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ABSTRACT

We provide a design and implementation of self-protecting
electronic medical records (EMRs) using attribute-based en-
cryption on mobile devices. Our system allows healthcare
organizations to export EMRs to locations outside of their
trust boundary. In contrast to previous approaches, our so-
lution is designed to maintain EMR availability even when
providers are offline, i.e., where network connectivity is not
available. To balance the needs of emergency care and pa-
tient privacy, our system is designed to provide fine-grained
encryption and is able to protect individual items within an
EMR, where each encrypted item may have its own access
control policy. We implemented a prototype system using
a new key- and ciphertext-policy attribute-based encryption
library that we developed. Our implementation, which in-
cludes an iPhone app for storing and managing EMRs of-
fline, allows for flexible and automated policy generation.
An evaluation of our design shows that our ABE library
performs well, has acceptable storage requirements, and is
practical and usable on modern smartphones.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication, Unau-
thorized access

General Terms

Security
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1. INTRODUCTION
There are multiple, parallel efforts underway to modernize

medical records systems for greater efficiency, improved pa-
tient care, patient safety, patient privacy, and costs savings
[14, 22, 26, 35, 36]. The potential benefits from electronic
medical records (EMRs), including lab tests, images, diag-
noses, prescriptions and medical histories are without prece-
dent. Patients and insurers can avoid repeating studies that,
for example, expose people to additional radiation. More-
over, providers can instantly access patient histories that are
relevant to future care and patients can take ownership of
their medical records. In general, EMRs offer the potential
for greater privacy and better access to records when they
are needed.

Similarly, with the explosion of smartphones and tablets,
more patients and physicians are shifting towards access-
ing EMRs via their mobile devices for quicker record access.
However, a recent study [30] showed that data privacy con-
cerns are a major factor preventing widespread adoption of
EMRs on mobile devices. Since these devices can be used
in myriad environments and can simultaneously access mul-
tiple networks, they have a wide exposure to attacks. As a
result, securing EMRs at rest on these devices is particularly
challenging. For example, recent mobile malware exploited
a vulnerability in the Android browser to bypass application
permissions and access the user’s data [18]. Thus, the po-
tential use of mobile devices to access EMRs has emphasized
the need to develop meaningful techniques for protecting the
privacy of records, both within and outside of the hospital
environment.

Our research addresses the following problems:

EMR systems’ reliance on transport security. When
records are transmitted among institutions, they are
typically protected only by transport-level protocols.
Recipients of EMRs obtain the cleartext records and
are usually cached unprotected on the end device.

Access control is online only. Most hospital systems to-
day require online access control decisions. When the
server or database is unavailable, access control deci-
sions cannot be made, or records cannot be reached.
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In certain circumstances, this could result in patient
harm.

Provider-centric environment. Today’s EMR systems
are geared towards providers. In general, patients
have little or no access to their medical records. PHR
systems provide some access, but the access must be
online, and the users are limited to the formats that
the PHR supports. Furthermore, PHR systems such
as Microsoft Healthvault must be completely trusted
as they have access to all of their patients’ records.

Records are not well protected today. Despite the
high level of regulation surrounding EMR use, med-
ical systems do not adequately protect records. At
Johns Hopkins Medical Institution (JHMI), for exam-
ple, all of the approximately 8,000 clinical employees,
including doctors, nurses and technicians, have access
to all of the medical records for all patients who
come through the system. Hospitals rely on audits to
investigate security problems after the fact.

Complexity of access policies. Medical administrators
are faced with a tremendous number of records with a
wide array of policies associated with them. There are
dozens of actors (e.g. pharmacists, doctors, nurses,
billing staff, auditors, lab workers, etc.) with varying
levels of access to those records. The state of the art
is to define an access control matrix that enumerates
which actors have access to which records. This overly
complex, costly, and error prone environment is in
great need of tools and automation.

Regulations such as HIPAA [5] and the HITECH Act [15]
require protection of records, but specific mechanisms are
not described. Laws surrounding meaningful use of records
are still being defined. While these regulations include pro-
visions for protecting medical records from adversaries and
preserving patient privacy, there is little specific guidance as
to the technical means for protecting EMRs.

To meet the needs of the push towards EMRs, there are
emerging XML-based standards, such as the Continuity of
Care Record (CCR) [7] and Continuity of Care Document
(CCD) [19]. These standards call for protecting EMRs, but
they do not provide enough guidance as to how such protec-
tion can be achieved. The Standard Specification for Conti-
nuity of Care Record states:

The CCR document instance must be self-
protecting when possible, and carry sufficient
data embedded in the document instance to
permit access decisions to be made based upon
confidentiality constraints or limitations specific
to that instance. [7]

In this paper, we describe our efforts to provide self-
protecting EMRs on mobile devices using recent develop-
ments in attribute-based encryption (ABE) [31]. This work
is a collaboration between security researchers at Johns
Hopkins University and medical practitioners at JHMI. We
have developed tools to help medical professionals, such
as administrators, who establish access control policies for
EMRs. Our tools automatically generate policies from a
specification language that is used to directly derive ABE
keys. We have also implemented a mobile application

whereby users can access their EMRs offline, and can read
and write their records to a Personal Health Record (PHR).
Our prototype runs as an iPhone app and interacts with
Google Health. The primary contributions of this paper
are:

• We designed and built a mechanism for automatically
extracting access control policies based on the content
of medical records.

• We implemented a code library and API for attribute-
based encryption. The code is publicly available at
http://code.google.com/p/libfenc/.

• We designed and prototyped a practical ABE system
for protecting medical records in a healthcare setting.

• We implemented a mobile app on the iPhone for secure
offline access of medical records using ABE. Our app
interfaces with the Google Health PHR.

1.1 Importance of Offline Access
EMR systems are becoming widely adopted by medical fa-

cilities of all sizes, providing patients access to their medical
data through Internet-based interfaces, such as web portals.
However, solely relying on an online EMR server is limiting,
particularly in times of crisis where all services (including
those upon which EMR systems depend) may be running
in a degraded mode, if at all. These types of catastrophic
events mandate that patients be given offline access to their
medical records.

In the event that a physical catastrophe, natural or oth-
erwise, destroys network connectivity or cripples power in-
frastructure, EMR systems that rely upon these services will
become unusable. This is particularly alarming because this
is when one may need immediate access to their medical
records. Hurricane Katrina, for example, revealed a num-
ber of challenges with existing health care systems. Beyond
the physical damage the hurricane caused, much of the in-
frastructure upon which medical centers relied was unavail-
able [25, 33]. Many victims received treatment at tempo-
rary healthcare facilities that did not have access to medi-
cal records. Even at permanent facilities, accessing medical
records, both paper and electronic, was extremely difficult.
Providing offline access allows patients to travel with their
records, permitting access where contacting an online server
may be impossible (e.g. rural or disaster areas) or undesir-
able (e.g. on an untrusted network or if the patient otherwise
feels their privacy is at risk).

In addition to the physical threats that imperil an EMR
system’s infrastructure, EMR systems must be robust
against cyber threats [4, 23, 27]. Denial of service attacks,
data thefts and system compromise against EMR systems
are no longer theoretical problems. Recent attacks that
include exposure of sensitive patient data, inadvertent data
loss and malicious data breaches show that patient data is
now a deliberate target for attackers. An active cyber war
may result in even more devastating scenarios similar to
the physical infrastructure catastrophes described above.
Providing offline access decouples the security of the records
from the security of the EMR server, thereby lessening the
trust requirements of the EMR server.
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1.2 Attribute-Based Encryption

Our work utilizes recent developments around attribute-
based encryption (ABE), which was proposed by Sahai and
Waters in 2005 [31]. In an ABE scheme, individual users
are granted keys that permit them to decrypt a ciphertext
if and only if their key matches certain attributes specified
during the ciphertext’s creation [11, 16, 29, 37]. ABE is a
form of public-key encryption, meaning that any party can
encrypt. The corresponding private keys are generated by a
trusted party known as the Private Key Generator (PKG).

ABE is typically described in two formulations. In cipher-
text policy ABE [11], each ciphertext is bound together with
a policy describing who is entitled to decrypt it. These poli-
cies are typically expressed as boolean formulae referencing
a list of attributes that are embedded into a user’s private
key. For example, given the attributes Doctor, Nurse, Johns
Hopkins Medical Institution (JHMI), InsuranceCo and Agent,
the following example policy might capture a record that can
be read by a JHMI doctor or nurse or an insurance agent:

((Doctor ∨ Nurse) ∧ JHMI) ∨ (InsuranceCo ∧ Agent)

A second variant of ABE is key policy ABE [24, 31], which
inverts the relationship between ciphertext and key. Individ-
ual records are tagged with their relevant attributes (e.g.,
Lab Result, Oncology). To grant access to a portion of a
record, the record owner creates specific keys that embed
the policy formulae determining which record portions may
be accessed.

A fundamental property of ABE systems is collusion re-
sistance. This property means that individuals cannot com-
bine attributes on their private keys to satisfy a given policy.
For example, the following policy might specify that only
the insurance agent affiliated with JHMI or with the billing
company can read the patient’s current medications:

(BillingCo ∨ JHMI) ∧ (InsuranceCo ∧ Agent)

The insurance agent’s key with the attributes InsuranceCo
and Agent cannot be combined with a doctor’s key (i.e.,
JHMI attribute) or with the billing company’s key (i.e.,
BillingCo attribute) to satisfy the policy. In this instance,
the insurance agent must establish a trust relationship with
the hospital to receive the JHMI or BillingCo attribute. Be-
cause each private key is created with a unique random seed,
users cannot collude to decrypt data they would not be able
to decrypt individually.

Expressive operators. A major strength of ABE is the
expressiveness of the policy access formulae. Access policies
can be expressed with AND, OR, and threshold gates (e.g.
1-of-n or m-of-n), and in addition can support comparison
operators such as <, ≤, >, and ≥. Numerical values used
in comparison operators are typically represented as binary
attributes such that each bit needed to represent the value
corresponds to a non-numerical attribute. A combination of
AND and OR gates is used to form a binary tree that repre-
sents comparisons over the non-numerical attributes, similar
to the ciphertext policy implementation of Bethencourt, Sa-
hai and Waters [11]. Thus, ABE allows for expressive access
control that is difficult to implement with traditional access
control matrices.

2. OVERVIEW OF OUR SOLUTION
Traditionally, access control in EMR systems is accom-

plished by storing medical records in a centralized location
(e.g. a hospital). To facilitate offline access, our system
is designed to enable the secure export of EMRs beyond
the hospital’s trust boundary. This includes EMRs that are
held by patients (e.g. on mobile devices), records that are
submitted to cloud-based storage systems such as Microsoft
Healthvault, and records that are shared between hospitals
via Regional Health Information Organizations (RHIOs). To
protect these exported records, our approach provides the
following:

End-to-end Encryption. In contrast to traditional ac-
cess control solutions, our approach is designed to se-
cure records from the point of origin (at the hospital or
provider), all the way to the recipient. This eliminates
the need for an online, trusted server to handle access
control decisions and maintain record confidentiality.
Individual components within the record may be en-
crypted with different security policies. Since records
are encrypted, they may be stored in untrusted loca-
tions, such as cloud-based systems, RHIOs, and pa-
tients’ mobile devices.

Role-based and Content-based Access Control. Our
system provides for both role-based access control and
a variant that we call content-based access control. In
all cases, access control decisions are applied at the
level of the individual record node (e.g. a lab report)
within the patient’s EMR. In role-based access control
[6, 8, 32, 40], a record’s access control policy is based on
roles associated with authorized accessors. For exam-
ple, a doctor at a hospital might have attributes that
include title, patient list, hospital affiliation and spe-
cialty (e.g. Doctor, Nurse, PhysicianSmith, Oncologist
and Dept: Oncology). Each protected record (or sub-
record) embeds a complex access control policy speci-
fying which users can access the record and under what
circumstances. This policy is specified as a boolean
formula over individual attributes. In content-based
access control, individuals are explicitly authorized to
access collections of records matching certain criteria.
We refer to these as collections as content slices. This
approach supports individuals who do not have pre-
cisely defined roles, such as contractors or medical re-
searchers. The nature of a content slice can be highly
specific. For example, an individual might be given
access only to records created within a specific time
period, covering only certain record types, and even
covering lab values only within a certain range. For ex-
ample, a pharmacist dispensing medications may need
access to an individual’s current medications history,
but does not need read access to the patient’s social
history. These slices are also defined via boolean for-
mulae, though in this case the formulae are computed
over the content tags our system associates with the
record.

The two approaches, role-based and content-based
access control, are complementary and can co-exist
within a system.

Automated policy generation. A drawback of access
control systems is the need to select appropriate access
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policies for stored data. In the case of EMRs, which
may contain large amounts of data, this challenge is
likely to overwhelm providers. To address this prob-
lem, we built a prototype policy engine that evaluates
new EMRs (or additions to existing EMRs) and de-
termines the appropriate policies under which records
should be encrypted. This engine makes its determi-
nations based on (1) a set of rules specified by the
hospital or patient, (2) the identity and nature of the
record’s author, (3) the tags associated with a record,
and where necessary (4) the text of the record. The
precise implementation details of a policy engine will
vary depending on the deployment.

We rely on the security properties provided by attribute-
based encryption (ABE) [31]. We developed a new ABE
library and a toolkit that implements new ciphertext-policy
and key-policy ABE schemes designed by Waters [37] and
Lewko, Sahai and Waters [24]. To the best of our knowledge,
our ABE library is the first publicly available library that
implements key-policy ABE.

3. OUR APPROACH
Figure 1 provides a high-level overview of our system.

Whenever a healthcare provider submits a new or modi-
fied record for storage at the hospital, our policy encryp-
tion engine (1) parses each node in the Continuity of Care
Record (CCR) [7], an XML-based EMR, to calculate an ap-
propriate access policy. If any record node matches an access
control rule, that node is first tagged with content-specific
attributes, then encrypted using key- or ciphertext-policy
ABE under an appropriate role-based access policy. To aid
patients and providers in making intelligent access control
decisions, policies are initially specified by the provider and
may take into account various factors such as the age of
the patient, the sensitivity of the data, and the identity of
the authoring agent (e.g. physician or laboratory). The en-
crypted data is stored in a specially marked node within the
CCR.

Once the necessary records have been encrypted, the en-
crypted CCR can be stored within the provider’s own server
(3), exported to semi-trusted cloud-based storage sites, or
exported to a patient’s mobile device (4). When stored
locally, the provider may continue to use any existing ac-
cess control for the record; however, access to the sensitive
records is now implicitly restricted to individuals with the
appropriate decryption keys (i.e. if someone does not have
an ABE private key that satisfies the policy, they will not
be able to decrypt the record).

Provider employees obtain their ABE decryption keys
from an offline key server (the private key generator, or
PKG) (2) that is operated by the provider (in our example)
or by an appropriate trusted entity such as a Regional
Health Information Organization (RHIO). These keys may
correspond to user roles (long term keys), or can be gener-
ated to allow access to a specific slice of content. The PKG
can be implemented on a relatively lightweight computing
device, such as a processor within a standard hardware
security module. In addition, the PKG can be configured to
use existing hospital credentials in order to deliver (provi-
sion) keys. Keys are delivered and provisioned on hospital
devices manually (see Section 4.3 for details).

The end user can use a mobile app to access and view
their records (4). This software can access the appropriate
storage location to download the encrypted CCR. In our
instantiation, this encrypted data is stored on Google Health
servers (5) or may be cached locally on the end user’s mobile
device.

Granting Access. Patients and authorized healthcare
providers obtain one of two types of keys from the hospital’s
PKG (Figure 1 (2)). Ciphertext-policy or role keys embed
fixed attributes related to the user, e.g. patient name; user
type (physician, patient, insurance agent); department;
birthdate; and key expiration date. These are used for
individuals whose access privileges change infrequently.
However, it may be desirable to grant other parties such as
temporary contractors and researchers a limited access to
the health database. These individuals can be supported
using the key-policy system: individual content keys then
specify a particular policy defining which records the key
can access, e.g. “access to all cardiac-related labs for
patients aged 42 and above.”

Encryption. For efficiency reasons we do not use ABE to
directly encrypt record data. Instead, we use a standard
hybrid approach wherein each record is encrypted using a
128-bit AES session key, and the session key is protected
using ABE encryption.

4. IMPLEMENTATION

4.1 Policy Engine
For our prototype, we implemented a Python-based pol-

icy engine that evaluates EMRs based on CCR-compliant
metadata. The policy engine then determines the appropri-
ate access policy from a set of rules created by the provider.

Our policy engine uses a configurable list of access con-
trol rules to determine the appropriate access policy. Any
section of a CCR that matches one of the access control
rules is encrypted using ABE with the policy generated by
that rule. Because this process is performed for individual
nodes within the CCR (as opposed to the entire CCR itself),
our solution offers a highly granular form of access control.
Each node in a CCR can have an explicit access rule ap-
plied to it, as defined in the access rule configuration file
(e.g. see the box labeled “Access Rule” in Figure 2). The
access rule configuration file has an easily modifiable dic-
tionary that maps CCR node names to Python functions.
Our implementation provides several sample functions that
specify policies for many common and sensitive conditions
that may be deployed “as is,” or used as a starting point for
custom routines.

After determining the appropriate access rule for a node,
the policy engine produces an encryption policy and a policy
visualization. The encryption policy is a string used as input
to the ABE encryption library. In the example shown in
Figure 2, the string is: (JohnDoe OR PhysicianSmith). To
allow administrators to understand and visualize complex
policies, we integrated the GraphViz and yapgvb Python
packages into our policy engine. An example policy graph
is shown as the output of the policy engine in Figure 2.
Future versions will support the combination of access rules
and visual representations of policies, allowing a patient or
administrator to craft policies using only a graphical user
interface.
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Figure 1: Diagram of our components.

  def Problem(node): ...

   if isSensitive(node.codeSys):

      policy = "PatientName OR      

        PhysicianName"

           return policy

or

Physician 
Smith

JohnDoe

Policy Engine

CCR Node

Access Rule

Visual Access Policy Graph

ABE Encryption

"JohnDoe OR PhysicianSmith"

Ciphertext

  <CCR>
    <Problems>
      <Problem>
        <Description>HIV+

      </Description>...

      <Value>042</Value>

      <CodeSys>ICD9CM</CodeSys>

      </Problem>
    </Problems>
  </CCR>

Figure 2: A flow diagram of the policy engine.

Our policy engine also supports nested encryption within
individual CCR nodes, allowing for fine-grained access con-
trol. To enable nested encryption at the most granular level,
we perform a post-order traversal on the CCR. By visiting
the XML leaves first before visiting their parent nodes, we
retain the option to encrypt the child nodes (inner encryp-
tion) first and then their parent nodes (outer encryption)
afterward. This choice provides maximum flexibility and
security when encrypting an EMR.

For example, current JHMI policy states that physicians
can access all components of their patients’ EMRs with the
exception of psychiatric data; only the diagnosing psychia-
trist should view this data. Consequently, a patient’s medi-
cations might be encrypted for her primary care physician,
but within that medication list, the psychiatric medications
should be encrypted for her psychiatrist only.

4.2 Offline Mobile Access
To enable offline mobile access, our prototype includes

an iPhone app (“iHealthEMR”) that interfaces with the

provider’s server and, optionally, with cloud-based storage
provided by Google Health. Our application has an intuitive
user interface for browsing, updating and securing CCRs.
The following sections describe the iHealthEMR app and
the challenges we faced during our implementation.

iHealthEMR Interfaces. The iHealthEMR iPhone app
has two interfaces. One interface interacts with a web service
maintained by the hospital, and the other interface interacts
with Google Health. The hospital web service supports read
access to a patient’s medical record encrypted under ABE
policies. We authenticate the patient via a username and
password to the web service and retrieve the patient’s ABE-
encrypted CCR. Once the encrypted record is downloaded
to the phone, the application uses ABE private keys stored
in the iPhone keychain to decrypt the records. For more on
key management, see Section 4.3.

The Google Health interface supports read and write ac-
cess to a patient’s medical record. We interact with Google
Health through the Objective-C Google Data (GData)
Health client API. We authenticate the user to Google
Health and allow the user to access their profiles. Similar to
the hospital interface, the iHealthEMR app downloads the
user’s records and allows the user to decrypt them locally.
In addition, the user is able to decide whether the records
should be stored on Google Health in plaintext or in their
original ABE-encrypted form.

User Interface. We designed the iHealthEMR UI to lever-
age certain features of the iPhone to make viewing medical
records intuitive. Records are organized in a hierarchical
data model, allowing the data to be categorized and pre-
sented in table form. Figure 3(a) displays the top level of
the hierarchy, showing the sections of the CCR and how
many entries the user has in each section. Once the user
selects a specific CCR section, they are able to choose from
a number of options. Figure 3(b) displays the view shown
to the user while in the Conditions section of the record.
While in a CCR section, the user is able to view or decrypt

any entries for which they have appropriate decryption keys.
They may also upload any new or modified data to their
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(a) Top-level view (b) User options

Figure 3: Views of a CCR on our iHealthEMR iPhone application. (a) This view of the application shows
the top-level sections of a patient’s CCR. (b) This view of the application shows encrypted entries within
a CCR and the access policy under which the record was encrypted. Patients may decrypt each individual
record or all records within this section, as well as upload their records to Google Health.

Google Health account. No special processing is needed to
view plaintext data. To decrypt or write a record entry,
the user selects the Option menu button, which causes an
alert with the user’s options to be presented, as shown in
Figure 3(b). For the user to view an encrypted entry, the
user must have previously obtained the appropriate ABE
decryption keys from the provider’s PKG, thereby making
the keys accessible via the iPhone keychain.

Because application resources on the iPhone are con-
strained, developers use memory as efficiently as possible
[2]. Our application performs “lazy” decryption–only de-
crypting records on an as-needed basis. As a result, we
use less memory and less processing power, thus conserving
battery life.

To improve usability, the user only has to select the de-
cryption option once. When the user views other encrypted
sections, entries are automatically decrypted in the back-
ground.

Securing Records on the iPhone. Our application
supports caching of ABE-encrypted medical records to the
iPhone for when network connectivity is not available. This
poses some security risks. We want to view the user’s plain-
text CCR but protect it from adversaries who can mount
offline attacks on the iPhone. As a result, we cannot write
the plaintext CCR to the local filesystem, but instead must
rely on the temporary storage available to each application.
An advantage of the tmp directory is that the system will
delete all data stored in the directory when the user exits
the application. However, the ABE-encrypted CCR can
be written in the application’s local filesystem and remain
self-protected due to the ABE encryption.

Uploading Medical Records to Google Health. While
we want to store users’ ABE-encrypted CCRs on Google
Health without modification, Google Health does not cur-
rently support any encryption schemes natively. We allow
users to choose whether to trust Google with the privacy
of their records. The iHealthEMR app allows the user to
specify whether to write the records on Google’s servers in
plaintext or encrypted form. Our system therefore provides
encrypted records that adhere to the CCR standard and are
acceptable to Google Health. Although our proof of concept
specifically exports records to Google Health, our architec-
ture supports other cloud-based EMR systems as well.

4.3 Key Management
We return to the ABE architecture presented in Figure

1 to discuss our out-of-band key distribution process. In
our system, patients must be physically present at a trusted
PKG facility such as a hospital, clinic or Regional Health In-
formation Organization (RHIO) to have their iPhones provi-
sioned with the appropriate ABE decryption keys. Because
the PKG has the ability to generate arbitrary private keys,
it is important that the server be kept offline and keys be
transferred manually to patient’s mobile devices (e.g. via
a USB connection). We recognize this as a limitation, but
because of the extremely sensitive data and capabilities of
the PKG, we propose to keep it offline. Placing the PKG of-
fline simplifies our prototype and narrows the attack model
of our key server to adversaries who have physical access.

To complete initial provisioning, the patient must adhere
to the hospital’s protocol and present appropriate creden-
tials (e.g. state or government issued ID, social security
number, passport, etc.) for authentication. After the pa-
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tient has been authenticated, the hospital PKG generates
the patient’s ABE private keys, a public-key certificate, and
a RSA public and private key-pair to be used for secure re-
mote key updates. The public-key certificate authenticates
the attributes or policy placed on the patient’s ABE pri-
vate keys and includes an expiration date for these keys. In
addition, the public-key certificate is digitally signed by a
trusted certificate authority such as a RHIO and is used to
retrieve future key updates (discussed below). The keys and
certificate are subsequently placed in the patient’s iPhone,
encrypted with a random passphrase provided by the hos-
pital administrator. The patient is then able to complete
the provisioning step by importing the key into the iPhone
keychain via our iHealthEMR application.

Once the keys and certificate have been secured on the
patient’s iPhone, physical presence at the hospital is no
longer required for the patient to receive updates to their
ABE private keys. The RSA public and private key-pair
established at the initial provisioning allows the patient to
securely receive key updates remotely. A hospital adminis-
trator may simply encrypt the patient’s new ABE keys with
the patient’s RSA public key and make them available for
download by the iHealthEMR application the next time it
launches. Prior to the ABE keys expiring, the iHealthEMR
application may download the renewed ABE keys, decrypt
them, and update the iPhone keychain with the new keys.

Revocation. User revocation is an important issue in EMR
systems. There is a natural limitation in dealing with re-
vocation in any system because access to data that users
have already seen cannot be revoked. There are several ap-
proaches to revocation in ABE systems in the academic lit-
erature, each with varying levels of what can be revoked.
We classify the approaches as follows:

“Lazy” revocation. Our ABE implementations enforce re-
vocation by including timestamps within the cipher-
text policy of each encrypted record. Sample policies
with these types of timestamps are shown in Table
1. Users’ decryption keys are thus structured such
that they will only operate on records created within
a certain time period (e.g. the current month). Non-
revoked users periodically update their keys in order
to access newly-created records, while revoked users
lose access to all records encrypted after the expira-
tion timestamp on their private keys. We can easily
implement this mechanism using the comparison oper-
ators in access policies to specify a valid key period.

For instances where revocation must be direct, i.e.,
cannot wait for a time period to expire, encryptors can
distribute keys under a policy that specifies who can
access the record. For example, with our key-policy
ABE implementation, keys can explicitly include neg-
ative clauses into their access policies to exclude re-
voked users (e.g. !〈UserID〉).

The primary drawback of these techniques is that we
cannot revoke a user’s access to files that were created
prior to their revocation, which is a desirable capability
in unexpected situations (e.g. where user credentials
are stolen). In addition, our approaches can also im-
pact the efficiency of our system as they require the
addition of new attributes to each ciphertext’s policy.
We emphasize that these drawbacks are common to

many pure cryptographic access control systems [11,
12, 29].

Full Revocation. While our system does not provide for
the revocation of earlier records, there are various well-
studied approaches to this problem. One approach, ex-
emplified by [21], is to employ an online mediator that
must be involved in every decryption. If the user has
been revoked, the mediator will not cooperate. Un-
fortunately, this approach violates many of our design
goals, since the mediator must be online at all times
in order for users to decrypt.

An alternative approach is to simply re-encrypt the
full record database following each revocation event.
This can be quite costly, and may not protect records
that have been cached by e.g., a malicious insider. We
discuss the cost of this re-encryption in the full version
of this work.

Dealing with revocation will fundamentally involve tradeoffs
that must be evaluated for each environment. Any imple-
mentation that addresses this issue must take into consider-
ation both online and offline approaches.

Search on Encrypted Records. To support a limited
encrypted search capability, the policy engine tags records
with attributes that describe the data and can encrypt those
records using key-policy ABE. However, we do not consider
sensitive attributes that may leak information about the un-
derlying data. While there are approaches to searching on
public-key encrypted data [13, 28] to address this issue, in
practice these schemes are inefficient and may be susceptible
to offline keyword guessing attacks [39]. A secure searchable
public-key encryption scheme that can satisfy efficiency and
provide privacy for keywords remains an open problem.

5. USE CASES AND APPLICATIONS
We present two use cases that illustrate how seemingly

simple and common access requirements can result in com-
plex access control policies, requiring more flexibility and
semantic richness than is capable by existing EMR systems.
We show how our system is able to achieve these require-
ments while striking a balance between protecting patient
privacy and ensuring providers have the data they need to
deliver the best possible healthcare. These use cases are
the results of our discussions with physicians at the Johns
Hopkins Medical Institution. In their experience, these use
cases illustrate the limitations of existing EMR access con-
trol schemes.

5.1 Case 1: Treatment of Minors
The treatment of minors presents unique challenges to

securing and accessing EMRs. Consider the case of an ado-
lescent who visits a pediatrician with their mother. The
pediatrician may ask the mother to leave so that he and the
patient may discuss the patient’s sexual history. The data
collected for this part of the evaluation should only be vis-
ible to the patient and the physician, while the remainder
should be accessible to the mother as well.

The age of the patient must also be considered when de-
termining who can access their record. Parents or legal
guardians of a child may need access (and are legally granted
access) to the child’s medical records in order to make an in-
formed decision about their child’s care. At the same time,
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once the patient reaches a certain age, the patient or their
healthcare provider should be able to determine whether
the parents or guardians should have further access to their
records.

Most access control technologies employed by existing
EMR systems have no way of providing contextual access
control. In this use case, the context of the patient’s current
age has an effect on the decryption policy. The Johns Hop-
kins Medical Institution requires a parent or legal guardian
to consent for care if their child is under the age of 12, so
the parent or guardian needs access to the child’s record
in this case. However, a child 12 or older may make their
own decisions about healthcare and choose to limit access
to their record.

We are able to express this written hospital policy using
our ABE techniques. Our policy engine may be configured
to automatically extract the patient’s birthday and parent’s
name from the CCR, allowing the following string to be
appended to any encryption strings generated by the policy
engine that are used to encrypt the record:

∨ (Parent of Patient ∧ (Date < Patient′s 12th Birthday))

This modification gives the patient’s parents the ability to
decrypt the record provided that the parents’ ABE private
key was issued before the patient’s 12th birthday. If the ABE
private key was issued after the patient’s 12th birthday, the
Date attribute of the parents’ ABE private key would be
greater than the year value of the patient’s 12th birthday,
resulting in the policy evaluating to “false.” The parents
would thus be unable to decrypt the patient’s record.

Due to the use of ABE encryption, it is not necessary to
know a priori the names of the parents. As long as the
hospital follows a standard format for labeling policies, a
string such as “Parent of [patient name]” suffices. If the pa-
tient’s parent wishes to decrypt the patient’s records, the
parent can authenticate to the hospital ABE controller to
obtain the private key corresponding to the “Parent of [pa-
tient name]” attribute. This private key allows the parent to
decrypt any record that was encrypted with the appended
string (supposing the patient’s name is Jane Doe):

∨ Parent of JaneDoe

5.2 Case 2: Advance Directives
Advance Directives (ADs) allow patients to express the

type of medical interventions they wish to receive should
they be unable to communicate them at a later date. For
example, patients might state in their ADs that they should
not be resuscitated if their breathing or heartbeat ceases,
that their organs should be donated, etc. The CCR standard
[7] provides specifications for an “Advance Directive” XML
tag due to its importance to the patient, the patient’s family
and the treating hospital.

ADs are an excellent example of the difficult balance be-
tween making discrete portions of a record available to some
and confidential to others. In the event that a patient be-
comes incapacitated, their AD must be immediately avail-
able. At the same time, ADs often contain highly sensitive
information that a patient might not want to expose. In
addition, the patient might not want even the access policy
of the AD to be made public.

Because the AD is a document created and transferred by
the patient, not the hospital, it is the patient’s decision as

to who can read their AD. We consider two types of scenar-
ios in which the hospital might require read access to the
patient’s AD. In the first case, the AD contains informa-
tion that must be instantly available to medical personnel
during an emergency (e.g. the patient has established a Do-
Not-Resuscitate [DNR] order in the event that they become
incapacitated). In these types of emergency-care scenarios,
the patient allows the hospital to store their AD in plain-
text on the hospital’s servers. In the second case, the AD
contains information as to how to administer long-term med-
ical care to the patient if they remain incapacitated for an
extended period of time. For example, the patient might
prefer their sister to be the “health care agent,” or “durable
power of attorney for healthcare” [1], if the patient remains
in a coma for greater than two months. In these types of
long-term care scenarios, the AD might contain sensitive in-
formation that the patient prefers to not be disclosed unless
necessary.

By classifying ADs into these two categories, we can sep-
arate long-term care ADs from those ADs needed during
emergencies. Our system allows us to protect long-term
care ADs without interfering with normal hospital proce-
dures. Whereas emergency-care ADs remain unencrypted
in the hospital, long-term care ADs can be protected with
a form of ABE nested encryption. After the patient has
finalized a long-term care AD, the patient can query the
hospital’s ABE controller to encrypt the document with the
policy of their choice. For example, the policy might be the
following:

Sister of Patient ∨ Daughter of Patient

Consequently, either the patient’s sister or the patient’s
daughter must be present to decrypt the AD. This is the
inner encryption of the nested encryption scheme. Its
purpose is to restrict read access to the long-term AD to
only those named in the ABE policy.

Due to the nature of ABE, the policy can be easily read
from the ABE ciphertext (i.e. even though the document
itself is encrypted with the policy, the policy itself is in the
clear). The policy must remain in the clear while the en-
crypted AD is stored in the hospital so the hospital knows
who to notify if the AD needs to be decrypted. However,
the patient might consider the policy itself to be sensitive,
as presumably the entities named will govern how the pa-
tient is to be treated while incapacitated. The policy should
therefore be protected if the AD is sent outside the hospital.

Accordingly, our policy engine ensures that the AD is pro-
tected before being transmitted to the outside world. If an
AdvanceDirective node is encountered during the traversal
of the CCR, the policy engine automatically encrypts the
entire node with the hospital’s ABE attribute. This is the
outer encryption of the nested encryption scheme for long-
term ADs. In summary, the inner encryption restricts read
access of the AD to only those specified in the ABE pol-
icy, whereas the outer encryption restricts read access of the
ABE policy itself to only the hospital.

6. EVALUATION
To validate the practicality of applying ABE techniques

to medical records, we conducted several experiments using
our implementation. We first measured the time required for
encryption and decryption under various scenarios, includ-
ing server-based encryption as well as decryption on mobile
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Figure 4: CP-ABE and KP-ABE encryption and decryption times as measured on our Intel-based platform.
(a) The x-axis corresponds to the complexity of the access policy used for encryption (the number of leaves
in the ciphertext policy). (b) The x-axis corresponds to the number of attributes in the access structure
used for encryption (the number of leaves in the key policy). (c) The x-axis corresponds to the complexity of
the access policy used for decryption (the number of leaves in the ciphertext policy). See Figure 6 for ARM
performance measurements.

devices. To show that our techniques induce an acceptable
cost in record storage, we also measured the ciphertext size
overhead incurred by our encryption solution.

ABE implementations. Our ABE library implements
three distinct ABE schemes. These include a key-policy
scheme (KP-ABE) by Lewko, Sahai and Waters [24], and
two variants of the ciphertext-policy scheme (CP-ABE) from
Waters [38], which we refer to as the “standard” and “lite”
versions. The lite version is presented in Appendix A of
Waters [38] and has a particular limitation that each at-
tribute can appear only once within a policy. In practice
this restriction can be adjusted to permit each attribute to
appear up to N times in a policy, at the cost of increasing
the decryption key size by a factor of N . To accomplish
this, simply define attribute variants for each attribute, e.g.
Attribute1, Attribute2, . . . , AttributeN. Next, distribute all
N variants as part of a user’s private key. The “standard”
variant has no such limitation. We refer to these schemes in
our measurements as “LSW,”“WCP” and “WSCP-Lite.”

6.1 Computational performance
To establish the practicality of our approach, we evalu-

ated the efficiency of ABE encryption and decryption on
workstation/server and mobile platforms. We performed our
experiments on a 2.4 GHz Intel Core i5 processor running
Mac OS X 10.6 with 4GB of RAM, as well as on an Ap-
ple A4 chip-based iPhone 4 running iOS 4 with 512MB of
RAM. Our ABE implementation used a 224-bit MNT el-
liptic curve drawn from the Stanford Pairing-Based Crypto
(PBC) library [3]. To give some performance context, the
PBC library computes pairings in 20.5ms and 135ms for In-
tel and ARM, respectively.

Besides a negligible amount of parsing and processing
overhead, encryption and decryption times in our ABE li-
brary are a direct function of the number of attributes in the
access policy (used for encryption in CP-ABE, and key gen-
eration in KP-ABE). A major exception to this rule involves
policies with comparison operators, since as per Bethen-
court et al. [10], these operators are transformed by a pre-
processor into boolean formulae.1 This pre-processing in-
duces a policy blowup that is dependent on the size of the

1For example, the “day = 5” attribute becomes a 4-bit at-

literals being compared. Table 1 provides the additional
number of attributes added to the access policy for a given
numerical comparison. To simplify our measurements, we
assume that this processing has already been conducted, and
measure our policy size in terms of the post-processed for-
mat.

Methodology. We employed the following strategy to cal-
culate our CP-ABE micro benchmarks. For values of N

ranging from 1 to 100, we encrypted a message under a pol-
icy consisting of a single AND gate with N distinct attribute
leaves. We then generated a key containing all N attributes.
We instrumented both the encryption and decryption pro-
cess in order to determine the time required for each op-
eration. For KP-ABE, we employed a similar methodology,
though we placed the access policy within the generated key.

Results. Figures 4 and 6 summarize the measurements
conducted on our workstation and mobile device. In each
figure, the x-axis represents the number of leaf nodes (at-
tributes) in the access policy, while the y-axis shows the
time required for encryption or decryption. As expected,
processing time increases linearly with the complexity of the
policy. We observed that the “lite” CP-ABE variant shown
in Figures 4(a) and 4(c) performs significantly better than
standard CP-ABE, especially for complex policies. This is
an expected result for the decryption algorithm, since the
(optimized) “lite” variant uses a constant number of expen-
sive pairing operations, while the standard variant requires
two pairing calculations per attribute. Surprisingly, this re-
sult holds even for encryption time. This is unexpected,
given that there are no pairing operations during encryp-
tion. The result appears to be a side effect of the algebraic
group assignments made during the implementation of this
scheme. In the Pairing-Based Crypto library, operations on
the group G2 are particularly expensive.

Based on these results, we have determined that encryp-
tion (using any of the schemes) is practical on a modern
Intel-based platform, e.g. a hospital server or workstation.
Decryption is somewhat more expensive, especially with the

tribute consisting of the following non-numerical attributes:
“day: 0***”, “day: *1**”, “day: **0*”, and “day: ***1”.
These non-numerical attributes are then combined with OR
and AND gates to represent comparisons over each bit.
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Policy # of Leaves

day ≥ 5 4
year < 2012 16

date > 1281168517 32

Table 1: Policy complexity induced by adding comparison gates to an access policy.

Waters CP-ABE scheme running on a mobile device. To
support the latter application, we strongly recommend the
use of the “lite” scheme even though it necessitates a larger
private key size. In practice, for policy sizes under 30 leaves
(the vast majority of cases we have investigated), we believe
that all of the schemes have acceptable performance.

6.2 Storage Overhead
To determine the storage overhead incurred by our ABE

implementation, we conducted experiments on a small set
of medical records obtained from the Vanderbilt Univer-
sity Medical Center (VUMC), which are in the Vanderbilt
StarChart Data (VSD) format. These records, which were
stripped of personally-identifiable information, contain a
representative set of clinical documents including lab re-
ports, radiology results and procedures. For our tests, we
selected the largest record in our set, which contains 3,056
XML nodes. Each node varies in size. The total size of the
VSD record is 8.3MB.

Methodology. To measure the storage overhead, we
encrypted the records under CP-ABE using three sepa-
rate policy profiles: Profile 1 encrypts 306 (10%) nodes
chosen at random, Profile 2 encrypts 764 (25%) nodes
chosen at random, and Profile 3 encrypts all 3,056 nodes
in our test medical record. We performed each trial with
two different ABE encryption policies to evaluate the
growth in ciphertext sizes as policy complexity increases.
The first policy is based on our advanced directive use
case (Section 5.2) and represents a simple ABE policy:
(Patient OR PhysicianSmith) AND (SisterofPatient
OR DaughterofPatient).

The second policy is based on our use case of the treatment
of minors (Section 5.1) and represents a more complex ABE
policy: (Patient OR Physician) OR
(ParentofPatient AND (Date < 1281169519)).

Results. Figure 5 illustrates the size of an encrypted node
for our various encryption policies. As indicated by these
results, the storage overhead incurred by ABE encryption
is highly dependent on the complexity of the attribute pol-
icy. Our “Minor” example represents perhaps the worst case
and increases from 8.3MB to 46MB when all of the nodes
are encrypted. This is due to the < and > operators that
add, in this case, 32 additional attributes to the policy tree.
Due to the metadata required by the CP-ABE scheme, each
encryption of a node adds 68 bytes of overhead per encryp-
tion and approximately 250 bytes per policy attribute. This
overhead is in addition to the size of the policy description,
which is represented as a null-terminated ASCII string. In
total, an ABE encryption using our “Minor” policy requires
9,183 bytes of overhead per encryption (not including the
encrypted plaintext).

We note that the storage overhead for ABE encryption
is large compared to other cryptographic schemes. How-
ever, this experiment shows a potential upper bound for an

Figure 5: Storage overhead incurred by ABE en-
cryption of medical records.

fully encrypted record, which we believe is still in an ac-
ceptable range. In practice, many fields of records would
not be encrypted with sophisticated policies, or perhaps not
encrypted at all.

7. RELATED WORK
Several new cryptographic schemes have been proposed

to secure and preserve the privacy of electronic medical
records (EMRs) [9, 20, 21, 28]. The Patient Controlled
Encryption (PCE) [9] design proposes a hierarchical-based
encryption scheme for protecting EMRs that does not
rely on a trusted online server to mediate access control
decisions. The scheme allows patients to delegate access
rights to their records, and enable remote searches on the
encrypted records. However, the hierarchical model of the
PCE scheme is inflexible. For instance, if patients wish to
share their records based on the sensitivity of data within a
given category, then a separate decryption key is required
to delegate rights for each sensitivity level in that category.
This shows an inherent limitation in hierarchical-based
encryption schemes that prevents flexible access structures.
Our key- and ciphertext-policy ABE system maintains an
encrypted access control mechanism similar to the PCE
scheme, but allows for more expressiveness in the access
structures at a fine-grained level.

Ibraimi et al. [20] propose a multi-authority CP-ABE
scheme for protecting EMRs across different domains (e.g.
healthcare providers and family members). Ibraimi et al.
[21] also propose a mediated CP-ABE scheme for EMRs to
address revocation of user attributes before an expiration
date. The scheme relies on a mediator that maintains an
attribute revocation list. The mediator only grants decryp-
tion tokens associated with a ciphertext when the user’s at-
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Figure 6: CP-ABE and KP-ABE decryption times as measured on our Intel-based platform. (a) The x-axis
corresponds to the number of attributes in the access structure used for decryption (the number of leaves
in the key policy). (b) and (c) CP-ABE and KP-ABE (respectively) decryption times measured for our
ARM-based platform. Note that encryption times are not shown, since the mobile device is not used to
encrypt records in our system.

tributes have not been revoked. Narayan et al. [28] pro-
pose an EMR system that uses a variant broadcast CP-
ABE scheme combined with Public Key Encryption with
Keyword Search (PEKS) techniques to secure and enable
private search on health records. The scheme supports di-
rect revocation of user access without having to re-encrypt
the data by using broadcast encryption techniques. The
keyword search capability allows users to perform keyword
matching without the server learning anything about the
corresponding plaintext. The drawback of these ABE ap-
proaches is that they are primarily designed for online EMR
systems only.

These previous works [9, 20, 21, 28] do not consider im-
plementation challenges with their proposed schemes. In
addition, they do not address issues such as ciphertext over-
head on records, encryption/decryption efficiency, and key
and policy management that one would face when deploy-
ing an ABE-based system. Our experiments demonstrate
that some ABE schemes are suited for limited mobile pro-
cessors, while other schemes are not. Thus, the aforemen-
tioned issues should be factored into selecting ABE schemes
to address system and deployment challenges.

Lastly, there have been recent research efforts on evalu-
ating the practicality and efficiency of ABE in realistic im-
plementations. Traynor et al. [34] demonstrate how ABE
can be successfully applied to the large-scale distributed na-
ture of conditional access systems (e.g. subscription radio
and pay-per-view television). Green et al. [17] provide con-
structions for securely outsourcing part of ABE decryption
to cloud-based services in order to reduce the decryption
overhead on the user’s systems and bandwidth.

8. CONCLUSIONS
We present a prototype system to protect EMRs when

outside of the trusted domain of a hospital or other provider.
We use ABE to provide fine-grained, policy-based encryp-
tion, thereby restricting who can read EMRs. To facilitate
our implementation, we have built a software library to sup-
port different modes of ABE, incorporating ciphertext- and
key-policy ABE schemes. We show how our system enables
realistic use cases such as treatment of minors and advanced
directives. As these cases require complex policies, we have
built a policy engine that provides automated support for

policy generation. Once policies are specified, ABE keys
are used to encrypt fields in the EMRs to restrict who can
read the data. We provide a proof-of-concept mobile app
that allows patients to access the encrypted records on their
iPhone offline and securely export those records to other
cloud-based EMR providers.
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