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Abstract—Wireless bodyworn sensing devices are fast be-
coming popular for fitness, sports training and personalized
healthcare applications. Securing data generated by these devices
is essential if they are to be integrated into the current health
infrastructure and employed in medical applications. In this
paper, we propose a mechanism to secure data provenance for
these devices by exploiting spatio-temporal characteristics of
the wireless channel that these devices use for communication.
Our solution enables two parties to generate closely matching
‘link fingerprints’ which uniquely associate a data session with
a wireless link such that a third party can later verify the
details of the transaction, particularly the wireless link on which
the data was transmitted. These fingerprints are very hard
for an eavesdropper to forge, they are lightweight compared
to traditional provenance mechanisms, and enable interesting
security properties such as accountability, non-repudiation, and
resist man-in-the-middle attacks. We validate our technique with
experiments using bodyworn sensors in scenarios approximating
actual device deployment, and present some extensions which
reduce energy consumption. We believe this is a promising
first step towards using wireless-link characteristics for data
provenance in body area networks.

Index Terms—Body Area Networks, Data Provenance, Physical
Layer Security.

I. INTRODUCTION

Body area networks (BANs) is an emerging technology

paradigm anticipated to revolutionize the healthcare domain

and significantly reduce soaring national health expenditures.

Small unobtrusive sensors worn on the body allow for mobil-

ity, remote monitoring, and reduce the burden on hospital and

professional staff. This technology has already found popular

application in sports, fitness training, and lifestyle monitoring.

Examples include Nike+ FuelBand [1], Fitbit Flex [2], Toumaz

Sensium Digital Plaster [3], and the Natalia Project [4]. Several

companies, including Apple [5], are reportedly innovating in

this field, and ABI Research [6] predicts that shipments of

disposable wireless sensors are expected to reach 5 million by

2018.

A typical body area networks topology consists of body-

worn sensors which communicate over a wireless link with

a handheld device or an off-body basestation which forwards

the data to an online database to be accessed and analyzed by

Syed Taha Ali, Vijay Sivaraman and Sanjay Jha are with the University of
New South Wales, Kensington, Sydney, NSW, 2052 Australia, e-mail: taha,
vijay, sanjay@unsw.edu.au.

Diethelm Ostry is with CSIRO ICT Centre, Vimera Rd., Marsfield Australia,
NSW, 2122, Australia, email: diet.ostry@csiro.au.

Gene Tsudik is with University of California, Irvine, CA 92697, United
States, email: gtsudik@uci.edu.

professionals. A sensor may communicate directly with the

basestation (as in a star topology) or it may forward the data

to it over multiple hops using other sensors. Since sensors

are severely resource-constrained, they cannot use traditional

cryptographic solutions due to the high overhead, and are the

weakest link in this architecture. However, security is clearly

needed because these devices deal in personal medical data,

wrongful disclosure and tampering of which can result in

serious ethical and legal implications. Developing lightweight

security solutions for these devices is therefore a popular

research area.

Numerous methods have been proposed for confidentiality,

integrity, and authenticity of sensor data. However, for these

devices to integrate successfully into the healthcare infrastruc-

ture and for patients and medical professionals to trust this

data, further guarantees must be provided, such as contextual

information about the data, which may include information

about sensor-patient association, data-device association, and

which parties handled the data. This metadata falls in the

purview of data provenance. To this end our provenance ap-

proach specifically generates a secure verifiable proof of data

transactions occurring between sensor device and basestation.

Consider the case of a user, Alice, who has had a heart

attack and is informed by her insurance provider that her

insurance rates will be reduced if she gives up smoking. To

ensure she complies, Alice is given a wearable sensor device

to monitor her for a trial period. The sensor periodically

sends readings to her smartphone which forwards them to an

online database. Thwarting this mechanism to secure benefits

is easy: Alice could easily hack into the phone and forge her

readings. Or she could replay previously recorded readings to

cover up smoking episodes. Or, in the identity transference

attack, she could even affix the sensor to a non-smoker friend

for the duration of the trial without anyone finding out.

Traditional mechanisms to protect against such attacks rely on

extensive usage of public-key cryptography which is compute

and energy intensive.

This paper proposes a data provenance technique for body-

worn sensors. Provenance facilitates data trustworthiness of

the data, which is a critical factor especially in data forensics.

In Alice’s case, it would be useful to reliably determine

certain information about the data such as, the common sensor

data off-load points. It would enhance trustworthiness of the

medical readings to confirm that Alice’s sensor’s first point

of contact is usually her personal mobile phone, home WiFi

access point, a basestation in her office, or her gym. Forensics

investigators should be able to check data associations, verify
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context, identify faults and, in the event of an incident, assign

liability.

Prior work in provenance for sensor devices (reviewed in the

next section) typically relies solely upon cryptographic mech-

anisms which may prove very energy intensive [7]. In contrast,

we suggest an information-theoretic approach: we propose that

wireless channel characteristics between the sensor and the

basestation be used to generate ‘link fingerprints’. Characteris-

tics of the wireless link, such as radio signal strength or signal

phase shift, are unique to the two communicating parties, very

difficult for an eavesdropper to forge, and can be leveraged to

provide a shared and provable record of data sessions between

two devices. Public-key operations, such as digital signatures,

are used sparingly only to authenticate link fingerprints on a

per session basis.

When a sensor and a basestation communicate, their routine

data messages can be used to sample the wireless link,

allowing each party to generate a unique very closely matching

signature or ’link fingerprint’ (usually RSSI is used for this

purpose). This is similar, conceptually, to a Diffie Hellman key

exchange, except that it is done at a fraction of the processing

cost, and computed over the course of the entire data exchange.

If both parties digitally sign the data they exchange and

their corresponding link fingerprints, this would authenticate

the session, and allow for later (off-line) verification of the

sensor-basestation association for the transaction, effectively

confirming that said data was transmitted over that particular

link. This process is secure since the fingerprints cannot be

forged. It is also lightweight compared to alternative solutions

that rely solely on cryptography. Unlike existing provenance

solutions, our scheme also provides accountability, i.e. the

wearer of the sensor can verify that provenance information

has not been tampered with or hacked. This is especially

applicable in scenarios involving remote programming, where

data flow is from basestation to sensor device. For exam-

ple, considering bodyworn actuator devices (such as insulin

pumps), Alice (or her doctor) may choose to reprogram her

bodyworn device, and, the signed link fingerprint would serve

as non-repudiable evidence of that operation.

Our contributions are:

1) a data provenance protocol using wireless channel char-

acteristics to generate link fingerprints.

2) experimental results confirming that this protocol can

generate unique and near-perfect matching link finger-

prints for typical data exchanges between bodyworn

sensor and off-body basestation.

3) optimization mechanisms that significantly reduce mem-

ory and transmission overheads in handling link fin-

gerprints, making the proposed protocol feasible for

resource-constrained devices.

Our results indicate that, in a typical usage environment, two

parties can generate a 128-bit link fingerprint approximately

every 10 − 15 minutes. We believe this is a promising first

step in using wireless link characteristics to enable secure data

provenance.

This paper is organized as follows: Section II covers prior

work in this domain. In Section III, we summarize research

in exploiting radio channel state variation to build security

primitives. The link fingerprint protocol is described in Sec-

tion IV. The fingerprint generation technique is experimentally

validated in Section V, optimization mechanisms are presented

in Section VI. The paper concludes in Section VII.

II. PRIOR WORK

We consider provenance to be a record of the origin and

evolution of data within a system. On a computer, provenance

may consist simply of a record of processes involved in

system events pertaining to the data, such as creation, access,

modification, etc. In a digital domain provenance may include

a record of paths the data took, and a log of any remote

actions performed on it. This is vital for digital forensics:

with the surge in computer crime, provenance is critical

in reconstructing incidents and assigning liability. This also

motivates the need for securing provenance (distinct from

generating it), as discussed in [8].

The granularity of provenance varies with application

requirements and device capability: [9] makes the case for

‘high-fidelity’ provenance, compiled at the kernel level, en-

abling very detailed forensics analysis. On enterprise networks,

administrators can log file and system operations in detail.

On resource-constrained devices, however, a digital signature

or a timestamp association may have to suffice. Additionally,

provenance need not be binary: especially in distributed en-

vironments, such as large multi-hop sensor networks, it may

be more practical to express confidence in sensor data using

a probability value [10] or a trust score [11] [12].

In body area networks, provenance has mostly been

limited to verifying data-sensor and data-patient associations.

Chowdhury et al. [13] survey existing research on associating

sensor data with the human subject, and consider several

authentication techniques, typically relying on frequent use of

cryptographic protocols, trusted third parties, and additional

sensor node capability (e.g. biometrics readers). [14] amortizes

digital signatures for bodyworn devices, enabling a secure and

irrevocable binding between patient data and the originating

device. [15] proposes binding patient data to the subject’s own

unique vital signs readings (real-time ECG and accelerometer

data), enabling user authentication in a continuous manner.

However, compared to our solution, none of these schemes

address the data path or link association between two parties,

and some of them require extra hardware capabilities.

Radio fingerprinting techniques [16] can identify a trans-

mitting party (with up to 70% probability) by examining

its radio signal. However, they require a strictly stationary

deployment, specialised sampling hardware and a database

to train the system. This approach is not scalable to multi-

hop networks, and a sophisticated attacker may even forge

legitimate radio fingerprints.

Identifying the links that data traverses in a wireless network

is examined in [17], which proposes a provenance mechanism

where intermediate nodes in a multi-hop sensor network use

Bloom filters to imprint path information on transit packets

such that the basestation can verify the path of each packet.

This has the advantage that it can identify malicious nodes.

However, it relies on a trusted infrastructure and does not

protect against collusion or man-in-the-middle attacks.
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A similar concept to our work is that of secure routing

protocols: for instance, in the Secure Ad-hoc On-demand

Distance Vector (SAODV) [18], routers in a mobile ad hoc

network digitally sign the headers of all routing information

packets so that devices in the network are able to verify the

route the packet has taken. However, this results in intensive

overheads due to the signing operations and transmission costs.

The distinguishing feature of our approach is the gener-

ation of provenance between two parties, on a per session

basis, thereby minimizing the use of expensive cryptographic

operations and communication overhead, and still providing

strong security guarantees. This makes our approach ideal for

resource-constrained bodyworn devices. In most prior work,

digital signatures and/or encryption is used on a per packet

basis, whereas in our case, these operations are performed

only after a usable link fingerprint is derived, approximately

every ten to fifteen minutes (after every 900 data packets).

The link fingerprint is generated using only linear operations

by exploiting wireless channel characteristics during the data

transmission. We present next an overview of this channel-

based technique and describe briefly how researchers are

deploying it for a variety of applications, including secret-key

agreement, authentication, and intrusion detection.

III. SECURITY FROM WIRELESS CHANNEL

CHARACTERISTICS

There has been considerable interest recently in using the

wireless physical channel between two devices to construct

security primitives. The theory underpinning this approach is

as follows: the wireless channel between two communicating

parties, Alice and Bob, is intrinsically symmetric, i.e. if Alice

and Bob were to use identical transceivers and antennas, and

transmit identical signals, they would also receive identical

signals. As described by the reciprocity property of elec-

tromagnetic communication, radio signals propagate over an

identical set of multiple paths in both directions, thereby

experiencing identical gains, phase shifts, and delays. Alice

and Bob can individually measure parameters (such as radio

signal strength, phase shift, angle of arrival, etc.) describing

the effects of these paths on the signal, and in ideal conditions,

barring interference and noise, these measurements will agree.

The wireless channel is also highly sensitive to location

and spatio-temporal changes. Jakes fading model [19] states

that the wireless channel decorrelates rapidly over distances of

approximately half a wavelength, and, for a distance greater

than one wavelength, the channels may be assumed to be in-

dependent. The implication is that motion on the part of Alice

or Bob or in the environment will cause significant variation

in the time-evolution of channel characteristics. Furthermore,

if an eavesdropper, Eve, is located a distance greater than

one radio wavelength, she will effectively be measuring a

different spectrum, and will be unable to access Alice and

Bob’s shared measurements. Alice and Bob may therefore use

their channel measurements as a source of shared entropy for

security benefits.

We support this theory with experimental evidence in Sec-

tion V. The effectiveness of this technique, however, has been

demonstrated in the literature across a wide range of platforms

and a variety of applications. In one of the earliest practical

demonstrations in this area, the authors in [20] use software

defined radios operating in the 400-500 MHz band and suggest

methods for two-party authentication, secret-key agreement

and the secret-key dissemination. Secret-key agreement is the

most popular application and schemes have been devised for

UWB communications [21], Bluetooth [22], and WiFi net-

works [23] [24] [25]. In[24], the authors specifically undertake

a detailed investigation of shared channel state for various

environments (including an underground tunnel, a cafeteria,

and an outdoor lawn), different activities (walking and riding

a bike), and also a scenario where Alice and Bob communicate

using different radio hardware.

Considering bodyworn sensing devices specifically, exten-

sive experimental campaigns have been conducted in recent

years. In [26], the authors model channel fading for bodyworn

devices in the 2.45 GHz band, whereas [27] focus on the 2.4

GHz and 900 MHz ISM and the 402 MHz medical implant

communications band. The channel variation is observed to be

complex and unpredictable due to small-scale fading caused

by motion, multipath propagation, and the shadowing effects

of the human body. In [28], the authors examine the feasibility

of secret-key agreement using the radio channel as modelled

by the IEEE 802.15.6 Task Group on body area networks.

Some research efforts (including ours) approximate real

deployments using 802.15.4 low-end sensing devices mounted

on the body, e.g. TelosB [29] [30] and MicaZ motes [31]

[32] [33]. In [29], the authors propose a solution allowing

multiple sensors worn by a subject to authenticate each other,

and in [30], to undertake authenticated secret-key agreement.

The authors in [31] decompose the wireless channel into fast

and slow components, enabling the user to configure secret-

key generation as per his requirements. [32] suggest the use

of filtering techniques to reduce the effects of noise and

asymmetric components in the channel profile and further

improve the correlation between Alice and Bob for improved

secret-key agreement. [33] perform extensive experiments (in

an office space and an anechoic chamber) to quantify the

effects of small-scale fading on secret-key agreement and

propose a solution which restricts the key generation process

to periods of high channel variation.

Other security applications that leverage the entropy of

the shared channel state include intrusion detection [34],

location distinction [35], secure pairing [36], proximity-based

authentication [37], and identifying spoofing and Sybil attacks

[38] [39]. However, to the best of our knowledge we are

the first to exploit shared wireless channel characteristics for

data provenance. We describe next a low-cost protocol, we

highlight its novel security properties, and demonstrate with

experiments its applicability for bodyworn monitoring devices.

IV. PROTOCOL FOR LINK FINGERPRINTS

Recall the earlier example of Alice that was used to motivate

the need for associating a sensor with the basestation for the

duration of a data transaction. We use the ‘channel signature’

to uniquely fingerprint the Alice-Bob link and associate it with
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Fig. 1: Protocol for Alice and Bob

the data they exchange, such that a verifying party, Victor

can later verify this association. The fingerprint is a unique

bitstring of pre-configured length, generated individually by

Alice and Bob sampling their common wireless link. Details of

how both parties generate the fingerprints are provided below.

A. Sensor Device and Basestation

The protocol for the bodyworn sensor device and base-

station, denoted as Alice and Bob respectively, is depicted

in Fig. 1. It is executed at the conclusion of the transaction,

after all data messages have been exchanged between the

pair, and they have generated their respective link fingerprints.

The Hash(DATA) field in this case refers to a hash operation

performed over all the data the two parties have exchanged.

It is essential that Alice and Bob encrypt their fingerprints to

keep them private from unauthorized parties. The fingerprint

is a unique characterization of the spatio-temporal channel

variation which is correlated at both ends of the wireless link.

If this were transmitted in plain sight, an attacker could copy

it and claim the link association with itself, raising confusion

with regard to the actual data offload point. Alice and Bob

should also not be able to view each other’s fingerprint: if

either of them were maliciously inclined, they might share

the fingerprint with an attacker or use the fingerprint and its

signature binding to try and mount a replay attack. An easy

way to protect the fingerprint is for each party to encrypt its

own with a key shared only with Victor (in this case, KAV

for Alice and KBV for Bob).

Once the fingerprint is encrypted, it is bundled with a hash

digest of the data and session identifiers (timestamp or counter

value, identity of the devices, etc.), into a session record

which is digitally signed, and transmitted to the database. The

signature ensures both parties commit to the data and the link

association.

Furthermore, each party can retain a copy as a receipt

for the transaction, enabling system-wide accountability. In

existing provenance solutions, sensors usually offload trust

on to the network or third parties ([11] and [10]), and this

allows for scenarios where trusted insiders may tamper with

the provenance record without detection.
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Fig. 2: Protocol for Victor

B. Verifier

Fig. 2 depicts the verification process for Victor: as part of

a subsequent review or audit, Victor could revisit archived

session records, verify the digital signatures and session

identifiers for the data items of interest, decrypt Alice and

Bob’s link fingerprints using the individual symmetric keys

and check that they match. If there is a very high similarity

between fingerprints, Alice and Bob used the wireless link to

communicate that particular data item.

Furthermore, if Alice were to act maliciously and alter the

record of her transaction with Bob (by tampering with the

fields in their session record), she would not be able to tamper

with Bob’s record of the session (due to his digital signature),

and Victor would easily identify the mismatch.

C. Discussion

One important property of the proposed scheme is that

the link fingerprint mitigates man-in-the-middle attacks. If

Eve interposes herself between Alice and Bob, the legitimate

Alice-Bob communication would span two different wireless

links (Alice-Eve and Eve-Bob) and Alice and Bob finger-

prints would markedly differ with very high probability. This

property can be used to augment other locationing protocols

vulnerable to man-in-the-middle attacks. We briefly consider

two examples:

Man-in-the-middle attacks in wireless networks have been

usually addressed using distance-bounding protocols. A

distance bounding protocol [40] enables a party, Alice, to

determine an upper bound on the physical distance to a

communicating party, Bob. A common usage scenario is that

of a person with a badge (access card) running a wireless

identification protocol to gain access at the entrance to a

building. The access control system must verify that the badge

running the identification protocol is in the immediate vicinity.

In this protocol, Alice typically issues a challenge to Bob

and measures timing delay between sending the challenge and

receiving the response. The upper bound on distance to Bob is

the round-trip time divided by twice the speed of light, since

RF waves travel at the speed of light. State of the art dis-

tance bounding protocols (such as [41]) focus on minimizing
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processing delay at Bob’s end, enabling it to respond faster

to Alice’s challenge, thereby reducing uncertainty in distance

estimate. Whereas distance bounding does not prevent the

man-in-the-middle attack, it makes it much harder by forcing

the attacker to be in the immediate physical proximity of Alice

and Bob. If a secure distance bounding protocol were to be

used in conjunction with link fingerprints, Alice would have

two strong guarantees, (1) that she is communicating directly

with Bob with no intermediary in between, and (2) Bob is in

her immediate vicinity.

A similar higher level primitive is location proofs, intro-

duced by Saroiu et al. [42]. In a typical usage scenario, a

mobile device, seeking to prove its location may request a

component of the local wireless infrastructure (such as a WiFi

access point or a cell phone tower) to issue it a location

proof. Location proofs enable several potential applications,

such as location-restricted content delivery, store discounts

and loyalty schemes, and fraud reduction in online auctions.

The proof itself consists of timestamped metadata digitally

signed by the wireless access point. Certain applications,

such as voting registration or generating alibis for police

investigations, may require more rigorous security guarantees

which may be attained by incorporating other mechanisms

(such as nonces or real-time photographic validation).

Our protocol, if deployed in this case, already incorporates

security properties of a basic location proof and has two

important advantages: the link fingerprint protects against

man-in-the-middle attacks, and the session record contains

a record of the data exchanged. This serves as a type of

transaction proof, including strong guarantees on location,

time, direct communication, and data exchanged during the

session.

In the next section, we report on experiments to validate

our claim that usable link fingerprints can be generated using

wireless channel characteristics.

V. EXPERIMENTAL VALIDATION

We used MicaZ motes, running TinyOS, operating in the

2.4 GHz band. These radios provide received signal strength

indicator (RSSI) values, a measure of signal power in logarith-

mic units, which is suitable for generating link fingerprints due

to its sensitivity to location, motion, and time. To mimic an

actual bodyworn sensor deployment, we mounted the device

on a human subject Alice (on the upper right arm as shown

in Fig. 3(a)), that communicates with an off-body basestation

Bob (pictured in Fig. 3(b)). Our indoor environment is an

office space with multiple cubicles, furniture and people. The

layout is depicted in Fig. 3(c), marking out the locations of

the basestation (Bob) and three eavesdroppers (Eve1, Eve2,

Eve3) at a distance of greater than one wavelength away

from the legitimate parties. The bodyworn device transmits

packets at the rate of 1 packet/second, typical for healthcare

devices transmitting physiological information such as heart-

rate, ECG, etc. The basestation responds within 10 ∼ 20
milliseconds with an acknowledgement to every message. This

routine device communication enables both parties to sample

the wireless link in succession and record the RSSI values.

(a) Mobile mote (Alice) (b) base-station (Bob)

6 m 

Basestation 

(Bob) 

Eve1 

Eve2 

Eve3 

Sitting Point 

Mobile Mote (Alice) 

Office Furniture 

Cubicle 

Cubicle Cubicle 

15 cm 

Cubicle 

(c) Layout of experimental setup

Fig. 3: Mobile node, base-station and experimental layout for

indoor environment

The scheme can be adjusted for different sampling rates as

we will discuss later. Furthermore, packet loss is common

in mobile environments, and using acknowledgement packets

with running counter values has further benefit in that it

enables both sensor device and basestation to synchronize their

transmissions and accordingly their link fingerprints.

Our experiments consist of two activity modes: High Ac-

tivity where the subject, Alice, walks around the office space

to different cubicles, and interacts with other people in the

room, and Low Activity where she is mostly seated at her

cubicle, occasionally getting up to fetch items from nearby

cubicles. For each activity, we collect RSSI trace readings for

the bodyworn sensor device (Alice), basestation (Bob), and

eavesdroppers (Eve1-3), spanning approximately 40 minute

periods, which we analyze offline with Matlab.

We provide in Fig. 4 a one-minute sample of the RSSI trace

for the High Activity experiment. It is observed in Fig. 4(a) that

the bodyworn sensor device, Alice, and the basestation, Bob,

channel measurements are highly correlated. Eavesdroppers,

however, experience a different channel and are unable to

replicate the RSSI profile, as shown in Fig. 4(b). As we noted

earlier, there is rapid signal decorrelation at distances of over

half a wavelength, and independent signals may be assumed

for a separation of one or two wavelengths and more. In
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the case of the 2.4 GHz band, this indicates that if Eve is

at a distance greater than 13 cm of Alice or Bob, she will

experience different fading characteristics than the legitimate

Alice-Bob channel and not be able to deduce the channel

profile. For this reason, research solutions based on wireless

link characterization stipulate as part of the threat model that

eavesdroppers be situated at least two wavelengths away from

the legitimate parties.

To quantify the correlation for channel measurements for

the different parties, we compute the Pearson correlation

coefficient r:

r =

∑n

i=1
(Xi − X̄)(Yi − Ȳ )

√

∑n

i=1
(Xi − X̄)2.

√

∑n

i=1
(Yi − Ȳ )2

(1)

where Xi and Yi are the RSSI values of the ith packet of each

party and X̄ and Ȳ are the respective mean RSSI values of a

sequence of n packets. The correlation coefficient r returns

a value in [−1, 1] where 1 indicates perfect correlation, 0

indicates no correlation, and −1 indicates anti-correlation.

This metric is ideal for channel profile characterization in

that it measures variations and not absolute values, and is

therefore unaffected by offsets in RSSI measurements arising

from differences in receiver sensitivities or transmit powers.

The results are presented in Table I. Again, it is observed

that there is strong correlation between the legitimate parties

(the Alice-Bob correlation is greater than 0.9), whereas it is

poor for the eavesdroppers (Alice-Eves correlation is generally

below 0.2). We also present results for filtered versions of the
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Fig. 4: Sample of RSSI trace for High Activity

TABLE I: Correlation coefficient (r) of RSSI measurements

observed by various parties

Experiment Alice- Alice- Alice- Alice-

Bob (r) Eve1 Eve2 Eve3

High Activity 0.974 0.197 0.088 0.038

Low Activity 0.950 0.129 0.102 0.158

High Activity 0.986 0.281 0.118 0.065
(filtered)

Low Activity 0.976 0.205 0.152 0.224
(filtered)

channel profile. Filtering is useful because it reduces nonsym-

metric discrepancies between the two parties (due to elements

such as random noise, sampling delay at the endpoints, etc.)

and has been recommended in the literature [23] [32]. For our

purposes we use the Savitzky-Golay filter (other filters such as

moving average techniques can also be used) and correlation

is seen to improve slightly, giving higher confidence (> 0.95
correlation) in the shared fingerprint between Alice and Bob,

while still keeping correlation low (< 0.3) for eavesdroppers.

These results are as expected and in good agreement with

prior work. We do not provide a thorough characterization of

the wireless channel in this paper as it has been extensively

documented in the literature: the interested reader is referred to

a detailed study in [24] and specifically [33] for the off-body

channel.

Considering the strong correlation between the bodyworn

sensor device and the basestation, technically the RSSI mea-

surements themselves could be the link fingerprint. Both

parties, Alice and Bob, could simply encrypt and sign their

RSSI measurements, and a third party, Victor, could compare

the RSSI trace results, measure the correlation coefficient

(much as we have done), and if he calculates a value r > 0.9,

he can be certain that the fingerprint is valid.

However, there are issues with using raw RSSI values as

link fingerprints: for one, both parties will have to store every

RSSI value for every transaction in memory which may not be

feasible for memory-constrained sensor devices. For example,

the MicaZ motes record RSSI in single byte-sized values

and, at a sampling rate of 1 packet/second, would exhaust

their 4 KB of RAM in little over an hour. Second, radio

usage is a very expensive operation for these devices [43],

and these RSSI measurements have to be offloaded from

the sensor device as part of the session record, resulting in

extra transmission overheads. In the next section we show

how the storage, communication and energy overheads can

be dramatically reduced by leveraging known quantisation

techniques for compressing the RSSI-based link fingerprint.

VI. OPTIMIZATION AND DISCUSSION

Quantization is a digitizing technique that can efficiently

distil the raw RSSI data to a much smaller and manageable

size. Another advantage is that it has been well-studied in

the literature (especially in the context of wireless channel-

based secret-key generation [24]) and can be designed to

further reduce nonsymmetric noise components in the signals

observed by Alice and Bob.

In generating link fingerprints, legitimate communicating

parties Alice and Bob sample the wireless channel over
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a period of time to gather sufficient channel variation (or

entropy) which is then quantized to yield a common bitstring.

Quantization mechanisms typically consist of level crossing or

ranking techniques and the operator of the scheme can choose

one depending on application requirements. We describe an

example of each approach here, validate them with our exper-

imental RSSI traces, and compare their properties.

A. Level Crossing Quantization

Fig. 5 depicts a basic level-crossing quantizer (defined in

prior work [24]). The bodyworn sensor device and the base-

station define an adaptive moving window of size WQ, within

which consecutive (filtered) RSSI readings are processed. For

each window, two threshold values are calculated:

q+ = µ+ α.σ

q− = µ− α.σ

where µ is the mean, σ is the standard deviation, and α ≥ 0 is

an adjustable parameter. If an RSSI reading within a window

exceeds q+, it is encoded as 1, and if less than q−, as 0.

The thresholds define an exclusion zone and values lying in

between them are discarded. This helps to further remove

small scale discrepancies between the two endpoints, whereas

there is usually very good agreement for excursions larger

than the standard deviation. The α parameter allows the

operator to adjust quantizer performance to balance between

bit generation rate and bit agreement. For our purposes, we

use a window size of WQ = 5 and α = 1, consistent with

prior work.
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Fig. 5: Level crossing quantization technique

B. Ranking Quantization

A multi-bit ranking quantizer is depicted in Fig. 6. The

algorithm sorts the RSSI values in order to divide them into

n equal-sized ‘buckets’ (n = 4 in this case). Each RSSI

value in the original channel profile can then be encoded

with log
2
n bits . Gray coding is used to number the buckets

instead of binary coding, because successive values in Gray

coding differ in only one bit, and will therefore limit small

RSSI disagreements between Alice and Bob to a single bit

per discrepancy.

C. Performance Results

We perform the quantization process to generate fingerprints

for the two activity modes for all parties using level crossing

and ranking technique, and present results in Table I. We
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Activity Fingerprint Bit Min. Session Eve1 Eve2 Eve3 Entropy
(Quantization) Agreement (bit/s) Length (mins) Agreement Agreement Agreement

High Activity 98.40% 0.205 10.41 47.11% 46.48% 47.34% 0.997
(Level Crossing)

Low Activity 95.53% 0.139 15.35 46.26% 46.80% 47.60% 0.997
(Level Crossing)

High Activity 93.60% 2 2.13 44.39% 46.92% 48.74% 1
(Ranking)

Low Activity 96.08% 2 2.13 50.54% 50.41% 52.92% 1
(Ranking)

TABLE II: Link fingerprint performance for experimental scenarios

briefly discuss here our findings and the metrics we use to

evaluate our solution:

1) Bit Agreement: is the percentage of bits in the finger-

print that are matching between the bodyworn device

and the basestation. As can be seen, this is 90% or

greater for the legitimate parties and can be used to

conclusively validate the link between them. Bit agree-

ment is better in general for the level crossing quantizer

because, unlike for the case of ranking where every RSSI

value is quantized, the level crossing algorithm discards

those values within the exclusion zone that are likely to

cause disagreement.

2) Bit Rate: is the average number of bits that can be

extracted from the channel per unit time. The ranking

quantizer performs at a constant rate of 2 bits/s since all

of the raw RSSI values are encoded. The level crossing

technique exhibits a much lower rate because a single

RSSI value can only be encoded to a single bit and

also several RSSI values are discarded because they lie

in the exclusion zone. There is a tradeoff between bit

agreement and rate.

3) Minimum Session Length: is the fingerprint length

divided by the bit rate. The operator of the scheme

can choose the length of the desired fingerprint. For

level crossing, depending on the activity mode, it takes

approximately 11 to 16 minutes to generate a 128 bit

link fingerprint. For the ranking quantizer, which has

a much faster rate, a fingerprint can be generated in

approximately 2 minutes.

4) Eavesdropper Agreement: Fingerprints generated by

the eavesdroppers should ideally match with the legit-

imate parties for 50% of the bits, which we see in

our results. This translates to their knowledge of the

legitimate fingerprint gained by eavesdropping as being

no more useful than a tossing a coin.

5) Entropy: is a measure of the inherent randomness or

uncertainty in the key. For a random variable X, over

the set of n symbols x1, x2, ..., xn, entropy is typically

measured as follows:

H(X) = −

n
∑

i=1

p(xi) log2 p(xi) (2)

where p(xi) is the probability of occurrence of symbol

xi. For binary symbols, a value close to 1 indicates high

entropy, which we achieve in our results. Furthermore,

the fingerprints we generate clear the entropy tests in

NIST test suite [44], a battery of tests with a pass/fail

result, typically used in the literature to confirm random-

ness of wireless channel-based secrets.

We believe these are encouraging results which validate our

proposed approach, and lay the grounds for future work. The

tradeoffs between the different quantizers are also highlighted:

ranking can be used to build lossless multi-bit quantizers with

high bit generation rate, more suited to applications where the

average session time between sensor device and basestation

is low. A level crossing technique could be used for longer

session times, and yields a fingerprint with higher agreement

between the two ends. Quantizers could even be customised

to prioritize a desired metric as per application requirements.

D. Energy Comparison

In this section, we quantify the benefits of optimization by

comparing the energy consumption of our solution running

on bodyworn sensor devices with and without quantization.

We use energy benchmarks of the Mica motes specified in

the literature and estimate the costs of running our protocol.

We assume that energy savings on actual bodyworn sensing

platforms will be very similar. Relevant benchmark figures are

presented in Table. III.

We specifically simulate the scenario described in Section V

where the subject, wearing a bodyworn sensor device on his

person, works in an indoor office environment. Transactions

between the sensor device and basestation are approximately

40 minutes in duration and we use the trace data collected in

our experiments to compute energy consumption for both High

and Low Activity modes. Protocol operation on a sensor device

consists of symmetric key encryption of the link fingerprint,

hashing it as part of the digital signature process, computing

the signature, and then transmitting the result.

For the communication cost, researchers [47] measured the

energy consumption for transmitting and receiving data at a

transmit power of -5 dBm and the effective data rate. This

data rate is to be differentiated from the MicaZ claimed data

rate (of 250 kbps) and is far less (at 121 kbps), further

reduced by the headers and footers appended to the data by

the lower layers of the communication stack. For symmetric

encryption, we use energy measurements for the hardware

TABLE III: Energy costs for MicaZ motes

Activity Cost

AES-128 encryption (128 bits) [45] 1.83 µJ

SHA-1 Hash (64 bits) [46] 154 µJ

ECDSA-160 Sign [47] 52 mJ

Transmit 1 bit [47] 0.6 µJ



ALI et al.: SECURING FIRST HOP DATA PROVENANCE FOR BODYWORN DEVICES USING WIRELESS LINK FINGERPRINTS 9

AES implementation provided by the CC2420 radio on the

MicaZ motes. This is a far cheaper and more convenient

option than using a software implementation of a symmetric

cipher. SHA-1 hashing costs were originally measured for the

Mica2 platform which employs the same Atmel Atmega 128L

processor as the MicaZ. For the digital signature operation, we

use the Elliptic Curve Digital Signature Algorithm (ECDSA)

[48] with 160-bit public key size.

We do not factor in energy costs for symmetric key de-

cryption or digital signature verification because the bodyworn

sensors are not required to perform these operations. In our

protocol solution, only Victor performs fingerprint decryption

and verification and furthermore, is not limited by the energy

constraints of the sensor device. We also do not add in the cost

of optimization, i.e. linear mathematical operations such as

filtering, averaging, sorting, computing standard deviation, etc.

as these processing costs are orders of magnitude lower than

those of the cryptographic operations and data transmission.

As an example, the energy required for a compute operation

for one clock cycle on the MicaZ mote, is 3.5 nJ as compared

to the cost of transmitting one data bit, which is 0.6µJ [47].

As we observe in Table IV, the benefits of optimization are

clear: for both High and Low Activity modes, using raw RSSI

values as the link fingerprint requires approximately twice as

much energy as when quantization is used. The reason for

this is the length of the fingerprint: the larger the fingerprint,

the more the costs will add up in terms of hashing and data

transmission. AES encryption costs are also proportional to

the size of the fingerprint, but since the operation is done in

hardware in this case, these costs are orders of magnitude less

than that of hashing and transmission.

Level crossing quantization is the most economical mode

of fingerprint generation. Computation and transmission costs

in this mode for both High and Low Activity over the forty

minute period are minimal, and add less than 1.5 mJ to the

ECDSA costs. Ranking, on the other hand, adds up to 15 mJ

to the baseline cost.

The ECDSA signing operation is the most expensive and

dominates the energy cost. This operation may be considered

the baseline cost as it is constant, independent of the size and

mode of computation of the fingerprint. It is therefore possible

to economize the cost of this operation by compiling the

fingerprint over greater periods of time, or distributing it over

multiple transactions, or even utilizing signature amortization

techniques [14] such as hash chains or Merkle trees.

E. Protocol Enhancements

In this section, we discuss possible enhancements and

practical considerations for our protocol.

In some settings, such as hospitals or gyms, where there are

multiple basestations and possibilities for roaming, a body-

worn sensor device may form link associations with different

basestations over a period of time. The sensor device worn

by a hospital patient may communicate for the most part with

the basestation in the ward, except when the patient visits the

hospital cafeteria where it associates with another basestation.

Associations may be very brief and frequently disrupted. In

this case, the sensor device and individual basestations could

maintain running counter values and incremental fingerprints

for communications, such that a complete fingerprint may

be generated and signed over multiple sessions between the

sensor and basestation pair, only when sufficient data has been

communicated between the two.

We also note that it is possible to extend this concept to

networks with multiple hops (such as mobile sensor networks,

delay tolerant networks, etc.) and document the entire wireless

path for a data item. If the sensor device transmits data to the

basestation which in turn forwards it to another device using

the wireless channel, each party in the path could generate

the associated signature records and maintain receipts. The

verifying party, Victor, could map out the entire wireless path

by performing the fingerprint verification process for every

link, and, in a loose sense, may even be able to track the mobile

parties. Mechanisms could even be developed to ensure that

malicious parties in the path do not collude with each other.

In case of known environments, such as hospitals and

homes, where patterns for packet loss and patient mobility

are broadly understood, it may be possible to choose quantizer

parameters in advance for optimal performance. However, this

could even be an adaptive process. Once the RSSI values

have been collected by both parties, quantizer parameters

(such as the α parameter and number of buckets, n) may

be adjusted on the fly to generate a fingerprint of a desired

length. However, more experimentation needs to be done to

determine the bounds within which quantizer paramters may

be modified without compromising the security and integrity

of the fingerprint.

It must be pointed out here that the fingerprint is derived

from variation in wireless channel characteristics. If both

Alice and Bob are stationary and communicating in a static

environment, it is possible that the fluctuation in the channel

profile may be too low to yield an adequate fingerprint.

Furthermore, research indicates that it is possible for an

attacker to predict certain characteristics of the channel profile

by manipulating aspects of the environment around Alice and

Bob if they are stationary [24]. As an example, the attacker

could periodically block the line-of-sight communication path

between Alice and Bob in a careful controlled manner, thereby

causing predictable spikes in the channel profile, allowing the

attacker to guess certain bits of the fingerprint.

In such scenarios, the communicating parties can still

preserve the secrecy and integrity of the fingerprint by us-

ing different fingerprint generating techniques which are not

predictably reliant on motion, such as employing frequency

hopping [49] or UWB communication [50]. These techniques

can also be used at very high millisecond sampling rates to

very rapidly generate fingerprints for high speed applications.

One example is that of access control to buildings, where a

person can only afford to spend a few seconds waving his

access card in front of a card reader to gain access.

We intend to explore these ideas in future work. We are

also working on prototyping our solution to study performance

across a wider range of environments and activities.
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TABLE IV: Comparison of energy costs for quantization mechanisms

Activity Size Transmission AES Encrypt SHA-1 Hash ECDSA Sign Total
(Quantization Mode) (Bytes) Costs (mJ) (mJ) (mJ) (mJ) (mJ)

High Activity (Raw RSSI Values) 2392 11.481 0.274 46.046 52 109.801

High Activity (Ranking) 598 2.870 0.068 11.512 52 66.450

High Activity (Level Crossing) 54 0.259 0.006 1.040 52 53.305

Low Activity (Raw RSSI Values) 2270 10.896 0.260 43.698 52 106.853

Low Activity (Ranking) 568 2.726 0.0650 10.934 52 65.725

Low Activity (Level Crossing) 24 0.115 0.003 0.462 52 52.580

VII. CONCLUSION

In this paper we have proposed a data provenance pro-

tocol for bodyworn devices that exploits symmetric spatio-

temporal characteristics of the wireless channel. Our solution

generates unique link fingerprints that we use to form data to

wireless link associations. In contrast to existing provenance

mechanisms which operate on a per packet basis, this solution

generates provenance on a per session basis, which minimizes

the use of cryptographic techniques and associated overheads.

The link fingerprints can be built using routine data transmis-

sions, they are unique to the two communicating parties and

cannot be deduced in detail by an eavesdropper situated at a

distance. Our provenance solution also provides system-wide

accountability and non-repudiation.

We performed experiments using bodyworn devices in an

indoor office space to demonstrate the high correlation in

channel measurements between the two endpoints. We suggest

two optimization techniques, level crossing and ranking, to

quantize the raw RSSI values to a manageable size, we

highlight the benefits of each in terms of energy consumption,

and we discuss possibilities for adapting the fingerprinting

process for different application requirements. We believe this

is a promising first step in using wireless link-based techniques

to secure data provenance.
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