
Securify: Practical Security Analysis of Smart Contracts

Petar Tsankov
ETH Zurich

petar.tsankov@inf.ethz.ch

Andrei Dan
ETH Zurich

andrei.dan@inf.ethz.ch

Dana Drachsler-Cohen
ETH Zurich

dana.drachsler@inf.ethz.ch

Arthur Gervais∗

Imperial College London
a.gervais@imperial.ac.uk

Florian Bünzli
ETH Zurich

fbuenzli@student.ethz.ch

Martin Vechev
ETH Zurich

martin.vechev@inf.ethz.ch

ABSTRACT

Permissionless blockchains allow the execution of arbitrary pro-

grams (called smart contracts), enabling mutually untrusted entities

to interact without relying on trusted third parties. Despite their

potential, repeated security concerns have shaken the trust in han-

dling billions of USD by smart contracts.

To address this problem, we present Securify, a security ana-

lyzer for Ethereum smart contracts that is scalable, fully automated,

and able to prove contract behaviors as safe/unsafe with respect to

a given property. Securify’s analysis consists of two steps. First, it

symbolically analyzes the contract’s dependency graph to extract

precise semantic information from the code. Then, it checks com-

pliance and violation patterns that capture su�cient conditions

for proving if a property holds or not. To enable extensibility, all

patterns are speci�ed in a designated domain-speci�c language.

Securify is publicly released, it has analyzed > 18K contracts

submitted by its users, and is regularly used to conduct security

audits by experts. We present an extensive evaluation of Securify

over real-world Ethereum smart contracts and demonstrate that it

can e�ectively prove the correctness of smart contracts and discover

critical violations.

KEYWORDS

Smart contracts; Security analysis; Strati�ed Datalog

1 INTRODUCTION

Blockchain platforms, such as Nakamoto’s Bitcoin [43], enable the

trade of crypto-currencies between mutually mistrusting parties.

To eliminate the need for trust, Nakomoto designed a peer-to-peer

network that enables its peers to agree on the trading transactions.

Buterin [24] identi�ed the applicability of decentralized computa-

tion beyond trading, and designed the Ethereum blockchain which

supports the execution of programs, called smart contracts, written

in Turing-complete languages. Smart contracts have shown to be

applicable in many domains including �nancial industry [8], public

sector [11] and cross-industry [9].

The increased adoption of smart contracts demands strong se-

curity guarantees. Unfortunately, it is challenging to create smart

contracts that are free of security bugs. As a consequence, critical

vulnerabilities in smart contracts are discovered and exploited ev-

ery few months [2, 3, 6, 7, 10, 26]. In turn, these exploits have led to

losses reaching millions worth of USD in the past few years: 150M

were stolen from the popular DAO contract in June 2016 [6], 30M

were stolen from the widely-used Parity multi-signature wallet in

∗Work done while at ETH Zurich

July 2017 [10], and few months later 280Mwere frozen due to a bug

in the very same wallet [13]. It is apparent that e�ective security

checkers for smart contracts are urgently needed.

KeyChallenges. Themain challenge in creating an e�ective secu-

rity analyzer for smart contracts is the Turing-completeness of the

programming language, which renders automated veri�cation of

arbitrary properties undecidable. To address this issue, current auto-

mated solutions tend to rely on fairly generic testing and symbolic

execution methods (e.g., Oyente [39] and Mythril [16]). While use-

ful in some settings, these approaches come with several drawbacks:

(i) they can miss critical violations (due to under-approximation),

(ii) yet, can also produce false positives (due to imprecise modeling

of domain-speci�c elements [30]), and (iii) they can fail to achieve

su�cient code coverage on realistic contracts (Oyente achieves

only 20.2% coverage on the popular Parity wallet [17]). Overall,

these drawbacks place a signi�cant burden on their users, whomust

inspect all reports for false alarms and worry about unreported vul-

nerabilities. Indeed, many security properties for smart contracts

are inherently di�cult to reason about directly. A viable path to

addressing these challenges is building an automated veri�er that

targets important domain-speci�c properties [15]. For example, re-

cent work [31] focuses solely on identifying reentrancy issues in

smart contracts [5].

Domain-Speci�c Insight. A key observation of this work is that

it is often possible to devise precise patterns expressed on the

contract’s data-�ow graph in a way where a match of the pattern

implies either a violation or satisfaction of the original security

property. For example, 90.9% of all calls in Ethereum smart contracts

can be proved free of the infamous DAO bug [6] by matching a

pattern stating that calls are not followed by writes to storage.

The reason why it is possible to establish such a correspondence

is that violations of the original property in real-world contracts

tend to often violate a much simpler property (captured by the

pattern). Indeed, in terms of veri�cation, a key bene�t in working

with patterns, instead of with their corresponding property, is that

patterns are substantially more amenable to automated reasoning.

Securify: Domain-speci�c Veri�er. Based on the above in-

sight, we developed Securify, a lightweight and scalable security

veri�er for Ethereum smart contracts. The key technical idea is to

de�ne two kinds of patterns that mirror a given security property:

(i) compliance patterns, which imply the satisfaction of the property,

and (ii) violation patterns, which imply its negation. To check these

patterns, Securify symbolically encodes the dependence graph of

the contract in strati�ed Datalog [50] and leverages o�-the-shelf

1

ar
X

iv
:1

80
6.

01
14

3v
2

 [
cs

.C
R

]
 2

4
A

ug
 2

01
8

contract

bytecode

semantic facts (§4) compliance and

 violation patterns (§5)

security

report

00:60
01:07
02:5b
03:56
04:10
...

MemTag(0x20,Const)
MemVal(0x40,Caller)
Eq(x, MLoad(0x40))
SStore(02, Gas, y)
Call(04, x, y)
...

exists Call(_, _, y)
 !MayDep(y,Gas)

all SStore(_, x, _)
 DetBy(x,Caller)
...

Figure 1: Securify’s approach is based on automatic infer-

ence of semantic program facts followed by checking of

compliance and violation security patterns over these facts.

scalable Datalog solvers to e�ciently (typically within seconds)

analyze the code. To ensure extensibility, all patterns are expressed

in a designated domain-speci�c language (DSL).

In Fig. 1, we illustrate the analysis �ow of Securify. Starting

with the contract’s bytecode (or source code, which can be compiled

to bytecode), Securify derives semantic facts inferred by analyzing

the contract’s dependency graph and uses these facts to check a set

of compliance and violation patterns. Based on the outcome of these

checks, Securify classi�es all contract behaviors into violations (_),

warnings (▲), and compliant (■), as abstractly illustrated in Fig. 2.

Here, the large box depicts all contract behaviors, partitioned into

safe (which satisfy the property) and unsafe ones (which violate

it). Securify reports as violations (_) all behaviors matching the

violation pattern, and as warnings (▲) all remaining behaviors not

matched by the compliance pattern.

Reduced Manual E�ort. Compared to existing symbolic ana-

lyzers for smart contracts, Securify reduces the required e�ort to

inspect reports in two ways. First, existing analyzers do not report

de�nite violations (they con�ate _ and ▲), and thus require users

to manually classify all reported vulnerabilities into true positives

(found in the red box) or false positives (found in the green box).

In contrast, Securify automatically classi�es behaviors guaranteed

to be violations (marked with _). Hence, the user only needs to

manually classify the warnings (▲) as true or false positives.

As we show in our evaluation, the approach of using both viola-

tion and compliance patterns reduces the warnings a user needs

to inspect manually by 65.9%, and even up to 99.4% for some prop-

erties. Second, existing analyzers fail to report unsafe behaviors

(sometimes up to 72.9%), meaning users may have to manually

inspect portions of the code that are not covered by the analyzer.

In contrast, Securify reports all unsafe behaviors.

Auditing Smart Contracts. Securify is publicly available at

https://securify.ch and has analyzed > 18K contracts submitted

by its users. Over the last year, we have also extensively used Secu-

rify to perform 38 detailed commercial audits of smart contracts

(other auditors have also used Securify), iteratively improving the

approach and adding more patterns. Indeed, the design and imple-

mentation of Securify have greatly bene�ted from this experience.

In terms of the actual audit process, our approach (and we believe

that of other auditors) has been to run all available tools and then

to manually inspect the reported vulnerabilities so to assess their

severity. For instance, while Securify covers a number of impor-

tant properties (the full version supports 18 properties), symbolic

unsafe behaviors safe behaviors
violation

pattern

compliance

pattern

warning

violation

no violation

all behaviors

Figure 2: Securify uses compliance and violation patterns

to guarantee that certain behaviors are safe and, respec-

tively, unsafe. The remaining behaviors are reported as

warnings (to avoid missing errors).

execution tools have better support for numerical properties (e.g.,

over�ow). Our �nding was that Securify was particularly help-

ful in auditing larger contracts, which are challenging to inspect

with existing solutions for the reasons listed earlier. Overall, we

believe Securify is a pragmatic and valuable point in the space of

analyzing smart contracts due to its careful balance of scalability,

guarantees, and precision.

Main Contributions. To summarize, our main contributions are:

– A decompiler that symbolically encodes the dependency

graph of Ethereum contracts in Datalog (Section 4).

– A set of compliance and violation security patterns that

capture su�cient conditions to prove and disprove practical

security properties (Section 5).

– An end-to-end implementation, called Securify, which fully

automates the analysis of contracts (Section 6).

– An extensive evaluation over existing Ethereum smart con-

tracts showing that Securify can e�ectively prove the cor-

rectness of contracts and discover violations (Section 7).

2 MOTIVATING EXAMPLES

In this section, we motivate the problem we address through two

real-world security issues that a�ected ≈ 200millions worth of USD

in 2017. We describe the underlying security properties and the

challenges involved in proving whether a contract satis�es/violates

them. We also describe how Securify discovers both vulnerabilities

with appropriate violation patterns.

2.1 Stealing Ether

In Fig. 3, we show an implementation of a wallet. The code is written

in Solidity [18], a popular high-level language for writing Ethereum

smart contracts. We remark that this wallet is a simpli�ed version

of Parity’s multi-signature wallet, which allowed an attacker to

steal 30 million worth of USD in July 2017.

The wallet has a �eld owner, which stores the address of the

wallet’s owner. Further, the contract has a function initWallet,

which takes as argument an address _owner and initializes the �eld

owner with it. This function is called by the constructor (not shown

in Fig. 3), and was assumed not to be accessible otherwise [10].

Finally, the contract has a function withdraw, which takes as ar-

gument an unsigned integer _amount. The function checks if the

transaction sender’s address (returned by msg.sender) equals that

2

https://securify.ch

 contract OwnableWallet {

 address owner;

 // called by the constructor

 function initWallet(address _owner) {

 owner = _owner; // any user can change owner

 // more setup

 }

 // function that allows the owner to withdraw ether

 function withdraw(uint _amount) {

 if (msg.sender == owner) {

 owner.transfer(_amount);

 }

 }

 // ...

 }

Figure 3: A vulnerable wallet that allows any user to with-

draw all ether stored in it.

of the contract’s owner (stored in the �eld owner). If this check suc-

ceeds, it transfers _amount ether to the owner with the statement

owner.transfer(_amount); otherwise, no ether is transferred. The

withdraw function ensures that only the owner can withdraw ether

from the wallet.

Attack. The wallet shown in Fig. 3 has a critical security �aw:

any user could actually call the initWallet function and store an

arbitrary address in the �eld owner. An attacker can, therefore, steal

all ether stored in the wallet in two steps. First, the attacker calls the

function initWallet, passing her own address as argument. Second,

the attacker calls the function withdraw, passing as argument the

amount of ether stored in the wallet. We remark that in the attack

on Parity’s wallet, to perform the �rst step the attacker exploits a

fallback mechanism to call the initWallet function; we omit these

details for simplicity and refer the reader to [10] for details on the

actual attack.

Security Property. The underlying security problem that allowed

the attacker to steal ether is that the security-critical �eld owner

is universally writable by any Ethereum user. This security issue

mirrors a more general property stipulating that the write to the

owner �eld is restricted, in the sense that not all users can make

a transaction that writes to this �eld. To show that this property

is satis�ed, we need to demonstrate that some user cannot send

a transaction that modi�es the owner �eld. Conversely, to show a

violation, we need to prove that all users can send a transaction that

modi�es the owner �eld. Proving both satisfaction and demonstrat-

ing violations of this property is nontrivial due to the enormous

space of possible users and transactions that they can make.

Detection. To discover this security issue, Securify provides a

violation pattern that is matched if the execution of the assignment

owner = _owner, highlighted in red in Fig. 3, does not depend

on the value returned by the caller instruction (which returns the

address of the transaction sender). To check this pattern, Securify

infers data- and control-�ow dependencies by analyzing the con-

tract’s dependency graph; cf. [35]. Here, Securify infers that the

contract Wallet {

 // fixed address of the wallet library

 address constant walletLibrary = ...;

 // function that receives ether

 function deposit() payable {

 log(msg.sender, msg.value);

 }

 // function for withdrawing ether

 function withdraw() {

 walletLibrary.delegatecall(msg.data);

 }

 // ...

} // No guaranteed ether transfer

Figure 4: A wallet that delegates functionality to a library

contract walletLibrary.

assignment owner = _owner does not depend on the caller instruc-

tion, which implies that the assignment is reachable by any user.

In Section 3, we provide more details on this violation pattern and

further details on how Securify uses it to detect the vulnerability.

We remark that some symbolic checkers perform imprecise

checks of similar properties, which result in both false positives and

false negatives. For instance, as we show in Fig. 13 of our evaluation

later, Mythril [16] has about 65% false negatives when checking a

similar property stipulating that not all users may trigger a particu-

lar ether transfer.

2.2 Frozen Funds

In Fig. 4, we show a wallet implementation which su�ers from a

security issue that froze millions worth of USD in November 2017.

This wallet has a �eld, walletLibrary, which stores the address of a

contract implementing common wallet functionality. Further, it has

a function deposit, marked as payable, which means users can send

ether to the contract by calling this function. The function deposit

logs the amount of ether (identi�ed by msg.value) sent by the trans-

action sender (identi�ed by msg.sender). Finally, the contract has

a function withdraw, which delegates all calls to the wallet library.

That is, the statement walletLibrary.delegatecall(msg.data)

results in executing the withdraw method of the wallet library in

the context of the current wallet.

Attack. Ethereum contracts can be removed from the blockchain

using a designated kill instruction. If an attacker can remove the

wallet library from the blockchain, then the funds in the wallet

cannot be extracted from the wallet. This is because the wallet

relies on the library smart contract to withdraw ether. In November

2017, a popular wallet library was removed from the blockchain,

e�ectively freezing ≈ 280 million worth of USD [7].

Security Property. The underlying security problem with this

wallet is that it allows users to deposit ether, but it cannot guarantee

that the ether can be transferred out of the contract, since the

transfer depends on a library. To discover that the wallet has this

problem, we must prove two facts: (i) users can deposit ether and

3

EVM code

Matched pattern

00: 60 04
02: 35 60
04: 08 56
06: 5B 00
08: 5B 60
0A: 00 56
0C: 60 00
0E: 55 56

// entry
L1 a = 0x04
L2 b = dataload(a)
L3 ABI_9DA8(b)
L4 stop()

// method
 ABI_9DA8(b) {
L5 c = 0x00
 // write owner
L6 sstore(c, b);
 }

00: push 0x04
02: dataload
03: push 08
05: jump
06: jumpdest
07: stop
08: jumpdest
09: push 0x00
0B: sload
0C: push 0x00
0E: sstore
0F: jump

... !MayDepOn(c, Caller)
&& !MayDepOn(6, Caller)

Restricted write

violation pattern

MustFollow(L2, L1)
VarTag(a, const)
MayDepOn(b, dataload)
Eq(c, 0x00)

Parsed code Decompiled code

Semantic facts

...

// entry
L1 a = 0x04
L2 b = dataload(a)
L3 ABI_9DA8(b)
L4 stop()

// method
 ABI_9DA8(b) {
L5 c = 0x00
 // write owner
L6 sstore(c, b);
 }

(1) (2)

(3)

(4)

Figure 5: High-level �ow illustrating how Securify �nds the unrestricted write to the owner �eld of the contract from Fig. 3.

The input (EVM bytecode and security patterns) is highlighted in green , the output (in our example, a violated instruction)

is highlighted in red , and gray boxes represent intermediate analysis artifacts. Securify proceeds in three steps: (1) it

decompiles the contract’s EVM bytecode into a static-single assignment form, (2) it infers semantics facts about the contract,

and (3) it matches the violation pattern of the restricted write property on the sstore instruction that writes to the owner �eld.

(ii) the contract has no ether transfer instructions (i.e., call) with

non-zero amount of ether. Note that if the contract only transfers

out ether through libraries, the second requirement is met.

Detection. To discover this vulnerability, Securify’s violation

pattern checks the conjunction of two facts. First, to prove that

users can deposit ether, Securify checks whether there is a stop in-

struction whose execution does not depend on the ether transferred

being zero. Assuming that the stop instruction is reachable for some

transaction, this implies that a user can reach it with a positive ether

amount, resulting in a deposit of ether to the contract. Second, Se-

curify checks whether for all call instructions, the amount of ether

extracted from the contract is zero. The conjunction of these two

facts implies that ether can be locked in the contract.

3 THE SECURIFY SYSTEM

In the previous section, we illustrated that while security issues in

smart contracts are complex, they can be often captured with se-

mantic facts inferred from the code. In this section, we describe the

Securify system, which builds on this idea to prove and disprove

security properties of smart contracts. We accompany this section

with the example of how Securify detects the unrestricted write

to the owner �eld in the wallet contract (Fig. 3). Fig. 5 summarizes

the main steps.

Inputs to Securify. The input to Securify is the EVM bytecode

of a contract and a set of security patterns, speci�ed in our desig-

nated domain-speci�c language (DSL). Securify can also take as

input contracts written in Solidity (not shown in Fig. 5), which are

compiled to EVM bytecode before proceeding with the analysis.

There are two kinds of security patterns: compliance and violation

patterns, which capture su�cient conditions to ensure that a con-

tract satis�es and, respectively, violates a given security property.

Fig. 5 illustrates the input to Securify in green boxes, which

show part of the EVM bytecode of the wallet contract (only the part

necessary to illustrate the vulnerability) and the violation pattern

of the restricted write property. Intuitively, the pattern is matched

if there is a write that is not restricted.

To discover the unrestricted write in the contract, Securify

proceeds with the following three steps.

Step 1: Decompiling EVM Bytecode. Securify �rst transforms

the EVM bytecode provided as input into a stackless representation

in static-single assignment form (SSA). For example, in Fig. 5, for the

stack expression push 0x04, Securify introduces a local variable

a and an assignment statement a = 4. In addition to removing

the stack, Securify identi�es methods. For example, the method

ABI_9DA8, shown in Fig. 5, corresponds to the initOwnermethod of

the wallet contract, shown in Fig. 3. After decompilation, Securify

performs partial evaluation to resolve memory and storage o�sets,

jump destinations, all of which are important for precisely analyzing

the code statically. We describe these optimizations in Section 6.

Step 2: Inferring Semantic Facts. After decompilation, Secu-

rify analyzes the contract to infer semantic facts, including data-

and control-�ow dependencies, which hold over all behaviors of

the contract. For example, the fact MayDepOn(b, dataload), shown

in Fig. 5, captures that the value of variable b may depend on the

value returned by the instruction dataload. Further, the fact Eq(c, 0)

captures that variable c equals the constant 0.

Securify’s derivation of semantic facts is speci�ed declaratively

in strati�ed Datalog and is fully automated using existing scalable

engines [36]. Key bene�ts of the declarative approach are: (i) in-

ference rules concisely capture abstract reasoning about di�erent

components (e.g., contract storage), (ii) more facts and inference

rules can be easily added, and (iii) inference rules are speci�ed in a

modular way (e.g., memory analysis is speci�ed independently of

contract storage analysis). We list the semantic facts that Securify

derives, along with the inference rules, in Section 4.

Step 3: Checking Security Patterns. After obtaining the seman-

tics facts, Securify checks the set of compliance and violation

security patterns, given as input. These patterns are written in a

specialized domain-speci�c language (DSL), which enables secu-

rity experts to extend our built-in set of patterns with their cus-

tomized patterns. Our DSL is a fragment of logical formulas over

4

the semantic facts inferred by Securify. To detect the vulnerability

in the contract of Fig. 3, Securify matches the violation pattern

(given as input) on the sstore(c, b) instruction at label l6 in Fig. 5.

In sstore(c, b), c is the storage o�set of the owner �eld, and b is the

value to store. The violation pattern matches if there exists some

sstore instruction for which both the storage o�set, denoted X ,

and the execution of this instruction, identi�ed by its label L, do

not depend on the result of the caller instruction in any possible

execution of the contract. Since the instruction caller retrieves the

address of the transaction sender, matching this pattern implies

that any user can reach this sstore and change the value of owner.

In our DSL, where negation is encoded by ¬ and conjunction by ∧,

this pattern is encoded as:

some sstore(L,X , _).¬MayDepOn(X , caller)∧¬MayDepOn(L, caller)

Securify’s DSL is important for extensibility: adding new secu-

rity patterns amounts to specifying them in this DSL. To illustrate

the expressiveness of the DSL, in Section 5, we present a range of

security patterns for important properties, such as restricted writes,

exception handling, ether liquidity, input validation, and others.

We remark that contract-speci�c patterns are sometimes added

by security experts while conducting security audits. For exam-

ple, it is often required to check for the absence of undesirable

dependencies, such as: only the owner can modify certain values

in the storage, or to ensure that the result of a speci�c arithmetic

expression does not depend on the division instruction (which may

cause undesirable integer rounding e�ects). We illustrate how such

contract-speci�c patterns are speci�ed in the DSL in Section 5.

Output of Securify. For any match of a violation pattern, Secu-

rify outputs the instruction that caused the pattern to match. In our

example, it highlights the instruction sstore(c, b). We remark that

the o�set of this instruction can be easily mapped to its correspond-

ing line in the Solidity code, if the source code is provided. Further,

for any property for which neither the violation nor the compliance

pattern is matched, Securify outputs a warning, indicating that it

failed to prove or disprove the property.

Limitations. We brie�y summarize several limitations of Secu-

rify. First, the current version of Securify cannot reason about

numerical properties, such as over�ows. To address this limitation,

we plan to extend Securify with numerical analysis (e.g., using

ELINA [48]), which would not only improve the precision of Secu-

rify but also enable the checking of numerical properties.

Second, Securify does not reason about reachability, and as-

sumes that all instructions in the contract are reachable. This as-

sumption is necessary to establish a formal correspondence between

the security properties supported by Securify and the patterns

used to prove and disprove them. For instance, in our example,

Securify assumes that the matched sstore instruction is reachable

by some execution (otherwise, there is no violation).

Finally, the properties we consider capture violations that can of-

ten, but not always, be exploited by attackers. For example, there are

�elds in the contract that must be universally writable by all users.

To address this, security experts can write contract-speci�c patterns

in Securify’s DSL (e.g., to specify which �elds are sensitive).

4 SEMANTIC FACTS

In this section, we present the automated inference of control- and

data-�ow dependencies that Securify employs. The facts inferred

in this process are called semantic facts and are later used for check-

ing security properties. We begin with the background necessary

for understanding this analysis: the EVM instruction set and strat-

i�ed Datalog. We then introduce the semantic facts derived by

Securify and the declarative inference rules, speci�ed in strati�ed

Datalog, used to derive them.

4.1 Background

In this section, we provide the necessary background.

4.1.1 Ethereum Virtual Machine (EVM). Smart contracts are exe-

cuted on a blockchain. A contract executes when a user submits a

transaction that speci�es the contract, the method to run, and the

method’s arguments (if any). When the transaction is processed,

it is added to a new block, which is appended to the blockchain.

Contracts can access a volatile memory and non-volatile storage.

The EVM instruction set (over which contracts are written) sup-

ports a few dozen opcodes. Securify handles all EVM opcodes;

we present the most relevant ones below. Note that many of the

opcodes (such as push, dup, etc.) are eliminated when Securify

decompiles the EVM bytecode to its stackless representation. The

relevant instructions are:

– Arithmetic operations and comparisons: e.g., add, mul, lt, eq.

In the rest of the paper, we write op to denote any of these

operations.

– Cryptographic hash functions: e.g., sha3.

– Environmental information: e.g., balance returns the balance

of a contract, caller is the identity of the transaction sender,

callvalue is the amount of ether speci�ed to be transferred

by the transaction.

– Block information: e.g., number, timestamp, gaslimit.

– Memory and storage operations: mload, mstore, sstore, sload

load/store data from the memory/contract storage.

– System operations: e.g., call, which transfers ether, and takes

two arguments: receiver address and amount of ether to

transfer (in fact, call takes seven arguments; we consider

here only those that are relevant for the rest of the paper).

– Control-�ow instructions: e.g., goto, which encodes condi-

tional jumps across instructions.

For the complete set of instructions, along with their formal

description, we refer the reader to [52].

4.1.2 Stratified Datalog. Strati�ed Datalog is a declarative logic

language, which enables to write facts (predicates) and rules to infer

facts. We next brie�y overview its syntax and semantics.

Syntax. We present Datalog’s syntax in Fig. 6. A Datalog program

consists of one or more rules, denoted r . A rule r consists of a

head a, and a body, l , consisting of literals, separated by commas.

The head, also called an atom, is a predicate over zero or more

terms, denoted t , comma-separated. A literal l is a predicate or its

negation. As a convention, we write Datalog variables in upper case

and constants in lower case. A Datalog program is well-formed if

5

(Program) P ::= r (Predicates) p,q ∈ P

(Rule) r ::= a ⇐ l (Term) t ∈ V ∪ C

(Atom) a ::= p(t) (Datalog variables) X ,Y ∈ V

(Literal) l ::= a | ¬a (Constants) x ,y ∈ C

Figure 6: Syntax of strati�ed Datalog.

for any rule a ⇐ l , we have vars(a) ⊆ vars(l), where vars(l) returns

the set of variables in l .

A Datalog program P is strati�ed if its rules can be partitioned

into strata P1, . . . , Pn such that if a predicate p occurs in a positive

(negative) literal in the body of a rule in Pi , then all rules with p

in their heads are in a stratum Pj with j ≤ i (j < i). Strati�cation

ensures that predicates that appear in negative literals are fully

de�ned in lower strata.

Semantics. Let A = {p(t) | t ⊆ C} (where t is a list of terms

separated by commas) denote the set of all ground (i.e., variable-

free) atoms; we refer to these as facts. An interpretation A ⊆ A is

a set of facts. The complete lattice (P(A), ⊆,∩,∪, ∅,A) partially

orders the set of interpretations P(A).

Given a substitution σ ∈ V → C, mapping variables to con-

stants, and an atom a, we write σ (a) for the fact obtained by re-

placing the variables in a according to σ . For example, σ (p(X))

returns the fact p(σ (X)). Given a program P , its consequence oper-

ator TP ∈ P(A) → P(A) is de�ned as:

TP (A) = {σ (a) | (a ⇐ l1 . . . ln) ∈ P ,∀li ∈ l . A ⊢ σ (li)}

where A ⊢ σ (a) if σ (a) ∈ A and A ⊢ σ (¬a) if σ (a) < A.

An input for P is a set of facts constructed using P ’s extensional

predicates, i.e., those that appear only in the rule bodies. Let P be a

program with strata P1, . . . , Pn and I be an input for P . The model

of P for I , denoted by [[P]]I , isMn , whereM0 = I andMi =
⋂

{A ∈

fp TPi | Mi−1 ⊆ A} is the smallest �xed point of TPi that is greater

than or equal to the lower stratum’s modelMi−1.

4.2 Facts and Inference Rules

Securify �rst extracts a set of base facts that hold for every in-

struction. These base facts constitute a Datalog input that is fed

to a Datalog program to infer additional facts about the contract.

We use the term semantic facts to refer to the facts derived by the

Datalog program. All program elements that appear in the contract,

including instruction labels, variables, �elds, string and integer

constants, are represented as constants in the Datalog program.

Base Facts. The base facts of our inference engine describe the

instructions in the contract’s control-�ow graph (CFG). The base

facts take the form of instr(L,Y ,X1, . . . ,Xn), where instr is the in-

struction name, L is the instruction’s label, Y is the variable storing

the instruction result (if any), and X1, . . . ,Xn are variables given to

the instruction as arguments (if any). For example, the instruction

l1: a = 4 (from Fig. 5) is encoded to assign(l1, a, 4). Further, the in-

struction l6: sstore(c, b), where the variable c is known to be equal

to the constant 0 at compile time, is encoded to sstore(l6, 0, b); if

the value of the variable c could not be determined at compile time,

then the instruction would be encoded to sstore(l6,⊤, b), where ⊤

is a Datalog constant that encodes that the value of c is unknown.

Semantic fact Intuitive meaning

Flow Dependencies

MayFollow(L1, L2) Instruction at label L2 may follow that at label L1.

MustFollow(L1, L2) Instruction at label L2 must follow that at label L1.

Data Dependencies

MayDepOn(Y , T) The value of Y may depend on tag T .

Eq(Y , T) The values of Y and T are equal.

DetBy(Y , T) For di�erent values of T the value of Y is di�erent.

Figure 7: The semantic facts: L1 and L2 are labels, Y is a vari-

able, and T is a tag (a variable or a label).

The base facts of consecutive instructions are expressed by a predi-

cate de�ned over labels called Follow. For every two labels, L1 and

L2, whose instructions are consecutive in the CFG (either in the

same basic block or in linked basic blocks), we have the base fact

Follow(L1,L2). An example, Follow fact derived for the contract,

shown in Fig 5, is Follow(l1, l2). The join of then/else branches is

captured by a predicate Join(L1,L2), which encodes that the two

branches that originate at an instruction goto(L1,X ,L3), located

at label L1, are joined (i.e., they are merged into a single path) at

label L2. Using the base facts described above, Securify computes

two kinds of semantic facts: (i) �ow-dependency predicates, which

capture instruction dependencies according to the contract’s CFG,

and (ii) data-dependency predicates; see Fig. 7.

Flow-Dependency Predicates. The �ow predicates we consider

areMayFollow andMustFollow, both are de�ned over pairs of labels

and are inferred from the contract’s CFG. The intuitive meaning

(also summarized in Fig. 7) is:

– MayFollow(L1,L2) holds for L1 and L2 if both are in the same

basic block and L2 follows L1, or there is a path from the

basic block of L1 to the basic block of L2.

– MustFollow(L1,L2) holds if both are in the same basic block

and L2 follows L1, or any path to the basic block of L2 passes

through the basic block of L1.

To infer the MayFollow and MustFollow predicates, we use the

Follow(L1,L2) input fact which holds if L2 immediately follows L1

in the CFG. Namely, the predicate MayFollow is de�ned with the

following two Datalog rules:

MayFollow(L1,L2) ⇐ Follow(L1,L2)

MayFollow(L1,L2) ⇐ MayFollow(L1,L3), Follow(L3,L2)

The �rst rule is interpreted as: if Follow(L1,L2) holds (i.e., it is con-

tained in the Datalog input), then the predicate MayFollow(L1,L2)

is derived (i.e., it is added to the �xed-point). The second rule is

interpreted as: if both MayFollow(L1,L3) and Follow(L3,L2) hold,

then MayFollow(L1,L2) is derived. Note that if MayFollow(L1,L2)

is not derived in the �xed-point (at the end of the �xed-point com-

putation), then the instruction at label L2 does not appear after the

instruction at label L1, in any execution of the contract.

The inference rules for MustFollow are de�ned similarly, with a

special attention to the join points in the CFG.

6

Data-dependency may-analysis

MayDepOn(Y , X) ⇐ assign(_, Y , X)

MayDepOn(Y , T) ⇐ assign(_, Y , X), MayDepOn(X , T)

MayDepOn(Y , T) ⇐ op(_, Y , . . . , X , . . .), MayDepOn(X , T)

MayDepOn(Y , T) ⇐ mload(L, Y , O), isConst(O), MemTag(L, O, T)

MayDepOn(Y , T) ⇐ mload(L, Y , O), ¬isConst(O), MemTag(L, _, T)

MayDepOn(Y , T) ⇐ mload(L, Y , O), MemTag(L, ⊤, T)

MayDepOn(Y , T) ⇐ assign(L, Y , _), Taint(_, L, X), MayDepOn(X , T)

Memory analysis inference

MemTag(L, O, T) ⇐ mstore(L, O, X), isConst(O), MayDepOn(X , T)

MemTag(L, ⊤, T) ⇐ mstore(L, O, X), ¬isConst(O), MayDepOn(X , T)

MemTag(L, O, T) ⇐ Follow(L1, L), MemTag(L1, O, T),

¬ReassignMem(L, O)

ReassignMem(L, O)⇐ mstore(L, O, _), isConst(O)

Implicit control-�ow analysis

Taint(L1, L2, X) ⇐ goto(L1, X , L2)

Taint(L1, L2, X) ⇐ goto(L1, X , _), Follow(L1, L2)

Taint(L1, L2, X) ⇐ Taint(L1, L3, X), Follow(L3, L2), ¬Join(L1, L2)

Figure 8: Partial inference rules for MayDepOn: the Data-

log variable X ranges over contract variables, L ranges over

instruction labels, ⊤ represents an unknown o�set, and T

ranges over tags.

Data-Dependency Predicates. The dependency predicates we

consider are MayDepOn, Eq, and DetBy. The intuitive meaning of

them (also summarized in Fig. 7) is:

– MayDepOn(Y ,T) is derived if the value of variableY depends

on the tag T . Here, the variable T ranges over tags, which

can be a contract variable (e.g., x) or an instruction (e.g.,

timestamp). For example, MayDepOn(Y ,X) means that the

value of variable Y may change if the value of X changes,

while MayDepOn(Y , timestamp) means that Y may change

if the instruction timestamp returns a di�erent value.

– Eq(Y ,T) indicates that the values of Y and T are identical.

For example, given fact assign(l ,x , caller), which stores the

sender’s address at variable x , we have Eq(x , caller).

– DetBy(Y ,T) indicates that a di�erent value of T guarantees

that the value of Y changes. For example, DetBy(x , caller)

is derived if we have the fact sha3(l , x, start, len), which

returns the hash of the memory segment starting at o�set

start and ending at o�set start + len, if any part of this

memory segment is determined by caller. Note that Eq(Y ,T)

implies that DetBy(Y ,T) also holds.

The Datalog rules de�ning these data-dependency predicates

are given in Fig. 8. To avoid clutter in the rules, we use the wildcard

symbol (_) in place of variables that appear only once in the rule;

for example, we write MayDepOn(Y ,X) ⇐ assign(_,Y ,X) instead

ofMayDepOn(Y ,X) ⇐ assign(L,Y ,X). The rules rely on additional

predicates: isConst, MemTag (and, similarly, StorageTag, which are

omitted from Fig. 8) and Taint. We brie�y explain the meaning of

these predicates and how they are derived below.

– The predicate isConst(O) holds if O is constant that appears

in the contract. For example, the fact isConst(0) is added to

the Datalog input derived for the contract in Fig. 5.

– The predicate MemTag(L,O,T) (and similarly StorageTag)

de�nes that, at label L, the value at o�set O in the mem-

ory (or storage) is assigned tag T . It is de�ned with three

rules. The �rst rule encodes that writing a variable X tagged

with T to a constant (i.e., known) o�set O at label L, results

in tagging the memory o�set O at label L with tag T . The

second rule de�nes the case when the o�set is unknown, in

which case all possible o�sets, captured via the constant ⊤,

are assigned tag T . The third rule propagates the tags to

the following instructions, until reaching to an instruction

that reassigns that memory location (captured by a predicate

ReassignMem).

– The predicate Taint(L1,L2,X) encodes that the execution of

the instruction at label L2 depends on the value ofX , whereX

is the condition of a goto instruction at label L1. The �rst

two rules de�ning the predicate Taint(L1,L2,X) taint the

two branches that originate at a goto instruction at label L1
with the condition X . Finally, the third rule propagates the

tag X along the instructions of the two branches until they

are merged.

MayDepOn(X ,T) de�nes that variable X may have tag T . The

�rst rule de�nes that assigning a variable X to Y results in tagging

Y with X . The second rule propagates any tags of X to the assigned

variable Y . The third rule propagates tags over operations with

tagged variables. The three rules with mload instructions propagate

tags from memory to variables. The �rst mload rule de�nes that

when loading data from a constant o�set O , the tags associated

to that o�set are propagated to the output variable Y . The second

mload rules states that if the o�set is unknown, then all tags of the

memory are propagated to the output variable Y . Finally, the third

mload rule propagates tags that are written to unknown o�sets

(identi�ed by ⊤). The �nal rule de�nes that if the execution of an

assign(L,Y , _) instruction depends on a variable X (i.e., the label L

is tainted with the variable X), then all tags assigned to X are

propagated to the output variable Y .

We remark that the rules for inferring Eq and DetBy predicates

are de�ned in a similar way and are therefore omitted.

5 SECURITY PATTERNS

In this section, we show how to express security patterns over

semantics facts. We begin by de�ning the Securify language for

expressing security patterns. Then, to de�ne security properties

formally, we provide background on the execution semantics of

EVM contracts and formally de�ne properties. We continue by pre-

senting a set of relevant security properties, and for each, we show

compliance and violation patterns, which imply the property and,

respectively, its negation. This construction enables us to deter-

mine whether a contract complies with or violates a given security

property. Finally, we show how Securify leverages some patterns

for error-localization.

7

5.1 Securify Language

We �rst de�ne the syntax of the language for writing patterns and

then de�ne how patterns are interpreted over the semantic facts

derived for a given contract (described in Section 4).

Syntax. The syntax of the Securify language is given by the

following BNF:

φ ::= instr(L,Y ,X , . . . ,X) | Eq(X ,T) | DetBy(X ,T)

| MayDepOn(X ,T) | MayFollow(L,L) | MustFollow(L,L)

| Follow(L,L) | ∃X .φ | ∃L.φ | ∃T .φ | ¬φ | φ ∧ φ

Here, L, X , and T are variables that range over program elements

such as labels, contract variables, and tags. Patterns can refer to

instructions instr(L,Y ,X1, . . . ,Xn), where instr is the instruction

name, L is the instruction’s label, Y is the variable storing the

instruction result (if any), and X1, . . . ,Xn are variables given to the

instruction as arguments (if any). Patterns can also refer to �ow-

and data-dependency semantic facts, which can be used to impose

conditions on the labels and variables that appear in instructions.

Finally, the patterns can quantify over labels, variables, and tags

using the standard exists quanti�er (∃). More complex patterns can

be written by composing simpler patterns with negation (¬) and

conjunction (∧).

We de�ne several syntactic shorthands that simplify the speci�-

cation of patterns. We use standard logical equivalences: we write

∀X . φ(X) for ¬(∃X . ¬φ(X)),φ1∨φ2 for ¬(¬φ1∧¬φ2), andφ1 ⇒ φ2
for ¬φ1 ∨ φ2. We also write X = T for Eq(X ,T). For readability,

we write: some instr(X). φ(Y) for ∃X . instr(X) ∧ φ(Y), which im-

poses that there is some instruction instr(X) for which the log-

ical condition φ(Y) holds. Similarly, we write all instr(X). φ(Y)

for ∀X . instr(X) ⇒ φ(Y), which imposes that for all instructions

instr(X) the condition φ(Y) must hold.

Semantics. Patterns are interpreted by checking the inferred se-

mantic facts:

– Quanti�ers and connectors are interpreted as usual.

– Flow- and data-dependency predicates are interpreted as

de�ned in Section 4; i.e., a semantic fact holds if and only if

it is contained in the Datalog �xed-point.

For example, consider the pattern:

some sstore(L,X ,Y). DetBy(X , caller)

which is a shorthand for ∃X . sstore(L,X ,Y)∧DetBy(X , caller). This

pattern is matched if there is an instruction sstore(L,X ,Y) in the

contract such that the o�setX is determined by the address returned

by the caller instruction (captured by the predicateDetBy(X , caller)).

For brevity, we omit variables that are not conditioned in the pattern:

some sstore(_,X , _). DetBy(X , caller).

In Fig. 9, we list security patterns that are built-in in Securify.

In the following, we �rst give additional background on the EVM

execution model and then present these patterns.

5.2 EVM Background and Properties

To understand the security properties de�ned in the next section,

we extend the background on EVM (given in Section 4.1.1), which

focused on the EVM syntax, with the semantics of EVM contracts.

EVM Semantics. A contract is a sequence of EVM instructions

C = (c0, . . . , cm). The semantics of a contract [[C]] is the set of all

traces from an initial state. A trace of a contract C is a sequence

of state-instruction pairs (σ0, c0) → . . .→ (σk , ck), from an initial

state σ0, and such that the relation (σj , c j) → (σj+1, c j+1) is valid

according to the EVM execution semantics [52]. If a trace success-

fully terminates, then ck = ⊥. A state consists of the storage and

memory state (mentioned in Section 4.1.1), stack state, transaction

information, and block information. We denote by σS[i]/σM[i] the

value stored at o�set i in the storage/memory, by σS/σM the state

of the storage/memory, by σBal the contract’s balance, by σT the

transaction, and by σB the block information. We denote by t[i] the

ith pair of the trace t , for a positive i . For a negative i , t[i] refers

to the ith − 1 pair of t from the end of the sequence. We denote by

σ t [i]/ct [i] the state/instruction of the ith pair of t , and by σ
t [i]

f
the

value of instruction f (e.g., caller) in σ t [i].

Properties. A property is a relation over sets of traces. A contract

satis�es a security property ρ if [[C]] ∈ ρ. If [[C]] < ρ, we say that

C violates the property ρ. We de�ne relations using �rst-order

logic formulas. The formulas are interpreted over the traces and

the bitstrings that comprise the user identi�ers, o�sets, and other

arguments or return values of the EVM instructions. We denote

by t1, t2, ... variables that refer to traces. We denote by i1, i2, ...

variables that refer to the index of a pair in a trace. We use other

letters for bitstring variables. For example, we use a to refer to a

bitstring which is used in the formula to refer to a user’s identi�er

(her address), and we use x to refer to an o�set in the storage or as

arguments to call. For simplicity’s sake, although EVM is a stack-

based language, we write instructions as r ← instr(a1, . . . ,ak) and

use the wildcard for arguments/return values that are not important

to the formula. Note that a1, ...ak , r represent the concrete values

at the moment of execution.

5.3 Security Properties and Patterns

We now de�ne seven security properties with respect to the EVM

semantics [52]. Checking these properties precisely is impossible

since EVM is Turing-complete. Instead, for each property, we de�ne

compliance and violation patterns over our language, which over-

approximate the property and, respectively, its negation. That is, a

compliance pattern match implies that the property holds, and a

violation pattern match implies that the property’s negation holds.

If neither pattern is matched, then the property may or may not

hold. In the following, for each security property, we describe its

relevance, present its formal de�nition, and then re�ne it into a set

of compliance and violation patterns. The complete list of properties

and patterns is given in Fig. 9.

Ether Liquidity (LQ). In November 2017, a bug in a contract

led to freezing $160M [13]. The bug occurred because a contract

relied on another smart contract (acting as a library) to transfer

its ether to users. Unfortunately, a user accidentally removed the

library contract, freezing the contract’s ether. The combination of

the contract being able to receive ether from users and the absence

of an explicit transfer to the user led to this issue. Formally, we

de�ne this security property by requiring that (i) all traces t do not

change the contract’s balance (which means that the contract has

8

Property Type Security Pattern

LQ: Ether compliance all stop(L1). some goto(L2,X ,L3). X = callvalue ∧ Follow(L2,L4) ∧ L3 , L4 ∧MustFollow(L4,L1)

liquidity compliance some call(L1, _, _,Amount).Amount , 0 ∨ DetBy(Amount , data)

violation
(

some stop(L). ¬MayDepOn(L, callvalue)
)

∧
(

all call(_, _, _,Amount). Amount = 0
)

NW: No writes compliance all call(L1, _, _, _). all sstore(L2, _, _). ¬MayFollow(L1,L2)

after call violation some call(L1, _, _, _). some sstore(L2, _, _). MustFollow(L1,L2)

RW: Restricted compliance all sstore(_,X , _). DetBy(X , caller)

write violation some sstore(L1,X , _). ¬MayDepOn(X , caller) ∧ ¬MayDepOn(L1, caller)

RT: Restricted compliance all call(_, _, _,Amount). Amount = 0

transfer violation some call(L1, _, _,Amount). DetBy(Amount , data) ∧ ¬MayDepOn(L1, caller) ∧ ¬MayDepOn(L1, data)

HE: Handled compliance all call(L1,Y , _, _). some goto(L2,X , _). MustFollow(L1,L2) ∧ DetBy(X ,Y)

exception violation some call(L1,Y , _, _). all goto(L2,X , _). MayFollow(L1,L2) ⇒ ¬MayDepOn(X ,Y)

TOD: Transaction compliance all call(_, _, _,Amount). ¬MayDepOn(Amount , sload) ∧ ¬MayDepOn(Amount , balance)

ordering violation some call(_, _, _,Amount). some sload(_,Y ,X). some sstore(_,X , _). DetBy(Amount ,Y) ∧ isConst(X)

dependency

VA: Validated compliance all sstore(L1, _,X). MayDepOn(X , arg)

arguments ⇒
(

some goto(L2,Y , _). MustFollow(L2,L1) ∧ DetBy(Y , arg)
)

violation some sstore(L1, _,X). DetBy(X , arg)

⇒ ¬
(

some goto(L2,Y , _). MayFollow(L2,L1) ∧MayDepOn(Y , arg)
)

Figure 9: Compliance and violation security patterns for relevant security properties

no ether and thus its ether is vacuously liquid), or (ii) there exists a

trace t that decreases the contract’s balance (i.e., ether is liquid).

ψLQ = (∀t .σ
t [0]
Bal
= σ

t [−1]
Bal
) ∨ (∃t .σ

t [0]
Bal
> σ

t [−1]
Bal
)

To over-approximateψLQ with our language, we leverage the fact

that if ether is transferred to the contract, then the amount of ether

transferred is given by the callvalue instruction. Thus, if, for all

traces that complete successfully, this amount is zero, then the

�rst part of ψLQ is satis�ed. These is exactly the �rst liquidity

compliance pattern in Fig. 9: it matches if all transactions that

can complete successfully (reach a stop instruction) have to follow

a branch of a condition (where the condition is identi�ed by a

goto instruction) that is reachable only if the ether transferred

to this contract is zero (this branch is the one to which the goto

instruction does not jump). The second liquidity compliance pattern

over-approximates the second part ofψLQ . It leverages the fact that

ether is liquid if there is a reachable call instruction which sends

a non-zero amount of ether. Concretely, it is matched if there is a

call instruction which transfers (i) a positive amount of ether or

(ii) amount of ether which depends only on the transaction data,

and thus can be positive.

Our violation pattern over-approximates ¬ψLQ by checking that

both conditions are false: the contract can receive ether, but cannot

transfer ether. To guarantee that the contract can receive ether, it

veri�es that there is an execution that can complete successfully (i.e.,

reach stop) and its execution does not depend on callvalue – this

guarantees that some trace with positive callvalue can complete.

To guarantee that ether cannot be transferred, it veri�es that all

call instructions transfer 0 ether.

NoWrites After Calls (NW). In July 2016, a bug in the DAO con-

tract enabled an attacker to steal $60M [1]. The attacker exploited

the combination of two factors. First, a call instruction which upon

its execution enabled the recipient of that call to execute her own

code before returning to the contract. Second, the amount trans-

ferred by this call depended on a storage value, which was updated

after this call. This value was critical as it recorded the amount

of ether that the call’s recipient had in the contract, and can thus

request to receive. This allowed the attacker to call the function

again before the storage was updated, thus making the contract be-

lieve that the user still had ether in the contract. A property that

captures when this attack cannot occur checks that there are no

writes to the storage after any call instruction. We formalize this

vulnerability by requiring that, for all traces t , the storage does not

change in the interval that starts just before any call instruction

and ends when the trace completes:

ψNW = ∀t∀i(i < −1 ∧ ct [i] = _← call(_, _, _)) ⇒ σ
t [i]
S
= σ

t [−1]
S

Note that this property is di�erent from reentrancy [39], which

stipulates that the callee must not be able to re-enter the same

function and reach the call instruction. Our compliance rule over-

approximatesψNW by leveraging the fact that the storage can only

be changed via sstore. It is thus matched if call instructions are

not followed by sstore instructions. Our violation pattern over-

approximates ¬ψNW by checking that there is a call instruction

which must be followed by a write to the storage, in which case the

implication ofψNW is violated.

9

Restricted Writes (RW). In July 2017, an attacker stole $30M

because of an unrestricted write to the storage [10]. The attacker

exploited the reliance of the contract on a library that enabled to

unconditionally set an owner �eld to any address. This enabled the

attacker to take ownership over the contract and steal its ether. We

consider a security property that guarantees that writes to storage

are restricted. The property requires that, for every storage o�set x

(e.g., a �eld in the contract), there is a user a that cannot write at

o�set x of the storage.

ψRW = ∀x∃a∀t(σ
t [0]
caller

= a ⇒ ct [−1] , sstore(_,x , _))

Our compliance pattern over-approximatesψRW by checking that

o�sets of sstore instructions, denoted x , are determined by the

sender’s identi�er (i.e., users can only write to their designated

slot). This ensures that for all x , there exists a user a (in fact, all

users but one) who cannot write to x . The violation pattern over-

approximates ¬φRW by checking if there is an sstore instruction

whose execution and o�set are independent of caller. In this case,

we can de�ne an o�set x , for which all users can write – hence

violating the property. If this property is too restrictive (there are

cases where it is safe to allow global writes to the storage), one can

de�ne it (and adapt the patterns) with respect to critical writes (e.g.,

writes that modify an owner �eld), identi�ed by their label l .

In the following, we skip the formal de�nition of properties, and

only describe them informally.

Restricted Transfer (RT). We de�ne a property that guarantees

that ether transfers (via call) cannot be invoked by any user a. Viola-

tion of this property can detect Ponzi schemes [20]. Our compliance

pattern requires that for all users, invocations of that call instruc-

tion do not transfer ether. Our �rst violation pattern checks if the

call instruction transfers non-zero amount of ether and its execu-

tion is independent of the sender. For the second violation pattern,

the amount of ether transferred depends on the transaction data

(and thus can be set to a non-zero value), while the execution is

independent of this data (and will thus take place).

Handled Exception (HE). In February 2016, a contract by the

name “King of Ether” had an issue due to mishandled exceptions,

forcing its creator to publicly ask users not to send ether to it [4].

The issue was that the return value of a call, which indicated if the

instruction completed successfully, was not checked.

Our compliance pattern checks that call instructions are followed

by a goto instruction whose condition is determined by the return

code of call. This guarantees that depending on the return code,

di�erent execution paths are taken. Our violation pattern checks

that the call instruction is not followed by a goto instruction which

may depend on the return value. This guarantees that there is no

di�erent behavior depending on the result of the call.

Transaction Ordering Dependency (TOD). An inherent issue

in the blockchain model is that there is no guarantee on the execu-

tion order of transactions. While this has been known, it recently

became critical in the context of Initial Coin O�erings, a popular

means for start-ups to collect money by selling tokens. The initial

tokens are sold at a low price while o�ering a high bonus, and as

demand increases the price increases and the bonus decreases. It has

been observed that miners exploit this to create their transactions

to win the big bonus at a low rate [14].

Our compliance pattern requires that the amount of ether send

by a call instruction is independent of the state of the storage and

contract’s balance. This means that reordering transactions (which

can be a�ected by changing the storage or balance) does not a�ect

the amount sent by the call execution. Our violation pattern checks

that the amount of the call instruction is determined by a value

read from the storage, whose o�set in the storage is known (i.e., it

is constant), and that this value can be updated.

In Section 7, we evaluate several versions of the TOD property:

(i) TOD Transfer (TT) indicates that the execution of the ether trans-

fer depends on transaction ordering (e.g., a condition guarding the

transfer depends on the transaction ordering); (ii) TOD Amount

(TA) marks that the amount of ether transferred depends on the

transaction ordering (this variation is the one described above and

in Fig. 9); (iii) TOD Receiver (TR) captures the vulnerability that

the recipient of the ether transfer might change, depending on the

transaction ordering.

Validated Arguments (VA). Method arguments should be val-

idated before usage, because unexpected arguments may result

in insecure contract behaviors. Contracts must check whether all

transaction arguments meet their desired preconditions.

Our compliance pattern checks that before storing in the persis-

tent memory a variable that may depend on a method argument,

there exists a check of the argument value. Our violation pattern

identi�es sstore instructions that write to memory a method argu-

ment without previously checking its value.

Limitations. We next discuss a few limitations of checking prop-

erties through patterns. First, all our violation patterns assume that

the violating instructions (which match the violation pattern) are

part of some terminating execution. For example, in the violation

pattern of ether liquidity, the matching stop is assumed to be reach-

able, and in the violation pattern of no writes after calls, both the

call and the write are assumed to be part of some terminating exe-

cution. We take this assumption since, in general, this problem is

undecidable.

Second, the security properties we consider are generic and

do not capture contract-speci�c requirements (we illustrate the

speci�cation of contract-speci�c patterns in Securify’s DSL below).

Some vulnerabilities are, however, contract-speci�c, and therefore

they are not captured by our compliance patterns (i.e., a contract can

be exploitable even if a compliance pattern is matched). For example,

our compliance pattern for handled exceptions matches if there is

some check over the call’s return value. However, the pattern cannot

check that the exception was handled correctly, as this is contract-

speci�c. Similarly, the compliance pattern for validated arguments

matches if there is some check over the arguments. However, the

check can still miss cases where inputs are not correctly validated,

as the meaning of correctly validated varies across contracts.

Third, since our patterns do not capture precisely their corre-

sponding properties, it can happen that a contract matches neither

the compliance nor the violation pattern. In this case, Securify

cannot infer whether the property holds, and thus shows a warning.

10

Contract-speci�c Patterns. Finally, we remark that Securify

is not limited to checking the security properties described above.

In fact, it is common that a security auditor would write custom

patterns de�ned for a particular contract. Such custom patterns are

speci�ed by providing an expression in the Securify language.

To illustrate this, suppose an auditor wants to check whether the

execution of a speci�c sensitive call instruction at label l depends

on the address of the owner. To discover violations of this property,

the auditor would write:

some call(L, _, _, _).

(L = l) ∧ ¬
(

some sload(_,Owner ,X). MayDepOn(L,X)
)

Here,Owner is the identi�er of the �eld storing the owner address,

i.e. a constant o�set in the contract’s storage.

5.4 Error Localization via Violation Patterns

An important part of Securify is to pinpoint the instructions that

lead to violations (or potential violations) of security properties, as

this enables developers to �x the code. In this section, we charac-

terize which patterns enable such error localization. We call such

patterns instruction patterns (as they pinpoint instructions), and we

call other patterns contract pattern (as the violation is identi�ed for

the entire contract).

Instruction Patterns. An instruction pattern has the

form of: some instr(X). φv (X), for violation patterns, and,

all instr(X). φc (X), for compliance patterns. That is, if a violation

pattern is an instruction pattern and it is matched by some

instr(X), then Securify can highlight this instruction as a violation.

Similarly, if a compliance pattern is an instruction pattern and it is

not matched because of some instr(X), then Securify can highlight

this instruction as a warning (assuming that the corresponding

violation pattern has not matched). Note that six of the violation

patterns in Fig. 9 (all except the violation pattern for ether liquidity)

are instruction patterns.

Contract Patterns. Patterns which are not instruction patterns

are called contract patterns. For them, it is di�cult to pinpoint a

single instruction responsible for its violation. The ether liquidity

violation pattern is an example of a contract pattern: it conjoins

two di�erent conditions pertaining to stop and call instructions. For

contract patterns, Securify evaluates the compliance and violation

patterns and �ags the contract as vulnerable (if the violation pattern

is matched) or issues a warning (if no pattern is match) without

pinpointing speci�c instructions.

6 IMPLEMENTATION

In this section, we detail the implementation of Securify.

Decompiler. The decompiler transforms the EVM bytecode pro-

vided as input into the corresponding assembly instructions, as

de�ned in [52]. Next, it converts the EVM instructions into an SSA

form. The SSA instructions are identical to the EVM instruction set

except that they exclude stack operations (e.g., pop, push, etc.). Our

conversion method is similar to the one described in [45, 51]. The

decompiler constructs the control �ow graph (CFG) on top of the

decompiled instructions.

EVM dataset Solidity dataset

Contracts 24, 594 100

call instructions 46, 106 67

sstore instructions 56, 346 297

Figure 10: Statistics of the two Ethereum datasets

Optimizations. Securify employs three optimizations over the

CFG, which improve the precision of its analysis:

(i) Unused instructions, which eliminates any instructions whose

results are not used. On average, this optimization reduces

the contract’s instructions by 44% and improves the scalabil-

ity and precision of the subsequent analysis.

(ii) Partial evaluation, which propagates constant values along

computations [29]. This step improves the precision of stor-

age and memory analysis (e.g., MemTag). As we show in our

evaluation, partial evaluation resolves over 70% of the o�sets

that appear in storage/memory instructions.

(iii) Method inlining, which improves the precision of the static

analysis by making it context sensitive.

Inference of Semantic Facts. Securify derives semantic facts

using inference rules speci�ed in strati�ed Datalog, using the Souf-

�e Datalog solver [36] to e�ciently compute a �xed-point of all

facts. We report on concrete numbers in Section 7.

Evaluating Patterns. To check the security patterns, Securify

iterates over the instructions to handle the all and some quanti�ers

in the patterns. Then, to check inferred facts, it directly queries the

�xed-point computed by the Datalog solver. If a violation pattern

is matched, Securify reports which instructions are identi�ed as

vulnerable, to provide error-localization for users. If no pattern is

matched, Securify reports a warning, to indicate that an instruction

may or may not be vulnerable.

7 EVALUATION

To evaluate Securify, we conducted the following experiments:

(i) evaluated Securify’s e�ectiveness in proving the correctness

of and discovering violations in real-world contracts; (ii) manually

inspected Securify’s results (i.e., reported violations and warnings)

on smart contracts whose source code had been uploaded to Se-

curify’s public interface; (iii) compared Securify to Oyente [39]

and Mythril [16], two smart contract checkers based on symbolic

execution; (iv) measured the success of Securify’s decompiler in

resolving memory and storage o�sets; (v) measured Securify’s

time and memory consumption.

Datasets. We used two datasets of smart contracts to evaluate

Securify. Our �rst dataset, dubbed EVM dataset, consists of 24, 594

smart contracts obtained by parsing create transactions using the

parity client [12]. Using create transactions, we obtained the EVM

bytecode of these smart contracts. Our second dataset, dubbed

Solidity dataset, consists of 100 smart contracts written in Solidity

which were uploaded to Securify’s public interface. To avoid bias,

we selected the �rst 100 contracts in alphabetical order uploaded

in 2018. To simplify manual inspection, we restricted our selection

to contracts with up to 200 lines of Solidity code.

11

0%

20%

40%

60%

80%

100%

TT TR TA NW RW HE VA RT LQ

Violations Warnings Compliance

Figure 11: Securify results on the EVM dataset. The vio-

lations and compliance segments indicate instructions that

are proved to be safe/violations for each security property.

We give relevant statistics on the two datasets in Fig. 10. Note

that the number of contracts de�nes the relevant checks for the

ether liquidity (LQ) property, the number of sstore instructions

de�nes the relevant instructions for the restricted writes (RW) and

the validated arguments (VA) property, and the number of call

instructions de�nes the relevant instructions for the remaining

properties.

Security Analysis of Real-World Smart Contracts. In this

task, we evaluate Securify’s e�ectiveness in proving security prop-

erties (i.e., matching a compliance pattern) and �nding violations

(i.e., matching a violation pattern) in real-world contracts. To this

end, we ran Securify on all smart contracts contained in our EVM

dataset and measured the fraction of violations, warnings, and

compliances reported by Securify.

Fig. 11 summarizes the results. The �gure shows one bar for

each security property. Each bar has three segments: (i) violations,

which shows the fraction of instructions that have matched a vi-

olation pattern of the given property, (ii) warnings, which shows

the fraction of instructions that have not matched any pattern (nei-

ther violation or compliance pattern) of the given property, and

(iii) compliance, which shows the fraction of instructions that have

matched a compliance pattern of the given property. We note that

the sum of the three segments adds up to 100%.

For example, consider the no writes after calls (NW) property.

The data shows that 6.5% of the call instructions violate the property,

90.9% are proved to be compliant, and the remaining 2.6% are

reported as warnings. On average across all security properties,

Securify successfully proves that 55.5% of the relevant instructions

are safe, 29.3% are de�nite violations, and it reports 15.2%warnings.

Further, 65.9% of all instructions that failed to match a compliance

pattern (and hence may indicate an error) are successfully proved to

be de�nite violations (using the violation patterns). This indicates

a reduction of 65.9% in the number of instructions that users must

manually classify into true warnings and false warnings. We report

on the precise breakdown between false and true warnings in our

next experiment.

0%

20%

40%

60%

80%

100%

TT TR TA NW RW HE VA RT LQ

Violations True warnings False warnings Compliance

Figure 12: Securify results on the Solidity dataset. The

warnings are classi�ed into true and false warnings based

on whether they indicate a security issue or not.

Overall, our results indicate that Securify’s compliance and

violations patterns are expressive enough to prove and, respectively,

disprove relevant security properties. Further, we note that since

Securify is extensible, one can further re�ne Securify’s results

by extending it with additional patterns that would convert more

warnings into violations and compliances. This would bene�t some

of the security properties that are harder to prove or disprove (such

as restricted writes).

Manual Inspection of Results. In our second experiment, we

manually inspected Securify’s reports to gain a better understand-

ing of its results. To this end, we ran Securify on all contracts

contained in our Solidity dataset. We then manually classi�ed each

reported warning as a true warning if it indicates a violation of the

security property, and otherwise, we classi�ed it as a false warning.

We also inspected and con�rmed the correctness of all reported

violations and compliances.

Fig. 12 summarizes our results. As before, the �gure shows one

bar for each security property. In addition to the violation and com-

pliance segments, we partition the segment with reported warnings

into true warnings and false warnings.

Consider the handled exception (HE) property. The data shows

that Securify successfully proves that 29.9% of the call instructions

have return values that are not checked by the code (indicating

a violation of the property). Further, Securify proves that these

error values are checked for the remaining 70.1% of call instructions.

Securify does not issue any warnings for this property because it

matched at least on of the patterns for each of the call instructions.

We remark that the number of security issues discovered in the

Solidity dataset is higher relative to those found in the EVM dataset.

We believe this is due to the fact that the two datasets come from dif-

ferent distributions: the Solidity dataset consists of recent contracts

(uploaded in 2018) that are still in development stage. In contrast,

the EVM dataset contains all contracts deployed on the blockchain.

Further, users often deliberately uploaded vulnerable contracts to

experiment and evaluate Securify. An exception is the reduction

in handled exception property (HE), which has more violations in

12

!"#$

-40%

-20%

0%

20%

40%

60%

True warnings Violations

False warnings Unreported vulnerabilities

TOD Reentrancy Handled
exception

Restricted
transfer

O
ye

nt
e

Sec
ur

ify

M
yt

hr
il

Sec
ur

ify

O
ye

nt
e

Sec
ur

ify

M
yt

hr
il

Sec
ur

ify

M
yt

hr
il

O
ye

nt
e

Figure 13: Comparing Securify to Oyente and Mythril

the EVM dataset compared to the Solidity dataset. We believe this

is due to the fact that developers now use the transfer() state-

ment for ether transfers, which handles errors by default and was

speci�cally introduced to avoid issues due unhandled exceptions.

We observe that the e�ectiveness of the patterns varies across

properties, which is expected as some properties are more di�cult

to prove/disprove than others. For example, the restricted trans-

fer property (RT) and the three transaction ordering dependence

properties (TT, TR, and TA) are hard to prove correct and result

in a relatively high number of false warnings (roughly half of the

warnings are false warnings). However, for other security proper-

ties, such as no writes after calls (NW) and handled exception (HE),

all warnings issued by Securify indicate true warnings, indicat-

ing that the corresponding compliance patterns precisely matches

contracts that satisfy these properties.

Comparing Securify to Symbolic Security Checkers. We

now compare Securify to two recent open-source security check-

ers based on symbolic execution – Oyente [39] and Mythril [16].

To compare the three systems, we ran the latest versions of Oyente

and Mythril against all contracts in our Solidity dataset, for which

we have already manually classi�ed all warnings into true and false

warnings. Oyente supports three of Securify’s security properties:

TOD, which checks the disjunction of the TOD receiver and TOD

amount properties, reentrancy (called no writes after calls1 in Secu-

rify), and handled exceptions. Mythril also supports the reentrancy

and handled exception properties, and in addition, implements a

check of the restricted transfer property.

Our results are summarized in Fig. 13. For Securify, we report

the fraction of reported violations, true warnings, and false warn-

ings. Since both Oyente and Mythril may report false positives

(Oyente has false positives because their checks do not imply a

contract vulnerability, as shown in [30]), we treat all bugs listed by

them as warnings as they must be classi�ed by the user into true

warnings and false warnings. Note that, unlike Securify, Oyente

and Mythril do not report de�nite violations, i.e., results that are

guaranteed to violate security properties. Since Oyente and Mythril

1We remark that to ensure the absence of storage writes after call instructions, Oyente
checks that the user cannot re-enter and reach the same call instruction.

195,534

146,042

20,735

83,509

48,512

24,926

35,611

59,985

0% 20% 40% 60% 80% 100%

Mstore

Mload

Sstore

Sload

Resolved Unresolved

Figure 14: O�sets resolved by partial evaluation.

explore a subset of all contract’s behaviors, they may fail to report

certain vulnerabilities, and we report these as unreported vulnera-

bilities in the �gure. We depict true warnings and violations above

the X -axis (to indicate desirable results), and we plot false warn-

ings and unreported vulnerabilities below the X -axis (to indicate

undesirable results).

We observe that for all properties except reentrancy, Oyente and

Mythril miss to report some actual vulnerabilities. Oyente fails to

report 72.9% of TOD violations, and Mythril fails to report 65.6% of

the restricted transfer violations. Overall, the two symbolic tools

fail to report vulnerabilities for all considered security properties.

Resolving Storage/Memory O�sets. We report on Securify’s

partial evaluation optimization for resolving memory and storage

o�sets. Fig. 14 shows the total number of mload, mstore, sload and

sstore instructions found in our EVM dataset. The �gure depicts

the number of resolved o�sets. On average across all four instruc-

tions, partial evaluation correctly resolves 72.6% of the o�sets. This

indicates that Securify can often infer the precise writes to stor-

age/memory, thereby improving the precision of the subsequent

analysis. Memory o�sets are more often resolved than storage o�-

sets, as the latter often depend on user-provided inputs.

Time and Memory Consumption. Securify terminates for all

contracts and takes on average 30 seconds per contract (to check

all compliance and violation patterns). Oyente and Mythril have

similar running times when usedwith default settings (which do not

provide full coverage). To improve the coverage of these tools, users

must increase the constraint solving timeouts and loop bounds,

which in turn result in increased running times (especially for larger

contracts). The memory consumption of Securify is determined by

the size of the �xed point analysis. In 95% of cases, the consumption

was below 10MB, and in the rest it was below 1GB.

Summary. Overall, our results indicate that Securify’s patterns

are e�ective in �nding violation and establishing correctness of

contracts. Going further, we see two relevant items for future work.

First, it would be interesting to integrate Securify with existing

frameworks that provide formal EVM semantics, such as [30, 32], as

a way to further validate Securify’s analysis and patterns, and to

formally prove the guarantees it provides. Second, we can leverage

Securify to improve existing symbolic checkers, such as Oyente

and Mythril. For example, Securify’s compliance patterns can be

used to reduce the false positive rate of these tools.

13

8 RELATED WORK

We discuss some of the works that are most closely related to ours.

Analysis of Smart Contracts. Smart contracts have been shown

to be exposed to severe vulnerabilities [19, 25]. Hirai [33] was one of

the �rsts to formally verify smart contracts using the Isabelle proof

assistant. In [34], Hirai de�nes a formal model for the Ethereum

Virtual Machine using the Lem language. This model proves safety

properties of smart contracts using existing interactive theorem

provers. Formal semantics of the EVM have been de�ned by Gr-

ishchenko et al. [30] using the F* framework and by Hildenbrandt et

al. [32] using the K framework [46]. These semantics are executable

and were validated against the o�cial Ethereum test suite. Further,

they enable the formal speci�cation and veri�cation of properties.

The main bene�t of these frameworks is that they provide strong

formal veri�cation guarantees and are precise (no false positives).

They target arbitrary properties, but are, unfortunately, nontrivial

to fully automate. In contrast, Securify targets properties that can

be proved/disproved by checking simpler properties that can be

veri�ed in a fully automated way.

In the space of automated security tools for smart contracts,

there are several popular systems based on symbolic execution.

Examples include Oyente [39], Mythril [16], and Maian [44]. While

symbolic execution is indeed a powerful generic technique for dis-

covering bugs, it does not guarantee to explore all program paths

(resulting in false negatives). In contrast to these tools, Securify

explores all contract behaviors. In the context of smart contracts,

path constraints often involve hard-to-solve constraints, such as

hash-functions, resulting in low coverage or false positives. Further,

to avoid false positives, symbolic tools must precisely explore the

set of feasible contract blocks. Towards this, Maian already uses

a concrete validation step to �lter false positives. An interesting

application of Securify would be to �lter the false positives re-

ported by symbolic tools using its compliance patterns. In contrast

to the approaches based on symbolic execution, Securify is an

abstract interpreter. As such, it can provide soundness guarantees

over all possible executions. This is di�erent from symbolic execu-

tion which can only guarantee soundness if the number of paths

can be bounded (in particular, this means that loops have to be

unrolled). Even when the number of paths is bound, an abstract

interpreter often scales better than symbolic execution since it can

join paths and does not have to explore di�erent paths separately.

On the other hand, symbolic execution can, in principle, handle

more expressive predicates (within the logic of the underlying SMT

solver), and, in theory, it has no false positives (in practice, as we

show in Fig. 13, it can have false positives).

Bhargavan et al. [21] present preliminary work on verifying

Ethereum smart contracts by translating Solidity and EVM bytecode

to an existing veri�cation system. The paper does not report how

their tool performs on real-world contracts. The work presented

in [22] combines game theory and probabilistic model checking to

validate a decentralized smart contract protocol.

The Zeus system [37] is a sound analyzer that translates smart

contracts to the LLVM framework. Zeus uses XACML as a language

to write properties. In contrast, Securify’s DSL supports the check-

ing of data- and control-�ow properties. Further, Zeus does not

support violation patterns as a way to reduce false positives. We

could not directly compare Securify with Zeus as neither Zeus nor

its benchmarks are publicly available.

Similarly to Securify, the work by Grossman et al. [31] also

targets domains-speci�c properties. In more detail, they introduce

a dynamic linearizability checker to identify reentrancy issues. In

contrast, Securify supports a larger class of properties for smart

contracts and supports a DSL to allow security experts to extend

the system with more properties.

Security Factors. Delmolino et al. [28] document the kinds of

vulnerabilities students introduce while writing smart contracts

and propose methods on how to avoid common pitfalls. Chen et

al. [27] show that the current standard compiler Solidity does not

properly optimize the EVM bytecode. Seijas et al. [47] overview

the capabilities of di�erent blockchains such as Bitcoin, Nxt, and

Ethereum, and survey extensions (Kosba et al. [38]).

Language-Based Security. Programming language approaches

enforce security at the program code level. PQL [42] introduces

a program query language for Java that allows developers to ex-

press patterns of interest and check Java programs against them.

Both [42] and our work have an underlying declarative solver for

the static analysis. Pidgin [35] is a custom query language for pro-

gram dependence graphs that can also capture security properties

on Java programs. In contrast, our work focuses on Ethereum smart

contracts. Securify’s analysis is tailored to the Ethereum setting,

such as Ethereum-speci�c instructions (e.g., balance) and reason-

ing across memory and contract storage. Furthermore, Securify

provides a DSL speci�c to security properties for smart contracts.

Declarative Program Analysis. Declarative approaches to pro-

gram analysis are related to Securify’s fact inference engine, as

they also rely on Datalog to express analysis computations. The

Doop framework [23, 49] presents a fast and scalable declarative

points-to analysis for Java programs and is one of the �rst works

to show the promise of declarative static analysis. Following these

ideas, the authors of [53] present a technique for automatic abstrac-

tion re�nement for static analysis speci�ed in Datalog, and in [41]

the authors propose to involve the developer in the abstraction-

re�nement loop. Researchers have developed speci�c extensions to

Datalog, such as Flix [40], to improve the e�ciency and scalability

of Datalog-based program analysis. These works are orthogonal

to Securify’s inference engine. They develop general program

analysis techniques, while Securify leverages these advances for

reasoning about smart contracts. As such, Securify can bene�t

from any future advances in Datalog-based program analysis.

9 CONCLUSION

We presented Securify, a new lightweight and scalable veri�er for

Ethereum smart contracts. Securify leverages the domain-speci�c

insight that violations of many practical properties for smart con-

tracts also violate simpler properties, which are signi�cantly easier

to check in a purely automated way. Based on this insight, we de-

vised compliance and violation patterns that can e�ectively prove

whether real-world contracts are safe/unsafe with respect to rele-

vant properties. Overall, Securify enjoys several important bene�ts:

(i) it analyzes all contract behaviors to avoid undesirable false nega-

tives; (ii) it reduces the user e�ort in classifying warnings into true

14

positives and false alarms by guaranteeing that certain behaviors

are actual errors; (iii) it supports a new domain-speci�c language

that enables users to express new vulnerability patterns as they

emerge; �nally, (iv) its analysis pipeline – from bytecode decompi-

lation, optimizations, to checking of patterns – is fully automated

using scalable, o�-the-shelf Datalog solvers.

ACKNOWLEDGMENTS

The research leading to these results was partially supported by

an ERC Starting Grant 680358. We thank Hubert Ritzdorf and the

ChainSecurity team for their valuable contributions to this project.

REFERENCES
[1] 2016. The DAO Attacked: Code Issue Leads to 60 Million Ether Theft. (2016).
[2] 2016. Etherdice. (2016). Available from: https://etherdice.io/.
[3] 2016. King of Ether. (2016). Available from: https://github.com/kieranelby/

KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol.
[4] 2016. King of Ether, Postmortem. (2016). Available from: https://www.

kingoftheether.com/postmortem.html.
[5] 2016. Reentrancy Woes in Smart Contracts. (2016). Available from: http:

//hackingdistributed.com/2016/07/13/reentrancy-woes/.
[6] 2016. theDAO. (2016). Available from: https://etherscan.io/address/

0xbb9bc244d798123fde783fcc1c72d3bb8c189413.
[7] 2017. Accidental bug may have frozen $280 million worth of digital coin ether in

a cryptocurrency wallet. (2017). Available from: https://www.cnbc.com/2017/11/
08/accidental-bug-may-have-frozen...

[8] 2017. Blockchain is empowering the future of insurance.
(2017). Available from: https://techcrunch.com/2016/10/29/
blockchain-is-empowering-the-future-of-insurance/.

[9] 2017. ETHLance. (2017). Available from: http://ethlance.com/.
[10] 2017. An In-Depth Look at the Parity Multisig Bug. (2017). Available from:

http://hackxingdistributed.com/2017/07/22/deep-dive-parity-bug.
[11] 2017. Northern Trust uses blockchain for private equity record-

keeping. (2017). Available from: http://www.reuters.com/article/
nthern-trust-ibm-blockchain-idUSL1N1G61TX.

[12] 2017. Parity Ethereum Client. (2017). Available from: https://github.com/
paritytech/parity.

[13] 2017. Security Alert. (2017). Available from: https://paritytech.io/blog/
security-alert.html.

[14] 2017. Submarine Sends: IC3’s Plan to Clamp Down on ICO
Cheats. (2017). Available from: https://www.coindesk.com/
submarine-sends-inside-ic3s-plan-to-clamp-...

[15] 2018. Ethereum Smart Contract Security Best Practices. (2018). Available from:
https://consensys.github.io/smart-contract-best-practices/.

[16] 2018. Mythril. (2018). Available from: https://github.com/ConsenSys/mythril.
[17] 2018. Parity Wallet Library. (2018). Available from: https://github.com/

paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/
contracts/snippets/enhanced-wallet.sol.

[18] 2018. Solidity, high-level language for writing smart contracts. (2018). Available
from: https://solidity.readthedocs.io/en/develop/.

[19] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks
on Ethereum Smart Contracts (SoK). In Principles of Security and Trust - 6th
International Conference, POST. 164–186.

[20] Massimo Bartoletti, Salvatore Carta, Tiziana Cimoli, and Roberto Saia. 2017.
Dissecting Ponzi schemes on Ethereum: identi�cation, analysis, and impact.
CoRR abs/1703.03779 (2017).

[21] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gol-
lamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem Rastogi,
Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. 2016. For-
mal Veri�cation of Smart Contracts: Short Paper. In Proceedings of the 2016 ACM
Workshop on Programming Languages and Analysis for Security (PLAS). 91–96.

[22] Giancarlo Bigi, Andrea Bracciali, Giovanni Meacci, and Emilio Tuosto. 2015.
Validation of Decentralised Smart Contracts Through Game Theory and Formal
Methods. In Programming Languages with Applications to Biology and Security.
142–161.

[23] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Speci�ca-
tion of Sophisticated Points-to Analyses. In Proceedings of the 24th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). 243–262.

[24] Vitalik Buterin. 2013. Ethereum: a next generation smart contract and decentral-
ized application platform. (2013). Available from: https://github.com/ethereum/
wiki/wiki/White-Paper.

[25] Vitalik Buterin. 2016. Thinking About Smart Contract Security. (2016). Available
from: https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/.

[26] Pawel Bylica. 2017. How to Find $10M Just by Reading the
Blockchain. (Apr 2017). Available from: https://blog.golemproject.net/
how-to-�nd-10m-by-just-reading-blockchain-6ae9d39fcd95.

[27] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. 2017. Under-optimized
smart contracts devour your money. In Software Analysis, Evolution and Reengi-
neering (SANER). 442–446.

[28] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi.
2016. Step by Step Towards Creating a Safe Smart Contract: Lessons and Insights
from a Cryptocurrency Lab. In Financial Cryptography and Data Security (FC).
79–94.

[29] Yoshihiko Futamura. 1999. Partial Evaluation of Computation Process - An
Approach to a Compiler-Compiler. Higher-Order and Symbolic Computation 12, 4
(1999), 381–391.

[30] Ilya Grishchenko, Matteo Ma�ei, and Clara Schneidewind. 2018. A Semantic
Framework for the Security Analysis of Ethereum Smart Contracts. In Principles
of Security and Trust - 7th International Conference (POST). 243–269.

[31] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam
Rinetzky, Mooly Sagiv, and Yoni Zohar. 2018. Online detection of e�ectively
callback free objects with applications to smart contracts. PACMPL 2, POPL
(2018), 48:1–48:28.

[32] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip
Daian, Dwight Guth, Brandon M. Moore, Daejun Park, Yi Zhang, Andrei Ste-
fanescu, and Grigore Rosu. 2018. KEVM: A Complete Formal Semantics of the
Ethereum Virtual Machine. In 31st IEEE Computer Security Foundations Sympo-
sium (CSF). 204–217.

[33] Yoichi Hirai. 2016. Formal veri�cation of Deed contract in Ethereum name service.
Technical Report. Available from: https://yoichihirai.com/deed.pdf.

[34] Yoichi Hirai. 2017. De�ning the Ethereum Virtual Machine for Interactive Theo-
rem Provers. In Financial Cryptography and Data Security (FC). 520–535.

[35] Andrew Johnson, Lucas Waye, Scott Moore, and Stephen Chong. 2015. Exploring
and Enforcing Security Guarantees via Program Dependence Graphs. In Proceed-
ings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 291–302.

[36] Herbert Jordan, Bernhard Scholz, and Pavle Subotic. 2016. Sou�é: On Synthesis of
Program Analyzers. In Computer Aided Veri�cation - 28th International Conference
(CAV). 422–430.

[37] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In 25th Annual Network and Distributed
System Security Symposium (NDSS).

[38] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Pa-
pamanthou. 2016. Hawk: The Blockchain Model of Cryptography and Privacy-
Preserving Smart Contracts. In IEEE Symposium on Security and Privacy (SP).
839–858.

[39] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS). 254–269.

[40] Magnus Madsen, Ming-Ho Yee, and Ondrej Lhoták. 2016. From Datalog to �ix:
a declarative language for �xed points on lattices. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 194–208.

[41] Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. 2015. A user-guided
approach to program analysis. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE). 462–473.

[42] Michael C. Martin, V. Benjamin Livshits, and Monica S. Lam. 2005. Finding
application errors and security �aws using PQL: a program query language. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). 365–383.

[43] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
[44] Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.

2018. Finding The Greedy, Prodigal, and Suicidal Contracts at Scale. CoRR
abs/1802.06038 (2018).

[45] Todd A. Proebsting and Scott A.Watterson. 1997. Krakatoa: Decompilation in Java
(Does Bytecode Reveal Source?). In Third USENIX Conference on Object-Oriented
Technologies and Systems (COOTS). 185–198.

[46] Grigore Roşu and Traian Florin Şerbănuţă. 2010. An Overview of the K Semantic
Framework. Journal of Logic and Algebraic Programming 79, 6 (2010), 397–434.

[47] Pablo Lamela Seijas, Simon Thompson, and Darryl McAdams. 2016. Scripting
smart contracts for distributed ledger technology. IACR Cryptology ePrint Archive
2016 (2016).

[48] Gagandeep Singh, Markus Püschel, and Martin Vechev. 2017. Fast Polyhedra Ab-
stract Domain. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL). 46–59.

[49] Yannis Smaragdakis andMartin Bravenboer. 2010. UsingDatalog for Fast and Easy
Program Analysis. In Datalog Reloaded - First International Workshop, Datalog.
245–251.

15

https://etherdice.io/
https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol
https://github.com/kieranelby/KingOfTheEtherThrone/blob/v0.4.0/contracts/KingOfTheEtherThrone.sol
https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html
http://hackingdistributed.com/2016/07/13/reentrancy-woes/
http://hackingdistributed.com/2016/07/13/reentrancy-woes/
https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413
https://etherscan.io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen...
https://www.cnbc.com/2017/11/08/accidental-bug-may-have-frozen...
https://techcrunch.com/2016/10/29/blockchain-is-empowering-the-future-of-insurance/
https://techcrunch.com/2016/10/29/blockchain-is-empowering-the-future-of-insurance/
http://ethlance.com/
http://hackxingdistributed.com/2017/07/22/deep-dive-parity-bug
http://www.reuters.com/article/nthern-trust-ibm-blockchain-idUSL1N1G61TX
http://www.reuters.com/article/nthern-trust-ibm-blockchain-idUSL1N1G61TX
https://github.com/paritytech/parity
https://github.com/paritytech/parity
https://paritytech.io/blog/security-alert.html
https://paritytech.io/blog/security-alert.html
https://www.coindesk.com/submarine-sends-inside-ic3s-plan-to-clamp-...
https://www.coindesk.com/submarine-sends-inside-ic3s-plan-to-clamp-...
https://consensys.github.io/smart-contract-best-practices/
https://github.com/ConsenSys/mythril
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol
https://github.com/paritytech/parity/blob/4d08e7b0aec46443bf26547b17d10cb302672835/js/src/contracts/snippets/enhanced-wallet.sol
https://solidity.readthedocs.io/en/develop/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://blog.golemproject.net/how-to-find-10m-by-just-reading-blockchain-6ae9d39fcd95
https://blog.golemproject.net/how-to-find-10m-by-just-reading-blockchain-6ae9d39fcd95
https://yoichihirai.com/deed.pdf

[50] Je�rey D. Ullman. 1988. Principles of Database and Knowledge-base Systems, Vol. I.
Principles of computer science series, Vol. 14.

[51] Raja Vallee-Rai and Laurie J. Hendren. 1998. Jimple: Simplifying Java Bytecode
for Analyses and Transformations. (1998).

[52] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper (2014).

[53] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014.
On abstraction re�nement for program analyses in Datalog. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, (PLDI). 239–
248.

16

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Stealing Ether
	2.2 Frozen Funds

	3 The Securify System
	4 Semantic Facts
	4.1 Background
	4.2 Facts and Inference Rules

	5 Security Patterns
	5.1 Securify Language
	5.2 EVM Background and Properties
	5.3 Security Properties and Patterns
	5.4 Error Localization via Violation Patterns

	6 Implementation
	7 Evaluation
	8 Related Work
	9 Conclusion
	References

