
Securing Communication in 6LoWPAN with

Compressed IPsec

Shahid Raza∗, Simon Duquennoy∗, Tony Chung†, Dogan Yazar∗ Thiemo Voigt∗ and Utz Roedig†

∗Swedish Institute of Computer Science, Kista, Sweden

{shahid, simonduq, dogan, thiemo}@sics.se
†Lancaster University School of Computing and Communications, Lancaster, UK

{a.chung, u.roedig}@lancaster.ac.uk

Abstract—Real-world deployments of wireless sensor networks
(WSNs) require secure communication. It is important that a
receiver is able to verify that sensor data was generated by
trusted nodes. It may also be necessary to encrypt sensor data
in transit. Recently, WSNs and traditional IP networks are more
tightly integrated using IPv6 and 6LoWPAN. Available IPv6
protocol stacks can use IPsec to secure data exchange. Thus, it
is desirable to extend 6LoWPAN such that IPsec communication
with IPv6 nodes is possible. It is beneficial to use IPsec because
the existing end-points on the Internet do not need to be modified
to communicate securely with the WSN. Moreover, using IPsec,
true end-to-end security is implemented and the need for a
trustworthy gateway is removed.

In this paper we provide End-to-End (E2E) secure communi-
cation between IP enabled sensor networks and the traditional
Internet. This is the first compressed lightweight design, im-
plementation, and evaluation of 6LoWPAN extension for IPsec.
Our extension supports both IPsec’s Authentication Header (AH)
and Encapsulation Security Payload (ESP). Thus, communication
endpoints are able to authenticate, encrypt and check the
integrity of messages using standardized and established IPv6
mechanisms.

I. INTRODUCTION

Wireless Sensor Networks can be tightly integrated with

existing IP based infrastructures using IPv6 over Low Power

Wireless Personal Area Networks (6LoWPAN). Sensor nodes

using 6LoWPAN can directly communicate with IPv6 en-

abled hosts and, for example, sensor data processing can

be performed by standard servers. Thus, 6LoWPAN greatly

simplifies operation and integration of WSNs in existing IT

infrastructures.

Real-world deployments of wireless sensor networks

(WSNs) require secure communication. For instance, in a

smart meter application, the provider and the meters would

need to authenticate one another and encryption would be

desirable to ensure data confidentiality. IPv6 hosts in the

Internet support by default IPsec for secure communication.

Therefore, if data flows between IPv6 hosts and 6LoWPAN

sensor nodes it is desirable to take advantage of existing

capabilities and to secure traffic using IPsec. Thus, we propose

to add IPsec support to 6LoWPAN as illustrated by Figure 1.

IPsec defines an Authentication Header (AH) and an En-

capsulating Security Payload (ESP). The AH provides data

integrity and authentication while ESP provides data confi-

dentiality, integrity and authentication. Either AH, ESP or both

IPsec: end-to-end security

6LowPAN Router

Senor node

Fig. 1: We propose to use IPsec to secure the communication

between sensor nodes in 6LoWPANs and hosts in an IPv6-

enabled Internet. IPsec provides E2E security using existing

methods and infrastructures.

can be used to secure IPv6 packets in transit. It is up to the

application to specify which security services are required.

6LoWPAN uses header compression techniques to ensure that

the large IPv6 and transport-layer headers (UDP/TCP) are

reduced. By supporting IPsec’s AH and ESP, additional IPv6

extension headers have to be included in each datagram. Thus,

it is important to ensure that compression techniques are as

well applied to these extension headers.

Independent of the achieved compression rates of AH and

ESP it is obvious that IPsec support in 6LoWPAN will increase

packet sizes as additional headers must be included. Note,

however, that by using IPsec we do not need to use existing

802.15.4 link-layer security mechanisms which in turn frees

some header space.

The main contributions of this paper are:

• 6LoWPAN-IPsec Specification: We give a specification

of IPsec for 6LoWPAN including definitions for AH and

ESP extension headers. Prior to this work no specification

for IPsec in the context of 6LoWPAN existed;

• 6LoWPAN-IPsec Implementation: We present the first

implementation of IPsec for 6LoWPAN networks. We

show that it is practical and feasible to secure WSN

communication using IPsec;

• 6LoWPAN-IPsec Evaluation: We evaluate the perfor-

mance of our IPsec 6LoWPAN implementation in terms

of code size, packet overheads and communication perfor-

mance. Our results show that overheads are comparable

to overheads of generally employed 802.15.4 link-layer

security while offering the benefit of true E2E security.

The paper proceeds by discussing related work followed by

a further motivating of using of IPsec. Then we present back-

ground knowledge on IPv6, IPsec and 6LoWPAN. Section V

describes our proposed integration of 6LoWPAN and IPsec.

After a thorough experimental evaluation of the performance

of our IPsec implementation, we conclude the paper.

II. RELATED WORK

Message authentication and encryption in WSNs is gener-

ally performed using well known cryptographic mechanisms

such as block ciphers as part of standards-based protocols such

as IEEE 802.15.4. However, these mechanisms are difficult to

implement on resource constrained sensor nodes as crypto-

graphic mechanisms can be expensive in terms of code size

and processing speed. Furthermore, it is necessary to distribute

and maintain keys and it is difficult to implement efficient key

distribution protocols for resource constrained sensor nodes.

Thus, a lot of research work aims to reduce complexity of

cryptographic mechanisms, for example, TinyEEC [?] and

NanoEEC [?], or to simplify key distribution, for example,

Liu and Ning’s proposal for pairwise key predistribution [?]

and DHB-KEY [?]. These improvements make cryptographic

mechanisms in the context of WSNs more viable but an

important issue remains: a standardized way of implementing

security services is missing and for each deployment unique

customized solutions are created. Using the standardized

6LoWPAN as a vehicle to implement security services in form

of the proven and standardized IPsec offers a solution to this

problem. IPsec is currently available as part of some WSN

products, but does not provide a full E2E security solution.

One such example is the ArchRock PhyNET [?] that applies

IPsec in tunnel mode between the gateway and Internet hosts,

but still relies on link-layer security within the sensor network

thus breaking true E2E assurance. We are not aware of a

complete E2E implementation nor an evaluation of a working

system which we present in this paper.

The IEEE 802.15.4 [?] standard defines Advanced Encryp-

tion Standard (AES) message encryption and authentication on

the link-layer. The cryptographic algorithms could be executed

by specialized hardware within the transceiver chip. However,

link-layer security only protects messages while they travel

from one hop to the next as we discuss in Section III. Wood

and Stankovic [?] as well as Hu et al. [?] have demonstrated

performance gains when security operations are performed in

hardware. We expect similar performance gains when IPsec

operations are implemented in hardware. Granjal et al. argue

that IPsec is generally feasible in the context of WSN [?].

In their study they analyze the execution times and memory

requirements of cryptographic algorithms. Their work only

discusses performance of cryptographic algorithms but does

not describe how IPsec is actually integrated with 6LoWPAN.

In our work, we implement 6LoWPAN with compressed IPsec

and we analyze the performance of the overall system, not only

the performance of the cryptographic algorithms.

III. SECURING WSN COMMUNICATIONS

Researchers have unanimous consensus that security is very

important for the future IP based WSN and its integration with

the traditional Internet. IPv6 with potentially unlimited address

space is the obvious choice for these networks [?]. However,

security support for IP-based low power networks is still an

open issue, as mentioned in the 6LoWPAN specifications [?],

[?]. Actually, security can be guaranteed at different layers

of the IP protocol stack, resulting in solutions with various

compromises..

6LoWPAN today relies on the IEEE 802.15.4 (referred to

as 802.15.4 in the following) link-layer which provides data

encryption and integrity checking. This solution is appealing

since it is independent of the network protocols and is cur-

rently supported by the hardware of 802.15.4 radio chips.

However, such link-layer mechanism only ensures hop-by-

hop security where every node in the communication path

(including the 6LoWPAN gateway) has to be be trusted, and

where neither host authentication nor key management is

supported. Furthermore, messages leaving the sensor network

and continuing to travel on an IP network are not protected

by link-layer security mechanisms.

End-to-end security can be provided by the widely used

Transport Layer Security (TLS) standard. By operating be-

tween the transport-layer and the application-layer, it guar-

antees security between applications, includes a key exchange

mechanism and provides authentication between Internet hosts

in addition to confidentiality and integrity. As a counterpart,

TLS can only be used over TCP, which is rarely used in

wireless sensor networks. An adaptation of TLS for UDP

called DTLS is available, but it is not widely used.

The IPsec protocol suite, mandated by IPv6, provides end-

to-end security for any IP communication [?]. Like TLS and

unlike hop-by-hop solutions, it includes a key exchange mech-

anism and provides authentication in addition to confidentiality

and integrity. By operating at the network-layer, it can be used

with any transport protocols, including potential future ones.

Furthermore, it ensures the confidentiality and integrity of the

transport-layer headers (as well as the integrity of IP headers),

which cannot be done with a higher-level solution like TLS.

For these reasons, researchers [?], [?], [?] and 6LoWPAN

standardizations groups [?] consider IPsec a potential security

solution for IP based WSN.

In this paper we show that compressed IPsec is a sensible

and viable choice for 6LoWPANs. The key advantage of

using IPsec in WSN is that we achieve end-to-end IP based

communication between a sensor device and Internet hosts.

When using IPsec, the IEEE 802.15.4 security features can be

disabled as security services are provided in the IP layer. We

show later that when comparing link-layer security with IPsec,

packet sizes are similar.

IV. BACKGROUND

In this section we briefly outline core functionality of IPv6,

IPsec and 6LoWPAN that is relevant for the work presented in

Fig. 2: IPsec AH headers

this paper. For more information we refer to the corresponding

RFCs: RFC2460 [?], RFC4301 [?] and RFC4944 [?].

A. IPv6 and IPsec

With the vision of the Internet of Things and Smart Objects

all kind of physical devices such as wireless sensors are ex-

pected to be connected to the Internet via IP [?]. This requires

the use of IPv6 [?], a new version of the Internet Protocol that

increases the address size from 32 bits to 128 bits. Besides the

increased address space IPv6 provides in comparison to IPv4

a simplified header format, improved support for extensions

and options, flow labeling capability and authentication and

privacy capabilities.

Authentication and privacy in IPv6 is provided by IPsec [?].

IPsec defines a set of protocols for securing IP communication:

the security protocols Authentication Header (AH) [?] and

Encapsulating Security Payload (ESP) [?], the algorithms for

authentication and encryption, key exchange mechanisms and

so called security associations (SA) [?]. An SA specifies how

a particular IP flow should be treated in terms of security. To

establish SAs, IPSec standard specifies both pre-shared key

and Internet Key Exchange (IKE) protocol. This means that

every node on IPv6 enabled conventional Internet supports pre-

shared key. In other words an implementation with pre-shared

based SA establishment works with any IPv6 node on Internet.

Also, IKE uses asymmetric cryptography that is assumed to

be heavy weight for small sensor nodes. However, it would be

worth investigating IKE with ECC for 6LoWPANs; we intend

to do it in future.

The task of the AH is to provide connectionless integrity

and data origin authentication for IP datagrams and protection

against replays. A keyed Message Authentication Code (MAC)

is used to produce authentication data. The MAC is applied to

the IP header, AH header and IP payload. The authentication

header is shown in Figure 2. All hosts must support at least

the hash-based message authentication code algorithm AES-

XCBC-MAC-96 [?] to calculate authentication data that has

a size of 12 bytes. Thus, as shown in Figure 2, a basic AH

header has a size of 24 bytes.

ESP [?] provides origin authenticity, integrity, and confi-

dentiality protection of IP packets. ESP is used to encrypt

the payload of an IP packet but in contrast to AH it does

not secure the IP header. If ESP is applied the IP header

is followed by the ESP IP extension header which contains

the encrypted payload. ESP includes an SPI that identifies

the SA used, a sequence number to prevent replay attacks,

the encrypted payload, padding which may be required by

Fig. 3: The LOWPAN IPHC Header.

some block ciphers, a reference to the next header and op-

tional authentication data. Encryption in ESP includes Payload

Data, Padding, Pad Length and Next Header;Authentication,

if selected, includes all header fields in the ESP. If we assume

mandatory AES-CBC as encryption algorithm an ESP with

perfect block alignment will have an overhead of 18 bytes

(10 bytes for ESP and 8 bytes for Initialization Vector). If

additional authentication using AES-XCBC-MAC-96 is used

the ESP overhead is 30 bytes, as the minimum length of AES-

XCBC-MAC-96 is 12 bytes.

The protocols AH and ESP support two different modes:

transport mode and tunnel mode. In transport mode IP header

and payload are directly secured as previously described.

In tunnel mode, a new IP header is placed in front of the

original IP packet and security functions are applied to the

encapsulated (tunneled) IP packet. In the context of 6LoWPAN

tunnel mode seems not practical as the additional headers

would further increase the packet size.

B. 6LoWPAN

6LoWPAN [?] aims at integrating existing IP based infras-

tructures and sensor networks by specifying how IPv6 packets

are to be transmitted over an IEEE 802.15.4 network. The

maximum physical-layer packet size of 802.15.4 packet is

127 bytes and the maximum frame header size is 25 bytes.

An IPv6 packet has therefore to fit in 102 bytes. Given that

packet headers of a packet would already consume 48 bytes of

the available 102 bytes it is obvious that header compression

mechanisms are an essential component of the 6LoWPAN

standard.

HC13[?] proposes context aware header compression mech-

anisms: the LOWPAN IPHC (referred to as IPHC in the

following) encoding for IPv6 header compression and the

LOWPAN NHC (referred to as NHC in the following) en-

coding for the next header compression. The IPHC header is

shown in Figure 3.

For efficient IPv6 header compression, IPHC removes safely

IPv6 header fields that are implicitly known to all nodes in

the 6LoWPAN network. The IPHC has a length of 2 byte

of which 13 bits are used for header compression as shown

in Figure 3. Uncompressed IPv6 header fields follow directly

the IPHC encoding in the same order as they would appear

in the normal IPv6 header. In a multihop scenario IPHC can

compress the IPv6 header to 7 bytes The NH field in the IPHC

indicates whether the next header following the basic IPv6

header is encoded. If NH is 1, NHC is used to compress the

next header. 6LoWPAN specifies that the size of NHC should

be multiple of octets, usually 1 byte where first variable length

0BIT

LOWPAN_NHC_EH 1 1

1

1

2

0

3 4

NH

6 7

EID

5

EID: Extension Header
 ID (EID)
NH: Next Header

Fig. 4: LOWPAN NHC EH: NHC encoding for IPv6 Exten-

sion Header

0BIT

LOWPAN_NHC_AH 1 1

1

0

2

1

3 4

NH

6 7

PL

5

PL: Payload Length
SPI: Security Parameter
 Index
SN: Sequence Number
NH: Next Header

SPI SN

Fig. 5: NHC AH: NHC encoding for IPv6 Authentication

Header

bits represents a NHC ID and the remaining bits are used to

encode/compress headers. 6LoWPAN already defines NHC for

UDP and IP Extension Header [?].

V. 6LOWPAN AND IPSEC

IPsec requires header compression to keep packet sizes

reasonable in 6LoWPAN. Unfortunately, there are no header

encodings specified for AH and ESP extension headers. In this

section we therefore propose these extension header encod-

ings. We evaluate our savings in terms of packet size later in

Section VI. At the end of this section, we also discuss further

improvements that would be possible by small, standard-

compliant modifications of the end hosts where there is need

for cryptographic algorithms that could handle 6LoWPAN

UDP compression.

A. LOWPAN NHC Extension Header Encoding

As previously described, HC13 defines context aware header

compression using IPHC for IP header compression and NHC

for the next header compression. The already defined NHC

encoding form for IP extension headers can be used to encode

AH and ESP extension headers. NHC encodings for the IPv6

Extension Headers consist of a NHC octet where three bits

(bits 4,5,6) are used to encode the IPv6 Extension Header ID

(EID). This NHC EH encoding for extension headers is shown

in Figure 4.

Out of eight possible values for the EID, six are specified

by the HC13 draft. The remaining two slots (101 and 110)

are currently reserved. We propose to use the two free slots to

encode AH and ESP. Also, it is necessary to set the last bit in

IPv6 extension header encoding to 1 to specify that the next

header (AH or ESP) is encoded as well using NHC.

B. LOWPAN NHC AH Encoding

We define the NHC encoding for the AH. Our proposed

NHC for AH is shown in Figure 5.

We describe the function of each header field:

• The first four bits in the NHC AH represent the NHC ID

we define for AH, and are set to 1101. These are needed

to comply with 6loWPAN standard.

Source Address

Octet 0 Octet 1 Octet 2 Octet 3

Destination Address

Source Port

6Low

PAN

Header

Dest Port

DATA Payload (Variable)

LOWPAN_IPHC Hop Limit

Source Address LOWPAN_NHC_EH

LOWPAN_NHC_AH Sequence Number

LOWPAN_NHC_UDP

ICV

Fig. 6: Example of a compressed IPv6/UDP packet using AH

• PL: If 0, the payload lengths is omitted. This length can

be obtained from the SPI value because the length of the

authenticating data depend on the algorithm used and are

fixed for any input size. If 1, the length is carried inline

after the NHC AH header

• SPI: If 0, the default SPI for the sensor network is used

and the SPI field is omitted. We set the default SPI value

to 1. This does not mean that all nodes use the same

security association (SA), but that every node has its own

preferred SA, identified by SPI 1. If 1, the SPI is carried

inline

• SN: If 0, a 16 bit sequence number is used and the left

most 16 bits are assumed to be zero. If 1, all 32 bits of

the sequence number are carried inline.

• NH: If 0, the next header field in AH will be used to

specify the next header and it is carried inline. If 1, the

next header field in AH is skipped. The next header will

be encoded using NHC.

The minimum length of a standard AH supporting the

mandatory HMAC-SHA1-96 is 24 bytes. After optimal com-

pression we obtain a header size of 16 bytes. Figure 6 shows

compressed IPv6/UDP packet secured with AH with HMAC-

SHA1-96.

C. LOWPAN NHC ESP Encoding

Also the NHC encoding for ESP encodes the security

parameter index, the sequence number, the next header fields

and the NHC ID for ESP. In the case of ESP, we propose

1110 as NHC ID while we propose 1101 as NHC for AH as

shown in Figure 6. Due to space limitation, we do not detail

these encoding for ESP which are available in full details in

a technical report [?].

Recall that the minimum ESP overhead without authenti-

cation, AES-CBC and perfect block alignment is 18 bytes.

After optimal compression this header overhead is reduced to

12 bytes. ESP with authentication (HMAC-SHA1-96) has an

overhead of 30 bytes which is reduced to 24 bytes using the

outlined ESP compression.

D. Combined Usage of AH and ESP

It is possible to use AH and ESP in combination; obviously

the defined AH and ESP compression headers can be used in

succession. However, it is more efficient in terms of header

sizes to use ESP with authentication option than to apply AH

and ESP to a packet. As packet sizes are important in the

System
ROM (kB) RAM (kB)

overall diff overall diff

Without IPsec 32.9 – 8.0 –
AH with HMAC-SHA1-96 36.8 3.9 9.1 1.1
AH with XCBC-MAC-96 38.4 5.5 8.5 0.5
ESP with AES-CBC 41.4 8.5 8.3 0.3
ESP with AES-CTR 39.8 6.9 9.1 0.3
ESP with AES-XCBC-MAC-96 39.8 6.9 8.3 0.3
ESP with AES-CBC +

AES-XCBC-MAC-96 41.9 9.0 8.3 0.3
ESP with AES-CBC +

AES-XCBC-MAC-96 41.9 9.0 8.3 0.3

TABLE I: Memory footprints show that AH and ESP con-

sumes just 3.9kB and 9kB for mandatory IPsec algorithms

context of WSNs we expect that this IPsec option will not be

used in practice.

E. End Host Requirement

AH capable 6LoWPAN nodes can directly communicate

with unmodified IPsec hosts on conventional Internet. When

ESP is used 6LoWPAN nodes can as well communicate

directly with unmodified IPsec hosts. However, if ESP is

used it is not possible to compress upper layer headers such

as UDP. A 6LoWPAN gateway between sensor network and

IP network cannot access and expand the encrypted UDP

header. To enable UDP compression with ESP we need to

specify a new encryption algorithm for ESP which is able to

perform UDP header compression and encryption. Again, if

this optimization is used IPsec hosts must include and support

this encryption protocol.

VI. EVALUATION AND RESULTS

In this section we quantify performance of the proposed

IPSec extensions for 6LowPAN. After describing our imple-

mentation and experimental setup, we evaluate the impact

of IPsec in terms of memory footprint, packet size, energy

consumption and performances under different configurations.

A. Implementation and Experimental Setup

We implement IPsec AH and ESP for the Contiki operating

system [?]. The implementation required the modification

of the existing Contiki µIP stack which already provides

6LoWPAN functionality. The Contiki µIP stack is used on

the sensor nodes and on a so called soft bridge connecting

WSN and the Internet. In addition to the IPsec protocol, we

implement the IPsec/6LoWPAN compression mechanisms as

outlined in the previous section. We support the NHC EH,

NHC AH, and NHC ESP encodings (see Section V) at the

SICSLoWPAN layer, the 6LoWPAN component of the µIP

stack.

We use the SHA1 and AES implementations from MIRACL

[?], an open source library, and implement all cryptographic

modes of operation needed for authentication and encryption

in IPsec. For AH, we implement the mandatory HMAC-SHA1-

96 and AES-XCBC-MAC-96. For ESP, we implement the

mandatory AES-CBC for encryption and HMAC-SHA1-96 for

authentication. Additionally, in ESP, we implement the op-

tional AES-CTR for encryption and AES-XCBC-MAC-96 for

authentication. Our Contiki IPsec 6LoWPAN implementation

uses pre-shared keys to establish SAs which work with any

IPv6 node on Internet as a pre-shared mechanism is mandatory

in IPsec. Manual key distribution, however, is currently also

used for traditional 802.15.4 link-layer security.

Our evaluation setup shown in Figure 1 consists of four

Tmote Sky [?] sensor nodes, a 6LoWPAN soft bridge (imple-

mented by a fifth Tmote) nd a Linux machine running Ubuntu

OS with IPsec enabled. The four sensor nodes on the right side

in Figure 1 form a multihop network. They execute a single

application that listens to a fixed UDP port. When a packet is

received, it is processed by the 6LoWPAN layer, interpreted

by the IPsec layer and by µIP. Then its payload is forwarded to

the application. As a reply, a new datagram of the same size

is sent back, following the opposite process. Thus, IPsec is

used to secure the end-to-end (E2E) communication between

the sensor node and the Internet host. To avoid the delay of

a duty-cycled MAC layer, we use Contiki’s NullMAC in the

experiments and hence all nodes keep their radio turned on all

the time.

B. Memory footprint

We measure the ROM and RAM footprint of our IPsec

implementation. Table I compares IPsec AH and IPsec ESP

using the multiple modes of operation we implemented. The

footprints are compared with a reference Contiki system

including uIP and SICSLoWPAN.

The ROM footprint overhead ranges from 3.8 kB (AH with

HMAC-SHA1) to 9 kB (ESP with AES-CBC + AES-XCBC-

MAC). This always keeps the system footprint under 48 kB,

the Flash ROM size of the Tmote Sky. It is worth mentioning

that unlike AES-CBC, the AES-CTR mode of operation only

relies on AES encryption. Thus, the AES-CTR + AES-XCBC-

MAC-96 configuration can be implemented without AES

decryption, resulting in a particularly low memory footprint.

The RAM footprint is calculated as the sum of the global

data and the runtime stack usage that we measure by running

Contiki in the MSPSim emulator [?]. With an additional

footprint of 1.1 kB, the AH HMAC-SHA1 configuration is

the most RAM-consuming configuration. When using other

modes of operation, the RAM usage lies between only 0.3

and 0.5 kB. These results show that both IPsec AH and ESP

can be embedded in constrained devices while leaving space

for applications.

C. Packet Overhead Comparison

Currently WSN communication is secured using 802.15.4

link-layer security. This security mechanism can only provide

hop-by-hop security and, in contrast to IPsec, lacks the ability

to provide proper E2E security. Nevertheless, we provide here

a comparison of packet overheads between 802.15.4 link-layer

security and IPsec security. Table II summarizes the packet

overhead when using uncompressed IPsec, compressed IPsec

and 802.15.4 link-layer security.

Service
Uncompressed IPsec Compressed IPsec 802.15.4

Mode Bytes Mode Bytes Mode Bytes

AH Authentication HMAC-SHA1-96 24 HMAC-SHA1-96 16 AES-CBC-MAC-96 12

ESP Encryption AES-CBC 18 AES-CBC 12 AES-CTR 5

ESP Encryption and
Authentication

AES-CBC and
HMAC-SHA1-96

30 AES-CBC and
HMAC-SHA1-96

24 AES-CCM-128 21

TABLE II: With compressed IPsec, packet sizes are similar to 802.15.4 while IPsec provides end-to-end security.

 0

 10

 20

 30

 40

 50

 60

 70

4 8 16 32 64

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
im

e
 [

m
s
]

E
n

e
rg

y
 [

m
J
]

No of Data Bytes

AES-CBC for ESP
AES-CTR for ESP

AES-XCBC-MAC-96 for ESP
HMAC-SHA1-96 for ESP

AES-XCBC-MAC-96 for AH
HMAC-SHA1-96 for AH

Fig. 7: The comparison of our implemented algorithms shows

that among the ones specified in the standards, AES-CBC

and AES-XCBC-MAC-96 are the most efficient in terms

of processing time and energy consumption. They are also

mandatory and the most secure.

When using link-layer security, the packet overhead for the

authentication scheme is exactly the length of the MAC. In

IPsec when using AES-XCBC-MAC-96, the MAC has a length

of 12 bytes. The additional AH header fields increase the

overhead to 24 bytes. Thanks to the IPsec header compression

we defined, this overhead is reduced to 16 bytes. The ability

to provide E2E authentication with IPsec has hence a cost of

4 bytes compared to the 802.15.4 baseline which provides only

hop-by-hop security.

If only message encryption is required, the 802.15.4 link-

layer security provides AES-CTR which has a 5 bytes over-

head. In comparison, IPsec with ESP and AES-CBC leads to

an overhead of 18 bytes, reduced to 12 bytes thanks to header

compression. Here, the ability to provide E2E encryption with

IPsec has a cost of 7 bytes compared to the 802.15.4 baseline.

With AES-CCM-128, the overhead for 802.15.4 is 21 bytes

while IPsec ESP has an overhead of 30 bytes, reduced to

24 bytes when using our 6LoWPAN compression extension.

The ability to provide E2E encryption and authentication with

IPsec has hence a cost of 3 bytes compared to the 802.15.4

baseline.

Moreover, when carrying large IP datagrams, link-layer

fragmentation has to be used. With link-layer security, one

pays the header overheads for every fragment. In contrast, the

IPsec header is included only once for all the fragments of

a single datagram. This means that as soon as two or more

fragments are needed, IPsec offers a lower header overhead

than 802.15.4 link-layer security.

D. Performance of Cryptography

We evaluate the efficiency of the different cryptographic

algorithms and modes supported by our IPsec implementation.

Figure 7 details the performances and energy consumption

for each mode of operation and depending on the size of

the IP payload. The authentication algorithms are compared

separately for AH and ESP: with AH the MAC is calculated

over the IP header and payload packet, while in ESP the IP

header is neither encrypted nor authenticated.

Our results show that for encryption, AES-CBC and AES-

CTR have similar performances and energy consumption.

Regarding authentication, the cost is as expected higher for

AH than for ESP because of the processing of the 40 byte IP

header. In all cases, the energy consumption has a fixed-cost

and grows linearly with the data size. HMAC-SHA1-96 is not

as efficient as other solutions because of its particularly high

fixed-cost when data sizes are small.

The proposed standard for Cryptographic Suites for IPsec

specifies that the future IPsec systems will use AES-CBC-128

for encryption and AES-XCBC-MAC-96 mode for authenti-

cation [?]. Figure 7 shows that these are also

E. System-wide Energy Overhead

Securing the Internet of Things has a cost in terms of added

energy usage. We measure the energy overhead of the available

security options on the Tmote Sky using Contiki’s integrated

energy estimator. We measure the total number of CPU ticks

from the reception of the first fragment of a message, when

starting link layer decryption. We stop counting when the link

layer encryption of the last packet is finished, but we ignore

the network time between the packets. In total we the link

layer processing, 6LoWPAN processing, µIP stack handling,

and application-layer processing. These experiments are run

with and without hardware support. For the

Figure 8 shows the energy consumption of Link Layer

security only, IPsec using either AH or ESP, and without

using any security. Since the variance of the 20 runs was

very low, it is not not shown. The results show that ESP

consumes more energy than AH; this is because for ESP we

use both authentication and encryption. Although the energy

consumption with IPsec is significantly higher than without

IPsec we argue that this is negligible when compared to the

consumption of typical radio chips. In the worst measured

case, AH on 64 bytes, the energy consumed is around 0.5 mJ.

The radio chip of the Tmote Sky consumes the same amount

of energy after 8 ms of idle listening.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1632 64 128 256 512

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 [

m
s
]

No of Bytes

ESP
AH

ESP with Hardware AES
AH with Haraware AES

Without IPsec

(a) Single Hop with different data sizes

 0

 200

 400

 600

 800

 1000

1632 64 128 256 512

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 [

m
s
]

No of Bytes

ESP
AH

ESP with Hardware AES
AH with Haraware AES

Without IPsec

(b) Multi Hop (4) with different data sizes

Fig. 9: Response time versus datagram size with AH, ESP and without IPsec. ESP is faster than AH for small datagrams

because it does not process the 40 bytes IP header. AH is faster than ESP for large datagrams because it processes authentication

but no encryption.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 [

m
s
]

No of hops

AH
ESP

ESP with Hardware AES
AH with Haraware AES

Without IPsec

(a) Multi Hop with 16 bytes data size

 0

 200

 400

 600

 800

 1000

1 2 3 4

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 [

m
s
]

No of hops

ESP
AH

ESP with Hardware AES
AH with Haraware AES

Without IPsec

(b) Multi Hop with 512 byte data size

Fig. 10: Response time versus number of hops with AH, ESP and without IPsec. The overhead of IPsec is constant across a

single hop and a multihop network.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

4 8 16 32 64

E
n

e
rg

y
 [

m
J
]

No of Data Bytes

Without IPsec
With IPsec AH

With IPsec ESP

Fig. 8: Node energy consumption is lower without IPsec and

higher for ESP than for AH. Compared to other activities e.g.

idle listening it is not significant.

F. System-wide Response Time Overhead

We measure and evaluate the response time for different

data sizes with IPsec and without IPsec. The response time

is the time it takes to send a message from an IP connected

Linux machine to a sensor node and to receive a response.

We conduct experiments using a routing distance in the WSN

ranging from 1 to 4 hops and for IP datagrams with a size

ranging from 16 to 512 bytes. We execute every experiment

10 times.

Figure 9 shows the response time in dependency of the

IP datagram size. When the datagram size is too large to fit

a single 802.15.4 packet, the data are fragmented according

to the 6LoWPAN standard. Consistently with the mirco-

benchmarks in Figure 7, the overhead of IPsec grows linearly

with datagram sizes. We observe that for small sizes, ESP

is faster than AH. This is because unlike AH, ESP does not

process the full 40 bytes IP header. With larger sizes, AH is

faster than ESP, because it ensures authentication only, while

ESP authenticates plus encrypts and decrypts the messages.

Figure 10 shows the response times obtained in dependence

of hop distance. For a given data size, we observe that the

overhead of either AH or ESP is constant, whatever the number

of hops. This is because, for the intermediate nodes, the cost

of forwarding the data with and without IPsec is the same; the

overhead is only due to computation on the end nodes. In the

worst case (512 bytes), we measured an overhead of 261 ms.

G. Improvements Using Hardware Support

The efficiency of IPSec can be improved by employing

cryptographic functions provided by sensor node hardware.

For example, the CC2420 radio chip present on many sensor

node platforms provides such functionality. To investigate pos-

sible improvements we extend our prototype implementation

to use this hardware for the required AES computations.

Figure 9 and Figure 10 show the impact of hardware supported

cryptography on the achievable response time. In all cases

hardware-based implementations are faster than pure software

implementations. When processing 512 byte datagrams over

a single hop the overhead of pure software AH is 65 %

which decreases to 12 % with the help of the cryptographic

coprocessor. For ESP the decrease ranges from 64 % to 37 %.

VII. CONCLUSIONS AND FUTURE WORK

WSNs will be an integral part of the Internet and IPv6

and 6LoWPAN are the protocol standards that are expected

to be used in this context. IPsec is the standard method to

secure Internet communication and we investigate if IPsec can

be extended to sensor networks. Towards this end, we have

presented the first IPsec specification and implementation for

6LoWPAN. We have extensively evaluated our implementation

and demonstrated that it is possible and feasible to use

compressed IPsec to secure communication between sensor

nodes and hosts in the Internet.

To securely communicate with any IPv6 enabled node

on the Internet pre-shared keys are sufficient but not very

flexible. Therefore, we plan to investigate if an automatic key

exchange protocol for 6LoWPANs based on IPsec’s Internet

Key Exchange protocol (IKE) is feasible.

ACKNOWLEDGMENTS

This work has been performed within the SICS Center

for Networked Systems funded by VINNOVA, SSF, KKS,

ABB, Ericsson, Saab SDS, TeliaSonera, T2Data, Vendolocus

and Peerialism. This work has been supported by VINNOVA,

SSF and by the European Commission with contract FP7-

2007-2-224053 (CONET). This work was also partially funded

by ERCIM through the Alain Bensoussan postdoc fellowship

program.

