of the NIZK ⟨CRSGen,P,V⟩. Furthermore, when
computing the proofs πL and {πi}i∈[t] the simulator runs the NIZK simulator S2 instead of the real
prover.

GAME3: S3 proceeds as S2 except that it computes f(x, y) and outputs it as the final result instead of
using the decryption of c. More precisely, as in GAME2 it sends the message m1. Then, when it
receives m2 from A it verifies the paths path(q1), . . . , path(qt) with respect to h and the proof πL2 .
If both checks succeed then it extracts y := Decsky(ey), computes f(x, y) and outputs it as the final
result.

GAME4: Simulator S4 proceeds as S3 except that it sends ex = Encpkcomp(0) and e′x = Encpkx(0) as part
of its message m1 to A.

GAME5: Here, the game does not give x to simulator S5. Instead, S5 interacts with a trusted party
computing f . Upon extracting y, S5 sends it to the ideal functionality and outputs whatever the
adversary does.
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We now argue that for each i ∈ [0, 4] Eq. (1) holds. Observe first that the distance between GAME0

and GAME1 is 0, since we only make a syntactical change – namely, we store the secret key sky as
a trapdoor. Furthermore, the distance between GAME1 and GAME2 is at most negl(n) by the zero-
knowledge property of the NIZK.

We notice that the only difference between GAME2 and GAME3 is that in GAME2 the simulator
outputs Decskcomp(c), while in GAME3 it extractsA’s input and directly computes the output result f(x, y).
The output is identically distributed in both games only if A does not manage to produce a proof πL2 that
is accepting for a false statement, i.e., for f(Decskx(ex), y) ̸= Decskcomp(c), where y is well defined by ey.
We denote the event that A sends a message m2, including the proof πL2 which is accepted even though
f(Decskx(ex), y) ̸= Decskcomp(c) by bad. Below we show that there exists a negligible function negl(n)
such that the probability of event bad is upper-bounded by negl(n), which bounds the distance between
GAME2 and GAME3 to negl(n).

GAME3 and GAME4 are negligibly close by the IND-CPA security of the encryption scheme ΠE.
Finally, the distribution of GAME4 and GAME5 is identical since we only make a syntactical change by
using the ideal functionality to compute f(x, y) instead of computing it by the simulator. To conclude the
proof, we note that in GAME5 simulator S5 does not get x, hence it holds that{

GAME4
f,S5

1 (z)
(x, y, n)

}
x,y,z∈{0,1}∗,n∈N

≡
{
IDEALf,S1(z),I(x, y, n)

}
x,y,z∈{0,1}∗,n∈N .

This proves the theorem.

4.2.1 Upper-Bounding Event bad in GAME2

As described above, we let bad be the event that A sends a message m2, which includes a proof πL2 and
paths path(q1), . . . , path(qt) which are accepted by an honest verifier even though f(Decskx(ex), y) ̸=
Decskcomp(c). We note that path(q1), . . . , path(qt) always must be correct with respect to the root h ∈ m2

sent by the adversary, as otherwise the simulator will never accept. Hence, in the following analysis, we can
ignore this check and focus on the following two relevant cases:

1. zpcp /∈ L1 but Ver2pcp
(
zpcp,Γ[q1], . . . ,Γ[qt]

)
= 1,

2. zpcp /∈ L1 and Ver2pcp
(
zpcp,Γ[q1], . . . ,Γ[qt]

)
= 0, but the NIZK verifier V(zL2 , πL2 , σ) = 1 for

zL2 /∈ L2.

In the above, Γ is the PCP generated by A and q1, . . . , qt are the positions on which the PCP verifier Ver1pcp
wants to read. Intuitively, we will show that if the former happens with non-negligible probability soundness
of the PCP breaks down whereas, if the latter occurs with non-negligible probability soundness of the NIZK
for language L2 breaks down. Let bad1 be the former event. Then consider the following analysis (the
probabilities are taken over the randomness of GAME2).

Pr[bad] = Pr[bad|bad1] Pr[bad1] + Pr[bad|bad1] Pr[bad1]
≤ Pr[bad1] + Pr[bad|bad1],

In Lemma 4.4 and Lemma 4.5, respectively, we show that events Pr[bad1] and Pr[bad|bad1] are neg-
ligible (in n). Towards proving Lemma 4.4, we first prove Lemma 4.1 below, which says that for a hash
function H sampled from a family of extractable collision resistant hash functionsHn used in a Merkle hash
tree of depth d, given only the root of this tree, the simulator in GAME2 can extract a “good” Merkle tree
T with all but negligible probability if bad occurs. Formally, we will call a tree T good with respect to root
h and paths path(q1), . . . , path(qt) (as generated in GAME2) if it satisfies the following three conditions:
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1. T is a valid (possibly incomplete) Merkle tree with max-depth d and all paths path(q1), . . . , path(qt)
are valid with respect to the root h,

2. for the value assigned to the root of T we have h = hε,

3. each path path(qi) is consistent with T , i.e., for each node w ∈ path(qi), we have hw = vw, where
vw denotes the value assigned to node w in path(qi) and hw denotes the value assigned to node w in
the tree T .

Intuitively, in the above, (3) says that every path path(qi) is also a (sub)path of T . We will say that a tree T
is notGood in GAME2, if one of the conditions (1)-(3) does not hold.

The lemma below shows that if event bad occurs in GAME2 and the underlying hash function H is
sampled from a family of extractable collision resistant hash function, then there exists a PPT algorithm Ext
that outputs a good tree T . Recall that if bad occurs in GAME2, then the adversary A in GAME2 sends
h, path(q1), . . . , path(qt) and a proof πL2 for a wrong statement which are accepted by the simulator S2.
The lemma will be used in Lemma 4.4 to argue a contradiction if bad occurs with non-negligible probability,
i.e., if Pr[bad] ≥ 1/poly(n) for infinitely many n, and we let N̄ denote this infinite set of n-values. More
precisely, we have:

Lemma 4.1 Recall that n is the security parameter, ℓ := poly(n) is the length of the PCP for language L1,
t := O(1) is the number of queries that are made by the PCP verifier Ver1pcp and d := log(ℓ). Assuming
Pr[bad] is not negligible, then for any polynomial-time adversary A running in GAME2, there exists a
PPT algorithm ExtA and a negligible function negl(·) such that for sufficiently large n ∈ N̄ the following
holds

Pr[T ← ExtA(crs,H,m1, d) is good |bad] ≥ 1− negl(n), (2)

where H ← Hn, crs is the CRS generated in GAME2 and m1 is the message sent in GAME2 by P1. The
probability above is taken over the random coins to sample H , crs and m1 as specified in GAME2, and
the internal random coins of ExtA.

Proof: We will prove a stronger statement than what is required in the above lemma. Namely, it will suffice
that path(q1), . . . , path(qt), which are sent by A in GAME2, are correct with respect to the root h. We
denote the event that this happens by Q. Instead of conditioning on bad, we will therefor condition on the
event Q. Of course, if bad occurs then also Q occurs.

For the extractor E ofHn, we define the algorithm ExtA,E(crs,H,m1, d), which outputs a good Merkel
tree T . ExtA,E(crs,H,m1, d) takes as input the crs, the hash function as sampled in the setup of GAME2

and the message m1 sent by P1. It then simulates A on some randomness r, which results in h as part of
m2.

We will later use ExtE,A(crs,H,m1, d) in the reduction to the EHF2 assumption. The “tree” extractor
specified below will take the role of the loop in the EHF2 game, where A is the adversary that attempts
to break the EHF2 assumption and each call to ExtractNode corresponds to one iteration of the loop in
the EHF2 game. In the reduction, the auxiliary information (ζ, ζ ′) will be set to ((crs, H,m1), skpro). For
further details on how the “tree” extractor ExtE,A(crs,H,m1, d) is used, we refer the reader to the proof of
Claim 4.2.

Algorithm ExtE,A(crs,H,m1, d):
Simulate A on internal randomness with crs and m1. Let h be the root sent as part of m2;
Call sub-routine ExtractNode(ϵ, h);
Return T , where the nodes in T are assigned values hw for w ∈ T .
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Subroutine ExtractNode(w, u)
Call (z0, z1)← E(1n,H, r, u, (crs,m1));
If H((z0, z1)) = u then:

Set (hw0, hw1) = (z0, z1);
If |w0| < d then

ExtractNode(w0, hw0);
If |w1| < d then

ExtractNode(w1, hw1);

Since the PCP Γ to whichA commits via the Merkle tree has length ℓ = poly(n), our extractor ExtE,A(crs,H,m1, d)
has to make at most 2ℓ calls to the underlying PPT extractor E. Moreover, since A and the verification of
h ∈ Im(H) can be done in polynomial time, we get that also ExtE,A runs in time polynomial in n.

To prove the lemma, it remains to show that for the above extractor Eq. (2) holds if in GAME2 eventQ
occurs. In other words, we need to show that the tree T ← ExtE,A(crs,H,m1, d) is good, i.e., it satisfies the
requirements given in (1)-(3). Suppose towards a contradiction that there exists A and a polynomial poly(·)
such that for ExtE,A as defined above, we have

Pr[T ← ExtE,A(crs,H,m1, d) is notGood |Q] ≥ 1/poly(n), (3)

for infinitely many n ∈ N̄. Since T ← ExtE,A(crs, H,m1, d) always outputs a valid (possibly incomplete)
Merkle tree T with root h the requirements (1) and (2) always hold. This implies that requirement (3) does
not hold with non-negligible probability, which implies that there exists a path(qi) ∈ m1 such that at least
one of the following holds:

1. there exists an internal node w in path(qi) with H(vw0||vw1) = vw, but w has no children in T , where
vw is the value assigned to node w in path(qi).

2. there exists a node w in path(qi) such that vw ̸= hw, where hw is the value assigned to node w in T .

The first case is associated with the event Q1, while the latter is associated with event Q2. By the union
bound, we have:

Pr[Q1|Q] + Pr[Q2|Q] ≥ Pr[Q1 ∪Q2|Q] =: ϵ. (4)

Recall that

ϵ := Pr[Q1 ∪Q2|Q] = Pr[T ← ExtE,A(crs,H,m1, d) is notGood |Q] ≥ 1/poly(n)

for infinitely many n ∈ N̄ by Eq. 3. By simple calculation Eq.(4) implies that at least one of the events,
Q1 or Q2, occurs with probability at least ϵ/2 (conditioned on Q). The next two claims relate Pr[Q1|Q]
(resp. Pr[Q2|Q]) with the advantage of breaking the extractability (resp. collision resistance) ofHn. Recall
that if event Q1 occurs conditioned on Q, then intuitively there exists a path and a node w in this path that
has two valid children, but the same node w in the extracted tree T has no children.

Claim 4.2 If Pr[Q1|Q] ≥ ϵ/2, then there exists a PPT adversary AE and a PPT algorithm G such that for
any extractor E for Hn, we have Pr[EHF2AE,G,E,Hn(1

n) = 1|Q] ≥ ϵ/2. where the probability is taken
over the internal coin tosses of AE, G and the experiment EHF2.
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Proof: We construct PPT algorithms G andAE such that for any extractor E for the family of hash functions
Hn, we have

Pr[EHF2AE,G,E,Hn(1
n) = 1|Q] ≥ ϵ/2.

G simulates the setup and the party P1 exactly as specified in GAME2 and sets (ζ, ζ ′) := ((crs,H,m1), skpro).
The adversary AE takes as input z and uses internal randomness R as follows:

1. Loop in the EHF2 game: Run the extractor T ← ExtE,A(crs, H,m1, d) with internal randomness
R to obtain a (possibly incomplete) Merkel tree T . Notice that by running ExtE,A the adversary AE

takes essentially the role ofA and runs the loop in the EHF2 game against the extractor E. Here, each
call of the subroutine ExtractNode(w, u) corresponds to one iteration of the loop.

2. Second part of EHF2 game: A takes as input ζ ′ and outputs zAi computed as follows: for each node
w visited by the extractor ExtE,A in Step 2 do one of the following:

(a) if ExtE,A outputs a valid pre-image (hw0||hw1) for hw, then set i = i+1 and zAi = (hw0||hw1),

(b) else if ExtE,A does not output a pre-image, then check if one of the paths contains an internal
node w such that vw = hw = H(vw0||vw1). If such a path is found, then set i = i + 1
and zAi = (vw0||vw1). Notice that this is the step where AE uses ζ ′ = skpro as the paths are
encrypted with the corresponding public key pkpro.

We now argue why AE breaks the extractability according to Definition 2.9 of Hn if Pr[Q1|Q] ≥ ϵ/2.
With probability Pr[Q1|Q] there exists a node w in T that has no children, but there exists a path path(qj)
such that vw = H(vw0||vw1). For this node w, AE executes Step 3b and sets zAi = (vw0||vw1) (for some
i), while the underlying extractor E has failed to output a valid pre-image3. Recall that in this case game
EHF2AE,G,E,Hn(1

n) returns 1. Hence, we get that Pr[EHF2AE,G,E,Hn(1
n) = 1|Q] = Pr[Q1|Q] ≥ ϵ/2,

which concludes the proof. Notice that it is crucial that the randomness R ofAE is given as input to E when
it is run as part of the tree extractor ExtE,A.

In the next claim, we show that if event Q2 occurs with probability at least ϵ/2 (conditioned on Q), then
there exists an PPT algorithm that finds a collision for Hn. Recall that Q2 occurs when there exists a node
w in path(qi) such that vw ̸= hw. More precisely, we have the following:

Claim 4.3 Let Hn be a family of hash functions. If Pr[Q2|Q] ≥ ϵ/2, then there exists a PPT algorithm
ACR with

Pr[HashA,Hn(n) = 1|cQ] ≥ ϵ/2,

where the probability is taken over the internal coin tosses of ACR.

Proof: The proof is similar to the proof of Claim 4.2 above. We constructACR that simulates the execution
of the setup and party P1 in GAME2. This results into crs,H,m1 and the internal keys of P1 (including
knowledge of skpro). It then runs the extractor ExtE,A on chosen randomness r which results in the tree
T . Moreover, knowledge of this randomness allows to compute the paths path(q1), . . . , path(qt), which
suffices to extract a possible collision. More precisely, ACR proceeds as follows:

1. Sample randomness r and run the extractor T ← ExtE,A(crs, H,m1, d) with internal randomness r
to obtain a (possibly incomplete) Merkel tree T . Notice that since ACR knows r it can extract as well
the paths path(q1), . . . , path(qt).

2. Verify if path(q1), . . . , path(qt) are valid with respect to h and abort otherwise.

3Recall that E is run as part of the extractor ExtE,A for the Merkle tree.
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3. Search for a node w in path(qi) where w has two children both in path(qi) and in T . Furthermore, this
search succeeds if for the values assigned to the children of w we have H(vw0||vw1) = H(hw0||hw1),
but vw0||vw1 ̸= hw0||hw1. If ACR finds such a node, then output (z1, z2) = (vw0||vw1, hw0||hw1);
otherwise abort.

We first note that conditioned on Q the adversary ACR will never abort in Step 2. Hence, we will always
proceed to Step 4, where ACR either aborts or outputs a collision for Hn. We argue why (z1, z2) forms a
collision with probability at least ϵ/2. If Q2 occurs, then by definition of Q2 there exists a path path(qi)
and a node w ∈ path(qi) such that the value vw assigned to node w in path(qi), and the value hw assigned
to node w in T differ. W.l.o.g. assume that w is the first such node. Since path(qi) and T are valid, let w̃
be the parent node of w with hw̃ := H(hw̃0||hw̃1) = H(vw̃0||vw̃1) =: vw̃. Hence, setting z1 = (hw̃0||hw̃1)
and z1 = (hw̃0||hw̃1) forms a collision with probability Pr[Q2|Q] ≥ ϵ/2. This proves the claim.

To finish the proof of Lemma 4.1, recall that at least one of Pr[Q1|Q],Pr[Q2|Q] ≥ ϵ/2 for infinitely
many n ∈ N̄. In the former case we get from Claim 4.2 a contradiction to Hn being extractable, namely
since Pr[Q] ≥ Pr[bad] ≥ 1/poly(n) for n ∈ N̄, we have

Pr[EHF2AE,G,E,Hn(1
n) = 1] ≥ Pr[EHF2AE,G,E,Hn(1

n) = 1,Q]
= Pr[EHF2AE,G,E,Hn(1

n) = 1|Q]Pr[Q] ≥ 1/poly(n)

for infinitely many n. In the latter case, we get instead (in a similar way), from Claim 4.3, a contradiction to
H being collision resistant. This completes the proof.

We next use Lemma 4.1 to upper-bound the probability that bad1 occurs.

Lemma 4.4 Let Hn be an extractable collision resistant hash function (cf. Definition 2.9), let ΠE be se-
mantically secure (cf. Definition 2.3) and let ⟨Provpcp, (Ver1pcp,Ver2pcp)⟩ be a sound PCP system (cf. Defini-
tion 2.5). Then, there exists a negligible function negl(·) such that for sufficiently large n ∈ N it holds that
Pr[bad1] ≤ negl(n).

Proof: Suppose towards a contradiction that there exists a polynomial-time adversary A and a polynomial
poly(·) such that in GAME2 we have Pr[bad1] ≥ 1/poly(n) for infinitely many n. Then the same of
course holds for Pr[bad], so we can use Lemma 4.1. We will construct an adversary AE that breaks the
semantic security of the underlying encryption scheme ΠE with non-negligible probability. Adversary AE
proceeds as follows:

1. AE obtains the challenge public key pk∗ and uses it for pkpro. It then generates two sets of challenge
messages q⃗0 := (q01, . . . , q

0
t ) and q⃗1 := (q11, . . . , q

1
t ) using the PCP verifier Ver1pcp. AE sends q⃗0

and q⃗1 to the challenge oracle in the semantic security game and obtains the challenge ciphertext
(b∗1, . . . , b

∗
t ) := Encpk∗(q⃗

β) for β ← {0, 1}.

2. AE runs the setup of Protocol 3 as specified in GAME2 to sample a hash function H and a common
reference string crs. It then executes the protocol that party P1 computes in GAME2 where it uses
pk∗ := pkpro and (b1, . . . , bt) := (b∗1, . . . , b

∗
t ). This results into knowledge of m1.

3. It samples randomness r and runs the extractor T ← ExtE,A(crs,H,m1, d) with internal randomness
r to obtain a (possibly incomplete) Merkel tree T . Notice that in GAME2, AE can compute proofs
πi even though it does not know the plaintext contained in (b∗1, . . . , b

∗
t ). The reason for this is that

in GAME2, we already simulate the proofs using the NIZK simulator with the trapdoor td. Notice
further that AE knows the randomness r that is used for ExtE,A, and hence can compute m2.

4. Extract the actual proof Γ from T ’s leaves using sky.
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5. AE samples β′ ← {0, 1} uniformly and runs the PCP verifier Ver2pcp
(
zpcp,Γ[q

β′

1 ], . . . ,Γ[qβ
′

t ]
)

. If it

accepts, it outputs β′; otherwise it outputs 1− β′.

We now argue why the above adversary AE breaks the semantic security of the underlying encryption
scheme with non-negligible probability. First, notice that when bad1 occurs, then of course bad occurs.
Hence, by Lemma 4.1 the tree T as output by the extractor ExtE,A satisfies requirements (1)-(3) with all but
negligible probability. To simplify notation, we assume in the following that T is indeed a good tree and
neglect conditioning on this event explicitly. We now analyze the advantage CPA− INDΠE,AE(n) of AE in
the semantic security game (specified in Definition 2.3). We consider the two cases when β = β′ and when
β ̸= β′.

Pr[AE(Encpkpro(q
β
1 , . . . , q

β
t )) = β′|β ̸= β′] = Pr[AE(Encpkpro(q

1−β′

1 , . . . , q1−β′

t )) = β′]

= Pr[Ver2pcp

(
zpcp,Γ[q

β′

1 ], . . . ,Γ[qβ
′

t ]
)
= 1|β ̸= β′]

≤ negl(n) (5)

This is due to soundness of the PCP. Specifically, the (false) proof Γ is independent of challenge (qβ1 , . . . , q
β
t )

as Encpkpro(q
1−β′

1 , . . . , q1−β′

t ) is used in GAME2 and thus is accepted only with negligible probability. On
the other hand, we get:

Pr[AE(Encpkpro(q
β′

1 , . . . , qβ
′

t )) = β′] = Pr[bad1] ≥ 1/poly(n). (6)

This follows from the fact that if the challenge ciphertext that AE takes as input is an encryption of q⃗β
′

then
we simulated GAME2. Since bad1 occurs in this game with probability at least 1/poly(n), we get that the
PCP verifier accepts Γ[qβ

′

1 ], . . . ,Γ[qβ
′

t ] with probability at least 1/poly(n), which implies Eq. 6 above.
It remains to bound the advantage of the adversary AE in the semantic security game.∣∣∣Pr[AE(Encpkpro(q⃗

1)) = 1]− Pr[AE(Encpkpro(q⃗
0)) = 1]

∣∣∣
=

1

2

(∣∣∣Pr[AE(Encpkpro(q⃗
1)) = 1|β′ = 1] + Pr[AE(Encpkpro(q⃗

1)) = 1|β′ = 0] (7)

− Pr[AE(Encpkpro(q⃗
0)) = 1|β′ = 1]− Pr[AE(Encpkpro(q⃗

0)) = 1|β′ = 0]
∣∣∣)

=
1

2

(∣∣∣Pr[AE(Encpkpro(q⃗
1)) = 1|β′ = 1]− Pr[AE(Encpkpro(q⃗

1)) = 0|β′ = 0] (8)

− Pr[AE(Encpkpro(q⃗
0)) = 1|β′ = 1] + Pr[AE(Encpkpro(q⃗

0)) = 0|β′ = 0]
∣∣∣)

=
1

2

(∣∣∣Pr[AE(Encpkpro(q⃗
β′
)) = β′|β′ = 1]− Pr[AE(Encpkpro(q⃗

1−β′
)) = β′|β′ = 0]

− Pr[AE(Encpkpro(q⃗
1−β′

)) = β′|β′ = 1] + Pr[AE(Encpkpro(q⃗
β′
)) = β′|β′ = 0]

∣∣∣)
=

∣∣∣Pr[AE(Encpkpro(q⃗
β′
)) = β′]− Pr[AE(Encpkpro(q⃗

1−β′
)) = β′]

∣∣∣ (9)

≥ 1/poly(n)− negl(n) (10)

Above Eq. 7 follows from Pr[A] = Pr[b = 0]Pr[A|b = 0] + Pr[b = 1]Pr[A|b = 1]. Eq. 8 follows from
Pr[A] = 1 − Pr[Ā]. Eq. 9 follows by Pr[A] = Pr[b = 0]Pr[A|b = 0] + Pr[b = 1]Pr[A|b = 1]. Finally,
follows from Eq. 5 and Eq. 6 above.

This implies that,

CPA− INDΠE ,A(n) ≥ 1/poly′(n),
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for some polynomial poly′, which proves the lemma.

We finally prove that Pr[bad|bad1] ≤ negl(n) is negligible in n.

Lemma 4.5 Let ⟨CRSGen,P,V⟩ be a sound NIZK system for language L2 (cf. Definition 2.5). Then, there
exists a negligible function negl(·) such that for sufficiently large n ∈ N it holds that: Pr[bad|bad1] ≤
negl(n).

Proof Sketch: Suppose for contradiction that there exists a polynomial poly(·) such that Pr[bad|bad1] ≥
1/poly(n) for infinitely many n. We construct an adversary ANIZK that breaks the soundness of the NIZK
⟨CRSGen,P,V⟩. More precisely, we show that there exists ANIZK such that there exists x /∈ L2 with:

Pr[(x, π)← ANIZK(crs), crs← CRSGen(1n) : V(crs, x, π) = 1] ≥ 1/poly(n).

ANIZK simulates GAME2 by taking the role of S2 and simulating the adversaryA. When event bad occurs,
we have that zpcp /∈ L1 but S2 (playing the role of P1 in GAME2), accepts the proof πL2 . On the other hand
by conditioning on bad1, we get Ver2pcp

(
zpcp,Γ[q1], . . . ,Γ[qt]

)
= 0, i.e., the “augmented PCP” proof is not

accepted. Hence, there must exist witness (Γ[q1], γ1, . . . ,Γ[qt], γt) /∈ L2 and a proof πL2 for the instance
zL2 /∈ L2 that is accepted. Since ANIZK can compute πL2 efficiently (using the secret key skpro), we get
thatANIZK breaks the soundness of the NIZK ⟨CRSGen,P,V⟩ with probability Pr[bad|bad1] ≥ 1/poly(n).
This yields a contradiction and concludes the proof.

5 Applications

5.1 Non-Interactive Secure Computation

In the non-interactive setting a receiver wishes to publish an encryption of its secret input x so that any other
sender, holding a secret input y, will be able to obliviously evaluate f(x, y) and reveal it to the receiver.
The security requirements of this modeling are that the process of computing f(x, y) should not leak any
additional information about y. On the other hand, it must be ensured that f(x, y) is computed correctly
with respect to a well defined input y. This problem is useful for many web applications in which a server
publishes its information and many clients respond back.

We point out that our construction immediately implies non-interactive computation with security against
malicious adversaries as long as the sender (when corrupted) cannot see whether the receiver approves the
sender’s computation or not. This is because learning this bit may disclose information about the bits lo-
cations queries of the PCP proof so that PCP soundness would not hold for future computations. Our
construction has its benefits for inducing polylogarithmic communication complexity in the circuit-size that
computes f and polylogarithmic overall workload for the receiver. This last property is in particularly
important for this setting. Since the receiver may be required to verify many computations.

A recent work by Ishai et al. [IKO+11] presents the first general protocol in this model with only black-
box calls to a pseudorandom generator (PRG). The security of this protocol is proven in the malicious setting
with the aim to minimize these (black box) calls so that the communication complexity is linear in the size
of the circuit. Other constructions that obtain similar security level either make a non black-box use of
the PRG [IPS08] or require more than a single round of communication [LP07, LP11]. In contrast, our
protocol makes non black-box use of the fully homomorphic encryption but only requires polylogarithmic
communication complexity and a single round.

27



5.2 Server-Aided Secure Computation

In the server-aided setting there is an untrusted server S in addition to the two parties who wish to evaluate
functionality f . This server does not have any input/output with respect to the computation computing f
and is computationally stronger than the other two parties. The goal in this setting is to design protocols that
minimize the computation overhead of the parties and instead, rely on the extended resources of the server.
The main motivation for this setting is cloud computing, i.e., a powerful server that provides (amongst other
services) computation and storage services to a computationally weaker client. As pointed out in [?], this
setting is interesting due to practical as well as theoretical considerations.

The server-aided setting has been considered previously in the literature [FKN94, IK97, NPS99, BCD+09],
but these works either consider restricted class of functionalities or do not improve the overhead of the
clients.

Our construction can be modified to obtain server-aided computation as follows.

1. First, instead of a single party playing the role of P1 in Protocol 3, we let two parties P ′
1, P

′
2 encrypt

their inputs using the same public keys and send these ciphertexts to the server together with a proof
of consistency (we assume that both parties know the secret key skcomp).

2. Each ciphertext encrypting an input is accompanied by a signature for proving integrity, to prevent
the server from using different inputs in its computation.

3. For simplicity assume that only P ′
1 learns the output, so that the PCP queries can be asked by party

P ′
1 (following the instructions of P1 from the original protocol.)

4. Finally, the server obliviously evaluates function f on these ciphertexts and proves correctness as in
Protocol 3 only that the PCP for language L1 now says that there exists a ciphertext encrypting y and
a valid signature for this ciphertext, rather than y and ry.

This yields a server-aided construction for any PPT function f with polylogarithmic communication in
the circuit-size that computes f . The security proof ensures that a malicious server cannot use different
inputs than x and y, or compute f(x, y) incorrectly. On the other hand, corrupted P ′

1, P
′
2 have to send

well defined inputs. We note that our proof only holds for the non-colluding scenario, in which at most
two entities from the set {P1, P2, S} are corrupted but not colluding; see a detailed definition of colluding
parties in [?].

5.3 Delegatable Computation

In this setting, a computationally weak client wishes to outsource its computation to a more powerful server,
with the aim that the server performs this computation privately and correctly. (This setting can be seen as a
special case of the server-aided setting where there is only a single client). An important requirement in this
scenario is that the amount of work put by the client in order to verify the correctness of the computation is
substantially smaller than running this computation by itself. It is also important that the overall amount of
work invested by the server grows linearly with the original computation.

Lately, the problem of delegatable computation has received a lot of attention; see [AIK10, CKV10,
GGP10, BGV11] for just a few examples. Mainly due to increasing applications for distributed computations
that are carried out by devices with different resources and computational strength. The most widely known
examples are cloud computing mentioned above and smart mobile devices.

Our construction implies delegatable computation where P2 does not contribute any input y to the com-
putation. This only simplifies Protocol 3 since the witness for the PCP in Step 2c does not include the
encryption of y; ey and randomness ry. It also means that there is no need for the server to hide the PCP,
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so the encryptions of PCP entries and the NIZK proof that they are correct can be dropped and the PCP bits
can be used directly as leaves in the tree. So we do not need the public key pky.

Moreover, the client (P1 in our terminology) is usually assumed to be honest. There we we do not need
the public key pkx or the encryption e′x in the protocol. Hence the CRS is not needed at all. An additional
advantage is that, in contrast to previous work, the solution remains secure even if the server learns whether
the client accepts the result. This is because each set of PCP queries is only used once. This same advantage
was also achieved in independent and concurrent work by Bitanski et al [BCCT11] and Goldwasser et al.
[GLR11].

5.4 Short Non-Interactive Zero-Knowledge Arguments of Knowledge

Non-interactive zero-knowledge proofs [BFM88] constitute a fundamental building block in many applica-
tions such as, chosen ciphertexts secure encryption schemes [NY90, DDN00], digital signature schemes [BW06,
CGS07] and leakage resilient primitives [KV09, DHLAW10]. Much of the recent work in this area has con-
centrated in designing generic short proofs (or arguments) so that the size of the proof grows linearly with
the size of the witness [Gen09] or sub-linearly with the circuit-size used for verification [GOS06b, GOS06a,
Gro09, Gro10b, Gro10a]. None of these proofs, however, is a proof of knowledge (a notable example is the
construction in [BCCT11] that relies on PCP of knowledge).

Recalling that our construction computes any functionality with low communication, in this section we
focus our attention on the zero-knowledge functionality. Formally, this functionality is defined by FZK :
((x, (x, ω)) → (1, λ) where (x, ω) ∈ L for some NP language L and λ is the empty string. Thus, our
construction immediately implies short zero-knowledge argument of knowledge for any NP language L by
saying that the input x of P1 is the joint statement and the input y of P2 is the witness, and f corresponds
to the verification code for checking whether (x, y) ∈ L. The benefits here are that (i) the proof size is
polylogarithmic in the verification code for L and (ii) the construction is a proof of knowledge as well.
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