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Abstract

The fabrication of digital Integrated Circuits (ICs) is in-

creasingly outsourced. Given this trend, security is rec-

ognized as an important issue. The threat agent is an

attacker at the IC foundry that has information about the

circuit and inserts covert, malicious circuitry. The use of

3D IC technology has been suggested as a possible tech-

nique to counter this threat. However, to our knowledge,

there is no prior work on how such technology can be

used effectively. We propose a way to use 3D IC tech-

nology for security in this context. Specifically, we ob-

fuscate the circuit by lifting wires to a trusted tier, which

is fabricated separately. This is referred to as split man-

ufacturing. For this setting, we provide a precise notion

of security, that we call k-security, and a characterization

of the underlying computational problems and their com-

plexity. We further propose a concrete approach for iden-

tifying sets of wires to be lifted, and the corresponding

security they provide. We conclude with a comprehen-

sive empirical assessment with benchmark circuits that

highlights the security versus cost trade-offs introduced

by 3D IC based circuit obfuscation.

1 Introduction

The security of digital integrated circuits (ICs), the build-

ing blocks of modern computer hardware systems, can

be compromised by covertly inserted malicious circuits.

The threat from such maliciously inserted hardware is

of increasing concern to government and military agen-

cies [2] and commercial semiconductor vendors. Re-

cently, Skorobogatov et al. [28] demonstrated the pres-

ence of a backdoor in a military grade FPGA manufac-

tured by Actel that enabled access to configuration data

on the chip. The authors initially conjectured that the

backdoor was maliciously inserted since the key used to

trigger the backdoor was undocumented. Actel has since

clarified that the backdoor was inserted by design for in-

ternal test purposes [23]. Nonetheless, this incident has

further heightened the perceived threat from maliciously

inserted hardware, and effective counter-measures to de-

ter or prevent such attacks are of increasing importance.

The threat of maliciously inserted hardware arises

from two factors. First, owing to their complexity, digital

ICs are designed at sites across the world. In addition,

parts of the design are often outsourced or purchased

from external vendors. Second, a majority of semicon-

ductor design companies are fabless, i.e., they outsource

IC manufacturing to a potentially untrusted external fab-

rication facility (or foundry). Both factors make it easier

for a malicious attacker in a design team or a malicious

foundry (or a collusion between the two) to insert covert

circuitry in a digital IC.

Three-dimensional (3D) integration, an emerging IC

manufacturing technology, is a promising technique to

enhance the security of computer hardware. A 3D IC

consists of two or more independently manufactured ICs

that are vertically stacked on top of each other — each

IC in the stack is referred to as a tier. Interconnections

between the tiers are accomplished using vertical metal

pillars referred to as through-silicon vias (TSV).

3D IC manufacturing can potentially enhance hard-

ware security since each tier can be manufactured in a

separate IC foundry, and vertically stacked in a secure

facility. Thus, a malicious attacker at any one foundry

has an incomplete view of the entire circuit, reducing the

attacker’s ability to alter the circuit functionality in a de-

sired manner.

Tezarron, a leading commercial provider of 3D stack-

ing capabilities, has alluded to the enhanced security of-

fered by 3D integration in a white paper [1]. The white

paper notes that “A multi-layer circuit may be divided

among the layers in such a way that the function of each

layer becomes obscure. Assuming that the TSV connec-

tions are extremely fine and abundant, elements can be

scattered among the layers in apparently random fash-

ion.” However, the paper does not provide any formal
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Figure 1: A two tier 3D IC. In this instance, the top tier is

an interposer, i.e., it only implements metal wires, while

the bottom tier has both transistors/gates and wires.

notion of security for split manufacturing, nor does it

propose techniques to quantify security or achieve a cer-

tain security level. These are the open challenges that we

address in this paper.

Our threat model assumes a malicious attacker in an

IC foundry who wants to modify the functionality of a

digital IC in a specific, targeted manner. The attack pro-

posed by King et al. [19] modifies the state of hardware

registers in a processor to raise the privilege level of the

attacker — this is an example of a targeted attack since it

requires the attacker to determine the gate or wire in the

circuit that corresponds to the privilege bit. Fault inser-

tion attacks in cryptographic hardware also require that

certain vulnerable bits be targeted. For example, it has

been shown that if the LSB bit of the 14th round of a

DES implementation is set to logic zero, the secret key

can be recovered in as few as two messages [9]. How-

ever, to succeed, the attacker must be able to determine

which gate corresponds to the LSB bit of the 14th round.

To effect a targeted attack, an attacker must first iden-

tify specific logic gates or wires in the circuit that im-

plement the functionality that he wants to monitor and/or

modify; for example, the gate or wire that corresponds

to the privilege bit for the privilege escalation attack pro-

posed in [19]. A malicious foundry can identify the func-

tionality of every gate and wire in the circuit if it gets to

fabricate the entire chip, i.e., if a conventional planar, 2D

fabrication process is used. On the other hand, as we

show in this paper, 3D integration significantly reduces

the ability of an attacker in a malicious foundry to cor-

rectly identify gates or wires in the circuit that he wants

to attack.

The specific 3D integration technology that we exploit

in this work, since it is the only one that is currently in

large volume commercial production [8], splits a design

into two tiers. The bottom tier consists of digital logic

gates and metal wires used to interconnect logic gates.

The top tier, also referred to as an interposer, only con-

sists of metal wires that provide additional connections

between logic gates on the bottom tier.

The bottom tier — this tier is expensive to fabricate

since it implements active transistor devices and passive

metal — is sent to an external, untrusted foundry for fab-

rication. This is referred to as the untrusted tier. The top

tier implements only passive metal and can be fabricated

at lower cost in a trusted fabrication facility. We refer to

this tier as the trusted tier.

Assume, for the sake of argument, that all interconnec-

tions between logic gates are implemented on the trusted

tier, the attacker (who only has access to the untrusted

tier) observes only a “sea” of disconnected digital logic

gates. From the perspective of the attacker, gates of the

same type, for example all NAND gates, are therefore in-

distinguishable from each other. (Assuming that the rel-

ative size or placement of gates reveals no information

about interconnections between gates. This is addressed

in Section 4.) Assume also that the attacker wants to at-

tack a specific NAND gate in the circuit, and not just any

NAND gate. The attacker now has two choices: (a) the

attacker could randomly pick one NAND gate to attack

from the set of indistinguishable NAND gates, and only

succeed in the attack with a certain probability; or (b) the

attacker could attack all indistinguishable NAND gates,

primarily in cases where the attacker wants to monitor

but not modify gates in the circuit, at the expense of a

larger malicious circuit and thus, an increased likelihood

of the attack being detected. In either instance, the at-

tacker’s ability to effect a malicious, targeted attack on

the circuit is significantly hindered. We refer to this tech-

nique as circuit obfuscation.

In general, we define a k-secure gate as one that, from

the attacker’s perspective, cannot be distinguished from

k− 1 other gates in the circuit. Furthermore, a k-secure

circuit is defined as one in which each gate is at least

k-secure.

Contributions We make the following contributions:

• We propose a concrete way of leveraging 3D IC

technology to secure digital ICs from an active at-

tacker at the foundry. Whereas the use of 3D IC

technology for security has been alluded to before,

we are not aware of prior work like ours that dis-

cusses how it can be used meaningfully.

• We propose a formal notion of security in this con-

text that we call k-security. We give a precise char-

acterization of the underlying technical problems —

computing k-security and deciding which wires to

lift — and identify their computational complexity.
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• We have devised a concrete approach to address-

ing the problem of lifting wires, which comprises a

greedy heuristic to identify a candidate set of wires

to be lifted, and the use of a constraint (SAT) solver

to compute k-security.

• We have conducted a thorough empirical assess-

ment of our approach on benchmark circuits, in-

cluding a case-study of a DES circuit, that illustrates

the inability of an attacker to effectively attack cir-

cuits secured using 3D IC based obfuscation.

2 Preliminaries and Related Work

Synthesis

Technology
Library

HDL Code
always @(posedge clk)
   for(i=0;i<33;i=i+1)
      key_c_r[i+1] <= #1 key_c_r[i];

Wire Lifting

Netlist

Unlifted Netlist Lifted Wires

Placement and Routing

Layout Layout

Bottom Tier Top Tier

Final Product

Fabrication

Stacking
Malicious
Attacker

Malicious
Observer

Trusted

Fabrication

Figure 2: Secure 3D IC design and fabrication flow.

In this section, we overview the IC manufacturing pro-

cess in the specific context of 3D integration, and discuss

the attack model that we assume in this paper. We also

discuss related work on hardware security including both

attacks and countermeasures, and on the use 3D integra-

tion for enhancing the security of computer hardware.

2.1 3D IC Design and Fabrication

Digital ICs consist of a network of inter-connected dig-

ital logic gates. This network of gates is often referred

to as a netlist. Digital logic gates are built using com-

plementary metal-oxide-semiconductor (CMOS) transis-

tors. In a conventional planar/2D IC, CMOS transistors,

and by extension digital logic gates, lie in a single layer

of silicon. In addition, there are several layers of metal

wires used to inter-connect the gates.

3D integration enables the vertical stacking of two or

more planar ICs. Each IC in the vertical stack is referred

to as a tier. Vertical interconnects (TSVs) are provided

to allow the transistors and metal wires in each tier to

connect to each other.

The initial motivation for 3D integration came from

the potential reduction in the average distance between

logic gates — in a 3D IC, the third, vertical dimension

can be used to achieve a tighter packing of logic gates [6].

However, a number of issues, including high power den-

sity, temperature and cost, have plagued high volume,

commercial availability of logic-on-logic 3D ICs [13].

A more practical 3D IC technology that has been

demonstrated in a commercial product (a Xilinx

FPGA [8]) is shown in Figure 1. It consists of two tiers.

The bottom tier contains both transistors/gates and metal

wires, while the top tier, the interposer, contains only

metal wires. The two tiers are interfaced using uniformly

spaced metallic bond-points. TSVs make use of these

bond-points to provide connections between wires in the

top and bottom tiers. This technology has also been re-

ferred to as 2.5D integration [14]. In the rest of this pa-

per, we use 3D instead of 2.5D since our techniques can

easily be generalized to full 3D.

Since the bottom tier consists of CMOS transistors, it

is fabricated at one of the few foundries worldwide with

advanced lithographic capabilities at high cost. The top

tier, i.e., the interposer, only contains passive metal and

can be fabricated at significantly reduced cost [21].

Figure 2 shows a 3D IC design flow with appropri-

ate modifications for security. The design flow begins

with the design specified using a hardware description

language (HDL), which is then synthesized to a netlist of

gates. The types of gates allowed in the gate netlist are

specified in a technology library.

In the wire lifting stage, the edges (or wires) in the

netlist that are to be implemented on the top tier are se-

lected. These are referred to as lifted wires. The rest of

the netlist, implemented on the bottom tier, is referred to

as the unlifted netlist and consists of unlifted gates and

unlifted wires.

The unlifted gates are then placed on the surface of

the bottom tier, i.e., the (x,y) co-ordinates for each gate

are selected. Unlifted wires are routed using the bottom

tier metal layers. Two bond-points are selected for ev-

ery lifted wire; one each for the two gates that the wire

connects. The gates are connected to the correspond-

ing bond-points. Finally, lifted wires are routed between

pairs of bond-points in the top tier using the top tier rout-

ing resources.
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Finally, the two tiers are fabricated at separate

foundries. The chips from the two foundries are verti-

cally stacked to create the final 3D IC chip that is shipped

to the vendor.

We now discuss the attack model that we address in

this paper, in the context of the 3D design and fabrication

flow outlined above.

2.2 Attack Model

The attack model that we address in this paper is that of a

malicious attacker in the foundry. This attack model has

been commonly used in the hardware security literature

because of the serious threat it presents [18]. We further

strengthen the attack by assuming a malicious observer

in the design stage, working in collusion with the mali-

cious attacker in the foundry.1 The malicious observer

has full knowledge of the circuit as it goes through the

design process, but can not effect any changes. The ma-

licious attacker in the foundry can, on the other hand,

effect changes in the circuit layout before the chip is fab-

ricated.

To defend against this attack, the following steps of

the design and fabrication flow are assumed to be se-

cure, i.e., executed by a trusted party: (a) the wire lift-

ing, placement and routing steps in the design, and (b)

the fabrication of the top tier (therefore also referred to

as the trusted tier).

Discussion Three aspects of the attack and defense

models deserve further mention. First, we note that the

attack model described above subsumes a number of

other practically feasible attack models. It is stronger

than a malicious attacker in the foundry working by him-

self. It is also stronger than a malicious attacker in the

foundry with partial design knowledge — for example,

the attacker is likely to know the functionality and in-

put/output behaviour of circuit he is attacking (an ALU

or a DES encryption circuit, etc.). Providing the attacker

with the precise circuit netlist can only strengthen the at-

tack.

Second, the steps in the design and fabrication process

that are assumed to be trusted are also relatively easy to

perform in a secure manner, compared to the untrusted

steps. Wire lifting and placement/routing (in the design

stage) are performed using automated software tools, the

former based on algorithms that we propose in this pa-

per, and the latter using commercially available software

from electronic design automation (EDA) vendors. In

comparison, writing the HDL code is manually intensive,

time-consuming and costly. Furthermore, only the top

tier is fabricated in a trusted foundry. The top tier only

1Note that 3D IC based circuit obfuscation cannot, and is not in-

tended to, defend against malicious attackers in the design stage who

can alter the HDL or circuit netlist.

consists of passive metal wires that are inexpensive com-

pared to the active CMOS transistors and metal wires in

the untrusted, bottom tier [21].

Finally, we assume that that all IC instances are man-

ufactured before being sent out for stacking. If this were

not the case, an attacker could intercept a stacked IC and

reverse engineer the connections on the top tier. Armed

with this knowledge, the attacker could then insert ma-

licious hardware in future batches of the IC as they are

being fabricated in the foundry.

2.3 Related Work

In this section, we discuss related work in the literature

on hardware security and, specifically, the use of 3D ICs

in this context. We also discuss the relationship of our

work to database and graph anonymizing mechanisms.

Hardware Security Malicious circuits are expected to

consist of two components, a trigger and the attack itself.

The trigger for the attack can be based on data, for exam-

ple when a specific cheat code appears at selected wires

in the circuit [19], or on time, i.e., the trigger goes off

after a certain period of time once the IC is shipped [33].

Once triggered, the malicious attack can either trans-

mit or leak sensitive information on the chip, modify the

circuit functionality or degrade the circuit performance.

Tehranipoor and Koushanfar discuss a number of specific

backdoors that fall within one of these categories [31].

Countermeasures against malicious attacks can be cat-

egorized in various ways. Design based countermea-

sures modify or add to the design of the circuit itself

to provide greater security. These include N-variant IC

design [4], data encryption for computational units [33]

and adding run-time monitors to existing hardware [32].

Our work falls within this category. In contrast, test-

ing based counter-measures use either pre-fabrication or

post-fabrication testing and validation to detect, and in

some cases, disable malicious circuits. A survey of these

techniques can be found in [11].

Another way to categorize countermeasures is by their

impact on the attack. Countermeasures to detect mali-

cious circuits include IC fingerprinting [3] and unused

circuit identification [17]. Some countermeasures can

be used to disable malicious circuitry; for example, the

power cycling based defense against timer triggers [33].

The proposed defense mechanism aims to deter attackers

by hiding a part of the circuit and making it more difficult

for the attacker to effect a successful attack.

3D Integration for Hardware Security Valamehr et

al. [32] also exploit 3D integration capabilities to en-

hance the security of computer hardware, although in

a manner orthogonal to ours. Their proposal involves

adding a “control tier” on top of a regular IC to moni-
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tor the activity of internal wires in the IC in a cost ef-

fective way. By monitoring internal wires on the chip,

the control tier is able to detect potentially malicious ac-

tivity and take appropriate recourse. Adding the moni-

tors vertically on top of the IC to be protected reduces

the power and performance cost of monitoring the IC. A

similar technique was proposed by Bilzor [7].

Or technique exploits 3D integration in a different

way, i.e., we use it to provide a malicious attacker in an

IC foundry with an incomplete view of the circuit netlist,

thus deterring the attack. Although the potential for this

kind of defense mechanism has been alluded to before by

Tezarron [1], ours is the first work, to our knowledge, to

address this technique in any consequential way.

Hardware Obfuscation Hardware obfuscation tech-

niques have been proposed to make circuits more diffi-

cult to reverse engineer. In particular, Roy et al. [26]

augment a combinational circuit with key bits in such a

way that the circuit only provides correct outputs when

the key bits are set to pre-determined values. Rajendran

et al. [24] further strengthen this defense mechanism by

increasing the bar on the attacker to determine the secret

key.

A difference between key-based circuit obfuscation

mechanisms and circuit obfuscation via split manufac-

turing is that the notion of security in the former is con-

ditioned on the computational capabilities of the attacker.

In contrast, our notion of security is unconditional in

that no matter the computational capabilities of the at-

tacker, he cannot distinguish each gate from k− 1 other

gates. We note that these mechanisms are not necessar-

ily mutually exclusive — it might be possible to leverage

split manufacturing based circuit obfuscation to further

strengthen key-based circuit obfuscation, or vice-versa.

Independent of this work, Rajendran et al. [25] have

recently examined the security obtained from split manu-

facturing. However, the authors provide no well-founded

notion of security for split manufacturing, as we do in

this paper. The authors do not address the wire lifting

problem at all, and implicitly assume that the circuit is

partitioned using traditional min-cut partitioning heuris-

tics. Finally, it is assumed that the attacker reconstructs

the circuit by simply connecting the closest gates with

disconnected inputs/outputs.

Anonymizing Databases and Social Networks Our

work bears relationship to prior work on anonymizing

databases and social network graphs, but also has signif-

icant differences. A database is k-anonymous if the in-

formation for each individual is indistinguishable from

k − 1 other individuals [30] in the database. The no-

tion of k-anonymity for a social network is similar, ex-

cept that instead of operating on relational data, it op-

erates on a graph. Two individuals in a social network

are indistinguishable if their local neighbourhoods are

the same [34].

In our setting, the similarity of the local neighborhood

of two gates is only a necessary but not sufficient condi-

tion for indistinguishability. This is because the attacker

is assumed to have access to the original circuit netlist

and an incomplete view of the same netlist, and must

thus match all gates in the incomplete netlist to gates in

the original netlist.

The circuit obfuscation problem also introduces a

number of distinct practical issues. These include the

additional information that might be conveyed by the

circuit layout (for example, the physical proximity of

gates), and the role of the number of gate types in the

technology library.

3 Problem Formulation

In this section, we formulate the circuit obfuscation prob-

lem that we address in this paper as a problem in the

context of directed graphs. We begin by discussing the

example circuit for a full adder that we show in Figure 3.
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(a) Original circuit netlist.
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Lifted Wires
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Sub-Circuits
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2

3

4

5

(b) Unlifted netlist.

Figure 3: Original and unlifted netlists corresponding to

a full adder circuit. Grey wires in the unlifted netlist are

lifted and are not observed by the attacker.

Example As we mention in Section 1, in the most

powerful attack model we consider, an attacker is in pos-

session of two pieces of information: the originally de-

signed (complete) circuit netlist, and the layout of the

circuit that is sent to the foundry for fabrication, which

we call the unlifted netlist. The latter results from the
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defender lifting wires from the former. Assume that the

defender chooses to lift the wires A→{1,2}, B→{1,2},

CIN →{3,4}, 1 →{3,4} and 3 → COUT.

Note that gates in the unlifted netlist in Figure 3(b) are

labeled differently from those in the original circuit in

Figure 3(a). This reflects the fact that the attacker ob-

tains the original circuit netlist and the unlifted netlist in

completely different formats. The original netlist is a set

of gates and wires in HDL format. On the other hand,

the unlifted netlist is reconstructed from the circuit lay-

out, which is a set of shapes and their locations on the

surface of the chip, as also discussed in Section 4.3. The

labeling and ordering of objects in the circuit layout file

is unrelated to that in the netlist of the original circuit.

Although not required, the defender can perform an ad-

ditional random re-labeling and re-ordering step before

the layout of H is sent to the foundry.

Given these two pieces of information, the attacker

now seeks a bijective mapping of gates in the unlifted

netlist to gates in the complete circuit netlist. If the at-

tacker is successful in obtaining the correct mapping, he

can carry out a targeted attack on any gate (or gates) of

his choosing. The security obtained from lifting wires in

the context of this example can be explained as follows.

From the attacker’s perspective, either Gate u or Gate w

in the unlifted netlist could correspond to Gate 1 in the

original netlist. Thus the attacker’s ability to carry out a

targeted attack on Gate 1 is hindered. The same can be

said for the attacker’s ability to carry out a targeted at-

tack on Gate 2, 3 or 4. However, note that the attacker

can determine the identity of Gate 5 with certainty — it

must correspond to Gate y since this is the only OR gate

in the netlist. Thus, in this example, the lifting does not

provide any security for Gate 5.

Informally, our notion of security is based on the ex-

istence of multiple isomorphisms (mappings) between

gates in the unlifted netlist and the original netlist. In

our example, there exist 4 distinct bijective mappings be-

tween the gates in the unlifted and original netlists. How-

ever, this notion of security may be seen as too permis-

sive. It can be argued that given the fact that across all

mappings, gate 5 is mapped uniquely, we have no secu-

rity at all (i.e., security of 1). A more restrictive notion

of security, one that we adopt in this paper, requires that

for each gate in the original netlist, there exist at least k

different gates in the unlifted netlist that map to it over

all isomorphisms. This is intended to capture the intu-

ition that the attacker is unable to uniquely identify even

a single gate. We now formalize our notion of security.

3.1 Formulation as a Graph Problem

We now formulate our problem as a graph problem. A

circuit can be perceived as a directed graph — gates are

vertices, and wires are edges. The direction of an edge

into or out of a vertex indicates whether it is an input or

output wire to the gate that corresponds to the vertex. If

G is a graph, we denote its set of vertices as V [G], and its

set of edges as E[G]. Each vertex in the graph is associ-

ated with a color that is used to distinguish types of gates

(e.g, AND and OR) from one another. Consequently, a

graph G is a 3-tuple, 〈V,E,c〉, where V is the set of ver-

tices, E the set of edges and the function c : V →N maps

each vertex to a natural number that denotes its color. For

example, the circuit in Figure 3 and its unlifted portion

can be represented by the graphs in Figure 4.

1

2

4

3

5

S

COUT

CIN

A

B

U

V

W

X

Y

Graph G

Graph H

Figure 4: Full adder graphs: G is the full graph represen-

tation of the full adder circuit, H is the remaining graph

after wires have been lifted.

A main challenge for the defender is to lift wires in a

way that provides security. Our notion of security corre-

sponds to a certain kind of subgraph isomorphism.

Definition 1 (Graph isomorphism). Given two graphs

G1 = 〈V1,E1,c1〉 ,G2 = 〈V2,E2,c2〉, we say that G1 is iso-

morphic to G2 if there exists a bijective mapping φ : V1 →
V2 such that 〈u,v〉 ∈ E1 if and only if 〈φ(u),φ(v)〉 ∈ E2

and c1(u) = c2(φ(u)),c1(v) = c2(φ(v)). That is, if we

rename the vertices in G1 according to φ , we get G2. A

specific such mapping φ is called an isomorphism.

Definition 2 (Subgraph isomorphism). We say that G1 =
〈V1,E1,c1〉 is a subgraph of G2 = 〈V2,E2,c2〉 if V1 ⊆V2,

and 〈u,v〉 ∈ E1 only if 〈u,v〉 ∈ E2. We say that G is sub-

graph isomorphic to H if a subgraph of G is isomorphic

to H. The corresponding mapping is called a subgraph

isomorphism.

For example, in Figure 4, a subgraph isomorphism, φ ,

is φ(1) =U,φ(2) =V,φ(3) = X ,φ(4) =W,φ(5) = Y .

Intuition Let G be the graph that represents the orig-

inal circuit with all wires, and H the graph of the circuit



USENIX Association  22nd USENIX Security Symposium 501

after wires have been lifted. Then, the attacker knows

that G is subgraph isomorphic to H. What he seeks is

the correct mapping of vertices in G to H (or vice versa).

This is equivalent to him having reconstructed the circuit,

and now, he can effect his malicious modifications to the

circuit that corresponds to H.

From the defender’s standpoint, therefore, what we

seek intuitively is that there be several subgraph isomor-

phisms between G and H. As we mention in Section

1, this then gives the kind of security in a k-anonymity

sense — the attacker cannot be sure which of the map-

pings is the correct one, and therefore is able to recon-

struct the circuit with probability 1/k only. As we men-

tion there and discuss in more detail in the related work

Section, though our notion of security has similarities to

k-anonymity, there are important differences, and we call

it k-security instead.

k-security We now specify our notion of security. We

do this in three stages. (1) We first define a problem that

captures our intuition of a gate being indistinguishable

from another gate. We do this by requiring the existence

of a particular kind of subisomorphic mapping between

graphs that represent circuits. (2) We then define the

notion of a k-secure gate. Such a gate is indistinguish-

able from at least k − 1 other gates in the circuit. (3)

Finally, we define the notion of k-security, which is secu-

rity across all gates in the circuit. This definition requires

simply that every gate in the circuit is k-secure.

In the following definition, we characterize the prob-

lem GATE-SUBISO, which captures (1) above — a notion

of what it means for a gate to be indistinguishable from

another.

Definition 3 (GATE-SUBISO). Given as input 〈G,E ′,u,v〉,
where G is a DAG, E ′ ⊆ E[G], and two distinct vertices

u,v ∈ V [G], let H be the graph we get by removing the

edges that are in E ′ from G. Then, GATE-SUBISO is the

problem of determining whether there exists a mapping

φ : V [G]→V [H] that is a subgraph isomorphism from G

to H such that φ(u) = v.

The above definition is a special case of the well-

known subgraph isomorphism problem [16]. In the sub-

graph isomorphism problem, we take as input two graphs

A,B, and ask whether B is subgraph isomorphic to A. In

GATE-SUBISO, both the graphs G,H are restricted to be

DAGs, and H is a specific subgraph of G — one with

some edges removed from G. Of course, we know that H

is subgraph isomorphic to G, with the identity mapping

from a vertex to itself serving as evidence (a certificate).

However, in the GATE-SUBISO problem, we require the ex-

istence of a subgraph isomorphism that is different from

the identity mapping, and furthermore, require that the

vertex u be mapped under that subgraph isomorphism to

a specific vertex v.

The intuition behind GATE-SUBISO is the following. G

is the graph that corresponds to the original circuit, and

H is the graph that corresponds to the circuit after wires

are lifted. The above definition for GATE-SUBISO asks

whether there exists a mapping under which the vertex

u in the original circuit is indistinguishable from v in the

unlifted circuit. That is, given that u �= v, an attacker does

not know whether u in G corresponds to u or v in H.

Based on GATE-SUBISO above, we now define the no-

tion of a k-secure gate. It captures the intuition that the

gate is indistinguishable from at least k−1 other gates.

Definition 4 (k-secure gate). Given a DAG, G, a vertex

u in it, and a subgraph H of G constructed from G by

removing some edges, E ′ ⊆ E[G] only. We say that u is

k-secure if there exist k distinct vertices v1, . . . ,vk in G

(and therefore in H), and mappings φ1, . . . ,φk from V [G]
to V [H] such that every φi is a subgraph isomorphism

from G to H, and for all i ∈ [1,k], φi(u) = vi.

The above definition expresses that u is indistinguish-

able from each of the vi’s. Of course, one of the vi’s may

be u itself. Therefore, every gate is 1-secure, and if a gate

is not 2-secure, then that gate is uniquely identifiable, for

this particular choice of E ′. The maximum that k can be

is |V [G]|, the number of a vertices in G.

Given the above definition for a k-secure gate, it is now

straightforward to extend it to the entire graph (circuit).

We do this with the following definition.

Definition 5 (k-security). Given a DAG G, and a DAG

H that we get from G by removing the edges from a set

E ′ ⊆ E[G]. We say that 〈G,E ′〉 is k-secure if every vertex

in G is k-secure.

The above definition is a natural extension of the no-

tion of a k-secure gate, to every gate in the circuit. What

it requires for k-security is that every vertex in the corre-

sponding graph is indistinguishable from at least k ver-

tices. We point out that some gates may be more than

k-secure; k-security is a minimum across all gates. As

the maximum k for any gate is |V [G]|, a graph can be,

at best, |V [G]|-secure. Every graph is 1-secure, which is

the minimum.

We denote as σ(G,E ′) the maximum k-security we are

able to achieve with G,E ′. In Figure 4, for example, we

know that σ evaluates to 1, because the node 5 can be

mapped to itself only. The nodes 1, 2, 3 and 4, however,

are 2-secure gates. The reason is that each can be mapped

either to itself, or to another node.

Computational complexity We now consider the

computational complexity of determining the maximum

k-security, σ . We consider a corresponding decision

problem, k-SECURITY-DEC, which is the following. We

are given as input 〈G,E ′,k〉 where G is a DAG, E ′ ⊆E[G]
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is a set of edges in G, and k ∈ [1, |V [G]|]. The problem

is to determine whether lifting the edges in E ′ results in

k-security.

We point out that if we have an oracle that decides

k-SECURITY-DEC, then we can compute the maximum k-

security we can get by lifting E ′ from G using binary

search on k. That is, the problem of computing σ is easy

if deciding k-SECURITY-DEC is easy.

Theorem 1. k-SECURITY-DEC ∈ NP-complete under

polynomial-time Turing reductions.

To prove the above theorem, we need to show that

k-SECURITY-DEC is in NP, and that it is NP-hard. For the

former, we need to present an efficiently (polynomial-

sized) certificate that can be verified efficiently. Such

a certificate is k mappings each of which is a subgraph

isomorphism, for each vertex u ∈V [G]. Each such map-

ping can be encoded with size O(|V [G]|), and there are

at most k|V [G]| such mappings, and therefore the certifi-

cate is efficiently-sized. The verification algorithm sim-

ply checks that each mapping is indeed a subgraph iso-

morphism, and that u is mapped to a distinct vertex in

each of the k mappings that corresponds to it. This can

be done in time O(|V [G]|3).

We show that k-SECURITY-DEC is NP-hard un-

der polynomial-time Turing reductions in the Ap-

pendix. (Henceforth, we drop the qualification “un-

der polynomial-time Turing reductions,” and simply say

NP-complete and NP-hard.) Indeed, our proof demon-

strates that deciding even 2-security is NP-hard. The

knowledge that k-SECURITY-DEC is NP-complete imme-

diately suggests techniques for approaches for solving

k-SECURITY-DEC, and thereby computing k-security. We

discuss this further in the next section.

Choosing E ′ Lifting edges E ′ from G incurs a cost

c(G,E ′). A simple cost metric, one that we adopt in

this paper is c(G,E ′) = |E ′|, i.e., the cost is proportional

to the number of lifted edges. Given the cost of lifting

edges, the defender’s goal is to determine E ′, the set of

edges that should be lifted, such that σ(G,E ′) ≥ k and

c(G,E ′) is minimized.

We observe that from the standpoint of computational

complexity, the problem of determining E ′ given G,k,

where G is the graph and E ′ is the set of edges to be lifted

so we get k-security, is no harder than k-SECURITY-DEC.

That is, that problem is also in NP.

To prove this, we need to show that there exists an ef-

ficiently sized certificate that can be verified efficiently.

Such a certificate is E ′, and k subgraph isomorphisms

for every vertex. The latter component of the certificate

is the same as the one we used in our proof above for

k-SECURITY-DEC’s membership in NP. The verification

algorithm, in addition to doing what the verification al-

gorithm for k-SECURITY-DEC above does, also checks that

E ′ is indeed a subset of G’s edges.

We note that the k-security from lifting all the edges

in G is no worse than lifting any other set of edges, and

the k-security from lifting no edges in G is no better than

lifting any other set of edges. More generally, given any

n1,n2 such that |E[G]| ≥ n1 > n2, we know that for ev-

ery G, there exists a set of edges of size n1 that if lifted,

provides at least as much security as every set of edges

of size n2. That is, there is a natural trade-off between

the number of edges we lift, i.e., cost, and the security

we achieve. In Section 4, we outline an approach to de-

termine the cost-security trade-off using a greedy wire

lifting procedure.

3.2 Discussion

Given our notion of k-security, a natural question to ask is

whether there are stronger or different attack models for

which k-security would be inadequate. We discuss this

in the context of two attack models that differ from the

one assumed. Finally, we also discuss a related question

— that of the computational capabilities of the attacker.

General targeted attack models The notion of k-

security is premised on an attack model in which the at-

tacker needs to precisely identify one or more gates in

the unlifted netlist, for example, the privilege escalation

bit in a microprocessor [19] or the LSB of the 14th round

in a DES implementation [9]. However, one can imagine

a scenario in which the attack would be successful if the

attacker correctly identifies any one of n gates. For ex-

ample, there could be multiple privilege escalation bits

in the microprocessor implementation.

More concretely, in the example in Figure 3, assume

that the attacker wants to change the circuit functionality

by inverting the output of Gate 2. The same objective

can be accomplished by inverting the output of Gate 4.

However, as we observe before, Gate v in the unlifted

netlist must correspond to either Gate 2 or Gate 4. Thus,

although this gate is 2-secure, the attack would be suc-

cessful with probability 1.

Although our notion of security does not directly ad-

dress the alternate attack model described above, it can

be easily modified to do so. Say that the defender is

aware that Gate v and Gate x are each equally vulnera-

ble to the same kind of attack. Then, the defender can

insist that Gate v is k-secure if and only if it is indistin-

guishable from k−1 other gates excluding Gate x. Such

information that the defender may have about the rela-

tive vulnerability of gates can be built into the notion of

k-security.

Access to lifting procedure Our attack model

strengthens the attacker with access to the original cir-
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cuit netlist, G, along with the unlifted netlist H. Since

the attacker has access to G, it is reasonable to ask if an

even stronger attacker with access to G and the procedure

used to lift wires would compromise security. It would

not.

1

Graph G

2 3 43 4 u

Graph H

x 3 4v w

Figure 5: Example illustrating that the unlifted netlist H

is 2-secure even if the attacker knows that edge 2 → 3

was lifted from original netlist G.

In fact, even if there is a deterministic choice of edges

that must be lifted to provide a certain security level,

knowledge of which edges are lifted does not compro-

mise security, as long as G and H are differently la-

beled. We illustrate this with an example in Figure 5,

where wire 2 → 3 must be lifted to provide 2-security.

This knowledge does not compromise the security ob-

tained from lifting. When there is choice, i.e., lifting two

or more edges provides the same security, the choice is

made uniformly at random. This is discussed in Sec-

tion 4.

Computational capabilities of the attacker Our no-

tion of k-security is not predicated on the computational

capabilities of the attacker. In fact, we assume that the

attacker is able to identify (all) subgraph isomorphisms

from H to G. Nonetheless, given that the attacker’s goal

might be to identify a single gate in the netlist, it is natu-

ral to ask why (and whether) the attacker needs determine

a mapping for each gate in H.

In particular, the attacker can identify all gates in H

with the same type and connectivity, i.e., number and

type of gates it connects to, as the one he is interested in

attacking. Prior work on k-anonymity for social network

graphs assumes this kind of attack strategy. From the

perspective of the attacker, this strategy is sub-optimal.

This is because, for any gate in G that the attacker wants

to target, this strategy will provide at least as many candi-

date mappings in H as the strategy in which the attacker

enumerates all subgraph isomorphisms.

4 Approach

Having considered the computational complexity of the

problem that underlies our work in the previous section,

in this section, we propose a concrete approach for it.

As our discussions in the prior section reveal, there are

two parts to the solution: (a) computing the maximum

k-security for �G,E ��, given the graph G that represents

the complete circuit, and, (b) choosing the set E �.

We propose an approach for each in this section.

For the problem of computing security, we employ

constraint-solving. We discuss this in Section 4.1. For

the problem of choosing E �, we propose a greedy heuris-

tic. We discuss that in Section 4.2. We conclude this

section with Section 4.3 with some practical considera-

tions, specifically, scalability and layout-anonymization.

4.1 Computing Security

As shown in Section 3, the problem of determining the

security level of circuit G, given the unlifted netlist H

is NP-complete. Given the relationship of the problem

to subgraph isomorphism, a natural approach to solving

this problem would be to use graph (sub)isomorphism

algorithms proposed in literature — of these, the VF2

algorithm [12] has been empirically shown to be the most

promising [15]. However, in our experience, VF2 does

not scale for circuits with > 50 gates (more on scalability

in Section 4.3).

Instead, motivated by the recent advances in the

speed and efficiency of SAT solvers, we reduce the sub-

isomorphism problem to a SAT instance and use an off-

the-shelf SAT solver to decide the instance.

Reduction to SAT Given graphs G and H, we de-

fine a bijective mapping φ from the vertex set of H to

the vertex set of G as follows: Boolean variable φi j

is true if and only if vertex qi ∈ H maps to a vertex

r j ∈ G. Here V [G] = {r1,r2, . . . ,r|V [G]|} and V [H] =
{q1,q2, . . . ,q|V [H]|}

We now construct a Boolean formula that is true if and

only if graphs G and H are sub-isomorphic for the map-

ping φ . We will construct the formula in parts.

First, we ensure that each vertex in G maps to only one

vertex in H:

F1 =
|V [H]|

∏
i

|V [G]|

∑
j

(

φi, j

|V [G]|

∏
k �=i

¬φi,k

)

and vice-versa:

F2 =
|V [G]|

∏
j

|V [H]|

∑
i

(

φi, j

|V [H]|

∏
k �=i

¬φk, j

)

Finally we need to ensure that each edge in H

maps to an edge in G. Let E[H] = {e1,e2, . . . ,e|E[H]|}
and E[G] = { f1, f2, . . . , f|E[G]|}. Furthermore, let ek =
�qsrc(ek),qdest(ek)� ∈ E[H] and fk = �rsrc( fk),rdest( fk)� ∈
E[G]. This condition can be expressed as follows:

F3 =
|E[H]|

∏
k

|E[G]|

∑
l

φsrc(ek),src( fl)∧φdest(ek),dest( fl)
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The formula F that is input to the SAT solver is then

expressed as a conjunction of the three formulae above:

F = F1 ∧F2 ∧F3. The formula F has O(|V [H]||V [G]|)
variables and O(|E[H]||E[G]|) clauses.

4.2 Wire Lifting Procedure

To determine a candidate set of edges, E ′, to lift, we em-

ploy a greedy heuristic. Our heuristic is shown as Algo-

rithm 1.

1 E ′ ← E[G]
2 while |E ′|> 0 do

3 s ← 0

4 foreach e ∈ E ′ do

5 E ′ ← E ′−{e}
6 if σ(G,E ′)> s then

7 s ← σ(G,E ′)
8 eb ← e

9 E ′ ← E ′∪{e}

10 if s < k then return E ′

11 E ′ ← E ′−{eb}

12 return E ′

Algorithm 1: lift wires(G, k)

In our heuristic, we begin with the best security we can

achieve. This occurs when we lift every edge in E[G];
that is, we set E ′ to E[G] at the start in Line 1. We then

progressively try to remove edges from E ′, in random

order. We do this if not lifting a particular edge e still

gives us sufficient security.

That is, we iterate while we still have candidate edges

to add back (Line 2). If we do, we identify the “best”

edge that we can add back, i.e., the one that gives us the

greatest security level if removed from E ′. If even the

best edge cannot be removed from E ′, then we are done

(Line 10).

The heuristic does not necessarily yield an optimal set

of edges. The reason is that we may greedily remove

an edge e1 from E ′ in an iteration of the above algo-

rithm. And in later iterations, we may be unable to re-

move edges e2 and e3. Whereas if we had left e1 in E ′,

we may have been able to remove both e2 and e3. Note

that removing as many edges from E ′ is good, because

our cost is monotonic in the size of E ′ (set of edges be-

ing lifted).

4.3 Practical Considerations

From a graph-theoretic perspective, the wire lifting pro-

cedure outlined provides a set of wires to lift that guaran-

tees a certain security level. However, two practical con-

siderations merit further mention — the scalability of the

proposed techniques to “large” circuits, and the security

implication of the attacker having access to the layout of

H, as opposed to just the netlist.

Scalability Although the SAT based technique for

computing security scales better than the VF2 algorithm,

we empirically observe that it times out for circuits with

> 1000 gates. To address this issue, we propose a circuit

partitioning approach that scales our technique to larger

circuits of practical interest. We note that circuit parti-

tioning is, in fact, a commonly used technique to address

the scalability issue for a large number of automated cir-

cuit design problems.

Algorithm 2 is a simplified description of the par-

titioning based wire lifting procedure. The function

partition(G) recursively partitions the vertex set of the

graph into P mutually exclusive subsets and returns sub-

graphs {G1,G2, . . . ,GP} of size such that they can be

tractably solved by the SAT based greedy wire lifting

procedure. The final set of lifted wires includes the union

of all wires that cross partitions, and those returned by

P calls to Algorithm 1. We have used this technique to

lift wires from circuits with as many as 35000 gates (see

Section 5).

1 {G1,G2, . . . ,GP}← partition(G)
2 ER ← E −

⋃
i∈[1,P] Ei

3 for i ∈ [1,P] do

4 ER ← ER

⋃
li f t wires(Gi,sreq)

5 return ER

Algorithm 2: lift wires big(G, sreq)

Layout anonymization We have, so far, assumed that

the unlifted circuit H is a netlist corresponding to the un-

lifted gates and wires. However, in practice, the attacker

observes a layout corresponding to H, from which he re-

constructs the netlist of H. We therefore need to ensure

that the layout does not reveal any other information to

the attacker besides the reconstructed netlist.

Existing commercial layout tools place gates on the

chip surface so as to minimize the average distance, typ-

ically measured as the Manhattan distance, between all

connected gates in the circuit netlist. Thus, if the com-

plete circuit G is used to place gates, the physical prox-

imity of gates will reveal some information about lifted

wires — gates that are closer in the bottom tier are more

likely to be connected in the top tier. The attacker can

use this information to his advantage.

Instead of using the netlist G to place gates, we instead

use the netlist H. Since this netlist does not contain any

lifted wires, these wires do not have any impact on the

resulting placement. Conversely, we expect the physical

proximity of gates to reveal no information about hidden
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wires in the top tier. In Section 5, we empirically validate

this fact. However, anonymizing the layout with respect

to the hidden wires does result in increased wire-length

between gates, which has an impact on circuit perfor-

mance. This impact is also quantified in Section 5.

5 Results

We conduct our experimental study using two exemplar

benchmarks, the c432 circuit from the ISCAS-85 bench-

mark suite [10] (a 27-channel bus interrupt controller)

with ≈ 200 gates, and a larger DES encryption circuit

with ≈ 35000 gates. We use the c432 circuit to investi-

gate security-cost trade-offs obtained from the proposed

techniques and use the larger DES circuit for a case

study.

All experimental results are obtained using an IBM

0.13µ technology. For 3D integration, bond points are

assumed to be spaced at a pitch of 4µm, allowing for one

bond-point per 16µm2. This is consistent with the design

rules specified in the Tezzaron 0.13µm technology kit.

Circuit synthesis was performed using the Berkeley

SIS tool [27]. Placement and routing is performed us-

ing Cadence Encounter. Finally, we used miniSAT as

our SAT solver [29].

5.1 Security-Cost Trade-offs

Figure 6 graphs the security level for the c432 circuit as a

function of E[H], the number of unlifted wires in the un-

trusted tier. E[H] = 0 corresponds to a scenario in which

all wires are lifted, while E[H] = E[G] corresponds to a

case in which all wires are in the untrusted tier.
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Figure 6: Maximum, average and minimum security lev-

els for the c432 circuit using the proposed greedy wire

lifting procedure and random wire lifting.

Proposed Vs. Random Wire Lifting Figure 6 com-

pares the proposed greedy wire lifting technique with a

baseline technique in which wires are lifted at random.

In both cases, we show the maximum, average and mini-

mum security achieved by these techniques over all runs.

Observe that greedy wire lifting provides significantly

greater security compared to random wire lifting. With

80 unlifted wires, the greedy solution results in a 23-

secure circuit, while all random trials resulted in 1-secure

(equivalently, completely insecure) circuits.

Number of Lifted Edges vs. Security Figure 6 re-

veals that, for c432, at least 145 of the 303 (≈ 47%)

wires must be lifted to get any meaningful degree of se-

curity. If any fewer wires are lifted, circuit obfuscation

provides no security at all. However, once more than this

minimum number of wires is lifted, the security offered

increases quite rapidly.

Another observation that merits mention are the

plateaus in security level, for example between E[H] =
30 and E[H] = 55. In other words, in some cases, wires

can be retained in the untrusted tier without any degrada-

tion in security.

Impact of Layout Anonymization Figure 7 shows

three layouts for the c432 circuit. The far left corre-

sponds to the original 1-secure c432 circuit without any

wire lifting. The other two layouts correspond to the

top and bottom tiers of an 8-secure version of c432 with

≈ 66% lifted wires. Of particular interest is the wire rout-

ing in the trusted top tier — because the placement of

the corresponding gates in the untrusted bottom tier have

been anonymized, the lifted wires are routed seemingly

randomly. This is in stark contrast to the wire routing in

the original circuit that is far more structured.

Figure 8 shows the histogram of wire lengths for the

three layouts shown in Figure 7. Note that, in the origi-

nal 1-secure circuit, a large majority of wires are short; in

other words, connected gates are placed closer together.

Wire lengths on the bottom untrusted tier of the 8-secure

circuit also skew towards shorter values — however,

these wires are already observable to the attacker and he

gains no additional information from their lengths. On

the other hand, the wire length distribution of the top tier

is more evenly spread out. This reflects that fact that

the physical proximity of gates in the bottom tier reveals

very little information about the lifted wires.

A Chi Square test was performed to determine if the

distribution of wirelengths in the top tier is different from

one that would be obtained from a random placement of

gates. The test does not provide any evidence to reject

the null hypothesis (N = 11, χ2 = 0.204 and p = 0.999),

i.e., it does not reveal any significant difference between

the two distributions.

Area, Delay and Power Cost Area, delay (inversely

proportional to clock frequency) and power consumption

are important metrics of circuit performance. 3D integra-
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(a) Original Circuit (b) Bottom Tier of 8-Secure Circuit (c) Top Tier of 8-Secure Circuit

Figure 7: Layout of c432 without any lifting (left), and the bottom (middle) and top (right) tiers of an 8-secure version

of c432. Green and red lines correspond to metal wires.
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Figure 8: Comparison of the c432 circuit wire lengths

the original 1-secure circuit and the bottom and top tiers

of the 8-secure circuit.

tion based circuit obfuscation introduces overheads on all

three metrics.

The area of a 3D circuit is determined by the larger of

two areas: the area consumed by the standard cells in the

bottom tier, and the area consumed by the bond-points

required to lift wires to the top tier. The bond-point den-

sity is limited by technology (1 bond-point per 16µm
2 in

our case) and therefore more lifted wires correspond to

increased area.

Delay and power are strong functions of wire length,

as increased wire length results in increased wire capac-

itance and resistance. Layout anonymization results in

increased wire length as we have observed before.

Table 1 shows the area, power and delay for the c432

circuit for different security levels. Compared to the orig-

inal circuit, the 8-secure circuit has 1.6× the power con-

sumption, 1.8× delay, and about 3× the area.

Choice of Technology Library The technology li-

brary determines the type of gates that are allowed in the

circuit netlist. Diverse technology libraries with many

different gate types allow for more optimization, but also

hurt security. Figure 9 shows the security levels achiev-

able for c432 for five different technology libraries with

between three and seven gates.

5.2 Case Study: DES Circuit

We use the DES encryption benchmark circuit to demon-

strate that applicability of our techniques, including cir-

cuit partitioning based wire lifting, to larger circuits. The

DES circuit takes as input a fixed-length string of plain-

text and transforms the string into cipher text using 16

rounds of obfuscation, as shown in the block-level cir-

cuit diagram in Figure 10.

The original, 1-secure implementation of DES that we

synthesized has ≈ 35000 logic gates, which results in an

intractable SAT instance. However, using recursive cir-

cuit partitioning, we are able to lift wires to obtain a 64-

secure implementation. We note that a security level of

16 is obtained in the first few rounds of partitioning by

Table 1: Power, delay, wire length and area analysis for

different levels of security on the c432 circuit. 1∗ is the

base circuit with no wires lifted and 48∗ has all of the

wires lifted.

Power Delay Total Wire Total

Security Ratio Ratio Length (µm) Area (µm
2)

1∗ 1.00 1.00 2739 1621

2 1.54 1.73 6574 4336

4 1.55 1.76 7050 4416

8 1.61 1.82 8084 4976

16 1.62 1.86 8161 5248

24 1.71 1.98 9476 6048

32 1.73 1.99 9836 6368

48∗ 1.92 2.14 13058 8144
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Table 2: Technology libraries used for the experiment in

Figure 9. lib-x corresponds to a library with x different

gate types.

Library max(S1) |V (G)| |E(G)| Gates

lib-3 48 209 303 inv, nor, nand

lib-4 24 181 271 +nand 3

lib-5 13 169 259 +nor 3

lib-6 7 165 252 +nand 4

lib-7 4 159 246 +nor 4
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Figure 9: Obtainable security levels for the c432 circuit

with different technology libraries.

removing only 13% of the wires, i.e., all wires that lie

between successive DES rounds. This is because the cir-

cuit description of each DES round is identical — thus,

once the wires between the rounds have been removed,

each round can be confused for any other round. The fi-

nal 64-secure implementation has only 30% of the wires

unlifted, and consumes 2.38× the area of the original 1-

secure circuit.

Attack Scenario Boneh et al. [9] have shown that spe-

cific bits in a DES implementation are particularly sus-

ceptible to fault attacks. For example, if the attacker is

able to insert an attack such that the LSB output of the

14th round is stuck at logic zero, the secret key can be

recovered using as few as two messages.

Figure 11 shows how such an attack might be effected

using a trigger (we do not address here how this trigger

may be activated) and three additional gates in an inse-

cure (or 1-secure) circuit. When the trigger is set, the out-

put is set to zero, but is equal to the correct value when

the trigger is at logic zero.

Now, assume that wire lifting is performed to make the

circuit 64-secure. Given the set of lifted wires, we note

that the LSB of the 14th round is, in fact, 256-secure, i.e.,

there are 255 other gates in the circuit that are indistin-

guishable from the LSB of the 14th round.

Plaintext

Round 01

Round 14

IP

FB

Round 16

Ciphertext

Round 15

Figure 10: Block diagram of the DES encryption circuit.

The attacker now has two choices. he can either attack

one of the 256 options, and only succeed with probabil-

ity 1
256

, or he can choose to carry out a multiplexed attack

on all 256 gates. This is shown in Figure 11. In this at-

tack, the trigger transmits a sequence of 8-bits that iden-

tify which of the 256 signals the attacker wants to attack.

These 8-bits feed an 8:256 demultiplexer that generates

individual triggers for each of the 256 signals that are

indistinguishable.

The attacker can now iteratively insert attacks in each

gate one at a time and conceivably determine which iter-

ation actually corresponds to the LSB of the 14th round.

However, in doing so, the attacker incurs two costs: (i)

the modified attack circuit now requires 1280 gates in-

stead of just 3, a 420× overhead; (ii) the attacker would

require, in the worst case 255× more messages to re-

cover the key.

5.3 Discussion

We have so far illustrated the quantitative trade-off be-

tween cost and security using benchmark circuits. We

now discuss this trade-off qualitatively. In particular, we

address aspects relating to both the security that 3D IC

based split manufacturing can provide and the cost that it

incurs in doing so.

From a security standpoint, we note that our notion of

k-security is conservative. This is for two reasons. First,

we have assumed a strong attack model in which the at-

tacker has access to the original circuit netlist. In prac-
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Modified
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Trigger

Attacking a non-secure circuit
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target255

t255

Attacking all k

possible targets

Figure 11: Attack scenarios of 1- and k-secure circuits.

tice, the attacker might only have access to the Boolean

functionality of the circuit under attack, but not its gate

level implementation. Second, in realistic attack scenar-

ios, the attacker might need to identify more than one

gate in the netlist. In both settings k-security serves as a

lower bound on the security obtained from 3D IC based

split manufacturing.

Furthermore, hardware attacks that are inserted in the

foundry are different from other attack scenarios in that

they are single shot, and require more effort, risk and ex-

pense to carry out. Thus, even relatively low values of k

are likely to act as a significant deterrent for the attacker.

If the attacker picks one gate to attack at random from

the candidate set, he is only successful with probability
1
k

and receives a payoff which is greater than his cost.

However, with probability k−1
k

, the attacker incurs a (sig-

nificant) cost and receives no payoff. With k = 100 for

example, the attacker’s payoff must be > 99× his cost

for him to break even (on average). Alternatively, the at-

tacker could try attacking all 100 gates that are candidate

mappings for his desired target (as shown in Figure 11),

but this would incur a significantly increased risk of de-

tection during post-fabrication testing.

From a cost standpoint, our empirical evaluations sug-

gest a 1.5×−2× overhead in area, performance (perfor-

mance is proportional to circuit delay) and power con-

sumption, which is the price we pay for security. Al-

though there is relatively little work in this area, these

overheads compare well to those of competing solutions

such as field programmable gate arrays (FPGAs). In

an FPGA, the desired circuit netlist is programmed on

the FPGA after fabrication, so an attacker in a foundry

receives no information about the circuit the designer

wants to implement. However, benchmark studies have

shown that FPGAs are 20×, 12× and 4× worse than cus-

tom digital ICs in terms of area, power and performance,

respectively [20]. In addition, the FPGA itself could be

attacked during fabrication in a way that allows an at-

tacker in the field (after fabrication) to recover the circuit

that has been programmed on it.

Finally, we note that the proposed technique can be se-

lectively applied to only small, security critical parts of

the design. Thus the area, performance and power over-

heads of split manufacturing would be amortized over the

parts of the design that are conventionally implemented.

It might also be possible to use split manufacturing in

conjunction with other security techniques proposed in

the literature such as key-based obfuscation [26, 24].

Key-based obfuscation is only conditionally secure, con-

ditioned on the attacker’s computational capabilities. We

believe that split manufacturing can be used to further

strengthen key-based obfuscation and make it uncondi-

tionally secure, although we leave this investigation as

future work.

6 Conclusion

In this paper, we have proposed the use of 3D integration

circuit technology to enhance the security of digital ICs

via circuit obfuscation. The specific 3D technology we

exploit allows gates and wires on the bottom tier, and

only metal wires on the top. By implementing a subset of

wires on the top tier, which is manufactured in a trusted

fabrication facility, we obfuscate the identity of gates in

the bottom tier, thus deterring malicious attackers.

We introduce a formal notion of security for 3D in-

tegration based circuit obfuscation and characterize the

complexity of computing security under this notion. We

propose practical approaches to determining the security

level given a subset of lifted wires, and of identifying a

subset of wires to lift to achieve a desired security level.

Our experimental results on the c432 and DES bench-

mark circuits allow us to quantify the power, area and

delay costs to achieve different security levels. In addi-

tion, we show, using a DES circuit case study, that 3D

IC based circuit obfuscation can significantly reduce the

ability of an attacker to carry out an effective attack.
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A k-SECURITY-DEC is NP-hard

In this section, we provide outlines of the proofs that un-

derlie our assertion in Section 3 that k-SECURITY-DEC is

NP-hard under polynomial-time Turing, or Cook, reduc-

tions [5]. Such reductions work the following way. Sup-

pose we want to reduce problem A to B. We show that if

we have an oracle for B, then A ∈ P.

Such reductions are unlikely to be as strong as Karp-

reductions [5], that are customarily used to show NP-

hardness. Indeed, the Karp-reduction is a special case

of the Cook-reduction, and some of our reductions be-

low are Karp-reductions. Nevertheless, the existence of

a Cook-reduction from a problem that is NP-hard is ev-

idence of intractability [22]. In particular, in the above

example, if A reduces to B, then if B ∈ P, then A ∈ P.

Recall from Section 3 that k-SECURITY-DEC is the fol-

lowing decision problem. Given as input 〈G,E ′
,k〉

where E ′ ⊆ E[G], does lifting the edges in E ′ give us

k-security? We show that k-SECURITY-DEC is NP-hard

in three steps. First, we show that SUB-ISO-SELF (de-

fined below) is NP-hard. We then reduce SUB-ISO-SELF

to GATE-SUBISO (see Section 3), thereby showing that

GATE-SUBISO is NP-hard. Finally, we reduce GATE-SUBISO

to k-SECURITY-DEC.

All graphs we consider are directed, acyclic (DAGs).

Thus, all subisomorphisms we consider are for the spe-

cial case that the graphs are DAGs. It turns out that the

subgraph isomorphism problem is NP-hard for even the

restricted case, SUB-ISO-9, below.

Definition 6 (SUB-ISO-9). SUB-ISO-9 is the following spe-

cial case of the subgraph isomorphism problem. Given

as input 〈G,H〉 where G is a DAG and H is a directed

tree, SUB-ISO-9 is the problem of determining whether

there exists a subgraph of G that is isomorphic to H.

SUB-ISO-9 is known to be NP-hard [16].

Definition 7 (SUB-ISO-SELF). Given as input 〈G,H〉 such

that G is a DAG and H is obtained from G by removing

the edges in a set E ′ ⊆ E[G], SUB-ISO-SELF is the problem

of determining whether there exists a subgraph isomor-

phism φ from G to H that is not the identity mapping.

Theorem 2. SUB-ISO-SELF ∈ NP-hard.

Note that the above theorem is not qualified that it is

under Cook-reductions. This is because we have a Karp-

reduction from SUB-ISO-9 ro SUB-ISO-SELF. The reduction

proceeds in several steps. First, we show that SUB-ISO-9

restricted to the case that |V [G]|= |V [H]| leaves the prob-

lem NP-hard. We do this by first observing that for any

prospective instance 〈G,H〉 of SUB-ISO-9, we can assume

that |V [H]| ≤ |V [G]|. We simply add |V [G]|−|V [H]| ver-

tices to H.

Then, we show that if we add the further restriction

that G and H are strongly connected (i.e., every vertex

reachable from every other vertex), the problem is still

NP-hard. For this reduction, we first check whether the

two graphs are strong connected. If not, we introduce a

new vertex of a colour distinct from every vertex in the

graphs which has an edge to and from every other vertex.

We then show that SUB-ISO-SELF is NP-hard as follows.

We introduce into G an exact copy of H that is disjoint

from G. We call this new graph G′, and the subgraph

of G′ that is the copy of H, H ′. We further restrict H

and H ′ to not have any automorphisms. To achieve this,

we introduce |V [H]| vertices each of a distinct colour,

associated with each u ∈ V [H]. Call this vertex vu. We

connect u and vu with an edge. We do the same in H ′. We

also add a subgraph G′′ to H which has |V [G]| vertices

and no edges. (This guarantees that the new subgraph is

subgraph isomorphic to G.) We call this new graph H ′′.

We use the same technique as above of adding

coloured vertices to ensure that G (within G′) and G′′ in

H ′′ are not automorphic. Finally, we connect every new

vertex added above to the vertices of G, to every original

vertex of H ′, and every new vertex added to H ′ to every

original vertex of G. We do the same in H ′′. We now are

able to show that 〈G,H〉 is a true instance of SUB-ISO-9 if

and only if 〈G′
,H ′′〉 is an instance of SUB-ISO-SELF.

Theorem 3. GATE-SUBISO ∈ NP-hard under Cook-

reductions.

Recall that GATE-SUBISO comprises those instances

〈G,E ′
,u,v〉, where, if H is produced from G by remov-

ing the edges in E ′, and u,v are distinct vertices in G (and

therefore H), there is a subgraph isomorphism from G to

H that maps u to v. In our reduction, we assume that we

have an oracle for GATE-SUBISO. We simply invoke it for

every pair of vertices u,v ∈ G. If any of them is true, then

we know that 〈G,H〉 is a true instance of SUB-ISO-SELF.

Otherwise, it is not.

Theorem 4. k-SECURITY-DEC ∈ NP-hard under Cook-

reductions.

We Karp-reduce GATE-SUBISO to k-SECURITY-DEC. Let

〈G,E ′
,k〉 be a prospective instance of k-SECURITY-DEC,

and H is produced from G by removing the edges in E ′.

We first ensure that every vertex other than u is 2-secure.

We do this by introduce a new vertex for every vertex

other than u that has exactly the same connectivity. Then,

in G, we introduce a new vertex of a completely new

colour and attach it to u and v. We include the edge be-

tween v and this new vertex in E ′. Call the G so modified

G′′, and the new set of edges E ′′. We can now show that

〈G′′
,E ′′

,2〉 is a true instance of k-SECURITY-DEC if and

only if 〈G,E ′
,u,v〉 is a true instance of GATE-SUBISO.


