
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Amoah, Raphael, Camtepe, Seyit, & Foo, Ernest
(2016)
Securing DNP3 Broadcast Communications in SCADA Systems.
IEEE Transactions on Industrial Informatics, 12(4), pp. 1474-1485.

This file was downloaded from: https://eprints.qut.edu.au/221426/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1109/TII.2016.2587883

https://eprints.qut.edu.au/view/person/Amoah,_Raphael.html
https://eprints.qut.edu.au/view/person/Camtepe,_Seyit.html
https://eprints.qut.edu.au/view/person/Foo,_Ernest.html
https://eprints.qut.edu.au/221426/
https://doi.org/10.1109/TII.2016.2587883

1

Securing DNP3 Broadcast Communications in
SCADA Systems

Raphael Amoah, Member, IEEE, Seyit Camtepe, Member, IEEE, and Ernest Foo, Member, IEEE

Abstract—The Distributed Network Protocol version 3 (DNP3)
provides Secure Authentication (DNP3-SA) as the mechanism
to authenticate unicast messages from a master station to its
outstations in SCADA systems. In large scale systems, it may be
necessary to broadcast a critical request from a master station
to multiple outstations at once. The DNP3 protocol standard de-
scribes the use of broadcast communication; however, it does not
specify its security. This paper is the first to present DNP3 Secure
Authentication for Broadcast (DNP3-SAB), a new lightweight
security scheme for broadcast mode communication. This scheme
is based on hash-chain and only makes use of the existing
cryptographic primitives specified in DNP3-SA. The scheme
integrates itself into the DNP3-SA key update process. The
proposed scheme is modelled, validated, verified using Coloured
Petri Nets (CPN) against the most common protocol attacks such
as modification, injection and replay. Performance analysis on
our scheme and the existing DNP3-SA modes (NACR and AGM)
shows that DNP3-SAB reduces the communication overhead
significantly at the cost of an increase with a constant term in
processing and storage overhead. This benefit is maintained even
when DNP3-SAB is under attack.

Index Terms—SCADA, DNP3, DNP3-SA, DNP3-SAB, Formal
Methods, CPN

I. INTRODUCTION

Supervisory Control and Data Acquisition (SCADA) sys-
tems are predominant among the electricity grids, and the
emergence of smart grids systems are revolutionising the
energy industry [13], [22]. Reports [15] and research [23] on
SCADA security have shown an increasing number of cyber
incidents and attacks targeting critical infrastructure that use
SCADA systems. These incidents and attacks are expected
to increase in number and severity because legacy SCADA
systems and protocols were not designed to work in insecure
environments such as the Internet.

A SCADA network is composed of various components that
range from hardware (IEDs, PLC, RTU) to standard protocols
such as Profinet [27] and Modbus [24]. The Distributed
Network Protocol version 3 (DNP3) [16] is one of the standard
engineering protocols for SCADA systems. It is designed to
mainly facilitate interactions between outstations and their
master stations in an interconnected SCADA network. The
DNP3 protocol supports multi-drop and the data concentrator

Manuscript received August 8, 2015. Accepted for publication June 25,
2016.

Copyright (c) 2009 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

R. Amoah, S. Camtepe and E. Foo are with the School of Electrical Engi-
neering and Computer Science, Queensland University of Technology, GPO
Box 2434, Brisbane QLD 4001, Australia. E-mail: {r.amoah, seyit.camtepe,
e.foo}@qut.edu.au

architectures through which large numbers of outstations and
master stations from multiple sites can concurrently interact.
These types of large scale DNP3 deployments are mainly
used for power grid automation. The DNP3 protocol provides
a security mechanism called Secure Authentication (DNP3-
SA) [11]. This is primarily a unilateral Keyed-Hash Message
Authentication Code (HMAC) mechanism used to secure
DNP3 messages. DNP3 is one of the first standardised SCADA
protocols that attempt to provide a security mechanism.

In [3], [4], Amoah et al. presented formal analysis of
DNP3-SA using CPN. The authors constructed models to
analyse each of the DNP3-SA operational modes. Each se-
curity analysis of the models was primarily limited to unicast
communication; one master station and one outstation. Uni-
cast communication is one of the two communication modes
supported by the DNP3 protocol [9, p70].

This paper focuses on DNP3 broadcast mode, which is the
second of the communication modes supported by the DNP3
protocol. DNP3 Broadcast communication allows a master sta-
tion to simultaneously communicate with multiple outstations
with a single command. One of the advantages of this mode
is that it reduces delay and overhead in large scale systems.
Broadcast is an important feature for cases of emergencies.
For example, an emergency shut-down of stations may be
required to be broadcast due to an electrical incident. The
DNP3 broadcast mode does not have any security mechanism
described in the protocol specification. This gap in the protocol
can lead to devastating problems. For example, an attacker
who has access to the network may modify commands or
execute unauthorised commands simultaneously on multiple
outstations to interrupt services.

Hence, the contribution of this paper is two fold. First,
we present a new security scheme for DNP3 broadcast
mode called Secure Authentication for Broadcast (SAB). Our
scheme secures DNP3 broadcast through the use of a one-
way hash function (hash-chain) that can only be generated
and distributed by the master station and not by any of the
outstations. The outstations verify the parameters provided by
the master station by using initial pre-distributed credentials.
To our knowledge, this is the first proposal for DNP3 broadcast
authentication. SAB extends the DNP3-SA protocol by reusing
its existing cryptographic primitives with the hash-chain such
that, it does not require a major upgrade in existing platforms.

The second contribution of this paper uses Coloured Petri
Nets (CPN) to create an executable DNP3-SAB model and for-
mally analyse the security behaviour of our scheme. CPNs [20]
are a widely used formalism for designs, specifications, sim-
ulations and verifications. Its application in various domains

2

such as security protocols [2], [28] have proven to be trustwor-
thy and reliable. This paper uses CPN because it has the ability
to conveniently express characteristics such as concurrency,
data distribution, asynchronous and non-deterministic features
that are inherent in various communication and security
protocols. As the DNP3 broadcast mode involves a master
station interacting with multiple outstations, the use of CPN’s
hierarchical structure and parameterisation technique become
an important requirement. This is because the hierarchical
structure supports a modular approach for modelling, where
the behaviour of large systems can be captured at different
levels of abstraction. The parameterisation technique enables
a number of attacks to be captured for analysis as part of the
SAB model without the need to create a new model. By using
this CPN tool, we show that our proposed scheme (the SAB
CPN model) provides DNP3 broadcast authentication. We also
show that our scheme reduces communication overhead at the
cost of a minor increase in processing and storage overhead.

This paper is organised as follows. Section II presents the
related work. Section III presents the overview of the DNP3-
SA protocol. Section IV presents the proposed DNP3-SAB
scheme. The CPN modelling of DNP3-SAB and its approach
are presented in Section V. The CPN model description is
presented in Section VI. The formal analysis of DNP3-SAB
CPN model using state space tool is presented and discussed
in Section VII. The performance analysis is presented in
Section VIII. Finally, Section IX presents the discussions and
conclusion of this paper.

II. RELATED WORK

Many of the security flaws found in SCADA are associated
with the communication protocols used in control systems.
This is because SCADA protocols were not designed with
a security mindset. For instance, in 2004 Byres et al. [5]
presented the use of attack trees in assessing flaws in the
Modbus protocol. The authors showed how to identify and
compromise a Modbus device to execute arbitrary requests.
Later in 2008, Huitsing et al. [14] presented an attack taxon-
omy on the Modbus protocol, where some of the attacks could
be used to exploit Modbus’s assets (serial and TCP) in various
ways. In the subsequent year (2009) East et al. [10] presented
a taxonomy of attacks on the DNP3 protocol before DNP3-
SA was adapted from IEC 62351 [17]. Moreover, in the same
year (2009), Akerberg and Bjorkman [1] explored flaws in
the Profinet protocol. Similarly, in 2011, Cheminod et al. [6]
presented a formal vulnerability analysis of the Fieldbus access
protocol, where they presented flaws of the protocol that might
be susceptible to potential replay attacks. In 2014 and 2015
respectively, Amoah et al. [3], [4] presented formal analyses
of the DNP3-SA protocol using the CPNTools [18],where the
authors also presented new flaws in the DNP3-SA protocol.

Many of the standardised SCADA protocols support dif-
ferent types of communication modes; however, traditional
security solutions and SCADA security proposals are mostly
limited to unicast. This paper focuses on security of DNP3
broadcast communication. Broadcast communication and its
security have gained wide attention in the sensor network

domain. Some of the solutions from sensor networks have
been adapted to secure various communication modes in
SCADA systems. Relevant to the topic of this paper, Choi
et al. proposed an advanced key-management architecture for
unicast and broadcast communications in SCADA systems [7].
The proposed scheme is extended to an efficient secure group
communication scheme in SCADA systems [8]. Later in [21],
it has been shown that solutions by Choi et al. are only feasible
with the aid of trusted entities that facilitates key establish-
ment between SCADA entities. Though, these schemes prove
promising, they are constrained with availability issues. Each
trusted entity forms a single point of failure; meaning that,
failure of even one trusted entity may threaten continuity of
the whole security process.

These schemes cannot be directly applied to DNP3 and
other SCADA protocols. This is due to their specific ar-
chitecture and application limitations. Moreover, existing de-
vices with DNP3 capabilities have limited support for cryp-
tographic methods (i.e., SHA-1-HMAC, SHA-256-HMAC,
AES-GMAC, and AES-128 key wrap) due to their resource
limitations. This requires the proposed SAB solution to be
compliant to these cryptographic methods only.

Identifying the gap of missing authentication for DNP3
broadcast communication, this paper employs the hash chain
concept from the TESLA protocol [25] (Timed Efficient
Stream Loss-tolerant Authentication) to secure DNP3 broad-
cast messages in SCADA systems. TESLA is a broadcast
authentication protocol that uses hash chains and time delayed
key disclosure. TESLA generates a key chain by using the
relation of H(Ski) = Ski−1. Sender uses Ski to authenti-
cate a broadcast message Mti sent at time interval ti. The
broadcast message also includes the key used in the previous
time interval (e.i., Mti||Ski−1). That means, the key Ski
will be disclosed along with a message in the coming time
intervals, e.g., time interval ti+1, and the message Mti must
be stored until then. Disclosed key Ski can then be used to
authenticate the stored message Mti. Moreover, the disclosed
key Ski can be checked for its validity using its relation
with the keys disclosed earlier (e.g., H(Ski) = Ski−1 or
H(H(Ski)) = Ski−2). TESLA is considered secure because
it allows all receivers of a given broadcast or multicast
message to verify its integrity and authenticity. Moreover, it
is considered efficient because of its low communication and
computational overheads. It scales well on a large number of
receivers. However, these benefits of TESLA come at the cost
of storage overhead because received messages must be stored
until the relevant keys are disclosed and validated.

TESLA and its derivatives [26] cannot be directly applied
to the DNP3 protocol due to their domain differences and
the nature of the DNP3 protocol. That is, TESLA and its
derivatives depend on time synchronisation and the revelation
of keys. Additionally, TESLA authenticates its initial packet
with a digital signature, which can be seen as costly for
SCADA systems because SCADA devices are constrained
with processing power. Though, time is a crucial factor in
SCADA systems, our approach to secure SCADA systems
using the DNP3 protocol does not depend on strict time
synchronisation as TESLA does. Moreover, DNP3 provides

3

an authentication scheme for unicast communication (DNP3-
SA) that makes use of certain cryptographic primitives and
has a user and key management scheme that updates keys
regularly after a certain period of time (say minutes up to
weeks depending on the rate of communication) [16]. Hence,
this paper presents a broadcast authentication scheme based on
hash-chains and message authentication codes which integrates
with the existing user and key management scheme of DNP3-
SA without needing any major upgrade. Additionally, this
paper presents a CPN model to validate and verify the security
behaviour of SAB with adversarial settings.

III. OVERVIEW OF THE DNP3-SA PROTOCOL

DNP3 is a layered and non-proprietary protocol, which is
designed to facilitate communication between master stations
and outstations via serial-line or TCP/IP protocols through
encapsulation. DNP3-SA is the embedded security mechanism
in the application layer of the DNP3 protocol. Primarily,
DNP3-SA uses an HMAC mechanism with a secret key, k
(i.e., 128 bits) to authenticate critical messages transmitted
between interconnected stations. A critical DNP3 message can
either be a request from a master station or an unsolicited
response from an outstation that contains a mandatory code. A
mandatory code is defined as any code that can control stations
or set crucial parameters such as power grid voltages and
frequencies. This implies that any station that sends a message
which includes any mandatory code will be challenged by
the receiving device to prove its identity. Authentication in
DNP3-SA is unilateral but the mechanism operates in two
different modes: two-pass authentication (NACR) and one-
pass authentication (AGM) through the HMAC. However, the
AGM operation is also dependent on NACR. This means
that AGM can only be in-use if there has been one or more
occurrences of NACR operations. This behaviour enables the
AGM to make use of “the most recent challenge message”
from the NACR operation.

An in depth view of the protocol is provided later in
Section IV of this paper (i.e., when providing the SAB
scheme). But to facilitate the understanding of the protocol,
the operation of NACR and AGM are presented in Figures 1
and 2 respectively. It is important to note that in these figures,
it is assumed that session key, Skmo, for each user have
been securely established between the master station and the
outstation (this will further be explained in Section IV). In
Figure 1, it is depicted that the master station sends a request
to an outstation. At the receipt of the message, the outstation
sends a challenge message, which contains an algorithm (H),
nonce (P) and a challenge sequence number (KSn) to the
master. The master uses the H algorithm from the challenge
received and the shared-key (Skmo) on the entire challenge
data together with the request to create a MAC tag. The
MAC tag is then sent to the outstation. On receiving the
MAC tag, the outstation calculates its MAC tag by using the
same computational approach and elements used by the master
station. A match in the tags indicates an authentication success
and leads to execution of the request. Otherwise, the outstation
discards the request and sends an error message to the master
station.

In Figure 2, a number of challenge-response messages are
eliminated. It is assumed that the master station has the
“most recent challenge message” from the most recent NACR
operation. Taking the most recent challenge message into
account, the master is always required to increase KSn from
the challenge by 1 for all AGM operations before a legitimate
AGM message can be composed. Figure 2 depicts the master
station sending an AGM message to the outstation. The AGM
message consists of a request, and a MAC tag. The MAC
tag is computed by using the algorithm (H), the session key
(Skmo), the “most recent challenge message” and the request.
On receipt of the AGM message, the outstation temporarily
stores the MAC tag, extracts relevant data, computes its own
tag and verifies if the tags match. A successful verification will
lead to processing the request and replying with a response
message. A failed verification will lead to an error message.

Fig. 1: DNP3-SA NACR operation.

Fig. 2: DNP3-SA AGM operation.

IV. SECURE AUTHENTICATION FOR BROADCAST (SAB)
The DNP3-SA protocol works well under unicast commu-

nication, but it cannot be applied to broadcast communication.
This is because as DNP3-SA uses the challenge-response
approach, the master station will need to store, remember
and exchange a number of challenges and response messages
with each outstation. This is not practical because there will
be delays and an increase in communication, processing and
storage overheads. However, in the absence of an appropriate
broadcast authentication mechanism, it is possible for an
attacker to broadcast unauthorised commands to be performed
by all outstations at once. This leads us to design a new secu-
rity scheme, SAB, to secure broadcast mode communication.
A detailed description of SAB is presented in Figure 3.

A. Overview of SAB

The concept of SAB is derived from the TESLA protocol
presented by Perrig et al. [25]. SAB is a minimalist broadcast
authentication protocol designed only to use existing crypto-
graphic primitives of DNP3-SA (i.e., SHA-1-HMAC, SHA-
256-HMAC, AES-GMAC and AES-128 key wrap) so that
existing DNP3 devices can be made compatible with minimal
software upgrades. Intuitively, SAB operates through a hash-
chain, which is a linked hash values known to master station

4

only. Using the pre-distributed credentials, the outstations can
only verify the current hash value released with the current
broadcast message but they cannot produce the hash value
before it is released. Limiting this feature to only the master
station implies that broadcast messages are generated by the
master station and they are correct. This therefore, effectively
secures DNP3 broadcast communication against modification,
spoofing, replay, and injection attacks. This approach is better
than some existing schemes because our scheme solves the key
management problem associated with the HMAC mechanism.
Thus, instead of the HMAC mechanism using different keys
for each broadcast message, our scheme uses a hash-chain
with a single symmetric key. Moreover, our scheme is not
constrained by time like other schemes based on TESLA
and most of its derivatives. Moreover, SAB does not require
infrastructure like a Public Key Infrastructure (PKI), where
processor intensive algorithms like RSA are used. A com-
parison of performance and functionality of SAB using other
alternative methods is presented in Section VIII.

B. Operation Details of SAB

Figure 3 presents the detailed behaviour of SAB. To un-
derstand the table, the following notations are worth noting.
Master Station and Outstations represent the communicating
entities. Skmo and Sk

′

mo respectively represent the old and
new session keys of a particular user, which are used to
provide entity authentication for the data transmitted in the
control direction (i.e., from master to outstations). Both session
keys are derived from the long-term secret key, UpK. UpK
is traditionally manually distributed to all the entities in the
control system. R is a random bit-string with sufficient length,
such as 128 bits, to prevent trivial pre-image attacks. H
represents the hash function, and is used to compute the hash
chain tags: S1 = H(R), S2 = H(S1), . . . , Sn = H(Sn − 1)
which represent hash chain tags that are produced from a
single random value (R). Sn represents the last hash tag of
the hash chain while n represents the index of Sn. KS and
KS

′
represent challenge messages that contain old and new

challenge data respectively. Each challenge contains a Key
Change Sequence Number, KSn, Message Authentication
Code (MAC) algorithm, H and a Nonce, P . E and D
represent symmetric key encryption and decryption schemes,
respectively agreed between all the entities. C (ciphertext) rep-
resents encrypted (Sk

′

mo, Sn, n). MACSkmo
and MACSk′

mo

represent agreed MAC schemes with keys. tag and tagA
represent MAC tags generated by the master station while
tag

′
and tag

′

A represent MAC tags generated by outstations.
KSR represents a request, (FC)Req , that contains a user’s
key change data. KC represents the concatenated ciphertext,
C and the MAC tag, tag. KSC represents a response that
contains the status of the user’s key update, (FC)Resp, and
a new challenge message, KS

′
. BM represents a broadcast

message that contains a request, (FC,OH)Req , a hash tag,
Si, the index of the hash tag, i and the MAC tag, tagA.
ErrorResp represents an error response. UID represents a
User Identification Number associated with the communicat-
ing entities. Sstored, Nstored, Sreceived and Nreceived store value

from Sn, n, Si and i (where 1 ≤ i < n), respectively. Scalc is the
variable used to calculate the next hash tag of the hash-chain.
In this scenario, it is assumed that the necessary algorithms and
session key, Skmo are pre-established between M and O, but
the session key is outdated. Therefore, M wishes to update the
old session key to a new key. But before M updates the key, it
is required that M pre-creates a hash-chain for future broadcast
communication. In creating the chain, M is required to choose
an arbitrary number R (let’s say 128-bits) and creates a series
of hash tag values using hash chains as illustrated in step 1
of Figure 3. After creating the chain, M can now send a key
status request, KSR, to all O to update the session key of a
particular user (step 2). At the receipt of KSR, all O reply
with key status message, KS, which contains the challenge
data (H , P and KSn, from step 3). At the receipt of KS, M
uses the pre-shared key, UpK, to encrypt the new session key,
Sk

′

mo, and the last hash tag of the hash chains, Sn, together
with associated its index, n (step 4). Furthermore, M uses H
from KS, and the existing (old) session key, Skmo, to keyed-
hash KS and KSR in order to compute the MAC tag, tag
(step 5). Then, M sends KC, which contains ciphertext, C,
and the MAC tag, tag, to all O (step 6). On receipt of the
message, all O first compute their MAC tag, tag

′
by using the

same computational elements used by M , and then checks if
the tags match (step 7). If the tags match, then all O performs
the second action by decrypting KC using UpK and storing
the contents (Sk

′

mo, Sn, n refer to step 8). At this point, all O
can respond to M with KSC to indicate that the new session
key (Sk

′

mo), as well as the last hash tag value of the chain
and its index are stored (step 9). Furthermore, KSC also
includes a new challenge message, KS

′
, that M uses to re-

authenticate itself to all O in case a new key and hash updates
(new hash chain) are required (step 1–9). It is worth noting
that KS

′
is a variable of the DNP3-SA protocol and it is used

for challenging the master station in the DNP3-SA protocol.
KS

′
is not used in SAB but it is maintained for compatibility

reasons with the DNP3-SA protocol. Analysis of the DNP3-
SA protocol can be found elsewhere [3]. At this point, it is
important to note that all stations (M and all O) are now set
to communicate with normal DNP3 messages.

In the part labelled Continuation of New Scheme, we
make use of the AGM behaviour as explained in Section III.
That is, before any broadcast message can be sent, M must
first compute a MAC tag based. Computation of the MAC
tag is based on the request about to be sent, a hash tag
from the hash chain and the index value associated with
the tag. It is to be noted that the index is always linked
to a particular hash value chosen. In computing tagA, M
uses the agreed MAC scheme with the recent established
key, Sk

′

mo, on the message (Si, i, (FC,OH)Req, UID). After
tagA is obtained, M sends BM (broadcast message), which
constitutes (Si, i, (FC,OH)Req, UID) and tagA to all O. On
the receipt of the message, all O first check if i associated with
hash tag, Si is valid (non-negative value); and i is less than
what is previously stored (Sstored). There are two main reasons
why this action (i checking) is required: 1) to prevent potential
replay attacks of a previously recorded message with a valid
MAC tag and 2) to take into consideration subsequent rounds

5

Fig. 3: A New Security Scheme for Broadcast Mode Communication

Master station Outstations
(UpK, Skmo) (UpK, Skmo)

Beginning of New Scheme
(1) R← {0, 1}∗
S1 = H(R), S2 = H(S1), . . . ,Sn = H(Sn−1)

Existing Key updating Process

(2) KSR = (FC)Req
KSR−−−→
KS←−− (3) KS = (H,P,KSn)

(4) C = EUpK(Sk
′

mo,Sn,n)
(5) tag = MACSkmo

(KS,KSR)

(6) KC = (C, tag)
KC−−→

Verifying MAC tags for Key Update
(7) (tag

′
= MACSkmo

(KS,KSR)

If (tag == tag
′
)

(8) (Sk
′

mo,Sn,n) = DUpK(C)

Sstored = Sn;Nstored = n;Sk
′

mo

KS
′
= (H

′
, P

′
,KSn

′
)

KSC←−−− (9) KSC = ((FC)Resp,KS
′
)

Continuation of New Scheme
1 ≤ i < n
(10) tagA = MACSk′

mo
(Si, i, (FC,OH)Req, UID)

(11) BM = {Si, i, (FC,OH)Req, UID, tagA}
BM−−−→

Verification Process
Sreceived = Si,Nreceived = i

(12) if !(1 <= Nreceived < Nstored) {Error Resp}
Step 1: Check Authentication

(13) tag
′

A = MACSk′
mo

(Si, i, (FC,OH)Req, UID)

If (tagA! = tag
′

A) {Error Resp}

Step 2: Check Freshness
Scalc = Sreceived

(14) For (x = Nreceived;x < Nstored;x++){
Scalc = Hash(Scalc)}
if (Scalc == Sstored){

Sstored = Sreceived;Nstored = Nreceived;
(15) Process BM [(FC,OH)Req]}

ErrorResp←−−−−−−− Else{Error Resp}

of authentication for legitimate broadcast messages issued by
the master station. For the replay attack, assuming i is valid,
then all O will continue to perform a MAC tag verification
for message authentication (line 13), otherwise the operation
is aborted. In checking for message authentication, all O
compute tag

′

A and verify them against tagA received from
the master. A match implies success, which further leads all
O to check for freshness (the status of hash tag received, line
14) before the broadcast request can be processed. In checking
the hash tag, all O use i (Nreceived) to determine the number of
hash iterations that must be performed on Si to obtain the final
hash tag result, Scalc. Scalc is then compared with the stored
hash tag, SStored. If the hash tags match, then, Scalc is stored
as the new hash tag value (SStored), and the broadcast request
(BM [(FC,OH)Req]) is processed. However, if the tags do
not match, then Scalc is discarded and an error response is
sent to M . This action or behaviour applies to multiple rounds
of authentication within SAB. Thus, since every hash tag is

linked to an index, it implies that every broadcast message
will have a unique hash tag and its associated index for every
round of authentication required. Therefore, for all rounds of
authentication if the indexes are not valid, the outstations will
respond with error messages just as before in the replay attack.
But, if the indexes are valid in each round, then the outstations
are required to perform the MAC tag verification (line 13).
If the MAC tags verification do not match for each round,
the outstations will respond with error messages or abort the
operation. Otherwise, the outstations will continue to verify
the status of all hash tags for each round (line 14) before the
broadcast request can be further processed. A successful hash
tag verification in each of the rounds will lead to discarding
the old hash tag and storing the new hash, and processing the
broadcast request as expected. But failures in each round will
lead to an error message.

6

V. CPN MODELLING OF THE DNP3-SAB PROTOCOL

A CPN model is a bipartite graph that comprises of two
forms of nodes, places (drawn as ellipses) and transitions
(drawn as rectangles), and directed edges that are known
as arcs that connect places to transitions. The places and
transitions respectively represent states and events in a given
model. They are associated with colour sets (simple and com-
pound colour sets) that enable a place to store data (token(s)).
Simple colour sets are made of data types such as string,
integer and boolean values. Compound colour sets (product,
record and union) are colour sets that are constructed on
simple coloured sets. For example, colset Eg = product
string * integer. The distribution of a token from
one place to another through a transition represents a state
change. As previously, we use the CPN tool mainly because
of its ability to conveniently express characteristics such as
concurrency, parallel, data distribution, asynchronous and non-
deterministic features that are inherent in many systems. With
such abilities, different level of abstractions of the protocol
can be captured in order to validate and verify the correctness
of our scheme. In addition, essential security primitives and
behaviours of SAB can be captured and represented as “black-
boxes” through the CPN functional programming language
Standard ML (SML) [12]. This is because SML creates
the flexibility to virtually capture different types of data or
cryptographic parameters for various types of operations. The
effectiveness of CPN is also supported by the embedded state
space tool [19], which can be used to perform validation and
verification analysis through a summary report that is provided
after the execution of the CPN model.

A. Our CPN Modelling Approach

To understand the CPN formalism, this section presents
specific processes involved in modelling the DNP3 broadcast
protocol with SAB. These processes are useful for representing
various data such as requests and responses, cryptographic
primitives and operations as well as other behaviours such
as adversaries. The processes include 3 steps namely:

Protocol Primitives Abstraction: This approach is used
to capture various data such as requests and responses and
security primitives (cryptographic keys, MAC tags, hashes)
from the DNP3-SAB protocol. In capturing these primitives
and behaviours in CPN, we needed to first represent data as
CPN colour sets and then address their operations by using
CPN SML functions. As previously stated, colour sets (both
simple and compound) are made of data types. Therefore,
representing data (requests, responses and security parameters)
with these colour sets create the flexibility and inclusiveness
to virtually capture different types of cryptographic parameters
for various types of operations required. For example, the
CPN record and product data types help encode relevant
data needed to represent a cryptographic parameter. Relevant
to this paper, colset Request=product of fcode *
oheader is an example of the CPN colour set used to
represent the protocol initial request from the master station.
Here, fcode and oheader are both a string data type. This
implies that an integer request will be void because the model

is only accepting specific string values as requests. On the
other hand, we use CPN’s SML functions to simulate the
operations of the primitive captured. But it is worth noting
that SML functions used are mostly symbolic rather than the
real operation. For example, the outstation’s way of generating
appropriate responses based on a particular request from the
master, does not perform the actual generation of responses
expected from the protocol specification. Rather, the SML
functions only mimic the behaviour of the protocol by using
certain restrictions. This approach helps one to reuse functions,
which also leads to obtain a clean and precise model.

Hierarchical Net-structure: In this paper, we choose to
model a single master station that is concurrently communicat-
ing with 3 outstations. This configuration is set-up to facilitate
the understanding of the paper and model can be extended to
support more stations. To achieve this configuration, we use
the CPN hierarchical technique to hide the details of the net
structure in order to simplify complexities. This approach is
suitable for creating large models because the behaviours of
entities or security operations can be represented as substitu-
tion transitions (rectangular-shaped but with double outline).
Each substitution transition may link to at least a sub-net
structure page, where detail of the net structure can be found.
This makes it possible to capture different levels of abstraction
in the same CPN model. For example, we demonstrate this
approach in Figures 4, 5, 6, 7 and 8), where Figures 4 present
the main page (top-level) while Figure 5, 6, 7 and 8) present
details of some substitution transition in our main page. This
paper presents pages (top and third-level pages) of the model
that are relevant to the contribution of this paper.

Model Parameterisation with Adversaries: Relevant to
this paper, this approach is used to avoid the tendencies
of creating different models to capture different behaviours.
Thus, using this approach enabled us to construct a CPN
model such that it is also possible to incorporate different
types of adversarial behaviours, where one or more of the
attack behaviours can be enabled or disabled depending on
the environment for analysis (i.e., validation or verification).
There are many types of attack that could be launched, but
we scope this work to only consider common Internet attacks
such as modification, replay, injection. The detail of the attack
models is provided in Section VII-B.

VI. MODEL DESCRIPTION

A. Model Assumptions

Before the CPN model for DNP3-SAB is presented, it is
important to note that some assumptions were considered
while modelling. These assumptions are made to help avoid
the possibility of generating large state space values and they
reduce complexity in constructing the model. Some of these
assumptions include:

• The master station communicates with 3 outstations.
• All default algorithms (i.e., long-term secret key, session

keys, MAC scheme) used in DNP3-SA among stations
have been pre-established.

• The underlying layers of the DNP3 protocol are reliable
to ensure that there no communication failures.

7

• Not all DNP3 and DNP3-SA data variations are captured.
This is because some data variation do not contribute
to the security analysis of this paper. Examples of such
variations include binary, analog inputs and outputs data.

B. The CPN model of DNP3-SAB

Taking the above assumptions into consideration, the DNP3-
SAB CPN model is constructed in 3 different level of details
or pages. The pages were created to improve the readability of
this paper. These 3 pages include the top-level, second-level
and third-level pages. The top-level page is the main abstract
view of our CPN model. The second-level page shows brief
details of the top-level while the third-level pages present the
actual details of the modules (substitution transitions). Because
of space constraint, top and third-level pages that directly
contribute to this paper are presented; Figures 4, 5, 6, 7 and 8.

Figure 4 presents the top-level page of the DNP3-SAB CPN
model. The model represents one master station communicat-
ing with three outstations for the purpose of illustrating and
evaluating the contribution of this paper using sized models
with sufficient details. The behaviour of the master station
(Figure 4 - Left), network (Figure 4 - Middle) and outstations
(Primary Outstation A, B & C, Figure 4 - Right) are presented
with substitution transitions (i.e., double-lined square boxes).
A substitution transition is a high-level module that is used to
hide the detailed operation of a net structure. For example, the
Network substitution transition hides the details of the network
activities between the stations (see Figure 5). Remaining
SendA, sendRq, TrigRep, DataB, and sendRsp places
model the transmission of data via the network between the
stations. The ctrlkey and UserID places capture users and
their associated keys. Figure 5 presents the third-level page

Fig. 4: DNP3-SA CPN on Multi-drop – Top-level page.

of the network in our CPN model (the Network substitution
transition in Figure 4). Figure 5 presents two behaviours;
network behaviour and parameterised attack models. The
network behaviour specifies the way that the master station
and the outstations exchange messages. In the Figure 5, the
network behaviour is modelled with the SendA and sendRq
places and the ConnectA transition. These places and transition
allows the master to send data to the outstations. The colour
sets (colset Packet and PacketRsp) represent all data (request,
response and cryptographic parameters) exchanged between
all the stations. The labelled part “Receiving Responses” of
Figure 5 forms part of the network behaviour, where all outsta-
tions respond to requests, if required. The parameterised attack

models mark the adversarial behaviours on the network. These
behaviours include attacks replay, injection and modification.
These attack behaviours are set to false (turned OFF) and will
be discussed later in Section VII-B.

Fig. 5: The network and attack models.

Figure 6 presents the third-level page of all the outstations
processing requests. It is assumed that all outstations will
be processing the same request. We model the broadcast be-
haviour of all outstations with the T write transition from the
Sub Processes substitution transition, the SenSor and Enabler
transitions, and the Actuator1 and Binary places. These
places and transitions are used to capture the executions of all
broadcast operations. For example, the SenSor transition must
execute the token value “Rlsed Pressure” three times
(3x) when the appropriate broadcast request for this operation
is received.

Fig. 6: Processing requests on all outstations.

Figure 7 depicts the behaviour of SAB on the master station.
The HashChain place presents all the generated hash tag
values and their respective indexes (the left-down bubble in
Figure 7) using one of the DNP3-SA hash function specified
in its standard. This behaviour represents step 1 in Figure 3.
The MAC place models the MAC token (values) obtained
from the BSecure transition (refer to the inputs of BSecure,
representing step 10 in Figure 3). The BdRequest, HValue
and Index places model the actual broadcast request about
to be sent, the hash tag from the hash chain and the index
of the hash tag, respectively. These tokens are grouped as a
single broadcast message through the BPackA transition and
transmitted to the network through the SendRQ place. This
captures the behaviour (step 11) illustrated in Figure 3.

8

Fig. 7: The behaviour of SAB on the master station.

Figure 8 presents the behaviour of SAB on the outstations.
The Stored Values substitution transition models the storage
area for valid hash tags and their indexes. This includes the
last hash tag from the hash chain, which is assumed to be
securely established before the communication began between
the stations (to the centre of the Figure 8). The BrdCast
Requests transition models the receipt of every broadcast
message from the network through the sendRq place (lower
left of the Figure 8). The Check Index Value transition models
the behaviour for checking whether the incoming index values
of the hash tag are valid. This transition is there for subsequent
rounds of authentication and to avoid replayed messages. If
the received index of the hash tag is valid, then a token
is placed on the Trigger place to verify the authenticity
of the broadcast message. Otherwise, a token is placed on
the AuthStatus place to signify an error (to the centre-
right of the Figure 8). This behaviour reflects the verification
process (step 12) in Figure 3. Moreover, the ECV substitution
transition models the behaviour, where the received hash tag
from the master station is extracted and hashed a number
of times to obtain a particular hash value. This behaviour
represents step 14 in Figure 3. The verification of MAC tags
for message authentication and hash tags for freshness is
achieved through the Tagcheck transition; representing step 13
and 14 in Figure 3.

Fig. 8: The behaviour of SAB on all outstations.

VII. THE FORMAL ANALYSIS OF DNP3-SAB CPN MODEL

In this section, we present the validation and verification
of the DNP3-SAB CPN model under the set-up of 1 master

to 3 outstations by using CPNs state space tool. This set-
up provides a model with a proper size for illustration and
with sufficient details for security analysis. However, a generic
performance and overhead analysis showing how the proposed
solution scales with increasing number of outstations is pre-
sented in Section VIII.

The state space tool provides relevant information on how
the model proceeded from one state to another in consistent
manner. This vital information is presented in a summary
report with a number of behavioural properties. Some of these
properties include the nodes and arcs of the state space, the
Strongly Connected Components (SCC), live transitions, home
markings, dead markings and dead transitions. The state space
nodes and arcs are properties used to determine the number of
nodes and arcs involved in the entire model. Likewise, SCC
is a property used to determine the reachability of nodes and
iterations involved in the model. This paper is more interested
in dead markings and dead transitions. A marking or state is
declared dead when there exist no binding elements to make
the state active. In our model, a dead marking signifies a
termination point. Similarly, a transition is declared dead when
the transition has no path from reachable states to enable it.
A dead transition in our model may imply that an expected or
unexpected action may have occurred. It is to be noted that
dead transitions in our model are subject to change. Depending
on the behaviour to be validated or verified, the number
of dead transitions might vary because certain parameterised
behaviours might be set to true or false. For example, if all
attack models are set to false (turned OFF) while validating
the model may generate a large number of dead transitions.

A. Validation of the DNP3-SAB CPN model

The aim of this section is to validate the DNP3-SAB CPN
model without any attack model turned on (i.e., true). The
purpose of this action to determine whether the model reflects
the DNP3 broadcast behaviour expected from the protocol
specification. In this analysis, it is expected to obtain a single
dead marking as the result of a single initial request from
the master station to all outstations. This single dead marking
will indicate that every request issued by the master station, is
received and processed simultaneously by all the outstations.
Additionally, it is also expected to obtain 37 dead transitions.
These transitions will consist of parameterised attack models
that have been set to false, inactive DNP3-SAB operations
(because we are validating), and security transitions such as
Errfback and Gen AuthError that could not execute, as there
are no attacks enabled.

Table I presents the full state space report of the DNP3-SAB
CPN Model. The table has two parts; Initial DNP3-SAB CPN
Model and Attack Models on DNP3-SAB CPN model. The
Initial DNP3-SAB CPN model presents the validation of the
SAB model while the latter is the verification of DNP3-SAB
against the most common attack models (this is presented in
the subsequent section).

In Table I, Initial DNP3-SAB CPN Model the report
presents identical values obtained for nodes and arcs of the
state space and that of the SCC. Achieving these matching

9

TABLE I: State Space Analysis of SAB on Multi-drop

State Space Report for CPN SAB Model

Initial SAB CPN Model Attack Models on SAB
Injection Modification Replay

State Space Nodes 13,829 23,831 821 44,789
State Space Arcs 50,117 50,120 1,045 89,056

SCC Graph Nodes 13,829 23,831 821 44,789
SCC Graph Arcs 50,117 50,120 1,045 89,056

Dead Markings 1 3 1 3
Dead Transitions 37 25 53 22

values for both properties implies that our model has no loops
and moreover the model has a finite sequence of occurrence.
Furthermore, the report presents a single dead marking with
37 dead transitions. These values (single dead marking and
37 dead transitions) are consistent with our expectation in
Section VII. This is because a close inspection of the model
revealed that the single dead marking represents the state
where a broadcast request from the master station has been
successfully authenticated and processed by all outstations. As
a result, it led to the execution of the Sensor transition, which
further led to overwrite the default token value of ‘0’ to ‘3’ on
the Actuator1 place on all outstations (refer to the bottom
of Figure 6). Additionally, the inspection also revealed that all
37 dead transitions were consistent with our expectations. This
is due to the absence of attack models and certain security
operations such as Errfback and Gen AuthError transitions,
which model authentication failure operations that could not
be executed as there are no attacks enabled. In summary, these
behaviours are expected as SAB is enabled and no attack
models have been enabled.

B. Verification of the DNP3-SAB CPN model

This section presents the evaluation of DNP3-SAB CPN
model with adversaries enabled (i.e., attacks set to true) to
determine whether the authentication property of DNP3-SAB
is provided. But before we discuss the evaluation of DNP3-
SAB, this section will provide the details of the attack models
used for verifying the model. As previously emphasised in
Section V-A, the adversarial behaviours considered for this
analysis include replay, injection and modification attacks. The
overall objective of these attacks is to broadcast a request and
get it processed on the 3 outstations.

Figure 9 presents the attack model considered for this
analysis. The attacks are modelled with places, transitions and
parameters as before (see dotted area of Figure 9). These attack
behaviours were set to false during the validation of the model.
But to verify the model, we have enabled these attacks such
that we can revalidate the security of the model. In Figure 9,
the replay attack is modelled through the Capture Reqs and
TrigRep places and the Replay transition. At this point the
attack is able to store and replay previous messages from
the master station. The injection attack is modelled through
the InjectR place and the ExcM1 transition. This allows
the attacker to forge and inject an existing request data with
random strings via the network to the outstations (see the
box on top of InjectR, Figure 9). The modification attack is
modelled through the function MoDAttack1. The function

Fig. 9: The attack models in the network module.

is defined as a parameter on the arc inscription binding the
ConnectA transition and the sendRq place. This implies that
the attack can actively modify data (request contents and
network addresses) while in transmission through the network.

In Table I, the attack models on SAB show 3 dead markings
for the injection and replay attack models, and a single dead
marking for the modification attack. Obtaining these markings
with their respective dead transitions led us to simulate the
model to investigate the behaviour obtained for each attack
model. The investigation of the modification attack revealed
that the single dead marking obtained represents the execu-
tion of the Gen AuthError and Errfback transitions in all
outstations; indicating an authentication failure for the initial
model state. This behaviour is expected because the attacker is
actively modifying the content of the packet since the message
in the protocol is in ‘cleartext’. As a result, the initial request
from the master station does not get executed because the
integrity of the initial message has been compromised. This
led to 53 dead transitions because the initial request was not
executed on any of the outstations. Investigating the injection
attack model revealed that one of the obtained dead markings
represented the successful execution of the SenSor transition
on all the outstations (see Figure 6); leading to obtaining
the token value ‘3’ on each of the outstations. This implies
that authentication for the initial broadcast message from the
master station was successful. This is expected. However, the
remaining dead markings (2) of the injection attack represent
the case of failure to terminate the protocol. This failure to
terminate the protocol led to the execution of the Errfback
and Gen AuthError transitions. A further investigation showed
that this failure occurred because the parameters provided by
the attacker could not be verified by SAB as required. As a
result, the execution of Errfback and Gen AuthError transitions
indicate an authentication failure. Moreover, the analysis also
showed that the 25 dead transitions obtained from the model
were as a result of the failure; as certain transitions could
not be executed due to the lack of data. The model reveals
that it is computationally hard for the attacker to forge and
provide the expected data. This is because the attacker has no
prior knowledge of the hash-chain parameters pre-established
between the stations. For this reason, this failure will give an
insight to an administrator through its log files.

Similarly, with the replay attack 1 out of the 3 dead
markings indicated the successful execution of the SenSor

10

transition on all the outstations. This also implies that the
initial state of the model (request from the master station) was
successfully authenticated before processing. However, both
remaining dead transitions represented authentication failures,
which lead to the execution of Errfback and Gen AuthError
transitions. In the replay attack, Errfback and Gen AuthError
transitions occurred because the replayed messages lacked
freshness; new hash tags and MAC tags. As a result, 22 dead
transitions occurred. In summary, these behaviours indicate
that all parameterised attacker behaviours in this model have
been detected and stopped. As a result, no unauthorised
commands were possible to execute on the outstations without
a proper authentication performed.

VIII. PERFORMANCE ANALYSIS AND COMPARISON

This section provides a comparison of storage, communi-
cation and computation overheads of SAB against its unicast
counterparts: DNP3-SA NACR and AGM. The comparisons
are based on the total headcount of messages within the
protocol but not in terms of bytes sizes. This is because
most of the messages have similar byte sizes. Moreover,
the performance of these authenticated unicast and broadcast
communication schemes are compared under adversarial con-
ditions. The purpose of this presentation is to show that SAB
is usable because our lightweight security solution improve
performance and reduce overheads.

The following notations are used in Table II. Here, N
represents the number of outstations a master station is com-
municating with. Here n denotes the approximate number
of commands to be exchanged between the master station
and its N outstations per user and during a time interval
between two key updates. Additionally, n also represents
the number of hash tags in a hash chain generated as part
of SAB. SAB uses one hash tag per request as illustrated
in Figure 3. H denotes the hash function used to compute
the hash chains. E and D denote encryption and decryption
respectively. DAS , DAN and DAA denote the Drop attack
on SAB, NACR and AGM, respectively. In the drop attack,
an adversary drops a request from the master station with
the probability Pa. MIRS , MIRN and MIRA denote the
modification, injection and replay attacks on SAB, NACR
and AGM respectively. The probability that these attacks will
target a request from the master station is represented as
Pa. For the sake of comparability, we have represented all
cryptographic transformations used in DNP3-SA and DNP3-
SAB as C (i.e., C={H , E, D, MAC}). Similarly, the stored
parameters used in DNP3-SA and DNP3-SAB are represented
as K (i.e., K={Sn, n, UpK, Skmo, P , KSn}).

To understand the overheads analyses presented in Table II,
three things must be noted. 1) There are N outstations
communicating with a single master station. 2) There exists
a key update process that occurs before the NACR or AGM
operates. The key update process has 4 headcount of messages
per round and per user (refer to Figure 3). 3) NACR is a
prior requirement to AGM operation. This implies that the
number of communicated messages in NACR will also be
considered in AGM operation. Table II SAB shows that the

total messages involved in SAB communication is 4N+ n.
This value (4N+ n) is obtained because there are 4 messages
exchanged during the key update process to N outstations and
a single (n) broadcast requests are sent (refer to the exchanged
messages in Figure 3). This value corresponds to O(N+n). In
processing SAB, the master needs to generate a hash chain and
a MAC tag. This is represented in the table as 2n+2 ≈ O(n)
(including the key update set-up). Similarly, processing SAB
on each outstation requires 4Nn (including the keys update).
This is because that each of the N outstations computes
a hash and MAC tag. The value on the outstations (2Nn)
corresponds to O(Nn) while that of the master corresponds
to O(n). For SAB storage overhead, the table shows 2n+2 for
the master and 8N for the outstations. The value 2n+2 on the
master represents a hash value (Si) with its index (i), and the
storage of 2 keys (i.e., UpK and SKmo). Similarly, 8N on
the outstations imply that each of the N outstations stores 8
parameters consisting of 2 keys (UpK and SKmo), chalg, Sn,
i, Scalc, Sstored and Nstored. Here, 8N corresponds to O(N)
and (2n+2) corresponds to O(n).

In Table II, the overheads of NACR and AGM are also
presented. The overheads of NACR is almost as the same as
that of the AGM. Except that overhead of the AGM include the
NACR behaviour as prior requirement. However, both modes
take into account N outstations. This is done to compare
SAB to NACR and AGM. From Table II, comparing the
overheads of SAB to the existing NACR and AGM overheads,
the table shows that SAB has less communication overhead
over its counterparts: NACR and AGM. This is because
in SAB operation, the master sends a single request to N
outstations at once, rather than sending a request to each
of the N outstations (as this is the case for NACR and
AGM). However, the table shows a slight (minor) increase
in storage and processing overheads on the N outstations
during SAB. This slight increase is asymptotically insignificant
because SAB is designed to run on large systems rather
than a small scale systems. In case NACR and AGM are to
be used on large scale systems, the processing and storage
overheads will dramatically increase. This is because both
modes will have to individually exchange n of messages to N
outstations. The advantage of SAB communication overhead
becomes more clearer when attacks such as drop, modification,
injection and replay attacks are considered (refer to Table II).
Thus, in the attack models (DAS and MIRS), SAB requires
much less retransmission (nPa) for each request attacked with
probability Pa than its counterparts. In addition, SAB causes
less processing overhead on the master station compared to
NACR and AGM. The extra processing caused on the master
station due to an attacked request is much less for SAB than
for NACR and AGM.

Based on this analysis, we conclude and make it clear that
there is always a trade-off of performance when providing
security. Table II has shown that, there exists the benefits in the
entire communication overhead of SAB as well as processing
overhead on the master stations. But these benefits come at
the cost of an extra storage used on the master stations to
store hash chains and their indexes. Additionally, calculations
on the outstations also cause a slight increase in processing

11

TABLE II: Performance Analysis and Comparison

Communication
(# messages)

Processing
(# Crypto Operations C)

Storage
(# Parameters K)

Master N Outstations Master N Outstations
SAB 4N+n ≈ O(N+n) 2n + 2 ≈ O(n) 4Nn ≈ O(Nn) 2n+2 ≈ O(n) 8N ≈ O(N)
NACR 4N (n+1) ≈ O(Nn) Nn ≈ O(Nn) Nn ≈ O(Nn) 4 (Constant) 4N ≈ O(N)
AGM 8N+2Nn ≈ O(Nn) N (n+1) ≈ O(Nn) Nn ≈ O(Nn) 4 (Constant) 4N ≈ O(N)
DAS nPa ≈ O(n) nPa ≈ O(n) NnPa ≈ O(Nn) - -
DAN NnPa ≈ O(Nn) NnPa ≈ O(Nn) NnPa ≈ O(Nn) - -
DAA NnPa ≈ O(Nn) NnPa ≈ O(Nn) NnPa ≈ O(Nn) - -
MIRS nPa ≈ O(n) nPa ≈ O(n) nPa ≈ O(n) - -
MIRN 2NnPa ≈ O(Nn) NnPa ≈ O(Nn) NnPa ≈ O(Nn) - -
MIRA 2NnPa ≈ O(Nn) NnPa ≈ O(Nn) NnPa ≈ O(Nn) - -

TABLE III: Performance and Functionality of SAB using Alternative Methods

Functionality Performance
Schemes Mechanism Infrastructure Security Properties Communication Computation Storage

Proposed SAB Hash-chain None

-Authentication
-Integrity

-Resistant to dishonest
outstations*

1 Key update
per n message

n*HMAC
n*MAC
1*AES

1 Symmetric Key
1 Hash value per outstation

SABSym
Message-based

key establishment None

-Authentication
-Integrity

-Require honest
outstations

n Key update
per n message

n*HMAC
n*MAC
n*AES

1 Symmetric Key
1 nonce value per outstation

SABAsym Digital signature PKI
-Authentication

-Integrity
-Non-repuation

Public key distribution n*PKI 1 Public Key
1 nonce value per outstation

overheads by a constant term. This slight difference disappears
in the attack scenarios. SAB, NACR and AGM causes the same
processing overhead on outstations when a request message is
attacked (i.e., drop, modification, injection and replay) with a
probability Pa. Furthermore, as SAB utilises only the existing
security primitives from NACR and AGM (refer to step 2–6 of
Figure 3), it implies that there are no additional cryptographic
updates required for devices supporting DNP3-SAB. Existing
devices that support DNP3-SA will have sufficient resources
to support DNP3-SAB as well. Also, the time it takes a master
station to send a request to N outstations securely using
DNP3-SA is more than the time required for DNP3-SAB.
This is because, using DNP3-SA, the master station has to
contact N outstations individually in sequence, causing some
outstations to receive the request later than others.

In Table III, the performance and functionality of SAB
using two alternative methods: symmetric (SABSym) and
asymmetric key (SABAsym) cryptography are presented. The
table shows that while the proposed SAB in this paper uses
hash-chain values to authenticate each broadcast message,
the SABSym with symmetric key requires a broadcast key
established for each broadcast message. SABAsym can use
a single public key to authenticate all broadcast messages,
but it requires an infrastructure to distribute public keys.
All three schemes provide authentication and integrity. But
the SABSym requires all outstations to be honest. This
is because a compromised outstation with the knowledge
of the symmetric key can masquerade the master station.
SABAsym can additionally be used for non-repudiation. In
terms of communication, SABAsym distributes one public
key for authenticating all broadcast messages, SAB requires
a symmetric key and a hash-chain value distribution once
for n broadcast messages. SABSym distributes a symmetric
key for each broadcast message. The advantage of SABAsym

comes with high computation requirements, which are not

available for most master and outstations in service today.
SABSym requires more computation than SAB due to key
establishment requirements. All schemes require one key and
random value per message to be stored. Excluding SABAsym

due to its high computation and infrastructure requirements,
SAB shows clear advantage over SABSym in security and
computation and communication overhead.

IX. DISCUSSION AND CONCLUSION

The HMAC mechanism of the DNP3-SA protocol alone is
not sufficient to secure the DNP3 broadcast mode. This is
because the HMAC mechanism will require a different key
to compute a unique MAC tag for each broadcast message.
The proposed SAB uses a hash-chain to solve the problem of
key management. Hash values used for messages are linked
together as a hash-chain. The usage of a single key together
with the hash-chain removes need for a key per message.
Additionally, because the hash-chains are also associated with
indexes, it prevents potential replay attacks from occurring.
Using only the index without hash values would not be
sufficient because any compromised outstation that already has
knowledge of the symmetric key and the index can masquerade
as the master station and send broadcast messages to its
counterparts. The analysis of the SAB CPN model in this paper
has shown that the DNP3 broadcasts can be secured against
attack vectors such as modification, injection, spoofing and
replay, attacks listed by the DNP3 consortium in the protocol
specification. Moreover, SAB’s performance and comparison
with alternative methods have shown SAB’s advantage in
security, computation and communication overhead.

In the future, we will extend our model to address com-
munication on a data concentrator. A data concentrator is an
architecture where one a master station interacts with multiple
sub-master stations and outstations with different communica-

12

tion modes. The motive of this work will be to analyse various
security properties on such a complex architecture.

REFERENCES

[1] J. Akerberg and M. Bjorkman, “Exploring security in PROFINET IO,”
in Computer Software and Applications Conference, 33rd Annual IEEE
International, vol. 1. IEEE, 2009, pp. 406–412.

[2] I. Al-Azzoni, D. G. Down, and R. Khedri, “Modeling and Verification
of Cryptographic Protocols using Coloured Petri Nets and Design/CPN,”
Nordic Journal of Computing, vol. 12, no. 3, p. 201, 2005.

[3] R. Amoah, S. Camtepe, and E. Foo, “Formal modelling and analysis
of DNP3 secure authentication,” Journal of Network and Computer
Applications, vol. 59, pp. 345 – 360, 2016.

[4] R. Amoah, S. Suriadi, S. Camtepe, and E. Foo, “Security analysis of the
non-aggressive challenge response of the DNP3 protocol using a CPN
model,” in Communications (ICC), IEEE International Conference on,
June 2014, pp. 827–833.

[5] E. J. Byres, M. Franz, and D. Miller, “The use of attack trees in assessing
vulnerabilities in SCADA systems,” in Proceedings of the International
Infrastructure Survivability Workshop, 2004.

[6] M. Cheminod, A. Pironti, and R. Sisto, “Formal vulnerability analysis
of a security system for remote fieldbus access,” Industrial Informatics,
IEEE Transactions on, vol. 7, no. 1, pp. 30–40, 2011.

[7] D. Choi, H. Kim, D. Won, and S. Kim, “Advanced key-management
architecture for secure SCADA communications,” Power Delivery, IEEE
Transactions on, vol. 24, no. 3, pp. 1154–1163, 2009.

[8] D. Choi, S. Lee, D. Won, and S. Kim, “Efficient secure group commu-
nications for SCADA,” Power Delivery, IEEE Transactions on, vol. 25,
no. 2, pp. 714–722, 2010.

[9] G. Clarke and D. Reynders, Practical modern SCADA protocols: DNP3,
60870.5 and related systems. Newnes, an imprint of Elsevier, Linacre
House, Jordan Hill, Burlington, MA., 2004, no. ISBN 07506 7995.

[10] S. East, J. Butts, M. Papa, and S. Shenoi, “A Taxonomy of Attacks on
the DNP3 Protocol,” Critical Infrastructure Protection III, pp. 67–81,
2009.

[11] G. Gilchrist, “Secure authentication for DNP3,” in IEEE Power and
Energy Society General Meeting-Conversion and Delivery of Electrical
Energy in the 21st Century, 2008, Pittsburg, PA, 2008, pp. 1–3.

[12] S. Gilmore, Programming in Standard ML’97: A tutorial introduction.
University of Edinburgh, 1997.

[13] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and
G. P. Hancke, “Smart grid technologies: communication technologies
and standards,” Industrial Informatics, IEEE Transactions on, vol. 7,
no. 4, pp. 529–539, 2011.

[14] P. Huitsing, R. Chandia, M. Papa, and S. Shenoi, “Attack taxonomies for
the modbus protocols,” International Journal of Critical Infrastructure
Protection, vol. 1, pp. 37–44, 2008.

[15] ICS-CERT, “Monthly Monitor (ICS-MM201502), ICS-CERT Monitor,”
https://ics-cert.us-cert.gov/monitors/ICS-MM201502, 2015, Accessed:
10/03/2015.

[16] IEEE, “IEEE Standard for Electric Power Systems Communications-
Distributed Network Protocol (DNP3),” IEEE Std 1815-2012, pp. 1–866,
2012.

[17] IEC 62351Power systems management and associated Information
exchange- Data and Communications security Part 1: Communication
network and System security – Introduction to security issues, Interna-
tional Electrotechnical Commission Std. IEC TS 62 351-1, Rev. First
Edition, 2007.

[18] K. Jensen, L. Kristensen, and L. Wells, “Coloured Petri Nets and CPN
Tools for modelling and validation of concurrent systems,” Intl. Journal
on Software Tools for Technology Transfer (STTT), vol. 9, no. 3, pp.
213–254, 2007.

[19] K. Jensen, S. Christensen, and L. M. Kristensen, CPN tools state space
manual, University of Aarhus - Dpt. of Computer Science, Aarhus N,
DK, 2006.

[20] K. Jensen and L. Kristensen, Coloured Petri Nets. Springer-Verlag
Berlin Heidelberg, 2006.

[21] W. Kim, “On cyberwarfare,” International Journal of Web and Grid
Services, vol. 8, no. 4, pp. 321–334, 2012.

[22] X. Lu, W. Wang, and J. Ma, “An empirical study of communication
infrastructures towards the smart grid: Design, implementation, and
evaluation,” Smart Grid, IEEE Transactions on, vol. 4, no. 1, pp. 170–
183, 2013.

[23] B. Miller and D. Rowe, “A survey SCADA of and critical infrastructure
incidents,” in Proceedings of the 1st Annual conference on Research in
information technology. ACM, 2012, pp. 51–56.

[24] I. Modbus, “Modbus Application Protocol Specification v1. 1a,” North
Grafton, Massachusetts (www. modbus. org/specs. php), 2004.

[25] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “The TESLA broadcast
authentication protocol,” RSA CryptoBytes, vol. 5, 2005.

[26] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “Spins:
Security protocols for sensor networks,” Wireless networks, vol. 8, no. 5,
pp. 521–534, 2002.

[27] PROFInet Architecture Description and Specification, PROFIBUS
International Std., August 2003, version 2.01. [Online]. Available:
http://www.PROFIBUS.com

[28] S. Suriadi, C. Ouyang, and E. Foo, “Privacy compliance verification in
cryptographic protocols,” Transactions on Petri Nets and Other Models
of Concurrency VI: Lecture Notes in Computer Science, vol. 7400, pp.
251–276, 2012.

Raphael Amoah (M’14) received his Ph.D. de-
gree from the Queensland University of Technology
(QUT), Brisbane, Australia in 2016. He has been a
Sessional Academic with the Queensland University
of Technology, Australia, since 2012. His current
research interests include cyber-physical systems,
formal methods, formal verification of communica-
tion protocols used in supervisory control and data
acquisition (SCADA) and industrial controls systems
security such as smart grid.

Seyit Camtepe (S’04 - M’07) received the Ph.D.
degree in computer science from Rensselaer Poly-
technic Institute, New York, USA, in 2007. From
2007 to 2013, he was with the Technische Univer-
sitaet Berlin, Germany, as a Senior Researcher and
Research Group Leader in Security. Since 2013, he
has been with Queensland University of Technology,
Australia, as a Lecturer. His research interests in-
clude mobile and wireless communication, pervasive
security, and applied and malicious cryptography.

Ernest Foo (M’99) received his Ph.D. degree from
the Queensland University of Technology (QUT),
Brisbane, Australia in 2000. From 2007, he has been
a senior lecturer and researcher at the Information
Security Discipline in the School of Electrical En-
gineering and Computer Science at QUT. Dr Foo’s
research interests can be broadly grouped into the
field of secure network protocols with an active
interest in the security of industrial controls systems
such as SCADA and the smart grid.

http://www.PROFIBUS.com

	Introduction
	Related Work
	Overview of the DNP3-SA Protocol
	Secure Authentication for Broadcast (SAB)
	Overview of SAB
	Operation Details of SAB

	CPN modelling of the DNP3-SAB protocol
	Our CPN Modelling Approach

	Model Description
	Model Assumptions
	The CPN model of DNP3-SAB

	The Formal Analysis of DNP3-SAB CPN model
	Validation of the DNP3-SAB CPN model
	Verification of the DNP3-SAB CPN model

	Performance Analysis and Comparison
	Discussion and Conclusion
	References
	Biographies
	Raphael Amoah
	Seyit Camtepe
	Ernest Foo

