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Abstract—Compressive sensing (CS) has become a popular
signal processing technique and has extensive applications in
numerous fields such as wireless communications, image process-
ing, magnetic resonance imaging, remote sensing imaging, and
anology to information conversion, since it can realize simul-
taneous sampling and compression. In the information security
field, secure CS has received much attention due to the fact that
CS can be regarded as a cryptosystem to attain simultaneous
sampling, compression and encryption when maintaining the
secret measurement matrix. Considering that there are increasing
works focusing on secure wireless communications based on CS
in recent years, we produce a detailed review for the state-of-
the-art in this paper. To be specific, the survey proceeds with
two phases. The first phase reviews the security aspects of CS
according to different types of random measurement matrices
such as Gaussian matrix, circulant matrix, and other special
random matrices, which establishes theoretical foundations for
applications in secure wireless communications. The second phase
reviews the applications of secure CS depending on commu-
nication scenarios such as wireless wiretap channel, wireless
sensor network, internet of things, crowdsensing, smart grid, and
wireless body area networks. Finally, some concluding remarks
are given.

Index Terms—Wireless Communications, Compressive Sens-
ing, Secure Compressive Sensing, Compressive Sensing Cryp-
tosystem

I. INTRODUCTION

C
ompressive sensing (CS) theory was proposed by Dono-

ho, Candès, Tao, et al. in 2004, which is a new signal

sampling theory of being able to efficiently capture and recover

a signal through settling underdetermined linear systems [1]–

[3]. Sparsity and incoherence are two crucial conditions to

attain this purpose. On the one hand, the sparsity condition

requires the signal of interest to be sparse under some sparse

basis or have the compressibility. On the other hand, the

incoherence condition imposes a requirement for the sparse

basis and the measurement matrix. In comparison with the

traditional Shannon-Nyquist sampling theorem, CS exploits far

fewer samples to achieve the same recovery accuracy of the

signal. This is understandable, since, taking the sampling of
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electrocardiography signals for an example, an electrocardio-

graphy signal typically acquires 256 samples per second in

the traditional sampling paradigm [4]. When expressed under

appropriate basis or dictionary, such as wavelet or Gabor, most

of the coefficients will be zero and only the nonzero ones

carry information. These nonzero coefficients, rather than the

original dimension 256, control the number of measurements

to encode the signal and perform recovery. In this sense, the

CS theory is built on a workaround to directly record the

nonzero coefficients.

The CS technique has widespread applications in various

fields since its inception. In particular, in wireless communica-

tions, it is a promising technique for 5G [5], since the inherent

characteristics of CS are more suitable for the sparse channel

impulse response than the Shannon-Nyquist sampling theory.

The CS was claimed in [5] to well address the key technical

directions in 5G including increased spectral efficiency [6], [7]

and larger transmission bandwidth [8]–[11]. So far, there have

been a great number of CS-based applications in wireless com-

munications such as data gathering [12]–[16], data collection

[17], [18], data aggregation [19]–[21], data recovery [22]–[25],

spectrum sensing [26]–[31], distribution networks [32]–[36],

channel estimation [37]–[40], and other applications [41]–[48].

In a pioneer work of the fundamental CS theory [49], the

security of CS was highlighted in the sense that measurements

projected into random subspace can be viewed as a way of

information protection. A weak form of encryption offered

by a pseudorandom basis was mentioned in [50]. It has also

been discussed that the encryption matrix is involved in a

one-time pad [51]. However, for the first time, a formal

investigation of CS as a cryptosystem was stated by Rachlin

and Baron who considered the measurement matrix as a key

[52]. After a signal is sampled by a Gaussian measurement

matrix, the obtained measurements can provide the secrecy,

since the adversary has no knowledge of the measurement

matrix and cannot figure out the original signal. Though

a certain level of secrecy can be provided, the Shannon’s

perfect secrecy [53] cannot be achievable. Moreover, it was

demonstrated that when the Gaussian measurement matrix is

used, a weak secrecy notion called asymptotic perfect secrecy

can be realized [54]. Based on this notion, the perfect secrecy

can be attained by imposing more constraint on the signal to be

sampled. In [55], Bianchi et al. further proved that only the

signal energy is exposed to the adversary who observes the

measurements. This means that CS-based encryption satisfies

the perfect secrecy if the sensed signal keeps a constant

energy. In other words, normalizing the measurements before

transmission can guarantee the perfect secrecy regardless of
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the statistical features.

However, Gaussian measurement matrix is a completely

random matrix and therefore occupies a great amount of

storage and computing resources. In consideration of this,

circulant matrix was introduced in [56], which outperforms

the Gaussian measurement matrix in terms of cost savings,

since it adopts a fast Fourier transform implementation and has

a similar reconstruction performance as the Gaussian matrix.

When circulant measurement matrix is used, security analysis

discloses that the adversary only reveals the information on

the autocorrelation of the signal.

Besides using existing measurement matrices [52], [54]–

[56] as the encryption keys, some special secret measurement

matrices have been designed [57]–[60]. The perturbation-type

measurement matrix aims at partially corrupting measurement

matrix with low-cost [57], which is applied to the scenario

that the same signal shows different levels of recovery quality

for the receivers. With the partially corrupted measurement

matrix, the quality of the recovered signal is inevitably re-

duced. Therefore, adjusting the number of corrupted entries

can optionally control the signal quality for each receiver.

This multiclass encryption possesses the asymptotic spherical

secrecy. Generally speaking, the measurement matrix needs

to be updated once to be against common attacks. For the

purpose of using a fixed measurement matrix repeatedly, a bi-

level protected CS scheme was suggested in [58], whose basic

idea is to transfer the sparsifying basis from the sensing matrix

to the measurement matrix and then set it a key. The transfer

was verified in the sense that the reconstruction performance

will not be affected. Moreover, double protection using two

matrices can resist plaintext attacks.

Fang et al. proposed parallel CS to address the problem

of data size expansion for the measurement matrix when

sampling a multi-dimensional signal and further exploited

the zig-zag permutation operation to promote the reconstruc-

tion performance of sampling two-dimensional discrete cosine

transformation signal [61]. Embedding cryptographic features

in parallel CS was discussed in [59], which demonstrated

that random permutation based encryption can make the

restricted isometry constant of parallel CS relaxed efficiently

at a high probability, i.e., enhance the quality of the recon-

structed signal. It has the asymptotic spherical secrecy as

the multiclass encryption scheme [57]. Djeujo and Ruland

ensured the secrecy by embedding some cryptographically

secure matrix transformations in structured CS [60]. These

transformations are invertible matrices and do not compromise

the reconstruction performance.

For CS applications in wireless communications, a great

number of security and privacy issues have been studied. Since

secure communication was formally proposed by Shannon

from the view point of information theory [53], many re-

search works have been emerging to guarantee secure message

sharing between communication nodes based on cryptographic

tools at the application layer [62] and ensure secure communi-

cations over wireless channels [63]. In particular, the wiretap

channel proposed by Wyner [64] is one of the classic channels

and has attracted widespread attention [65]–[67]. Secure com-

munication over wiretap channel is always a research focus

in wireless communications. A widely used system model

involves a transmitter and two receivers including a legitimate

receiver and an eavesdropper. The transmitter connects the

legitimate receiver through the main channel while connecting

the eavesdropper through the wiretap channel. The investi-

gations on the wiretap channel focus mainly on how much

information can be leaked to the eavesdropper and how the

transmission of perfect secrecy can be accomplished when the

channel is eavesdropped.

The infrastructure of CS was exploited for constructing

a secure communication channel [68]. Based on channel

asymmetry, a message is transformed into a sparse sequence,

which is not allowed to be decoded by the eavesdropper with

overwhelming probability while the legitimate receiver can

decode it with high probability. Reeves et al. proposed a

multiplicative Gaussian channel based on CS and calculated

the secrecy capacity bounds including lower bound and upper

bound [69], where the introduced security hardly affects the

capacity based on the condition that the attacker’s channel

is strictly worse than the legal user’s. The distributed CS was

used for the design of physical layer secrecy solution resulting

from the fact that it occupies less amount of channel uses and

consumes less power [70]. The reconstruction framework of

CS was utilized in the system of multiple-input multiple-output

(MIMO) precoding and postcoding to reconstruct the transmit-

ted signals [71], which can optimize the signal-to-noise ratio

(SNR) when full channel state information is available and

compensate the loss of SNR when not available. Yu considered

the circulant matrices for wireless security and demonstrated

the indistinguishability depending on the measure of relative

entropy [72]. In addition, many works based on CS were pro-

posed for different wireless communication security scenarios

such as multicarrier system [73]–[75], cooperative networks

[76], wireless sensor network (WSN) [77]–[86], internet of

things (IoT) [87]–[91], crowdsensing [92]–[94], smart grid

[95]–[97], and wireless body area networks [98]–[100].

In this survey, we make a systematic investigation for

applications of CS in secure wireless communications. In order

to better discuss the applications of CS in secure wireless

communications, we first review security aspects of CS based

on the type of measurement matrix such as Gaussian measure-

ment matrix, circulant measurement matrix, etc, which will be

potential for applications to secure wireless communication

scenarios. According to the security aspects of CS, we then

review different forms of wireless communication scenarios

including wireless wiretap channel, WSN, IoT, crowdsensing,

smart grid, and wireless body area networks. Table I gives a

overall perception for the readers and the corresponding details

are shown later. A graphical presentation of the structure of

this survey is shown in Fig. 1.

There are some existing relevant survey and tutorial papers

involving CS. A comprehensive overview in terms of CS

theories and applications was shown in [101]. Because of the

extensive applications of CS, some survey papers focusing on

application-specific scenarios have also been presented. For

example, the survey papers [102] and [103] overviewed the

applications of CS in cognitive radio communications. The

survey papers [30], [104], and [105] contain the review of
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TABLE I
OVERALL FRAMEWORK.

Gaussian Measurement Matrix
Circulant Measurement Matrix
Structurally Random Matrices

Security Aspects of CS Perturbation Measurement Matrix
Sparsifying Basis as a Part of the Measurement Matrix
Random Permutation as a Part of the Measurement Matrix
Multiple Random Matrices as a Part of the Measurement Matrix
CS-Based Secrecy
Secrecy Capacity
The Secrecy Based on Distributed CS

Wireless Wiretap Channel The Secrecy Based on MIMO Precoding
The Secrecy Based on Circulant Matrix
Multicarrier System
Cooperative Networks
Establishing Secure Measurement Matrix

Application Scenarios Integrity-Protected CS
Wireless Sensor Network Capturing Medical Data

Data Gathering
Compressed Detection
Adaptive CS for Smart Objects

Internet of Things Frequency Selection for Static Environment
Chaotic CS for Internet of Multimedia Things
Secure Interaction with Cloud

Crowdsensing Crowdsensing
Smart Grid Smart Grid
Wireless Body Area Networks Wireless Body Area Networks

CS applications in terms of spectrum sensing for cognitive

radio networks, machine learning for WSN, and robust carrier

tracking techniques, respectively. Nevertheless, these works

did not involve the security issues of CS. Meanwhile, a tutorial

paper [106] discussed image and video encoding modes and

wireless transmission based on CS, which apparently differs

from the present survey. The survey paper [107] involves some

privacy protection and security problems of CS, but it only

simply reviewed several kinds of CS encryption schemes and

did not consider the secure wireless communication problems

based on CS. The most similar paper to the present survey is

[108], which reviews the security aspects of CS in information

security field. However, it focuses mainly on CS-based image

security rather than wireless communications. Table II gives a

conclusive comparison for better comprehension.

This survey proceeds as follows. In Section II, the basic

theory of CS is overviewed. Section III reviews the security

aspects of CS. Section IV reviews the applications of CS in

secure wireless communication scenarios including wireless

wiretap channel, WSN, IoT, crowdsensing, smart grid, and

wireless body area networks. Some concluding remarks and

future research in this area are shown in the last section.

II. COMPRESSIVE SENSING BASICS

A signal x ∈ R
N is called S-sparse if there exists a basis

B ∈ R
N×N satisfying

x = Bs, (1)

where s is an N -dimensional vector with at most S nonzero

coefficients. It is called S-compressible if the S significant co-

efficients are much larger than zero and the N−S insignificant

coefficients approach to zero. The sparsity (compressibility) of

the signal ensures the exact (approximate) recovery of s (and

x since x = Bs given B and s) from linear projections

y = Ax, (2)

where A ∈ R
M×N (M < N ) denotes the measurement

matrix. The recovery can be done through settling an l0
optimization problem expressed as

min ‖s‖0 s.t. y = Hs, (3)

where H = AB denotes the sensing matrix [3], [49]. How-

ever, solving this optimization problem requires an exhaustive

search over all subsets of columns of H, which is NP-hard,

as indicated in [3]. It can be further relaxed into the convex

optimization form as follows

min ‖s‖1 s.t. y = Hs. (4)

The solution of this convex problem can be identical to that of

the l0 form with overwhelming probability when H follows the

Restricted Isometry Property (RIP) [49]. The sensing matrix

H possesses the RIP of order S when the following inequality

holds [1], [2]

(1− δ) ‖v‖22 ≤ ‖Hv‖22 ≤ (1 + δ) ‖v‖22 , (5)

where v is an arbitrary sparse signal that has S nonzero

entries at most and δ ∈ (0, 1). One can define the smallest

value of δ satisfying the above inequality as the restricted

isometry constant δS . In addition, another criterion, the mutual

coherence, is also used to evaluate the performance of the

sensing matrix. It is defined as [109]
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Fig. 1. The intuitional structure of this survey.

TABLE II
COMPARISONS OF RELEVANT SURVEY & TUTORIAL PAPERS INVOLVING CS.

Paper Type Scope and Contributions Difference with The Proposed Survey

Review Paper [101] Theories and applications of CS Not involve security aspects of CS
Survey Paper [102] Applications of CS in cognitive radio communications Not involve security aspects of CS
Survey Paper [103] Applications of CS in cognitive radio communications Not involve security aspects of CS
Survey Paper [30] Applications of CS in cognitive radio networks Not involve security aspects of CS
Survey Paper [104] Applications of CS in machine learning for WSN Not involve security aspects of CS
Survey Paper [105] Applications of CS in robust carrier tracking techniques Not involve security aspects of CS
Tutorial Paper [106] CS-based multimedia encoding and wireless transmission Not consider secure wireless communication problems based on CS
Survey Paper [107] Several kinds of CS encryption schemes Not consider secure wireless communication problems based on CS
Review Paper [108] Image security based on CS Not consider secure wireless communication problems based on CS

µ (H) = max
1<i 6=j<N

∣

∣hT
i hj

∣

∣

‖hi‖2‖hj‖2
, (6)

where hi represents the ith column of H. It was demonstrated

that there exists at most an S-sparse signal s satisfying

y = Hs provided that µ (H) < 1/(2S − 1) for any y [109].

So far, there have been a number of algorithms used for

the reconstruction such as orthogonal matching pursuit [110],

gradient projection [111], and nonconvex minimization [112].

III. SECURITY ASPECTS OF COMPRESSIVE SENSING

Compressive sensing can be regarded as a symmetric-

key cryptosystem when the measurement matrix acts a key,

as shown in Fig. 2, in which E (·) and D (·) represent

the encryption and decryption functions, respectively. The

cryptosystem contains five objectives, i.e., input signal x as

plaintext, measurement matrix A as key, sampled result y as

ciphertext, measurement process in (2) as encryption function

E (·), and reconstruction process in (4) as decryption function

D (·). Let X and Y be the sets of plaintexts and ciphertexts,

respectively, and K be the key set. Alice encrypts the plaintext

x ∈ X with the encryption function EK (·) : X → Y and

the measurement matrix A ∈ K shared between Alice and

Bob, and the corresponding ciphertext y ∈ Y is sent to

Bob over insecure channel in which an evil attacker called

Eve tries to intercept message y. Upon receiving y, Bob

decrypts it with the decryption function DK (·) : Y → X
and A to obtain the original x. Note that, the y that Bob

receives may have a tiny change due to the channel noise.

Moreover, the recovered x may be a little different from

the exact x, since it is often an approximate version after

being recovered by some reconstruction algorithms. Therefore,

we have DA (y) = DA (E (x)) = x while neglecting the

subtle influence of the channel noise and the reconstruction

operation. This basic CS cryptosystem is marked as CSC for

short hereinafter.
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Fig. 2. Compressive sensing as a cryptosystem.

Note that, in comparison with the general symmetric-key

cipher that is not based on CS, the CSC has the extra advantage

of compression capacity. The compression capacity also brings

a new issue that the decrypted result is often an approximated

version of the original plaintext to facilitate the computation,

although the original plaintext can be exactly obtained without

loss of information in theory. Another difference between them

is that the CSC is not suitable for multiple rounds of encryption

for security enhancement, since, after one-time sampling, the

measurements tend to be random and would not possess the

sparsity. The design of CSC focuses mainly on the security

guarantee while taking CS for signal sampling. As a result,

the CSC cannot be applied to universal encryption.

As mentioned above, the reason that CS can be regarded

as a cryptosystem depends mainly on treating the measure-

ment matrix as a key. Thus, we want to investigate which

measurement matrices actually play the keys of the CSC,

what properties these CSC systems possess, and what level

of secrecy they have. To play a role of key, the measurement

matrix should have the property of “randomness”; otherwise,

it cannot provide the secrecy. Fox example, the deterministic

measurement matrices apparently cannot offer any kind of

secrecy. Correspondingly, we turn to random measurement

matrices including Gaussian matrix, circulant matrix, and other

special random matrices, which can be potentially applied in

secure wireless communications. In this section, we review the

security aspects of CS from two sides. On one hand, various

random measurement matrices are investigated in Subsections

A-F. On the other hand, some security analyses are discussed

in the last two subsections.

A. Gaussian Measurement Matrix

Gaussian matrix consisting of independent and identically

distributed (i.i.d.) Gaussian random variables was considered

as a key in CSC for the first time [49] and we denote it as

Gaussian-CSC. Which level of secrecy the Gaussian-CSC can

achieve will be elaborated in the followings. Shannon, the

founder of information theory, pioneered the prefect secrecy

from a statistical sense when considering an eavesdropper with

unbounded computation [53].

Definition 1. Perfect Secrecy. A cryptosystem is said to have

a perfect secrecy if for any plaintext x and corresponding

ciphertext y,

p (x|y) = p (x) . (7)

The above formula means that a plaintext’s posterior probabil-

ity conditioned on the ciphertext equals its priori probability.

Alternatively, it is interpreted as I (x; y) = 0 from the

information theory perspective, in which I (x; y) represents the

mutual information of plaintext and ciphertext [113]. More-

over, the above formula can be also equivalently interpreted

as p (y|x) = p (y) by using Bayes’ theorem.

The Gaussian-CSC in terms of perfect secrecy was first

investigated in [52], where the adversary, Eve, is assumed to

lunch a ciphertext-only attack (COA) through leveraging y,

the sparsity of x, and K to recover x. The key is defaulted to

one-time, meaning that each A is used only once.

Theorem 1. Gaussian-CSC is not perfectly secure.

It was proved in Lemma 1 in [52]. In fact, due to the

RIP property of Gaussian measurement matrix, the energy

of ciphertext reveals energy information of the plaintext, thus

violating the definition of perfect secrecy. It was demonstrated

in [55] that after sampling using an i.i.d. Gaussian matrix

consisting of Gaussian variables with zero mean as a key, the

generated random linear measurements intercepted by Eve will

not reveal anything about the plaintext other than its energy.

Theorem 2. Gaussian-CSC yields

p (y|x) = p (y|εx) . (8)

The above equation is equivalent to I (x;y) = I (εx;y)
[55], where εx is used for characterizing the energy of the

plaintext, i.e., εx = ‖x‖22. This result says that Eve only infers

the knowledge of εx, which holds regardless of the sparse

degree of x. According to this theorem, the prefect secrecy of

Gaussian-CSC is achievable under some assumptions.

Theorem 3. Gaussian-CSC is said to be perfectly secure while

εx keeps a constant.

εx keeping a constant indicates the energy of the signal

maintains unchanged, thus Eve cannot dig out any information
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from the ciphertext. In general, the assumption of the constant

energy signal is far-fetched and then we can exert some

processing on the ciphertext to easily deduce another prefect

secrecy.

Theorem 4. Gaussian-CSC is said to be perfectly secure when

transmitting the normalized ciphertext

ynorm = y/εy, (9)

where εy = ‖y‖22 represents the energy of the ciphertext.

Apparently, after the normalization, the energy of the plaintext

is hided such that Eve is not able to know εx any more. Now

that y results in the energy of x if not normalized, it is required

to be aware of how much information is exactly leaked through

observing y. Bianchi et al. quantified this kind of information

leakage using the mean square error and gave some useful

bounds and estimators for the generic signals, and the relevant

details are referred to [55].

B. Circulant Measurement Matrix

Circulant matrix is also capable of offering the randomness,

which has lower complexity in contrast to Gaussian matrix

when generated, transmitted and used for measuring the signal

[114]. It consists of a sequence of i.i.d. Gaussian or sub-

Gaussian variables expressed as

A =















a1 a2 · · · aN
aN a1 · · · aN−1

aN−1 aN · · · aN−2

...
...

. . .
...

aN−M+2 aN−M+3 · · · aN−M+1















M×N

,

(10)

where the N -dimensional row vector a = [ai], i =
1, 2, · · · , N , spanning the whole matrix A. It was demon-

strated that this kind of matrix, when acting as a measurement

matrix used for measuring and reconstruction, has similar

performance as the full Gaussian matrix [114]. Thus, it can

act as an alternative for reducing the complexity. Interestingly,

it can be quickly realized using a fast Fourier transform by

A = ∆FHΛF, (11)

in which F stands for the unitary discrete Fourier transform

(DFT) matrix, FH is the Hermitian transpose of F, Λ rep-

resents a diagonal matrix in which diagonal entries are the

values generated by the DFT of a, and ∆ is a subsampling

operator of randomly extracting M entries from N ones.

The secrecy of circulant matrix as a key was inspected in

[56], which introduces a generic permutation matrix P that

has only one “1” in both each row and each column before

measuring. In other words, the measurement matrix is changed

into

A = ∆FHΛFP. (12)

The corresponding cryptosystem is denoted as Circulant-

CSC. Let Cv stand for the circular autocorrelation matrix of

vector v, i.e.,

[

Cv
i,j

]

=
∑N

l=1
vlv(l+i−j) mod N , i, j = 1, 2, · · · , N, (13)

where mod is the modulo operator. Maintaining ∆ and P

public, one has the following result.

Theorem 5. Circulant-CSC only leaks CPx.

Here, leak refers to the fact that the eavesdropper could

only learn CPx in theory when observing the ciphertext. In

fact, it was proved that Circulant-CSC satisfies p (y|x) =
p
(

y|∆CPx∆T
)

[56], meaning that Eve only reveals some

entries of the circular autocorrelation matrix of vector Px.

Which entries are revealed depends on the subsampling op-

erator ∆. The detailed analysis of the autocorrelation of the

plaintext can be found in [56].

C. Structurally Random Matrices

A kind of fast and efficient structurally random matrices was

designed for the measurement matrix [115], which is generated

by multiplying three matrices as follows:

A =
√

N/M∆F′R, (14)

where R ∈ R
N×N can be a diagonal matrix in which

diagonal entries can be i.i.d. Bernoulli variables. R can also

be a permutation matrix. It focuses on scrambling the signal’s

sample locations globally or flipping the signals sample signs

locally, respectively. F′ ∈ R
N×N is an orthonormal matrix

such as Walsh-Hadamard Transform (WHT) and discrete

cosine transform (DCT). ∆ ∈ R
M×N is operator used for

subsampling. The purpose of
√

N/M is to balance the energy

of the measurement vector and that of the input signal by

normalizing the transform. In this measurement matrix, ∆ and

R are random matrices, which can be set as the secret keys.

From the viewpoint of the reconstruction performance, it has

theoretical sensing performance as that of Gaussian measure-

ment matrix but lower complexity due to fast computation

transform, supporting block-based processing, and friendly

hardware implementation. Thus, ∆ and R maintaining as

the keys can make this kind of structurally random matrices

suitable for privacy-preserving, large-scale, and real-time sig-

nal acquisition applications. Apparently, it cannot attain the

perfect secrecy but more stronger secrecy if normalizing the

ciphertext.

D. Perturbation Measurement Matrix

Perturbation-type measurement matrix was presented in

[57], which is used for building scalable encryption methods.

Assume that two receivers have the same ciphertext y but

different decoding matrices, then they yield different quality of

plaintexts after decryption. In order to build different decoding

matrices, the initial measurement matrix A(0) is a Bernoulli

random matrix and then perturbed by flipping the sign of some

entries in a random pattern as the following formula:

A
(1)
i,j =

{

A
(0)
i,j , (i, j) /∈ Γ(0)

−A
(0)
i,j , (i, j) ∈ Γ(0)

, (15)

where Γ(0) denotes a subset consisting of index pairs of the

perturbed entries. Let
∣

∣Γ(0)
∣

∣ represent the number of entries in
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Γ(0), then the relation between A(0) and A(1) is determined

by a
∣

∣Γ(0)
∣

∣-sparse random perturbation matrix A(∆)

A(1) = A(0) +A(∆), (16)

where

A
(∆)
(i,j) =

{

0, (i, j) /∈ Γ(0)

−2A
(0)
i,j , (i, j) ∈ Γ(0) . (17)

When the sampling mode is y = A(1)x = A(0)x+A(∆)x,

the receiver with the knowledge of A(1) could exactly recon-

struct the sparse solution while the receiver only knowing A(0)

is only able to reconstruct a noisy version of x due to the term

A(∆)x. Based on this kind of two-class perturbation mode,

the authors in [57] also suggested an improved version for

multiple receivers and the corresponding performance bounds

about the recovery quality are theoretically analysed. Although

not perfectly secure, it can attain a notion called asymptotic

spherical secrecy at almost zero cost.

Definition 2. Asymptotic spherical secrecy [57]. Assume that

X and Y are random processes, which correspond to plain-

texts and ciphertexts, respectively. The plaintexts have bounded

energy ε̄x = lim
N→∞

1
N

∑N

j=1 x
2
j . A encryption scheme satisfies

asymptotic spherical secrecy provided that for any plaintext

x, ciphertext y, the following formula holds

fY |X (y |x )→
D

fY |ε̄x (y) , (18)

in which →
D

denotes the distribution convergence.

Theorem 6. The CSC with perturbation measurement matrix

has the asymptotic spherical secrecy [57].

It indicates that only the energy of plaintext will be leaked,

which, in fact, is similar to the above Theorems 2-4. They

characterize the almost same meaning.

Generally speaking, known-plaintext attack possesses more

threat than ciphertext-only attack, since Eve can leverage

some pairs of plaintext and ciphertext rather than solely the

ciphertext. Cambareri et al. performed a quantitative analysis

for the CSC of perturbation measurement matrix as a key

against a special form of known-plaintext attack [116], in

which the problem of attacking the key is transformed into

a subset-sum problem [117] and how much Eve can reveal

the measurement is quantitatively investigated.

Definition 3. Let u be a positive integer vector of size N and

v be a positive integer. The subset-sum problem is to assign a

binary vector b of size N such that

v =
∑N

l=1
blul, (19)

where b is referred to as the solution.

Consider the CSC of perturbation measurement matrix, the

sampling method is expressed as y = A(1)x, then Eve

attempts to reveal A
(1)
j with a set of antipodal symbols Â

(1)
j

such that y = Â
(1)
j x.

Theorem 7. The known-plaintext attack to A(1) is equiv-

alent to the subset-sum problem, where ul = |xl|, bl =
1
2

(

sign (xl) Â
(1)
j,l + 1

)

, and v = 1
2

(

yj +
∑N

l=1 |xl|
)

.

Based on the above theorem, a solution b̄ in the subset-sum

problem corresponds to the row A
(1)
j while the remaining

candidate solutions correspond to the rows Â
(1)
j 6= A

(1)
j .

Therefore, when Eve performs an attack to A(1), the expected

number of finding out rows in A(1) can be estimated by using

the expected number of solutions as follows.

Theorem 8. The expected number of candidate solutions for

large N , asymptotically equals 2N

L

√

3
πN

, in which all the

coefficients ul from {1, 2, · · · , L} are i.i.d. and uniform, and

the true solution b̄ yields equiprobable and independent binary

values.

In addition, for the recovery performance of this kind of CSC,

a detailed analysis can be referred to [118].

E. Sparsifying Basis as a Part of the Measurement Matrix

In general, the measurement matrix needs to be updated

once to ensure the security of CSC, since the attacker can

launch a plaintext attack to reveal the measurement matrix

by possibly contrasting several plaintext and ciphertext pairs.

However, a key reuse circumstance of utilizing a fixed mea-

surement matrix with multiple times was devised in [58].

Except the secret protection of the measurement matrix, a

secret sparsifying basis B can be added in the signal sampling,

thus it becomes a bi-level protection sampling model:

y = A′x = AB−1x, (20)

in which A′ = AB−1 is the new measurement matrix.

However, with respect to the RIP property of this new mea-

surement matrix, it may not stand up any more, thus possibly

leading to an incorrect reconstruction. Interestingly, Zhang

et al. demonstrated an efficient reconstruction in virtue of

RIPless theory [119]. It is mainly because given a secret basis

B, the new sensing matrix used for reconstruction becomes

H′ = A′B = AB−1B = A, which is exactly the original

measurement matrix. That is to say, the sensing matrix still

follows the RIP theory. For an attacker, only revealing A′

through launching plaintext attacks is far from enough, since

B is still unknown and then A is also unknown. In fact, the

difficulty of attacking lies in how to decompose A′ into A and

B. It is verified that this bi-level protection sampling model

supports reusing the measurement matrix and can thwart

plaintext attacks.

F. Random Permutation as a Part of the Measurement Matrix

The permutation technique has been found to be able to

relax the RIP requirement in parallel CS theory [61]. In other

words, prior to sampling, the 2D sparse signal is possibly

permuted to make each sub-signal have almost equal number

of nonzero entries, therefore the recovery performance can

be improved. Fang et al. suggested that zig-zag permutation

can makes the RIP efficiently relaxed at a high probability

in parallel CS [61]. Different from the general permutation

technique, random permutation is a common technique widely

used in cryptography and is considered to be embedded in CSC

in [59], where random permutation is demonstrated to be an
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efficient RIP relaxation technique. Let P (·) denote a random

permutation matrix or a random permutation operation, then

the sampling method is represented as

y = A · P (x) . (21)

The new measurement matrix can be regarded as A′ =
A · P (·). If P (·) is a matrix, A′ will be a matrix. If P (·)
is an operation, A′ will also be a measurement operation. As

the case of sparsifying basis as a part of the measurement

matrix, random permutation as a part of the measurement

matrix possesses double layer protection mechanism thanks

to P (·) acting as a new key. Nevertheless, the former can be

against plaintext attacks but the latter does not necessarily.

Theorem 9. The CSC with random permutation as a part of

the measurement matrix has the asymptotic spherical secrecy

[59].

G. Multiple Random Matrices as a Part of the Measurement

Matrix

Besides random permutation matrix playing a part of the

measurement matrix, some other matrices can also be embed-

ded in the measurement matrix. Djeujo and Ruland came up

with the following matrix transform [60]:

T (A) = RpRrPrAPcRc, (22)

where Rp is an M ×M binary matrix, which is generated by

doing p times the operation of adding one row of an identity

matrix to another. Rr and Rc are diagonal matrices, whose

sizes are M × M and N × N , respectively. Pr and Pc are

random permutation matrices with single “1” per row and

column, whose sizes are M × M and N × N , respectively.

With this new measurement matrix, the sampling scheme is

y = A′ = T (A)x = RpRrPrAPcRcx. (23)

It can be easily proved that the newly added five random

matrices can maintain the invariance of RIP for the new

measurement matrix. They shall be secretly altered for each

signal sampling to be against plaintext attacks.

A summary result is shown in Table III. We can find a CSC

scheme does not attain the perfect secrecy in general, which

can be easily understood due to the linearity of the encryption

algorithm. A CSC scheme must leak the information more

or less, for example, for the cases of Gaussian measurement

matrix, circulant measurement matrix, and structurally random

matrices. In other terms, in order for reaching the perfect

secrecy, some additional conditions need to be appended.

The asymptotic spherical secrecy is an ad hoc definition for

the CSC and a CSC scheme satisfying this definition can

be thought as an excellent cryptosystem like the cases of

perturbation measurement matrix and random permutation as

a part of the measurement matrix. For the cases of sparsifying

basis as a part of the measurement matrix and multiple random

matrices as a part of the measurement matrix, being able

to resist plaintext attacks will make themselves have wider

applications than other CSC schemes.

H. General Security Analysis

For the general random measurement matrices such as

Gaussian and Bernoulii matrices, whose corresponding CSC is

marked as General-CSC, the security analysis is evaluated by

Hossein et al. [54], in which the mutual information between

plaintext and ciphertext is analysed with regard to whether the

distribution of the plaintext is known. Let χ denote a discrete

source alphabet set.

Theorem 10. I (x;y) = log (|χ|)/|χ| if the plaintext yields a

uniform distribution for alphabet set χ in a CSC system.

It can be observed from the above result of the mutual

information that the perfect secrecy is unachievable, but the

asymptotically perfect secrecy is accessible when the number

|χ| tends to the infinity in a countable domain. This kind of

secrecy is referred to as Maurer-sense perfect secrecy [120],

which apparently is not stronger than the perfect secrecy.

Definition 4. A cryptosystem is said to have a Maurer-sense

perfect secrecy if lim
N→∞

I (X,Y ) = 0, in which X and Y

respectively correspond to plaintext and ciphertext sets and

N represents the number of plaintexts generated from χ.

The case of the uniform distribution is generalized into that of

the unknown distribution [54], and the mutual information is

shown in the following theorem. In other words, Eve is able to

reveal the mutual information based on ciphertext-only attack.

Theorem 11. When the statistical distribution of the plaintext

set is unknown in a CSC system, we have the following result

I (x;y) =
1− fX(0)

2
+ I1 (x;y)

2M ln 2
, (24)

where fX (x) represents the density function of plaintexts and

I1 (x;y) follows a gamma distribution approximately.

In the above security analyses, the key is assumed to be

without any privacy leakage. Nevertheless, it was claimed that

for sparse plaintext, the key may be partly retrieved by use

of the prior sparsity knowledge of the plaintext and thus the

security analysis is further exploited from two newly defined

criteria including the extended Shannon-sense perfect secre-

cy (ESSPS) and the extended Wyner-sense perfect secrecy

(EWSPS) [121].

Definition 5. A cryptosystem is said to have ESSPS if

I (X ′;Y ′) + I (K ′;Y ′) = 0, (25)

in which X ′ represents plaintext, Y ′ represents ciphertext, and

K ′ represents key.

Definition 6. A cryptosystem is said to have EWSPS if

lim
N ′→∞

I (X ′;Y ′) + I (K ′;Y ′)

N ′
= 0, (26)

in which N ′ represents the plaintext length.

Theorem 12. The General-CSC cannot achieve ESSPS when

changing the measurement matrix for each sampling.
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TABLE III
THE LEVEL OF SECRECY FOR DIFFERENT TYPES OF CSCS FROM VIEW OF KEY.

The Type of CSC The Level of Secrecy

Gaussian measurement matrix [49], [52], [55] Have perfect secrecy under the condition of normalizing the ciphertext
Circulant measurement matrix [56] Leak some information of the autocorrelation of the plaintext
Structurally random matrices [115] Not having perfect secrecy
Perturbation measurement matrix [57] Have asymptotic spherical secrecy
Sparsifying basis as a part of the measurement matrix [58] Not have perfect secrecy but being against plaintext attacks
Random permutation as a part of the measurement matrix [59] Have asymptotic spherical secrecy
Multiple random matrices as a part of the measurement matrix [60] Not have perfect secrecy but being against plaintext attacks

Theorem 13. The General-CSC can achieve EWSPS when

changing the measurement matrix for each sampling.

Theorem 14. The General-CSC cannot achieve EWSPS when

utilizing the measurement matrix for multiple samplings.

Theorem 15. Eve can partly assess the measurement matrix

and the plaintext with probability 1 with the increase of

repeated times of utilizing the same measurement matrix, if

the plaintexts are mutually independent.

The above theorem indicates the General-CSC is not immune

against plaintext attacks, as shown in the next section.

I. Security Enhancement

1) Counter Mode: Chosen-plaintext attack is able to arbi-

trarily select plaintexts and obtain the corresponding cipher-

text. Therefore, if a cryptosystem is secure against chosen-

plaintext attack, it also resists known-plaintext attack and

ciphertext-only attack. For a CSC, the linearity of the sampling

structure determines the difficult of being against chosen-

plaintext attack. Fay introduced the counter mode [122] in the

CSC for the sake of resisting chosen-plaintext attack [123]. A

series of plaintexts xi, i = 1, 2, . . . , l, is encrypted as follows

yi = Aixi, (27)

where Ai is a Bernoulli random matrix. Let Ai
j be the j-th

row vector of Ai, where j represents the positive integer no

larger than M , then

Ai =
(

(

Ai
1

)T
,
(

Ai
2

)T
, · · · ,

(

Ai
M

)T
)T

, (28)

where Ai
j is generated by using a keyed hash function with the

input ctri and j. The counter mode requires an initialization

vector IV , and ctri is calculated as

ctri+1 = (ctri + 1) mod 2n, ctr1 = IV. (29)

The decryption process is described as

x̂i = Rec
(

yi,Ai
)

, (30)

where Rec (·) represents a reconstruction algorithm. The intro-

duced counter mode in the CSC that is secure against chosen-

plaintext attack means that one key can be used to encrypt

multiple messages. In addition, an advantage of this mode is

the parallelizability, i.e., the sampling and reconstruction can

be implemented in parallel.

2) Two New Modes of Operation: Fay and Ruland further

improved the CSC with the counter mode [123] by developing

modes of operation to encrypt multiple plaintexts with differ-

ent energy while not leaking the signal energy to Eve [124].

As indicated in [55], [57], the signal energy can be normalized

prior to transmission to achieve ciphertext indistinguishability

or asymptotic ciphertext indistinguishability, i.e., the encryp-

tion algorithm is

ȳi =
1

εxi

Aixi, (31)

where the signal energy εxi
= ‖xi‖22. For the purpose of

learning about the signal energy, a separate sensor needs

to be loaded in the sensing system. Yet, it gives rise to

a problem of how to secretly delivery the signal energy

used for Bob’s decryption. The authors in [124] decorated

two encryption modes for the signal energy including the

counter mode and the cipher block chaining [125]. Both two

modes have different properties and applications. The former

allows precomputation of matrices and parallel processing,

thus being able to offer high performance while the latter is

self-synchronizing, suitable for some connection-less protocols

where the ciphertext order is allowed to be changed to some

extent.

IV. SECURE WIRELESS COMMUNICATIONS BASED ON CS

Based on the secret measurement matrices, Alice can secret-

ly sample the signal of interest and then transmit the sampled

measurements over some wireless communication channels to

Bob. Moreover, the CS framework can be applied to some

channels to bring benefits. Different forms of channel charac-

teristics in wireless communications imply different scenarios

of CSC, which are discussed in the following subsections in

detail in terms of wireless wiretap channel, wireless sensor

network, internet of things, crowdsensing, smart grid, and

wireless body area networks, as graphically shown in Fig. 3.

A. Wireless Wiretap Channel

In the wireless wiretap channel, Eve as an eavesdropper

intercepts the message over a wiretap channel except a main

channel between Alice and Bob.
1) CS-Based Secrecy: Based on the CS framework, Agraw-

al and Vishwanath built up a secure communication way over

a wiretap physical layer channel by leveraging the channel

asymmetry [68]. The channel model, as depicted in Fig. 4, is

as follows
{

yBob = JBobAx+ eBob

yEve = JEveAx+ eEve
, (32)
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Fig. 3. Various scenarios of secure wireless communications based on CS.

in which x represents an N × 1 vector to be transmitted,

and yBob and yEve are the output vectors that are transmitted

over Bob’s channel JBob and Eve’s channel JEve, respectively.

eBob and eEve are the Gaussian noise vectors with zero-mean

and variance σ2. The precoding Ax is the framework of

CS, which encodes the original message into low-dimensional

measurements. Analyses pointed out that Bob can exploit

accurate recovery and Eve only obtains an infeasible recovery.

2) Secrecy Capacity: With respect to a multiplicative Gaus-

sian wiretap channel based on CS, the secrecy capacity was

quantitatively studied in [69]. The channel model is described

as
{

yBob = JBobAx

yEve = JEveAx
, (33)

where x is assumed to be the input binary vector with length

N , and JBob and JEve are fixed and known to all parties, whose

lengths are NBob and NEve, respectively, satisfying 0 ≤ NEve <
NBob < N/2. The secrecy capacity bounds are reflected as the

following two theorems.

Theorem 16. The lower bound is

1

N
logN ′ − 1

2N
log J ′ +

∑

x

1

2NN ′
log J ′′,

where N ′ =

(

N
NBob − 1

)

, J ′ = det
(

1
N
JEveJ

T
Eve

)

, J ′′ =

det
(

1
N ′

Bob
JEve (x)JEve(x)

T
)

, and x is from the set of all

binary vectors with NBob − 1 ones.

Theorem 17. The upper bound is

1

N
max

(

logN ′, max
NBob≤j≤N

(c̃1 (i)− c̃2 (j))

)

+
logN

N
,

where c̃1 (i) = max
1≤i≤N

NBob

2 log
(

1
NBob

‖JBob (i)‖2
)

and c̃2 (j) =

max
x

1
2 log

(

det
(

1
j
JBob (x)JBob(x)

T
))

, x is from the set of

all binary vectors with j ones.

Following the secrecy capacity bounds, the expectation of

the secrecy capacity and the asymptotic secrecy capacity are

further analysed in [69].

3) The Secrecy Based on Distributed CS: Different from

the CS-based physical layer secrecy schemes that involve only

a point-to-point communication [68], [69], an amplify and

forward scheme based on distributed CS was proposed to well

cater the distributed nature of WSN [126]. It offers the physical

layer secrecy underlying the distributed scheme [127] that

can consume less power and occupy less amount of channel

uses. For offering the physical layer secrecy, the measurement

matrix as the channel matrix is used to encode the signal

and Eve cannot reveal the true signal without its information.

This scheme was demonstrated to be able to attain the perfect

secrecy when facing a group of coordinated eavesdroppers. It

is worth noting that this scheme has the advantage of key-

based secrecy [52] as well as keyless-based physical layer

secrecy [68], [69].

4) The Secrecy Based on MIMO Precoding: The secrecy

capacity can be maximized provided that the information of

full channel state of Bob and Eve can be acquired [128]. How-

ever, some applications make it impractical that a transmitter

knows the information of channel state of Eve. Aiming at the

transmitter with the knowledge of only the channel state infor-

mation, Lin et al. put forward a secure transmission paradigm

based on an MIMO technique [71], which can simultaneously

maximize the secrecy and SNR. The CS technique can be

embedded in the proposed paradigm and makes it become an

underdetermined linear system, therefore some CS reconstruc-

tion algorithms can be directly used to recover the transmitted

signals. If only knowing partial information of channel state,

the transmitter could exploit a new Lloyd algorithm to quantize

the precoder based on the newly constructed codebooks while

not cutting down the secrecy. Even if the full information is

unknown, a low-cost postcoder can still be adopted to make

up for the loss of SNR. To sum up, the full recovery rate and

the perfect secrecy are both achievable. In addition, for the

general channel coding problem of CS in the wiretap channel,

some relevant results can be found in [129].

5) The Secrecy Based on Circulant Matrix: As previously

mentioned, the CSC with circulant matrix as a key leaks only

the autocorrelation of the plaintext [114]. Likewise, this CSC

based on circulant matrix can ensure wireless indistinguisha-

bility security when maintaining the plaintext-to-noise ratio of

Eve and the low channel gains for a short ciphertext and a

long keystream [72]. The security measure is conducted by

the relative entropy [113].

Definition 7. The relative entropy is described as the total

variation distance of two cases p (y|x1), p (y|x2), where y is

from one of two plaintexts x1 and x2.

Theorem 18. For the CSC with the circulant matrix in (11)

and the channel model (32), the relative entropy is bounded

by
M

2

(

ηνεx

Vnoise

√
N

− log

(

ηνεx

Vnoise

√
N

+ 1

))

with probability 1 − ν, where for the noise, its variance is
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Fig. 4. Wiretap channel mode based on CS.

represented by Vnoise, εx
VnoiseM

represents the plaintext-to-noise

ratio, and ην , which has an directly proportional relationship

with the channel gains, is a constant related to ν.

From this theorem, it can be found that with the growth of

the keystream length N and the ciphertext length M , and the

decrease of channel gain and the plaintext-to-noise ratio, the

relative entropy becomes smaller and then the indistinguisha-

bility becomes stronger.

6) Multicarrier System: For a multicarrier system [130],

CS was considered to provide secret communication [73], in

which, to enhance the difficult of Eve’s attack, the transmitter

can transmit artificial noise and a sparse signal over the

frequency domain. Meanwhile, the channel state information

can be exploited to selectively transmit artificial noise to

reduce its impact on Bob. The specific way is to partition

subcarriers into two subsets, which are separately used for

secure transmission from Alice to Bob and artificial noise

transmission to degrade Eve’s channel. Due to the impact

of noise, it is difficult for Eve to get the knowledge of the

received signals and estimate the measurement matrix, thus

not being able to recover the original sparse signal. Finally,

an upper bound on Eve’s successful probability was derived.

Besides of adding the artificial noise to increase the secret rate

[130], a channel-aware randomization approach is induced in

the encryption process to provide the secrecy against Eve while

a feasible recovery at Bob [74]. In comparison with [130],

both the secret signal and the original signal have the same

statistical properties, and the probability of successful attack

rather than the secret rate is the performance measure, as the

perfect secrecy is not achievable.

Cho and Yu studied a particular measurement matrix for

secure communication in the multicarrier system [75]. The

measurement matrix is given as

A=
1√
MN

RBerF, (34)

where RBer is a random Bernoulli matrix and F represents the

DFT matrix. The number field is complex-valued. With this

measurement matrix and a constraint on plaintexts, each cor-

responding ciphertext is represented by a circularly symmet-

ric complex Gaussian random vector when transmitted over

spectral domain of multicarrier communications. To further

figure out the energy sensitivity and indistinguishability, two

distance measure tools including total variation and Hellinger

distance are adopted to examine the probability distributions

of ciphertexts. This cryptosystem was verified to have the

indistinguishability against Eve’s attack when keeping the

plaintext a constant energy, which is a similar to the result

of [55].

7) Cooperative Networks: Along with the amplify and

forward CS scheme [126], a secure commmunication scheme

based on CS and energy harvesting was designed for coopera-

tive networks [76]. The superiority of energy harvesting lies in

its capability of transferring energy from sources and relays,

thus the relays can exploit energy harvesting on the received

signals from sources by use of the power splitting relaying

protocol and then the harvested energy can help to amplify

the information and then forward it to the destination. The

analyses showed that the secrecy capacity of this scheme is

high enough.

B. Wireless Sensor Network

The CS can perform simultaneous sampling and com-

pression with low complexity and has a wide application

in resource-limited WSN. Embedding the security into the

process of CS can bring simultaneous sampling, compression,

and encryption without affecting the CS performance.

1) Establishing Secure Measurement Matrix: Dautov and

Tsouri constructed a secure measurement matrix for wireless

security [77]. To generate this matrix, the received signal

strength indicator values are performed by the reciprocal quan-

tization and then utilized for secret bit extraction and these bits

are considered as the initial seeds of a linear feedback shift

register. Iterating this register forms the final measurement

matrix. This matrix was evaluated in the Rician fading model

[131], which can ensure the physical layer security. Similar

to [77], a lightweight encryption scheme was reported [78],

in which the information of channel measurements controls

the generation of the measurement matrix and thus no key

distribution agreement exists.

2) Integrity-Protected CS: Instead of establishing a secure

measurement matrix [77], the advanced encryption standard

(AES) affords the encryption on the measurements after CS

and meanwhile, a hash algorithm is added over transmission

channel for integrity checking [79]. The proposed architecture

was evaluated by a hardware implementation platform, where

a 65-nm CMOS technology is employed for realizing the CS,

AES, and integrity checking algorithms. The evaluation results

showed that this architecture is energy-efficient and highly

secure.

3) Capturing Medical Data: Aiming at medical WSN, Oth-

man et al. presented a secure data transmission scheme [80],

which has a resemblance with [79], i.e., the data are captured

and then encrypted rather than embedding the security into the

CS process. It consists of the medical data samples based on
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CS, XOR encryption, patient’s personal aggregator, and room

controller’s aggregator. Note that, the scheme differs from the

CS-based aggregation schemes [19], [20], [104], [132], since

the CS and aggregation are separate procedures in the present

scheme.

4) Data Gathering: The CS is an efficient technique of

data gathering in WSN [133]–[137]. This is due to the fact

that each node can send multiple projected results rather than

only a message to the sink with the help of the CS and

it can obtain a high-quality result recovered from a handful

of received messages [138]–[140]. Nevertheless, the privacy

is overlooked, since the environment used for deploying the

sensor nodes is often open and the sensing data are very

likely sensitive. A privacy-protected version for CS-based data

gathering with the help of two cryptographic schemes was

suggested in [81]. One cryptographic scheme is to integrate

pseudorandom permutations and symmetric encryption, and

the other one is based on pseudorandom permutations and

additively homomorphic encryption. The first one relies on

the nature of CS to some extent without introducing much

computational complexity while the additively homomorphic

encryption consumes too much computation overhead in the

second one. In contrast to the first one, however, the second

one does not worry about a more malicious Eve, as it has a

strict cryptography guarantee.

Two statistical inference attacks [82] were analysed for the

general CS data gathering framework. The analysis showed

that the information leakage can be easy and highly probable

with only a sensor compromised by Eve who could reveal the

sensor readings effectively. The leakage error is quantitatively

estimated through extensive statistical analyses. According to

these analyses, the authors in [82] came up with a secure

scheme to prevent the inference attacks. To increase the

security, chaos system was considered to be applied to CS

data gathering framework [83], in which the security and

performance of the multimedia data gathering were promoted

by a block encryption mode and a message authentication

code based on a chaotic system. While one can exert the

security protection on the measurements for each sensor, it is

not treated as a privacy-preserving version due to no security

guarantee during the CS process. For this purpose, Xie et

al. brought forth such a compressive data gathering scheme

based on homomorphic cryptosystem [84]. The homomorphic

encryption benefits the intermediate sensor nodes recode the

message over encrypted domain without the knowledge of the

decryption key and thereby the privacy does not leak.

C. Internet of Things

The IoT is becoming increasingly popular now and the

existing privacy issues in it are also non-negligible [141]–

[144]. The CS can be a candidate tool for IoT security [145],

[146].

1) Adaptive CS for Smart Objects: Smart objects are

the fundamental blocks in IoT system and are resource-

constrained, and the adaptive CS can offer lightweight com-

Fig. 5. The number of publications.

pression and encryption [87]. The framework is simply for-

mulated by

minM s.t. erecon<ethre, (35)

for a given quality-of-service. M represents the number of

packets after CS sampling. erecon, ethre represent the recon-

struction error and corresponding threshold error, respectively.

The above expression means to find out the optimal compres-

sion performance without affecting the service equality. The

adaptive CS is to rely mainly on the information of some smart

objects and adapt the CS measurement conditions for the rest

of smart objects.

2) Frequency Selection for Static Environment: The static

environment may result in the information leakage when the

CS is applied to physical layer security model, thus a physical

layer security model based on CS and frequency in IoT

was proposed in [88]. The circulant matrix was exploited to

play a role of the measurement matrix for high efficiency,

as indicated in [114], and a binary resilient function was

utilized for strong security. To cope with the static application

scenario, the authors put the frequency-selective feature of the

wireless channel [89] into use to increase the entropy of the

measured channel and accelerate the rate of generating keys

from physical layer.

3) Chaotic CS for Internet of Multimedia Things: The

multimedia IoT [147] becomes pervasive with the era of

multimedia data and social networks. It faces two challenges

including low-cost sampling and confidentiality preservation.

Accordingly, a mechanism presented in [90] can overcome

these two challenges based on chaotic CS. The encryption

algorithm is comprised by several key steps as follows.

• Sampling multiple images based on the measurement

matrix generated by chaos,

yi= Axi. (36)

• Rearrange the multiple measurements yi into a master

image ymaster.

• Permute the master image ymaster to obtain y′
master based

on Arnold transform.
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• Diffuse the permuted result y′
master to obtain the final

result y′′
master.

Observing the above steps can find that the encryption is

allowed to perform batch image processing, catering to the

multimedia big data. Meanwhile, the encryption is with the

architecture of two-layer, i.e., chaotic measurement matrix

and permutation-diffusion, thus the confidentiality can be

preserved well.

4) Secure Interaction with Cloud: When the IoT data are

straightforwardly placed at the cloud server, the privacy will be

exposed. A secure interaction between IoT and the cloud based

on CS was investigated in [91]. The raw data are acquired

by random compressed encryption and then uploaded to the

cloud server. Because the random compressed encryption is

a kind of multiplicative coefficient perturbation, the accessor

can calculate some statistical values over encrypted domain

without performing the decryption to obtain the raw data,

which brings great query convenience. This kind of encryp-

tion brings two additional advantages including statistical

decryption and decryption on demand. In addition to efficient

statistics computation, this encryption supports secure data

insertion and accurate raw decryption in cloud-enabled IoT

scenarios.

5) Compressed Detection: To directly detect the com-

pressive measurements without reconstruction is a promising

signal processing application, which has been investigated in

many references [148]–[152]. In particular, there exist some

works focusing on secrecy guarantees [85], [86]. In [85],

collaborative compressed detection is performed at distributed

nodes by elaborately designing measurement matrices. On

one hand, to deceive Eve, some artificial noise is injected

in cooperated trustworthy nodes to help the fusion centre.

On the other hand, some measurement matrices optimized

with the injection of artificial noise ensure the maximized

detection performance of the network without compromising

the secrecy. The collaborative compressed detection [85] was

extended to the work [86] from two aspects. One aspect is that

the performance loss caused by the compression with a single

sensor can be compensated and the other is to characterize the

trade-off between dimensionality reduction and the achievable

performance. Cognitive radio networks [153]–[155] are chosen

for experiment test to verify theoretical findings.

D. Other Wireless Communication Scenarios

1) Crowdsensing: The strength of low-complexity data

acquisition makes CS a promising tool for crowdsensing

systems with high burden on each participant [156], [157],

in which privacy issues are missing. Privacy issues based on

CS in crowdsensing were discussed in [92]–[94]. In mobile

crowdsensing, large-scale received signal strength maps of-

ten expose participants’ sensitivity information, therefore a

privacy-preserving scheme was projected by Wu et al. [92]. To

maximize the geographic map coverage while protecting the

participants’ trace privacy, the goal of generating a received

signal strength map can boils down to an objective function

⋃l′

i=1
ℑ∗

i = argmax
ℑi⊆℘i,∀i

⋃l′

i=1
ℑi,

s.t. PE (ℑi) ≥ C̄ or PE (ℑi) = 0, (37)

in which l′ reflects the participant number, ℑi represents

the trace of road segments of participant i, and ℘i is the

reported road segments of participant i. PE (·) indicates the

privacy exposure function that reflects the minimum number

of connections between two road segments. There are several

steps to realize the objective function. First, one can sample

the values of the received signal strength with CS so as to

remove the concrete and temporal location information in

every road segment. Then, after choosing some road segments,

each participant deliveries a third party the sampled data. Then

the third party removes more road segments for better privacy

protection. Finally, an expected map is generated in the central

server.

The work [93] was aimed at the data loss with a trajectory

because of hardware and energy constraints and proposed a

privacy-assured CS to collectively optimize the user privacy

protection and the data recovery accuracy in crowdsensing.

To tackle the privacy issue, a vector perturbation method was

established to perturb a user’s trajectory with other trajectories

and therefore attain a privacy-preserving CS. Specifically,

harnessing the vector perturbation method encrypts each us-

er’s incomplete location data. Then, the encrypted data are

transmitted to the crowdsensing server, which reconstructs the

encrypted data for all users straightforwardly without need of

decrypting the data. At last, the reconstructed data are sent to

each user who decrypts the data to obtain the trajectory of his

own with the inverse vector perturbation. The user’s privacy

can be preserved, since the data keep the encrypted form while

not affecting the CS reconstruction performance. The work

[94] has a similar idea to [93], i.e., a privacy-preserving CS

protocol without comprising its performance. The perturbed

CS in [94] embeds the cryptographic feature in CS, which

saves the sensor energy and is secure against chosen-plaintext

attack.

2) Smart Grid: In smart grid, the data privacy is a critical

concern due to the consumer information that smart meters

collect is often sensitive [158]–[161]. Gao et al. applied the

CS to smart grid for secure data transmission [95], whose

basic idea is to construct a secret measurement matrix for

simultaneous encryption, sampling, and compression. It bears

an analogy to the previous works like [52], whereas there is

a novel data preprocessing step, which is simply summarized

as follows.

• At time t, an access point acquires N readings

Rread,t =
(

Rread,t
1 , · · · , Rread,t

N

)

from N smart meters.

• At time t + 1, the access point calculates the difference

vector

Rread,t+1 −Rread,t =
(

Rread,t+1
1 −Rread,t

1 , · · · , Rread,t+1
N −Rread,t

N

)

.

The above data processing is ingenious, because, in gen-

eral, only a small number of readings will change between

adjoining moment and the difference vector is sparse. To keep
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TABLE IV
PERFORMANCE FOR DIFFERENT SECURITY MODELS.

Security Model Performance

CS-Based Secrecy [68] Build up a secure wireless wiretap channel by leveraging the channel asymmetry
Secrecy Capacity [69] Quantitatively investigate the lower and upper bounds of the secrecy capacity
The Secrecy Based on Distributed CS [126] Design an amplify-forward scheme to cater the distribute nature of wireless sensor network
The Secrecy Based on MIMO Precoding [71] Simultaneously maximize the secrecy and the signal-to-noise ratio
The Secrecy Based on Circulant Matrix [72] Guarantee the wireless indistinguishability security with some conditions
Multicarrier System [73]–[75] Induce artificial noise/channel randomization/particular measurement matrix for the security
Cooperative Networks [76] Own the superiority of energy harvesting and high secrecy capacity
Establishing Secure Measurement Matrix [77], [78] Design measurement matrix with reciprocal quantization/channel measurements
Integrity-Protected CS [79] AES for the encryption of measurements and hash algorithm for integrity checking
Capturing Medical Data [80] Capture data firstly and then encrypt them
Data Gathering [81]–[84] Combine pseudorandom permutations and symmetric/additively homomorphic encryption
Compressed Detection [85], [86] Perform collaborative compressed detection at distributed nodes
Adaptive CS for Smart Objects [87] Utilize the information of smart objects to adapt the CS measurement condition
Frequency Selection for Static Environment [88], [89] Enlarge the entropy of measured channel and accelerate the rate of generating keys
Chaotic CS for Internet of Multimedia Things [90] Realize low-cost sampling and confidentiality preservation
Secure Interaction with Cloud [91] Random compressed encryption for the raw data
Crowdsensing [92]–[94] Maximize the geographic map coverage and protect the participants’ trace privacy
Smart Grid [95]–[97] Construct a secret measurement matrix for joint encryption, sampling, and compression
Wireless Body Area Networks [98]–[100] Exploit chaotic CS for energy saving and data security

a long delay off over fading channels [162], multi-antenna

access point was suggested to improve the reliability [163].

At the same time, the security can be enhanced by frequently

updating keys and the physical layer security is achievable. In

addition, for wireless energy auditing networks, metering data

fidelity and secrecy are simultaneously ensure based on CS

[96], [97], which still make full use of the advantage of CS

with joint compression and encryption.

3) Wireless Body Area Networks: It consists of tiny sen-

sor nodes deployed around human body [164]–[166], which

involve some problems including the battery energy, storage,

communication, privacy, etc. In the case of privacy, the CS-

based monitoring was studied in [98]–[100]. In [98], chaotic

CS was designed to tackle two crucial problems including

energy saving and data security. The sampling equation based

on chaotic CS is

y =β1Ax+ β2Amask, (38)

where Amask is mask matrix, and β1, β2 are the adjustment

parameters. The function of the mask matrix is to enhance the

security by masking the compressive measurements. Adjusting

the parameters can make the encrypted data reach a uniform

distribution approximately. The sampling equation can be

reformulated as

y′ =
y − β2Am

β1
= Ax, (39)

which indicates that the original measurements y are further

encrypted into y′ with three keys Amask, β1, and β2. The

chaotic CS behaves that the sampling process is controlled by

a chaotic system. In other words, given the initial values and

parameters, the chaotic system can generate a series of pseudo-

random values, which is mapped into the measurement matrix

A and mask matrix Amask according to some mapping rule.

As a result, the whole sampling process can be manipulated by

the chaotic system’s initial values and parameters as the keys,

which bring great convenience for key sharing. Furthermore,

the sensitivity of the initial value of chaotic system can furnish

strong security.

Following the encryption framework in [77], the reference

[99] exploited the CS for electrocardiography. They have

consistent results of the physical layer security and the energy

consumption, although facing different application scenarios.

However, they did not consider long-range consecutive health

monitoring. In order for this, Nia et al. quantified some re-

quirements with eight biomedical sensors including heart rate,

body temperature, accelerometer, blood glucose, electrocardio-

gram, electroencephalogram, etc. and systematically analysed

the energy and storage requirements [100]. On account of this,

the authors proposed the corresponding solutions, one of which

is to cut down the consumption for data transmission, storage,

and encryption. However, the encryption is not designed in the

CS but beyond the sampling, i.e., encrypting the measurements

with the existing classic encryption schemes, similar to [79],

[80].

V. CONCLUDING REMARKS AND FUTURE RESEARCH

We have provided a comprehensive survey for the state-

of-the-art involved in the security aspects of CS and applica-

tions of wireless communications. Aiming at how to design

secure CS, we have reviewed different CSC schemes through

investigating different types of measurement matrix. Subse-

quently, aiming at classifying extensive applications of CS,

various kinds of secure communication schemes for different

communication scenarios are examined. A summary result is

listed in Table IV for an overall understanding, in which each

security model based on CS has the corresponding particular

performance. Moreover, a statistical result for the number

of works is shown in Fig. 5, in which the horizontal axis

represents the year from 2006 to now and the vertical axis

stands for the number of references in terms of the security

aspects of CS and the applications of CS in secure wireless

communications. It can be observed from Fig. 5 that secure
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wireless communications based on CS is an increasingly hot

research area, especially in recent years.

As can be seen from this survey, there has been substantial

progress on the theoretical research of secure wireless com-

munications based on CS, but the application performance in

practical scenarios still needs to be further investigated. The

benefits that the CS can bring to wireless communications are

apparent. The complexity can be reduced and the reliability

can be improved. It can be easily incorporated into the

current software systems and the security can be guaranteed.

Thus, it has great potential in practical applications and is

expected to be able to work in the design of future wireless

communications. However, several critical techniques remain

to be developed before put in use:

• Developing adaptive sampling rate techniques, since the

sparsity of the signal to be processed is often unknown

and the bandwidth of the signal is not constant in time-

varying wireless environments;

• Constructing appropriate sparsity bases, which can well

match with the present variable signals in compressive

detection/estimation;

• Building up low-cost measurement matrix generation

techniques, because random measurement matrices re-

quire high-complexity realizations and occupy large

memory;

• Designing low-complexity reconstruction algorithms as

high-complexity reconstruction is not suitable for real-

time communication processing;

• Exploiting robust CS mechanisms against unforeseen

circumstances such as noise, channel uncertainty, channel

correlation, synchronization errors, multicarrier distor-

tion, etc.;

• Establishing hardware platforms for CS realization com-

patible with practical wireless communication environ-

ments.
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[151] E. Lagunas and M. Nájar, “Spectral feature detection with sub-nyquist
sampling for wideband spectrum sensing,” IEEE Trans. Wireless Com-

mun., vol. 14, no. 7, pp. 3978–3990, 2015.
[152] Y. Wang, Z. Tian, and C. Feng, “Collecting detection diversity and

complexity gains in cooperative spectrum sensing,” IEEE Trans. Wire-

less Commun., vol. 11, no. 8, pp. 2876–2883, 2012.
[153] Z. Qin, Y. Liu, Y. Gao, M. Elkashlan, and A. Nallanathan, “Wireless

powered cognitive radio networks with compressive sensing and matrix
completion,” IEEE Trans. Commun., vol. 65, no. 4, pp. 1464–1476,
2017.

[154] A. El Shafie, N. Al-Dhahir, and R. Hamila, “Exploiting sparsity of
relay-assisted cognitive radio networks,” in IEEE Wireless Commun.

Network. Conf. (WCNC), pp. 1153–1158, IEEE, 2015.
[155] H. Qi and Y. Gao, “Two-dimensional compressive spectrum sensing in

collaborative cognitive radio networks,” in Proc. Global Telecommun.

Conf. (GLOBECOM), pp. 1–6, IEEE, 2017.
[156] T. Liu, Y. Zhu, Y. Yang, and F. Ye, “Incentive design for air pollution

monitoring based on compressive crowdsensing,” in IEEE Global

Commun. Conf. (GLOBECOM), pp. 1–6, IEEE, 2016.
[157] D. Wu, Q. Liu, Y. Li, J. A. McCann, A. C. Regan, and N. Venkata-

subramanian, “Adaptive lookup of open WiFi using crowdsensing,”
IEEE/ACM Trans. Network., vol. 24, no. 6, pp. 3634–3647, 2016.

[158] M. R. Asghar, G. Dán, D. Miorandi, and I. Chlamtac, “Smart meter
data privacy: A survey,” IEEE Commun. Surveys Tuts., vol. 19, no. 4,
pp. 2820–2835, 2017.

[159] F. G. Marmol, C. Sorge, O. Ugus, and G. M. Pérez, “Do not snoop
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