
Open access to the Proceedings of the

22nd USENIX Security Symposium

is sponsored by USENIX

This paper is included in the Proceedings of the

22nd USENIX Security Symposium.

August 14–16, 2013 • Washington, D.C., USA

ISBN 978-1-931971-03-4

Securing Embedded User Interfaces:
Android and Beyond

Franziska Roesner and Tadayoshi Kohno, University of Washington

USENIX Association 22nd USENIX Security Symposium 97

Securing Embedded User Interfaces: Android and Beyond

Franziska Roesner and Tadayoshi Kohno

University of Washington

Abstract
Web and smartphone applications commonly embed

third-party user interfaces like advertisements and so-

cial media widgets. However, this capability comes with

security implications, both for the embedded interfaces

and the host page or application. While browsers have

evolved over time to address many of these issues, mo-

bile systems like Android — which do not yet support

true cross-application interface embedding — present an

opportunity to redesign support for secure embedded

user interfaces from scratch. In this paper, we explore

the requirements for a system to support secure embed-

ded user interfaces by systematically analyzing existing

systems like browsers, smartphones, and research sys-

tems. We describe our experience modifying Android to

support secure interface embedding and evaluate our im-

plementation using case studies that rely on embedded

interfaces, such as advertisement libraries, Facebook so-

cial plugins (e.g., the “Like” button), and access control

gadgets. We provide concrete techniques and reflect on

lessons learned for secure embedded user interfaces.

1 Introduction

Modern Web and smartphone applications commonly

embed third-party content within their own interfaces.

Websites embed iframes containing advertisements, so-

cial media widgets (e.g., Facebook’s “Like” or Twitter’s

“tweet” button), Google search results, or maps. Smart-

phone applications include third-party libraries that dis-

play advertisements or provide billing functionality.

Including third-party content comes with potential se-

curity implications, both for the embedded content and

the host application. For example, a malicious host may

attempt to eavesdrop on input intended for embedded

content or forge a user’s intent to interact with it, either

by tricking the user (e.g., by clickjacking) or by program-

matically issuing input events. On the other hand, a ma-

licious embedded principal may, for example, attempt to

take over a larger display area than expected.

The Web security model has evolved over time to ad-

dress these and other threats. For example, the same-

origin policy prevents embedded content from directly

accessing or manipulating the parent page, and vice

versa. As recently as 2010, browsers have added the

sandbox attribute for iframes [1], allowing websites to

prevent embedded content from running scripts or redi-

recting the top-level page. However, other attacks —

like clickjacking — remain a serious concern. Malicious

websites frequently mount “likejacking” attacks [24] on

the Facebook “Like” button, in which they trick users

into sharing the host page on their Facebook profiles. If

Facebook suspects a button of being part of such an at-

tack, it asks the user to confirm any action in an addi-

tional popup dialog [7] — in other words, Facebook falls

back on a non-embedded interface to compensate for the

insecurity of embedded interfaces.

While numerous research efforts have attempted to

close the remaining security gaps with respect to inter-

face embedding on the Web [11, 25, 29], they struggle

with maintaining backwards compatibility and are bur-

dened with the complexity of the existing Web model.

We argue that Android, which to date offers no cross-

application embedding, offers a compelling opportunity

to redesign secure embedded interfaces from scratch.

Today, applications on Android and other mobile op-

erating systems cannot embed interfaces from another

principal; rather, they include third-party libraries that

run in the host application’s context and provide cus-

tom user interface elements (such as advertisements). On

the one hand, these libraries can thus abuse the permis-

sions of or otherwise take advantage of their host appli-

cations. On the other hand, interface elements provided

by these libraries are vulnerable to manipulation by the

host application. For example, Android applications can

programmatically click on embedded ads in an attempt

to increase their advertising revenue [18]. This lack of

security also precludes desirable functionality from the

Android ecosystem. For example, the social plugins that

Facebook provides on the Web (e.g., the “Like” button or

comments widget) are not available on Android.

Previous research efforts for Android [17, 23] have fo-

cused only on one interface embedding scenario: adver-

tising. As a result, these systems, while valuable, do not

provide complete or generalizable solutions for interface

embedding. For example, to our knowledge, no existing

Android-based solution prevents a host application from

eavesdropping on input to an embedded interface.

In this paper, we explore what it takes to support se-

cure embedded UIs on Android. We systematically an-

alyze existing systems, including browsers, with respect

98 22nd USENIX Security Symposium USENIX Association

to whether and how they provide a set of security proper-

ties. We view this analysis and the framework we use

for it as a contribution in its own right. Informed by

this analysis, we describe our experiences modifying the

Android framework to support cross-principal interface

embedding in a way that meets our security goals. We

evaluate our implementation using case studies that rely

on embedded interfaces, including: (1) advertisement li-

braries that run in a separate process from the embedding

application, (2) Facebook social plugins, to date avail-

able only on the Web, and (3) access control gadgets [19]

that allow applications to access sensitive resources (like

geolocation) only in response to real user input.

Through our implementation experience, we consoli-

date and evaluate approaches from prior work. We find

that some techniques can be simplified in practice —

such as an approach for maintaining invariants in the UI

layout tree [18] — but that we face additional practical

challenges, like propagating layout changes across pro-

cesses. We discover that an embedded element’s size is

an important factor in preventing clickjacking, as well

as that we can apply prior work on access control gad-

gets [19] in novel ways to improve interaction flexibility

beyond the browser model. We discuss these and other

challenges and lessons in more detail in Section 8, which

benefits from the context of the preceding sections.

Today’s system developers wishing to support secure

embedded user interfaces have no systematic set of tech-

niques or criteria upon which they can draw. Short

of simply adopting the Web model by directly extend-

ing an existing browser — which may be undesirable for

many reasons, including the need to maintain backwards

compatibility with the existing Web ecosystem and pro-

gramming model — system developers must (1) reverse-

engineer existing techniques used by browsers, and (2)

evaluate and integrate research solutions that address re-

maining issues. In addition to presenting the first se-

cure interface embedding solution for Android, this pa-

per provides a concrete, comprehensive, and system-

independent set of criteria and techniques for supporting

secure embedded user interfaces.

2 Motivation and Background

To motivate the need for secure embedded user inter-

faces, we describe (1) the functionality enabled by em-

bedded applications and interfaces, and (2) the security

concerns associated with this embedding. We argue that

interface embedding often increases the usability of a

particular interaction — embedded content is shown in

context, and users can interact with multiple principals

in one view — but that security concerns associated with

cross-principal UI embedding lead to designs that are

more disruptive to the user experience (e.g., prompts).

2.1 Functionality

Third-Party Applications. Web and smartphone appli-

cations often embed or redirect to user interfaces from

other sources. Common use cases include third-party

advertisements and social sharing widgets (e.g., Face-

book’s “Like” button or comment feed, Google’s “+1”

button, or a Twitter feed). Other examples of embed-

dable content include search boxes and maps.

On the Web, content embedding is done using HTML

tags like iframe or object. On smartphone oper-

ating systems like iOS and Android, however, applica-

tions cannot directly embed UI from other applications

but rather do one of two things: (1) launch another appli-

cation’s full-screen view (via an Android Intent or an iOS

RemoteViewController [2]) or (2) include a library that

provides embeddable UI elements in the application’s

own process. The former is generally used for sharing

actions (e.g., sending an email) and the latter is generally

used for embedded advertisements and billing.

System UI. Security-sensitive actions often elicit system

interfaces, usually in the form of prompts. For exam-

ple, Windows users are shown a User Account Control

dialog [14] when an application requires elevation to ad-

ministrative privileges, and iOS and browser users must

respond to a permission dialog when an application at-

tempts to access a sensitive resource (e.g., geolocation).

Because prompts result in a disruptive user experience,

the research community has explored using embedded

system interfaces to improve the usability of security-

sensitive interactions like resource access. In particu-

lar, a recent paper [19] describes access control gadgets

(ACGs), embeddable UI elements that — with user in-

teraction — grant applications access to various system

resources, including the camera, the clipboard, the GPS,

etc. For example, an application might embed a loca-

tion ACG, which is provided by the system and dis-

plays a recognizable location icon; when the user clicks

the ACG, the embedding application receives the current

GPS coordinates. As we describe below, ACGs cannot

be introduced into most of today’s systems without sig-

nificant changes to those systems.

2.2 Threat Model and Security Concerns

We consider user interfaces composed of elements

from different, potentially mutually distrusting principals

(e.g., a host application and an embedded advertisement

or an embedded ACG). Host principals may attempt to

manipulate interface elements embedded from another

principal, and embedded principals may attempt to ma-

nipulate those of their host. We assume that the system

itself is trustworthy and uncompromised.

We observe that while Web and smartphone applica-

tions rely heavily on third-party content and services, the

associated third-party user interface is not always actu-

USENIX Association 22nd USENIX Security Symposium 99

ally embedded inside of the client application. For exam-

ple, websites redirect users to PayPal’s full-screen page,

OAuth authorization dialogs appear in pop-up or redi-

rect windows, and Web users who click on a Facebook

“Like” button that is suspected of being part of a click-

jacking attack will see an additional pop-up confirmation

dialog. We observe two main security-related reasons for

the choice not to embed or not to be embedded.

One reason is concern about phishing. If users become

accustomed to seeing embedded third-party login or pay-

ment forms, they may become desensitized to their ex-

istence. Further, because users cannot easily determine

the origin (or presence) of embedded content, malicious

applications may try to trick users into entering sensi-

tive information into spoofed embedded forms (a form

of phishing). Thus, legitimate security-sensitive forms

are often shown in their own tab or window.

Our goal in this paper is not to address such phishing

attacks, but rather to evaluate and implement methods

for securely embedding one legitimate (i.e., not spoofed)

application within another. (While extensions of existing

approaches, such as SiteKeys, may help mitigate embed-

ded phishing attacks, these approaches do have limita-

tions [21] and are orthogonal to the goals of this paper.1)

More importantly — and the subject of this paper —

even legitimate embedded interfaces may be subject to a

wide range of attacks, or may present a threat to the ap-

plication or page that embeds them. In particular, draw-

ing in part on [18], embedded interfaces or their parents

may be subject to:

Display forgery attacks, in which the parent applica-

tion modifies the child element (e.g., to display a false

payment value), or vice versa.

Size manipulation attacks, in which the parent appli-

cation violates the child element’s size requirements or

expectations (e.g., to secretly take photos by hiding the

camera preview [26]), or the child element sets it own

size inappropriately (e.g., to display a full-screen ad).

Input forgery attacks, in which the parent application

delivers forged user input to a child element (e.g., to pro-

grammatically click on an advertisement to increase ad

revenue), or vice versa.

Clickjacking attacks, in which the parent application

forces or tricks the user into clicking on an embedded

element [11] using visual tricks (partially obscuring the

child element or making it transparent) or via timing-

based attacks (popping up the child element just as the

user is about to click in a predictable place).

Focus stealing attacks, in which the parent application

steals the input focus from an embedded element, cap-

turing input intended for it, or vice versa.

1We also note that phished or spoofed interfaces are little threat if

they do not accept private user input — for example, clicking on a fake

ACG will not grant any permissions to the embedding application.

Ancestor redirection attacks, in which a child element

redirects an ancestor (e.g., the top-level) application or

page to a target of its choice, without user consent.

Denial-of-service attacks, in which the parent applica-

tion prevents user input from reaching a child element

(e.g., to prevent a user from clicking “Cancel” on an au-

thorization dialog), or vice versa.

Data privacy attacks, in which the parent or child ex-

tract content displayed in the other.

Eavesdropping attacks, in which the parent application

eavesdrops on user input intended for a child element

(e.g., a sensitive search query), or vice versa.

2.3 Security Goals

Motivated by the above challenges and building on recent

work [18], we now describe the security goals that we

apply in our analysis and implementation. Where noted,

we describe additional goals not discussed by prior work.

1. Display Integrity. One principal cannot alter the con-

tent or appearance of another’s interface element, ei-

ther by direct pixel manipulation or by element size

manipulation. This property prevents display forgery

and size manipulation attacks.

2. Input Integrity. One principal cannot programmati-

cally interact with another’s interface element. This

property prevents input forgery attacks.

3. Intent Integrity. First, an interface element can im-

plement (or request that the system enforce) protec-

tion against clickjacking attacks. Second, one princi-

pal cannot prevent intended user interactions with an-

other’s interface element (denial-of-service). Finally,

based on our implementation experience (Section 5),

we add two additional requirements not discussed in

previous work: an embedded interface element can-

not redirect an ancestor’s view without user consent,

and no interface element can steal focus from another

interface element belonging to a different principal.

4. Data Isolation. One principal cannot extract content

displayed in, nor eavesdrop on user input intended

for, another’s interface element. This property pre-

vents data privacy and eavesdropping attacks.

5. UI-to-API Links. APIs can verify that they were

called by a particular principal or interface element.

These properties assume that principals can be reliably

distinguished and isolated, either by process separation,

run-time validation (e.g., of the same-origin policy), or

compile-time validation (e.g., using static analysis).

3 The Case for Secure UIs in Android

While Section 2 considered UI embedding in general,

we now specifically make the case for secure embedded

UIs in Android. The fact that an Android application

cannot embed another application’s interface results in a

100 22nd USENIX Security Symposium USENIX Association

fundamental trust assumption built into the Android UI

toolkit. In particular, every UI element trusts its parent

and its children, who each have unrestricted access to the

element’s APIs. Vulnerabilities arise when this trust as-

sumption is violated, e.g., because an embedded element

is provided by a third-party library.

We now introduce several case studies illustrating that

embedded user interface scenarios in stock Android are

often either insecure or impossible. We will return to

these case studies in Section 6 and reevaluate them in the

context of our implementation.

Advertising. In stock Android, applications wishing to

embed third-party advertisements must include an ad li-

brary, such as AdMob or Mobclix, which runs in the em-

bedding application’s process. These libraries provide a

custom UI element (an AdView) that the embedding ap-

plication instantiates and embeds. As has been discussed

extensively in prior work [17, 23], the library model for

third-party advertisements comes with a number of se-

curity and privacy concerns. For example, the host ap-

plication must trust the advertising library not to abuse

the host’s permissions or otherwise exploit a buggy host

application. Additionally, ad libraries ask their host ap-

plications to request permissions (such as location and

Internet access) on their behalf; applications that request

permissions not clearly relevant to their stated purpose

can desensitize users to permission warnings [8].

Prior work [18] has also identified and experimen-

tally demonstrated threats to the AdView. Parent appli-

cations can mount a programmatic clickfraud attack in

which they programmatically click on embedded ads to

increase their advertising revenue. Similarly, parent ap-

plications can mount clickjacking attacks by, for exam-

ple, covering the AdView with another UI element that

does not accept (and thus lets pass through) input events.

WebViews. One of the built-in UI elements provided by

Android is the WebView, which can load local HTML

content or an arbitrary URL from the Internet. Though

WebViews appear conceptually similar to iframes, they

do not provide many of the same security properties.

In particular, WebViews — and more importantly, the

contained webpage — can be completely manipulated by

the containing application, which can mount attacks in-

cluding programmatic clicking, clickjacking, and input

eavesdropping [13]. Thus, for example, if an Android

application embeds a WebView that loads a login page,

that application can eavesdrop on the user’s password as

he or she enters it into the WebView.

Facebook Social Plugins. On the Web, Facebook pro-

vides a set of social plugins [6] to third-party web de-

velopers. These plugins include the “Like” button, a

comments widget, and a feed of friends’ activities on

the embedding page (e.g., which articles they liked or

shared). These social plugins are generally implemented

as iframes and thus isolated from the embedding page.

While Facebook also supplies an SDK for smart-

phones (iOS and Android), this library — like all li-

braries, it runs in the host application’s process — does

not provide embeddable plugins like those found on the

Web. A possible reason for this omission is that Face-

book’s SDK for Android cannot prevent, for example,

applications from programmatically clicking on an em-

bedded “Like” button or extracting private information

from a recommendations plugin. Although developers

can manually implement a social plugin using a Web-

View, this implementation suffers from the security con-

cerns described above. Thus, though embeddable social

plugins on mobile may be desirable to Facebook, they

cannot be achieved securely on stock Android.

Access Control Gadgets. Finally, recent work [19] has

proposed access control gadgets (ACGs), secure em-

bedded UI elements that are used to capture a user’s

permission-granting intent (e.g., to grant an application

access to the user’s current location). Authentically cap-

turing a user’s intent relies on a set of UI-level secu-

rity properties including clickjacking protection, display

isolation, and user intent protection. As we describe in

this paper, fundamental modifications to Android are re-

quired to enable secure embedded elements like ACGs.

4 Analysis of UI Embedding Systems

To assess the spectrum of solutions and to inform our

implementation choices, we now step back and ana-

lyze prior Web and Android based solutions for cross-

application embedded interfaces with respect to the set of

security properties described in Section 2.3. This analy-

sis is summarized in Figure 1.

4.1 Browsers

Browsers support third-party embedding by allowing

web pages to include iframes from different domains.

Like all pages, iframes are isolated from their parent

pages based on the same-origin policy [27], and browsers

do not allow pages from different origins to capture or

generate input for each other.

However, an iframe’s parent has full control of its size,

layout, and style, including the ability to make it trans-

parent or overlay it with other content. These capabili-

ties enable clickjacking attacks. While there are various

“framebusting” techniques that allow a sensitive page to

prevent itself from being framed in an attempt to prevent

such attacks, these techniques are not foolproof [20].

More importantly, framebusting is a technique to prevent

embedding, not one that supports secure embedding.

Additionally, while an iframe cannot read the URL(s)

of its ancestor(s), it can change the top-level URL, redi-

recting the page without user consent. Newer version of

USENIX Association 22nd USENIX Security Symposium 101

Category Security Requirement Browsers Android AdDroid [17] AdSplit [23] RFK [18]

Display Integrity Prevents direct modification ✓ ✗ ✗ ✓ ✓*

Prevents size manipulation ✗ ✗ ✗ ✗ ✓*

Input Integrity Prevents programmatic input ✓ ✗ ✗ ✓ ✓*

Intent Integrity Clickjacking protection ✗ ✓ ✓ ✓ ✓

Prevents input denial-of-service ✓ ✗ ✗ ✗ ✓*

Prevents focus stealing ✓ ✗ ✗ ✓ ✗

Prevents ancestor redirection ✓ ✗ ✗ ✗ ✗

Data Isolation Prevents access to display ✓ ✗ ✗ ✓ ✓*

Prevents input eavesdropping ✓ ✗ ✗ ✗ ✓*

UI-to-API Links APIs can verify caller ✓ ✗ ✗ ✓ ✓*

Figure 1: Analysis of Existing Systems. This table summarizes, to the best of our knowledge, the UI-level security properties

(first defined in prior work [18] and expanded here) achieved by existing systems. Figure 2 similarly analyzes our implementation.

* Checkmarks annotated with an asterisk require static analysis or hypothetical (not prototyped) changes to the Android framework.

some browsers allow parent pages to protect themselves

by using the sandbox attribute for iframes; thus, we’ve

indicated that the Web prevents such attacks in Figure 1.

However, we observe that it may be desirable to allow

user actions to override such a restriction, and we de-

scribe how to achieve such a policy in later sections.

Research browsers and browser operating systems

(e.g., Gazelle [29] and IBOS [25]) provide similar em-

bedded UI security properties as traditional browsers,

and thus we omit them from Figure 1. Gazelle partially

addresses clickjacking by allowing only opaque cross-

origin overlays, but this policy is not backwards com-

patible. Furthermore, malicious parent pages can still

obscure embedded content by partially overlaying addi-

tional content on top of sensitive iframes. We discuss

additional work considering clickjacking in Section 9.

4.2 Android

Two recent research efforts [17, 23] propose privilege

separation to address security concerns with Android’s

advertising model (under which third-party ad libraries

run in the context of the host application). AdDroid’s

approach [17] introduces a system advertising service

that returns advertisements to the AdDroid userspace li-

brary, which displays them in a new user interface ele-

ment called an AdView. While this approach success-

fully removes untrusted ad libraries from applications, it

does not provide any additional UI-level security proper-

ties for the embedded AdView beyond what is provided

by stock Android (see Figure 1). For example, it does not

prevent the host application from engaging in clickfraud

by programmatically clicking on ads.

AdSplit [23], on the other hand, fully separates ad-

vertisements into distinct Android applications (one for

each host application). AdSplit achieves the visual em-

bedding of the ad’s UI into the application’s UI by over-

laying the host application, with a transparent region for

the ad, on top of the ad application. It prevents program-

matic clickfraud attacks by authenticating user input us-

ing Quire [3]. As summarized in Figure 1, AdSplit meets

the majority of security requirements for embedded UIs.

Indeed, the requirements it meets are sufficient for em-

bedded advertisements. Because it does not meet all of

the requirements, however — most importantly, it does

not prevent input eavesdropping — AdSplit would not be

well-suited as a generalized solution for embedded UIs.

Finally, the prototype implementation described

in [18] to meet that work’s goals (upon which we build)

also contains weaknesses. In particular, the isolation and

identification of different principals (“trust groups” in

the terminology of that paper) is insecure, undermining

all of the security properties. Rather than truly support-

ing one Android application embedding UI from another

application, it merely separates interfaces defined in the

main application from those defined in included libraries.

This separation relies on Java package names, static code

analysis, and hypothetical changes to the Android frame-

work (e.g., changing Android’s Java classloader to en-

able package sealing) that have not been implemented or

verified in practice.

5 Implementation Experience: LayerCake

We now explore what it takes to support secure embed-

ded UIs, under the definitions from Section 2.3, in the

Android framework. As no existing Android-based so-

lutions meet these goals, we view this implementation

as an opportunity to consider secure embedding from

scratch. While we adapt techniques from prior work, we

find that previously published guidelines are not always

directly applicable. For example, we found that we could

simplify a prior approach [18] when overlaying cross-

application content, but that we faced additional practical

challenges, such as the need to propagate layout changes

102 22nd USENIX Security Symposium USENIX Association

Category Security Requirement LayerCake (Section Number) Approach

Display Integrity Prevents direct modification ✓ (5.3) Embedded elements in isolated, overlaid windows.

Prevents size manipulation ✓ (5.6) User notifications on size conflicts.

Input Integrity Prevents programmatic input ✓ (5.3) Embedded elements in isolated, overlaid windows.

Intent Integrity Clickjacking protection ✓ (5.7) No input delivered if view/window not fully visible.

Prevents input denial-of-service ✓ (5.3) Embedded windows attached to system root.

Data Isolation Prevents access to display ✓ (5.3) Embedded elements in isolated, overlaid windows.

Prevents input eavesdropping ✓ (5.3) Embedded windows attached to system root.

Prevents focus stealing ✓ (5.4) Focus changes only in response to real user clicks.

Prevents ancestor redirection ✓ (5.8) Prompts and (6.2) redirection ACG.

UI-to-API Links APIs can verify caller ✓ (5.2) Elements from different principals run in separate

calling processes (identifiable by package name).

Figure 2: Techniques for Secure Embedded UI. This table summarizes how LayerCake (our modified version of Android 4.2)

achieves each of the desired security properties for embedded user interface elements.

and handle multiple levels of nesting. We further discuss

these and other challenges and lessons in Section 8.

We thus created LayerCake, a modified version of the

Android framework that supports cross-application em-

bedding via changes to the ActivityManager, the Win-

dowManager, and input dispatching. We added or modi-

fied 2400 lines of source code across 50 files in Android

4.2 (Jelly Bean). Figure 2 summarizes the implementa-

tion choices that achieve our desired security properties.

5.1 Android Background

Android user interfaces are focused around Activities,

which present the user with a particular view (or screen)

of an application. An application generally consists of

multiple Activities (e.g., settings, comments, and news-

feed Activities), each of which defines an interface con-

sisting of built-in or custom UI elements (called Views).

Android’s ActivityManager keeps only one Activity in

the foreground at a time. An application cannot embed

an Activity from another application, and two applica-

tions cannot run side-by-side. While Android does pro-

vide support for ActivityGroups (deprecated in favor of

Fragments) to improve UI code reuse within an appli-

cation, these mechanisms do not provide true Activity

embedding and are not applicable across application and

process boundaries. The goal of our exploration is to al-

low one application to embed an Activity from another

application (running in that other application’s process).

Each running Android application is associated with

one or more windows, each of which serves as the root

of an interface layout tree consisting of application-

specified Views. Android’s WindowManager isolates

these windows from each other — e.g., an application

cannot access the status bar’s window (shown at the top

of the screen) — and appropriately dispatches user input.

Our implementation relies on these isolation properties.

While only one Activity can be in the foreground, mul-

tiple applications/processes may have visible windows.

Figure 3: Sample Application. This restaurant review ap-

plication embeds two third-party Activities, an advertisement

and a map. The map Activity further embeds an access control

gadget (ACG) for location access.

For example, the status bar runs in the system process,

and the window of one application may be visible be-

low the (partially) transparent window of another. As an

example of the latter, AdSplit [23] achieves visual em-

bedding by taking advantage of an application’s ability

to make portions of its UI transparent. However, recall

from Section 4 and Figure 1 that this approach is insuffi-

cient for generalized embedded UI security.

5.2 Supporting Embedded Activities

LayerCake introduces a new View into Android’s user

interface toolkit (Java package android.view) called

EmbeddedActivityView. It allows an application

developer to embed another application’s Activity within

her application’s interface by specifying in the parame-

ters of the EmbeddedActivityView the package and class

USENIX Association 22nd USENIX Security Symposium 103

Figure 4: Window Management. This figure shows the Win-

dow/View tree for the Activities in Figure 3. Embedded Activ-

ities are not embedded in the View tree (circles) of their par-

ent, but rather within a separate window. The WindowMan-

ager keeps track of a window (grey squares) for each Activity

and visually overlays an embedded window on top of the cor-

responding EmbeddedActivityView in the parent Activity.

names of the desired embedded Activity. Figure 3 shows

a sample application that embeds several Activities.

We extended Android’s ActivityManager (Java) to

support embedded Activities, which are launched when

an EmbeddedActivityView is created and displayed. Un-

like ordinary Activities, embedded Activities are not part

of the ActivityManager’s task stack or history list, but

rather share the fate of their parent Activity. Crucially,

this means that an embedded Activity’s lifecycle is linked

to that of its parent: when the parent is paused, resumed,

or destroyed, so are all of its embedded children.

An Activity may embed multiple other Activities,

which themselves may embed one or more Activities

(multiple nesting). Each embedded Activity is started as

a new instance, so multiple copies of the same Activity

are independent (although they run in the same applica-

tion, allowing changes to the application’s global state to

persist across different Activity instances).

5.3 Managing Windows

Properly displaying embedded Activities required mod-

ifications to the Android WindowManager (Java). One

option for achieving embedded UI layouts is to liter-

ally nest them — that is, to add the embedded Activ-

ity’s Views (UI elements) as children in the parent Ac-

tivity’s UI tree. However, this design would allow the

parent Activity to mount input eavesdropping and denial-

of-service attacks on the child Activity. Thus, follow-

ing the interface layout tree invariants described in prior

work [18], we do not literally nest the interface elements

of embedded Activities inside the parent Activity. In-

stead, an embedded Activity is displayed in a new win-

dow, overlaid on top of the window to which it is attached

(i.e., the window of the parent Activity). This overlay

Figure 5: Panning for Software Keyboard. The restaurant

review application (from Figure 3), including its overlaid em-

bedded windows, must be panned upward to make room for the

software keyboard underneath the in-focus text box.

achieves the same visual effect as literal embedding but

prevents input manipulation attacks. Figure 4 shows an

example of the interface layout trees associated with the

Activities in the sample application in Figure 3. We note

that we were able to simplify the proposed approach [18],

which we found to be overly general (see Section 8).

By placing embedded Activities into their own win-

dows instead of into the parent’s window, we also inherit

the security properties provided by the isolation already

enforced by the WindowManager. In particular, this iso-

lation prevents a parent Activity from modifying or ac-

cessing the display of its child Activity (or vice versa).

The relative position and size of an overlaid window

are specified by the embedding application in the layout

parameters of the EmbeddedActivityView and are hon-

ored by the WindowManager. (Note that the specified

size may violate size bounds requested by the embedded

Activity, as we discuss in Section 5.6.)

The layout parameters of an embedded Activity’s win-

dow must remain consistent with those of the associ-

ated EmbeddedActivityView, a practical challenge not

described in prior work. For example, when the user re-

orients the phone into landscape mode, the parent Activ-

ity will adjust its UI. Similarly, when the soft keyboard

is shown, Android may pan the Activity’s UI upwards

in order to avoid covering the in-focus text box with the

keyboard (Figure 5). In both cases, the embedded Activ-

ity’s windows must be relocated appropriately. To sup-

port these dynamic layout changes, the EmbeddedActiv-

ityView reports its layout changes to the WindowMan-

ager, which applies them to the associated window.

Finally, since LayerCake supports multiple levels of

embedding, it must appropriately display windows mul-

tiple levels down (e.g., grandchildren of the top-level Ac-

104 22nd USENIX Security Symposium USENIX Association

Figure 6: Cropping Further Nested Activities. If a grand-

child (ActivityC) of the top-level Activity (ActivityA) is placed

or scrolled partly out of the visible area of its immediate parent

(ActivityB), it must be cropped accordingly.

tivity). For example, suppose ActivityA embeds Activ-

ityB which embeds ActivityC. If the EmbeddedActivi-

tyView (inside ActivityB) that corresponds to ActivityC

is not fully visible — e.g., because it is scrolled halfway

out of ActivityB’s visible area — then the window corre-

sponding to ActivityC must be cropped accordingly (Fig-

ure 6). This cropping is necessary because ActivityC is

not literally nested within ActivityB, but rather overlaid

on top of it, as discussed above.

5.4 Handling Focus

Both the parent and any embedded Activities must prop-

erly receive user input. While touch events are dis-

patched correctly even in the presence of visually over-

lapping windows, stock Android grants focus for key

events only to the top-level window. As a result, only

the window with the highest Z-order in an application

with embedded Activities will ever receive key events.

We thus modified Android to switch focus between win-

dows belonging to the parent or any embedded Activities

within an application, regardless of Z-order.

In particular, we changed the input dispatcher (C++) to

deliver touch events to the WindowManager in advance

of delivering them to the resolved target. When the user

touches an unfocused window belonging to or embedded

by the active application, the WindowManager redirects

focus. Windows that might receive the redirected focus

include that of the parent Activity, the window of any em-

bedded Activity, or an attached window from the same

process (e.g., the settings context menu, which Android

displays in a new window). Switching focus only in re-

sponse to user input (rather than an application’s request)

prevents a parent or child window from stealing focus to

eavesdrop on input intended for another principal.

5.5 Supporting Cross-Principal APIs

To support desired functionality, embedded UI elements

and their parents must communicate. For example, an

application embedding an ad may wish to communicate

keywords to the ad provider, or a system-defined location

button (ACG) may wish to pass the current location to

the parent application in response to a user click. To en-

Figure 7: Size Conflict Notification. If the AdMobWrapper

application specifies a minimum size that the RestaurantRe-

viewActivity does not honor when it embeds the advertisement,

a system notification is displayed to the user. Clicking on the

notification displays a full-screen advertisement Activity.

able flexible communication between embedded Activi-

ties and their parents, we leverage the Android Interface

Definition Language (AIDL), which lets Android appli-

cations define interfaces for interprocess communication.

We thus define the following programming model.

Each embeddable Activity defines two AIDL in-

terfaces, one that it (the child) will implement, and

one that the parent application must implement. For

example, the advertisement (child) may implement a

setKeywords() method, and the ad’s parent appli-

cation may be asked to implement an onAdLoaded()

method to be notified that an ad has been success-

fully loaded. When an application wishes to em-

bed a third-party Activity, it must keep copies of

the relevant interface files in its own source files

(as is standard with AIDL), and it must implement

registerChildBinder(). This function allows

the child Activity, once started, to make a cross-process

call registering itself with the parent.

We note that this connection is set up automatically

only between parents and immediate children, as doing

so for siblings or farther removed ancestors may leak in-

formation about the UIs embedded by another principal.

5.6 Handling Size Conflicts

Recall from Section 5.3 that the WindowManager honors

the parent application’s size specification for an Embed-

dedActivityView. This policy prevents a child element

from taking over the display (a threat discussed further

in the context of ancestor redirection below). However,

we also wish to prevent size manipulation by the parent.

We observe that it is only of concern if an embedded

Activity is given a smaller size than requested, since it

need not scale its contents to fill its (possibly too large)

containing window. Thus, we modified the Activity de-

scriptors to include only an optional minimum height and

width (specified in density-independent pixels).

Prior work [18] describes different size conflict poli-

cies based on whether the embedded element is trusted

or untrusted by the system. If it is trusted (e.g., a system-

defined ACG), its own size request should be honored;

if it is untrusted (e.g., an ad that requests a size filling

USENIX Association 22nd USENIX Security Symposium 105

the entire screen), the parent’s size specification is hon-

ored. However, we observe that a malicious parent can

mimic the effect of making a child element too small us-

ing other techniques, such as scrolling it almost entirely

off-screen — and that doing so maliciously is indistin-

guishable from legitimate possible scroll placements. We

thus further consider the failure to meet minimum size

requirements in the context of clickjacking (Section 5.7).

Thus, since enforcing a minimum size for trusted em-

bedded elements does provide additional security prop-

erties in practice, we use the same policy no matter

whether mis-sized elements are trusted or untrusted by

the system. That is, the WindowManager honors the size

specifications of the parent Activity. If these values are

smaller than the embedded Activity’s request, a status

bar notification is shown to the user (Figure 7). Similar

to a browser’s popup blocker, the user can click this noti-

fication to open a full-screen (non-embedded) version of

the Activity whose minimum size was not met.

5.7 Support for Clickjacking Prevention

In a clickjacking attack [11], a malicious application

forces or tricks a user into interacting with an inter-

face, generally by hiding important contextual informa-

tion from the user. For instance, a malicious application

might make a sensitive UI element transparent or very

small, obscure it with another element that allows input

to pass through it, or scroll important context off-screen

(e.g., the preview associated with a camera button).

To prevent such attacks, an interface may wish to dis-

card user input if the target is not fully visible. Since it

may leak information about the embedding application to

let an element query its own visibility, LayerCake allows

embedded Activities to request that the Android frame-

work simply not deliver user input events if the Activity

is:

1. Covered (fully or partly) by another window. This

request is already supported by stock Android via

setFilterTouchesWhenObscured().

2. Not the minimum requested size. A parent application

may not honor a child’s size request (see Section 5.6).

3. Not fully visible due to window placement. An em-

bedded Activity’s current effective window may be

cropped due to scrolling.

Note that an embedded Activity need not be concerned

about a malicious parent making it transparent, because

stock Android already does not deliver input to invisi-

ble windows. Similarly, an Activity need not be con-

cerned about malicious visibility changes to UI elements

within its own window, since process separation ensures

that the parent cannot manipulate these elements. To pre-

vent timing-based attacks, these criteria should be met

for some minimum duration [11] before input is deliv-

ered, a check that we leave to future work.

We emphasize that embedded iframes on the Web to-

day can neither discover if all of these criteria are met —

due to the same-origin policy, they cannot know if the

parent page has styled them to be invisible or covered

them with other content — nor request that the browser

discard input under these conditions.

5.8 Preventing Ancestor Redirection

Android applications use Intents to launch Activities ei-

ther in their own execution context (e.g., to switch to

a Settings Activity) or in another application (e.g., to

launch a browser pointed at a specified URL). In re-

sponse to a startActivity(intent) system call,

Android launches a new top-level full-screen Activity.

Recall that allowing an embedded element to redirect the

ancestor UI without user consent is a security concern.

We thus make two changes to the Android frame-

work. First, we introduce an additional flag for

Intents that starts the resulting Activity inside the

window of the embedded Activity that started it.

Thus, for example, if an embedded music player

wishes to switch from its MusicSelection Activity

to its NowPlaying Activity without breaking out of

its embedded window, it can do so by specifying

Intent.FLAG ACTIVITY EMBEDDED. (If the music

player is not embedded, this flag is simply ignored.)

Second, we introduce a prompt shown to users when

an embedded Activity attempts to launch another Activ-

ity full-screen (i.e., not using the flag described above).

This may happen either because it is a legacy applica-

tion unaware of the flag, or for legitimate reasons (e.g., a

user’s click on an embedded advertisement opens a new

browser window). However, studies have shown that

prompting users is disruptive and ineffective [16]; in Sec-

tion 6.2 we discuss an access control gadget (ACG) that

allows embedded applications to launch full-screen In-

tents in response to user clicks without requiring that the

system prompt the user.

6 Case Studies

We now return to the case studies introduced in Section 3

and describe how LayerCake supports these and other

scenarios. Figure 8 shows that implementation complex-

ity is low, especially for parent applications.

6.1 Geolocation ACG

To support user-driven access for geolocation, we imple-

mented a geolocation access control gadget (ACG) in the

spirit of prior work [19]. We added a LocationAcg

Activity to Android’s SystemUI (which runs in the sys-

tem process and provides the status bar, the recent appli-

cations list, and more). This Activity, which other ap-

plications can embed, simply displays a location button

(see Figure 3).

106 22nd USENIX Security Symposium USENIX Association

Lines of Java Parent Lines of Java

Geolocation ACG 111 14

Redirection Intent ACG 75 23

Secure WebView 133 13

Advertisement 562 37

FacebookWrapper 576 30

Figure 8: Implementation Complexity. Lines of code for

(1) the embedded Activity and (2) the parent’s implementation

of the AIDL interface. We omit legacy applications because

they required no modifications and expose no parent interfaces.

Implementation complexity is low, especially for embedders.

Following a user click, the SystemUI application, not

the parent application, accesses Android’s location APIs.

To then receive the current location, the parent appli-

cation must implement the locationAvailable()

method defined in the parent AIDL interface provided by

the LocationAcg’s developers (us).

Security Discussion. LayerCake provides the security

properties required to enable ACGs. In particular, the

parent application of a LocationAcg cannot trick the user

into clicking on the gadget, manipulate the gadget’s look,

or programmatically click on it.

We emphasize again that this ACG provides location

information to the parent application only when the user

wishes to share that information; a well-behaving par-

ent application will not need location permissions. In a

system like Android, where applications can request lo-

cation permissions in their manifest, it is an open ques-

tion how to incentivize developers to use the correspond-

ing ACG instead of requesting that permission. Prior

work [19] has suggested incentives including increased

scrutiny at app store review time of applications request-

ing sensitive permissions.

6.2 Redirection Intent ACG

In Section 5.8, we introduced a system prompt when an

embedded Activity attempts to start a full-screen Activ-

ity. However, prompts are known to be disruptive and of-

ten ignored, especially following a user action intended

to cause the effect about which the prompt warns [31].

For example, a user who clicks on an embedded ad in

stock Android today expects it to open the ad’s target in

a new (non-embedded) browser window. Following the

philosophy of user-driven access control [19], we thus

allow embedded Activities to start top-level Activities

without a prompt if startActivity() is called in

response to a user’s click.

To verify that the user has actually issued the click,

we take advantage of our system’s support for ACGs

and implement an ACG for top-level redirection. This

RedirectAcg Activity again belongs to Android’s

SystemUI application. It consists primarily of an Im-

ageView that may be filled with an arbitrary Bitmap, al-

lowing the embedder to completely specify its look. An

embedded Activity that embeds such an ACG (two levels

of embedding) thus uses the cross-process API provided

by the RedirectAcg to (1) provide a Bitmap specifying

the look, and (2) specify an Intent to be supplied to the

startActivity() system call when the user clicks

on the RedirectAcg (i.e., the ImageView’s onClick()

method is fired).

Security Discussion. The UI-level security proper-

ties provided by LayerCake ensure that the Redirec-

tAcg’s onClick() method is fired only in response

to real user clicks. In other words, the embedding ap-

plication cannot circumvent the user intent requirement

for launching a top-level Activity by programmatically

clicking on the RedirectAcg or by tricking the user into

clicking on it.

Unlike the LocationAcg, however, the embedding ap-

plication is permitted to fully control the look of the

RedirectAcg. This design retains backwards compati-

bility with the stock Android experience and relies on

the assumption that a user’s click on anything within an

embedded Activity indicates the user’s intent to interact

with that application. However, alternate designs might

choose to restrict the degree to which the redirecting ap-

plication can customize the RedirectAcg’s interface. For

example, the system could place a visual “full-screen”

or “redirect” indicator on top of the application-provided

Bitmap, or it could simply support a stand-alone “full-

screen” ACG that applications wishing to open a new

top-level view must display without customization.

Note that developers are incentivized to use the Redi-

rectAcg because otherwise attempts to launch top-level

Activities will result in a disruptive prompt (Section 5.8).

6.3 Secure WebView

We implemented a SecureWebView that addresses secu-

rity concerns surrounding Android WebViews [12, 13].

The SecureWebView is an Activity in a new built-in ap-

plication (WebViewApp) that consists solely of an ordi-

nary WebView (inside a FrameLayout) that fills the Ac-

tivity’s whole UI. Thus, when another Activity embeds a

SecureWebView, the internal WebView takes on the di-

mensions of the associated EmbeddedActivityView.

The SecureWebView Activity exposes a safe subset

(see below) of the underlying WebView’s APIs to its

embedding process. The current version of LayerCake

exposes only a subset of these APIs for demonstra-

tion purposes. A complete implementation will need to

properly (de)serialize all complex data structures (e.g.,

SslCertificate) across process boundaries.

Security Discussion. Separating out the Android Web-

View into another process — that of the WebViewApp —

provides important missing security properties. It is no

longer possible to eavesdrop on input to the embedded

USENIX Association 22nd USENIX Security Symposium 107

webpage, to extract content or programmatically issue

input, or to manipulate the size, location, or transparency

of the WebView to mount clickjacking attacks.

While the SecureWebView wraps the existing Web-

View APIs, it should avoid exposing certain sensitive

APIs, such as those that mimic user input (e.g., scrolling

via pageUp()) or that directly extract content from the

WebView (e.g., screenshot via capturePicture()).

Note, however, that APIs which redirect the SecureWeb-

View to another URL are permitted, as the parent appli-

cation could simply open a new SecureWebView instead.

Ideally, Android would replace the WebView with

the SecureWebView, but this change would not be

backwards compatible and may conflict with the goals

of some developers in using WebViews. Thus, we

observe that using a SecureWebView also benefits

the embedding application: if it exposes an API

to the webpage via an ordinary WebView (using

addJavascriptInterface()), a malicious page

could use this to manipulate the host application. Pro-

cess separation protects the host application from such

an attack, and since the WebViewApp has only the

INTERNET permission, the attack’s effect is limited.

Additionally, WebView cookies are not shared across

processes; the SecureWebView allows applications to

reuse (but not access) existing cookies, possibly provid-

ing a smoother user experience.

6.4 Advertisements

Recall that stock Android applications embedding third-

party advertisements include an ad library that runs in the

host application’s process and provides an AdView ele-

ment. Our modifications separate the AdView out into its

own process (see the advertisement in Figure 3). To do

this, we create a wrapper application for the AdMob ad-

vertising library [10]. The wrapper application exposes

an embeddable Activity (called EmbeddedAd) that in-

stantiates an AdMob AdView with the specified param-

eters. This Activity exposes all of AdMob’s own APIs

across the process boundary, allowing the embedding ap-

plication to specify parameters for the ad.

Security Discussion. Moving ads into their own process

(one process per ad library) addresses a number of the

concerns raised in Section 3. In particular, an ad library

can no longer abuse a parent application’s permissions

or exploit a buggy parent application. Furthermore, the

permissions needed by an ad library, such as Internet and

location permissions, must no longer be requested by the

parent application (unless it needs these permissions for

other purposes).

Note that all ads from a given ad library — even if

embedded by different applications — run in the same

process, allowing that ad application to leverage input

from different embedders. For example, if one appli-

cation provides the user’s age and another provides the

user’s gender, the ad application can better target ads in

all parent applications, without revealing additional in-

formation to applications that did not already have it.

(However, we note that some users may prefer that ad

applications not aggregate this information.)

LayerCake goes beyond process separation, providing

UI-level security absent in most prior systems (except

AdSplit [23]). Most importantly, the parent can no longer

mount programmatic click fraud attacks.

6.5 Facebook Social Plugins

We can now support embedded Facebook social wid-

gets in a secure manner. We achieve this by creating a

Facebook wrapper application that exposes Activities for

various Facebook social widgets (e.g., a Comments Ac-

tivity and a Like Activity — see Figure 9). Each Activ-

ity displays a WebView populated with locally-generated

HTML that references the Facebook JavaScript SDK to

generate the appropriate plugin (as done ordinarily by

web pages and as specified by Facebook [6]).

Security Discussion. LayerCake supports functional-

ity that is impossible to achieve securely in stock An-

droid and may be desirable to Facebook. This func-

tionality was previously available only on the Web, due

to the relative security of embedded iframes (though

clickjacking, or “likejacking”, remains a problem on the

Web). Our implementation protects the social widgets

both by separating them into a different process (pre-

venting data extraction, among others), and by enforcing

other UI-level security properties (preventing clickjack-

ing and programmatic clicking).

We observe that a malicious application might attempt

to mimic the FacebookWrapper application by populat-

ing a local WebView with the HTML for a social plugin.

To prevent this attack, we recommend that the Facebook-

Wrapper application include a secret token in the HTML

it generates (and that Facebook’s backend verify it), sim-

ilar in approach to CSRF protections on the Web.

6.6 Legacy Applications

The applications discussed so far needed wrapper appli-

cations because the wrapped functionality was not previ-

ously available in a stand-alone fashion. However, this

need is not fundamental — any legacy Android applica-

tion (i.e., one that targets older versions of the Android

SDK) can be embedded using the same techniques.

To demonstrate this, we created an application that

embeds both the existing Pandora application and the ex-

isting Amazon application. To do so, we needed to dis-

cover the names of the corresponding Activities in the ex-

isting applications. This information is easy to discover

from Android’s standard log, which prints information

about Intent targets when they are launched. Figure 10

108 22nd USENIX Security Symposium USENIX Association

Figure 9: Facebook Social Plugins. This example blog appli-

cation embeds both a Facebook “Like” button and a comments

feed, both running in our FacebookWrapper application.

shows a screenshot of the resulting application.

Security Discussion. As in previous case studies, the

embedded Activities are isolated from the parent. Thus,

they cannot access sensitive information in or manipulate

the UI or APIs in the parent application, or vice versa.

Legacy applications naturally do not use the new

FLAG ACTIVITY EMBEDDED flag when launching in-

ternal Activities. While updated versions of Pandora and

Amazon could use this flag to redirect within an embed-

ded window, the experience with unmodified legacy ap-

plications is likely to be disruptive. Thus, a possible pol-

icy (perhaps subject to a user preference setting) for such

applications is to internally modify all Activity launches

to use the new flag, never allowing these applications to

break out of their embedded windows.

Embedding arbitrary applications that were not in-

tended by their developers to be embedded also raises

the question of embedding permissions. Some Activi-

ties may wish never to be embedded, or to be embedded

only by authorized parents. Future modifications to Lay-

erCake should support such permissions.

7 Performance Evaluation

We evaluate the performance impact of our changes to

Android by measuring the time it takes to start an appli-

cation, i.e., the delay between a startActivity()

system call and the onCreate() call for the last em-

bedded Activity (or the parent Activity, if none are em-

bedded). As shown in the top of Figure 11, applications

with embedded Activities take longer to fully start. The

reason for this is that the parent Activity’s layout must

be created (in its onCreate()) before child Activi-

ties can be identified. Thus, an application with multiple

nested Activities (e.g., RestaurantReviewer) requires lin-

early more time than an application with only one level

Figure 10: Embedded Pandora and Amazon Apps. Legacy

applications can also be embedded, raising policy questions

regarding top-level intents and embedding permissions.

of nesting (e.g., FacebookDemo or Listen&Shop). We

note that the parent Activity’s own load time is unaf-

fected by the presence of embedded content (e.g., the

FacebookDemo Activity starts in 160 ms, even though

the embedded Facebook components require 300 ms).

Prior work [15] has argued that the time to display first

content is more important than full load time.

We also measure input event dispatch time (e.g., the

time it takes for Android to deliver a touch event to an

application). Specifically, we evaluate the impact of dis-

patching input events first to the WindowManager, al-

lowing it to redirect focus if appropriate (Section 5.4).

The bottom of Figure 11 shows that involving the Win-

dowManager in dispatch has a negligible performance

impact over stock Android; changing focus has a greater

impact, but it is not noticeable by the user, and focus

change events are likely rare.

We can also report anecdotally that the effect of em-

bedding on the performance of our case study applica-

tions was unnoticeable, except that the panning of em-

bedded windows (for the software keyboard) appears to

lag slightly. This case could likely be optimized by

batching cross-process relayout messages.

Finally, supporting embedded Activities may result in

more applications running on a device at once, poten-

tially impacting memory usage and battery life. The

practical impact of this issue depends on the embed-

ding behavior of real applications — for example, per-

haps most applications will include ads from a small set

of ad libraries, limiting the number of applications run in

practice.

8 Discussion

Whereas existing systems — particularly browsers —

have evolved security measures for embedded user in-

terfaces over time, this paper has taken a principled ap-

USENIX Association 22nd USENIX Security Symposium 109

Load time (10 trial average)

Application No Embedding With Embedding

RestaurantReviewer 163.1 ms 532.6 ms

FacebookDemo 157.5 ms 304.9 ms

Listen&Shop 159.6 ms 303.3 ms

Scenario Event Dispatch Time (10 trial average)

Stock Android 1.9 ms

No focus change 2.1 ms

Focus change 3.6 ms

Figure 11: Performance. The top table shows the time it takes

for the onCreate() method of all included Activities to be

called. We note that the time to load the parent Activity remains

the same whether or not it uses embedding, so the time for the

parent to begin displaying native content is unaffected. The

bottom table shows that the effect of intercepting input events

in the WindowManager for possible focus changes is minor.

proach to defining a set of necessary security properties

and building a system with full-fledged support for em-

bedding interfaces based on these properties.

8.1 Lessons for Embedded Interfaces

From this process, we provide a set of techniques for

systems that wish to support secure cross-application UI

embedding. Figure 2 outlines the security properties pro-

vided by LayerCake and summarizes the implementation

techniques used to achieve each property. While prior

works [18, 19] have stated the need for many (though not

all) of these properties, they have not provided detailed

guidelines for implementation. We hope this work, in

which we bring techniques from prior work together into

a practical implementation, will serve that purpose.

Our implementation experience challenges several

previous assumptions or choices. These lessons include:

User-driven ancestor redirection. Embedded applica-

tions should not be able to redirect an ancestor applica-

tion/page without user consent. We argue that a reason-

able tradeoff between security and usability is to prompt

users only if the redirection attempt does not follow a

user click (indicating the user’s intent to interact with the

embedded content). While newer browsers prevent em-

bedded iframes from redirecting the top-level page pro-

grammatically, they do not allow user actions (e.g., click-

ing on a link with target top) or other mechanisms to

override this restriction. In our case studies, we saw that

this type of click-enabled redirection can be useful and

expected (e.g., when a user clicks on an embedded ad, he

or she likely expects to see full-screen content about the

advertised product or service). In our system, we were

able to apply ACGs in a novel way to capture a user’s

redirection intent (Section 6.2).

Size manipulation as a subset of clickjacking. We ini-

tially considered size manipulation (by the parent of an

embedded interface element) to be a stand-alone threat.

A solution that we considered is to treat elements that

are trusted or untrusted by the system differently (e.g.,

an access control gadget is trusted while an advertise-

ment is not), letting the system enforce the minimum

requested size for trusted elements. However, this so-

lution provides no additional security, since a malicious

parent can use other techniques to obscure the sensitive

element (e.g., partially covering it or scrolling it partly

off-screen). Thus, we consider size manipulation as a

subset of clickjacking. We suggest that sufficient size be

considered an additional criterion (in addition to tradi-

tional clickjacking prevention criteria like complete visi-

bility [11, 19]) for the enabling of a sensitive UI element.

Simplification of secure UI layout tree. Prior work [18]

proposes invariants for the interface layout tree that en-

sure a trusted path to every node and describes how to

transform an invalid layout tree into a valid one. Our im-

plementation experience shows this solution to be overly

general. Embedded elements need not be attached to the

layout tree in arbitrary locations; rather, they can always

attach to the (system-controlled) root node and overlaid

appropriately by the WindowManager (or equivalent).

That is, the layout trees of separate principals need never

be interleaved, but rather visually overlaid on top of each

other, requiring no complex tree manipulations. Simpli-

fying this approach is likely to make it easier and less

error-prone for system developers to support secure em-

bedded UI.

8.2 New Capabilities

We step back and consider the capabilities enabled by

our implementation. In particular, the following sce-

narios were fundamentally impossible to support before

our modifications to Android; LayerCake provides ad-

ditional security properties and capabilities even beyond

the Web, as we detail here.

Isolated Embedded UI. Most fundamentally, LayerCake

allows Android applications to securely embed UI run-

ning in another process. Conceptually, this aligns the An-

droid application model with the Web model, in which

embedded cross-principal content is common. Espe-

cially as Android expands to larger devices like tablets,

users and application developers will benefit from the

ability to securely view and show content from multiple

sources in one view.

Secure WebViews. It is particularly important that Web-

Views containing sensitive content run in their own pro-

cess. While an Android WebView seems at first glance

to be similar to an iframe, it does not provide the se-

curity properties to which developers are accustomed on

the Web (as discussed in this paper and identified in prior

110 22nd USENIX Security Symposium USENIX Association

work [12, 13]). LayerCake matches and indeed exceeds

the security of iframes — in particular, a SecureWebView

can request that the system not deliver user input to it

when it is not fully visible or sufficiently large, thereby

preventing clickjacking attacks that persist on the Web.

Access Control Gadgets. Prior work [19] introduced

ACGs for user-driven access control of sensitive re-

sources like the camera or location, but that work does

not provide concrete guidelines for how the necessary

UI-level security properties should be implemented. This

paper provides these details, and we hope that they will

guide system developers to include ACGs in their sys-

tems. We particularly recommend that browser vendors

consider ACGs in their discussions of how to allow users

to grant websites access to sensitive resources [28].

8.3 Additional Issues

Finally, we discuss several issues unaddressed by Layer-

Cake that must be considered in future work.

First is the issue of application dependencies, that

is, how to handle the case when an application em-

beds an Activity from another application that is not in-

stalled. Possibilities include automatically bundling and

installing dependencies (as also proposed by the authors

of AdSplit [23]), giving the user the option of installing

the missing application, or simply failing silently. This

issue led the authors of AdDroid [17] to decide against

running ads in their own process, but we argue that the

security concerns of not doing so outweigh this issue.

The concern that users might uninstall or replace ad ap-

plications to avoid seeing ads could be addressed by giv-

ing parent applications feedback when a requested em-

bedded Activity cannot be displayed; applications rely-

ing on ads could then display an error message if the

required ad library is not available. Updates and dif-

ferences in library versions required by apps could be

handled by Android by supporting multiple installed ver-

sions or simply by the ad libraries themselves.

Second is the issue of principal identification: a user

cannot easily determine the source of an embedded inter-

face (or even whether anything is embedded). This con-

cern mirrors the Web today, where an iframe’s presence

or source cannot be easily determined, and we consider

this to be an important orthogonal problem.

9 Related Work

Finally, we consider additional related work not dis-

cussed inline.

In Section 4 and Figure 1, we explored existing im-

plementations of embedded cross-application user inter-

faces [5, 17, 18, 23]. These systems have differing goals

and employ a variety of techniques, but none fully meets

the security requirements defined in [18] and expanded

here. In particular, none of these approaches can, without

modification, support security-sensitive embedded user

interfaces like ACGs [19]. The original ACG imple-

mentation built on interface-level security properties pro-

vided by the Gazelle browser operating system [29].

Others have explored the problem of clickjacking in

more depth. One study [20] found that most framebust-

ing techniques are circumventable, making them ineffec-

tive for preventing clickjacking. Other work [11] pro-

vides a comprehensive study of clickjacking attacks and

defenses, presenting a solution (InContext) that relies on

the browser to verify the visual context of sensitive UI

elements. LayerCake could be extended to support In-

Context for additional clickjacking protection.

Our implementation relies on security properties pro-

vided by the Android WindowManager. Window system

security has been explored previously by projects such

as Trusted X [4] (an implementation of the X Window

System [9] based on the Compartmented Mode Worksta-

tion requirements [30]) and the EROS Trusted Window

System [22]. We extend this work by leveraging a se-

cure window system to support secure cross-application

UI embedding.

10 Conclusion

We have systematically considered the security require-

ments for embedded user interfaces, analyzing exist-

ing systems — including browsers, smartphones, and re-

search systems — with respect to these requirements.

While browsers have evolved to address many (though

not all) of these requirements over time, Android-based

implementations have not supported secure embedded

interfaces. We thus created LayerCake, a modified

version of the Android framework that supports cross-

principal embedded interfaces in a way that meets our

security goals. The resulting capabilities enable several

important scenarios, including advertisement libraries,

Facebook social plugins, and access control gadgets.

Based on our exploration and implementation experi-

ence, we provide a concrete set of criteria and techniques

that has to date been missing for system developers wish-

ing to support secure interface embedding.

This paper, along with any updates, will be available

at https://layercake.cs.washington.edu/.

11 Acknowledgements

We thank Roxana Geambasu, Alex Moshchuk, Bryan

Parno, Helen Wang, and the anonymous reviewers for

their valuable feedback on earlier versions. This work

is supported in part by the National Science Founda-

tion (Grant CNS-0846065 and a Graduate Research Fel-

lowship under Grant DGE-0718124), by the Defense

Advanced Research Projects Agency (under contract

FA8750-12-2-0107), and by a Microsoft Research PhD

Fellowship.

USENIX Association 22nd USENIX Security Symposium 111

References

[1] BARTH, A. Security in Depth: HTML5’s @sand-

box, 2010. http://blog.chromium.org/2010/05/

security-in-depth-html5s-sandbox.html.

[2] BEGEMANN, O. Remote View Controllers in iOS 6, Oct.

2012. http://oleb.net/blog/2012/02/what-ios-

should-learn-from-android-and-windows-8/.

[3] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU, A., AND WAL-

LACH, D. S. Quire: Lightweight Provenance for Smart Phone

Operating Systems. In 20th USENIX Security Symposium (2011).

[4] EPSTEIN, J., MCHUGH, J., AND PASCALE, R. Evolution of a

Trusted B3 Window System Prototype. In IEEE Symposium on

Security and Privacy (1992).

[5] ETTRICH, M., AND TAYLOR, O. XEmbed Protocol Specifi-

cation, 2002. http://standards.freedesktop.org/

xembed-spec/xembed-spec-latest.html.

[6] FACEBOOK. Social Plugins. https://developers.

facebook.com/docs/plugins/.

[7] FACEBOOK. Like button requires confirm step, 2012.

https://developers.facebook.com/bugs/

412902132095994/.

[8] FELT, A. P., HA, E., EGELMAN, S., HANEY, A., CHIN, E.,

AND WAGNER, D. Android permissions: user attention, com-

prehension, and behavior. In 8th Symposium on Usable Privacy

and Security (2012).

[9] GETTYS, J., AND PACKARD, K. The X Window System. ACM

Transactions on Graphics 5 (1986), 79–109.

[10] GOOGLE. AdMob Ads SDK. https://developers.

google.com/mobile-ads-sdk/.

[11] HUANG, L.-S., MOSHCHUK, A., WANG, H. J., SCHECHTER,

S., AND JACKSON, C. Clickjacking: Attacks and Defenses. In

21st USENIX Security Symposium (2012).

[12] LUO, T., HAO, H., DU, W., WANG, Y., AND YIN, H. Attacks

on WebView in the Android system. In 27th Annual Computer

Security Applications Conference (2011).

[13] LUO, T., JIN, X., ANANTHANARAYANAN, A., AND DU, W.

Touchjacking Attacks on Web in Android, iOS, and Windows

Phone. In 5th International Symposium on Foundations and

Practice of Security (2012).

[14] MICROSOFT. User Account Control. microsoft.com/en-

us/library/windows/desktop/aa511445.aspx.

[15] MOSHCHUK, A., BRAGIN, T., DEVILLE, D., GRIBBLE, S. D.,

AND LEVY, H. M. SpyProxy: Execution-Based Detection of

Malicious Web Content. In 16th USENIX Security Symposium

(2007).

[16] MOTIEE, S., HAWKEY, K., AND BEZNOSOV, K. Do Windows

Users Follow the Principle of Least Privilege?: Investigating User

Account Control Practices. In Symposium on Usable Privacy and

Security (2010).

[17] PEARCE, P., FELT, A. P., NUNEZ, G., AND WAGNER, D. Ad-

Droid: Privilege Separation for Applications and Advertisers in

Android. In ACM Symposium on Information, Computer and

Communications Security (AsiaCCS) (2012).

[18] ROESNER, F., FOGARTY, J., AND KOHNO, T. User Interface-

Toolkit Mechanisms for Securing Interface Elements. In 25th

ACM Symposium on User Interface Software and Technology

(2012).

[19] ROESNER, F., KOHNO, T., MOSHCHUK, A., PARNO, B.,

WANG, H. J., AND COWAN, C. User-Driven Access Control:

Rethinking Permission Granting in Modern Operating Systems.

In IEEE Symposium on Security and Privacy (2012).

[20] RYDSTEDT, G., BURSZTEIN, E., BONEH, D., AND JACKSON,

C. Busting Frame Busting: A Study of Clickjacking Vulnerabili-

ties on Popular Sites. In IEEE Workshop on Web 2.0 Security and

Privacy (2010).

[21] SCHECHTER, S., DHAMIJA, R., OZMENT, A., AND FISCHER,

I. The Emperor’s New Security Indicators. In IEEE Symposium

on Security and Privacy (2007).

[22] SHAPIRO, J. S., VANDERBURGH, J., NORTHUP, E., AND CHIZ-

MADIA, D. Design of the EROS Trusted Window System. In 13th

USENIX Security Symposium (2004).

[23] SHEKHAR, S., DIETZ, M., AND WALLACH, D. S. AdSplit:

Separating Smartphone Advertising from Applications. In 21st

USENIX Security Symposium (2012).

[24] SOPHOS LABS. Facebook Worm: Likejacking, 2010.

http://nakedsecurity.sophos.com/2010/05/

31/facebook-likejacking-worm/.

[25] TANG, S., MAI, H., AND KING, S. T. Trust and Protection in

the Illinois Browser Operating System. In USENIX Symposium

on Operating Systems Design and Implementation (2010).

[26] TEMPLEMAN, R., RAHMAN, Z., CRANDALL, D. J., AND KA-

PADIA, A. Placeraider: Virtual theft in physical spaces with

smartphones. CoRR abs/1209.5982 (2012).

[27] W3C. Same Origin Policy. http://www.w3.org/

Security/wiki/Same_Origin_Policy.

[28] W3C. Device API Working Group, 2011. http://www.w3.

org/2009/dap/.

[29] WANG, H. J., GRIER, C., MOSHCHUK, A., KING, S. T.,

CHOUDHURY, P., AND VENTER, H. The Multi-Principal OS

Construction of the Gazelle Web Browser. In 18th USENIX Se-

curity Symposium (2009).

[30] WOODWARD, J. P. L. Security Requirements for System High

and Compartmented Mode Workstations. Tech. Rep. MTR 9992,

Revision 1 (also published by the Defense Intelligence Agency as

DDS-2600-5502-87), The MITRE Corporation, Nov. 1987.

[31] YEE, K.-P. Aligning Security and Usability. IEEE Security and

Privacy 2(5) (Sept. 2004), 48–55.

