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Abstract

Fixed mobile convergence (FMC) based on the 3GPP
IP Multimedia Subsystem (IMS) is considered one of
the most important communication technologies of
this decade. Yet this all-IP-based network technol-
ogy brings about the growing danger of security vul-
nerabilities in communication and data services. Pro-
tecting IMS infrastructure servers against malicious
exploits poses a major challenge due to the huge
number of systems that may be affected. We ap-
proach this problem by proposing an architecture
for an autonomous and self-sufficient monitoring
and protection system for devices and infrastructure
inspired by network intrusion detection techniques.
The crucial feature of our system is a signature-less
detection of abnormal events and zero-day attacks.
These attacks may be hidden in a single message
or spread across a sequence of messages. Anoma-
lies identified at any of the network domain’s in-
gresses can be further analyzed for discriminative
patterns that can be immediately distributed to all
edge nodes in the network domain.

1 Introduction

The IP Multimedia Subsystem (IMS) “is a global,
access-independent and standards-based Internet
Protocol (IP) connectivity and service control archi-
tecture that enables various types of multimedia ser-
vices to end users using common Internet-based pro-
tocols” [15]. It was originally standardized by the
3rd Generation Partnership Project (3GPP1) and later

13GPP is a trademark of the European Telecommunications
Standards Institute.

adopted and extended by the European Telecommu-
nications Standards Institute (ETSI) Telecommuni-
cations and Internet converged Services and Proto-
cols for Advanced Networking (TISPAN). A converged
fixed mobile convergence (FMC) network [23] distin-
guishes three planes, as shown in Figure 1. The IMS
plane performs the control/signaling layer functions;
it has open interfaces to the IP transport plane, and
to the service and application plane. IMS technol-
ogy relies on principles and protocols of the Internet
Engineering Task Force (IETF). The Session Initiation
Protocol (SIP) plays the key role in controlling diverse
multimedia services. The SIP protocol enables one
to embed conversational services into numerous new
applications for end users across multiple mobile and
fixed access networks.

From the security point of view, the FMC architec-
ture must be protected against threats from multiple
communication domains and protocols including SIP,
Media Streaming Real Time Transport Protocol (RTP),
and Internet Protocol (IP). The focus of this paper
lies on SIP layer security. All of the three classic se-
curity goals—authenticity, availability, and integrity—
can be attacked by exploiting vulnerabilities in the SIP
stack implementations running on IMS edge or core
nodes. By compromising an IMS node, an attacker
may carry out an array of further attacks on IMS ser-
vices, ranging from the loss of confidentiality to gross
monetary abuse, e.g., by assuming a false identity and
tampering with the call accounting information. Ma-
jor damage to availability can be inflicted by crashing
SIP stacks using irregular protocol requests.

The above mentioned risks inherent to a wide-scale
deployment of IMS technology require a careful and
multi-faceted consideration of security issues. These
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issues necessarily encompass preventive as well as
reactive instruments. Preventive tools, such as en-
cryption, authentication, and integrity control, repre-
sent fundamental building blocks without which se-
cure operation of IMS is unthinkable. While they are
important design factors, these methods alone, how-
ever, cannot fully guarantee the security of IMS in-
frastructures. Implementation errors, configuration
problems, and subtle semantic vulnerabilities are in-
evitable in such infrastructures due to their complex-
ity. To prevent malicious exploitation of IMS, preven-
tive techniques should be complemented by reactive
mechanisms whose goal is to provide an adequate re-
sponse to security problems that cannot be solved by
design alone.

Most of the previous work on SIP security has
focused either on preventive measures or on the
response to known threats. It is, however, clear
that in view of the exploding variability of cur-
rently observed malicious software, IMS infrastruc-
tures must be equipped with a capability to detect
previously unknown attack variants. Such capabil-
ity can only be provided by self-learning compo-
nents which capture characteristics of observed nor-
mal data to flag anomalies as malicious events. Such
methods have been previously proposed for general-
purpose intrusion detection systems for IP networks,
e.g., [8,10,16,17,26]. The peculiarities of the network
protocols used in IMS, for example the Session Initia-
tion Protocol, necessitate the development of special-
ized intrusion detection techniques tailored to their
semantics.

The main contribution of this paper is a new se-
curity architecture for IMS containing mechanisms

for detection and response to unknown attacks. The
heart of this architecture is an anomaly detection
component, which is deployed alongside the typical
components of a SIP stack. The anomaly detection
component assesses the irregularity of incoming SIP
messages, the rationale being that unusual events re-
quire more careful treatment in the remaining pro-
cessing chain than normal ones. Anomaly scores gen-
erated in our architecture can be used for intelligent
scheduling of SIP messages as well as for generation
of signatures for anomalous events. Such signatures
can be further deployed on a domain scale in or-
der to share information between various edge nodes.
Experimental evaluation of SIP traffic obtained from
several real next-generation network (NGN) labora-
tories, and synthetic attacks generated by a popu-
lar fuzzer developed by Codenomicon, has demon-
strated that the proposed architecture can reliably de-
tect (with up to 99 percent accuracy) previously un-
known attacks at IMS infrastructures.

2 Attack Categories and
State-of-the-Art Solutions

A large variety of potential attacks are threatening
IMS core networks. This section concentrates mainly
on threats that are addressing the IMS control layer,
specifically different types of call session control
function (CSCF), as well as the application servers
(AS) above the control layer. When categorizing the
different types of attacks and threats, it is useful to
distinguish between time dependent and time inde-
pendent attacks [22].

Time dependent attacks aim to exhaust resources
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at different layers, from link bandwidth up to the
computational resources at IMS control and AS.
Flooding attacks are specialized time dependent at-
tacks and can occur on different layers. TCP/SYN
flooding, Smurf attacks, and SIP message flooding are
examples of flooding attacks. The SIP message flood-
ing attacks detailed below aim to overwhelm IMS con-
trol layer functions in the following ways:

– REGISTER flooding attacks generate a huge
number of REGISTER messages with different
spoofed and faked source addresses which can
overwhelm the IMS control layer functions.

– INVITE flooding attacks are similar to REGISTER
flooding, but these attacks try to break the IMS
authentication process.

– INVITE and REGISTER response flooding attacks
attempt to obtain valid authentication or autho-
rization credentials.

Time independent attacks belong to the second
category of attacks. These attacks insert their threats
with each message, thus affecting their victim in-
stantly. Structured query language (SQL) injection
and time independent SIP message flow attacks are
assigned to this category.

– SQL attacks try to perform data modifications
and may even disturb database services.

– Time independent SIP message flow attacks try to
either tear down sessions (BYE attack), terminate
pending sessions (CANCEL attacks), modify ses-
sions (Re-INVITE attacks), or eavesdrop on ses-
sions (REFER attacks).

In the future, time independent attacks may be en-
visioned which are only visible if multiple messages
are taken into account. Besides the IMS threats listed
above, the following attacks must also be taken into
account:

– Eavesdropping and password guessing. This ap-
proach tries to obtain session information to
generate hijacking-style attacks

– Registration and session hijacking. Here, an at-
tacker tries to register on another user’s behalf
and forward a session via the attacker’s device.

– Man-in-the-middle. These attacks involve inter-
ception and modification of message flows.

3GPP standard has specified security solutions for
IMS which consist of authentication and key agree-
ment as well as integrity and confidentiality mecha-
nisms to secure SIP messages. Still, these function-
alities do not completely secure the IMS core and/or
application servers against SIP message flooding, SIP
message flow, fuzzing, and SQL injection. To further
improve the protection against application layer at-
tacks, intrusion detection/prevention solutions have
been introduced. These intrusion detection and pre-
vention solutions perform anomaly detection or mis-
use detection. In the case of anomaly detection, they
are applying algorithms that investigate the normal
behavior of computer systems. This method has the
advantage of detecting unknown attacks but suffers
from high false-positive results. In the case of the mis-
use detection mechanism, the detection algorithm
is supplied with all known attack descriptions. This
method therefore has a very low false positive rate,
but it can only detect previously described attacks.

3 IMS Network Environment and
Basic Architecture

A typical deployment scenario of an NGN foresees the
placement of session border controllers (SBCs) at the
border of the core network towards the access net-
works as well as to peering networks, as shown in Fig-
ure 2. With the advancement towards IMS/TISPAN
networks, SBCs are available on the market which of-
fer selected IMS functionality, for example, a proxy
call session control function [14].

To fulfill enhanced security, availability, and in-
tegrity requirements, it is desirable that a major part
of the security functionality is located at the ingress
ports of the domain, and herewith at the ingress ports
of the border nodes (SBC). The goal is to shield the
core IMS functions from any signaling threats coming
from the outside. The detailed security architectures
discussed in the following sections are located at the
ingress ports of these SBCs.

The basic SIP reactive security subsystem consists
of multiple processing stages, each performing dedi-
cated functions at different layers. A combination of
stateless and stateful functionalities performs identi-
fication for different kinds of misuse. Figure 3 shows
the four-step pipeline processing of this basic secu-
rity architecture whereby the processing layer steps
up from left—the layer 3 and layer 4 (L3/L4) firewall
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function—to right—the SIP stack at the application
layer. The computational effort spent per SIP mes-
sage increases in line with the degree of semantic
message comprehension from left to right. Feedback
links from higher layer to lower layer processing steps
have been introduced to empower higher layer func-
tional blocks, which are capable of identifying more
subtle attacks, to control the behavior of the preced-
ing functions. In the case of identified misuse, one of
the higher layer processing steps can initiate an early
and selective blocking or dropping on a per message,
session, client, or IP address/port basis. As a result,
the offered SIP message load can be controlled before
reaching the SIP stacks and thus fulfilling stringent re-
quirements on computational performance.

The first functional block of the architecture after
the ingress port is a firewall. On one hand, its major
task is to protect the subsequent functional modules
of the border node from any kind of well-known layer
3 and layer 4 attacks, such as IP packet fragmentation,
time dependent layer 3 and layer 4 attacks, e.g., In-
ternet ICMP/TCP/UDP floods, smurf attacks, or de-
nial of service (DoS) attacks. On the other hand, the

SIP stack and/or the session queue unit can control
the firewall to open or close dedicated firewall ports
for a specific time period. Herewith massive SIP mes-
sage attacks can be discriminated compared to well-
behaving clients.

The firewall forwards a signaling message to a SIP
pre-processing unit, which performs first SIP con-
formance validation, applying, for example, an aug-
mented Backus-Naur form (ABNF) checker. After
protocol conformance is verified, the sorting of the
header fields is performed. The sorting order is de-
termined by a typical usage frequency by the differ-
ent CSCFs and application servers, so that none of
the CSCF and AS have to scan the entire SIP mes-
sage to gather all the relevant information [3,27]. An-
other important pre-processing function normalizes
variations of allowed header field names into a con-
sistent name (e.g., “FrOm” or “F” or “FRoM” or oth-
ers into “FROM”). A complementary design of the SIP
pre-processing, session queuing, and parsing sub-
function of the SIP stack leads to a further increase
in throughput. Hereby, the components make use
of a shared memory with a clearly specified mes-
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sage map of the messages. The SIP pre-processing
unit stores the major headers of the SIP message at
a specified location in a message memory map. As
soon as the SIP pre-processing has extracted charac-
teristic message headers, it indicates this to the ses-
sion state management and message rate supervision
within the session queuing unit. The session queuing
unit provides early feedback on whether the session
queue will drop the current message. In that case,
the SIP pre-processing unit would receive a drop indi-
cation, and would immediately stop any further pre-
processing activity and release the allocated memory.

The tasks of session queuing are manifold. The first
priority is to manage all the sessions for this ingress
port within logical queues. This includes instantia-
tions, releases of session queues, and the supervision
of the instantiation rate, but it also includes the mes-
sage rate supervision per individual queue, whereby
the message rate depends on several aspects. These
aspects are determined by the session activity of the
clients and the overall system load.

After the SIP stack has processed a SIP message, it
provides feedback information to the session queu-
ing module indicating whether the message was com-
pliant (through compliance certificates) according to
the session state; additionally, it indicates the set of
subsequent message types allowed. The compliance
certificates are used by the session queues to priori-
tize all correctly-behaving clients in high load situa-
tions. A message-selective gatekeeper function at the
entrance of the session queues ensures that the only
message types accepted are those allowed access ac-

cording to the feedback information. The above de-
scribed functionalities guarantee that only syntacti-
cally correct, rate supervised, and session state con-
forming SIP messages can allocate the valuable appli-
cation layer processing of the SIP stack(s).

The session queuing module and multiple paral-
lel running SIP stack processes create a single queue
multiple server system. The next free SIP stack pro-
cess will receive the next waiting message. This is
achieved by providing the SIP stack at task start with
memory pointers into the message record as well as
into the session state memory. During SIP message
processing, the SIP stack modifies the session state
memory and can change the message record.

The basic architecture described provides a key
functionality to ensure reliable operation of an IMS
edge node under various load conditions. This func-
tionality allows detection of many forms of known
misuse, e.g., flooding or other well-known attacks.
But with the increasing dissemination of VoIP and
IMS systems, the number of security threats and the
occurrence of new and unknown threats will greatly
increase. Therefore, an additional functionality is re-
quired to handle new and unknown attacks. The fol-
lowing section presents an anomaly detection com-
ponent for IMS edge nodes that is capable of detect-
ing novel attacks with convincingly low false-positive
rates. After presenting the basic anomaly detection
component and the results of its experimental evalu-
ation, additional features of the component, such as
automatic signature generation, are described.
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4 Anomaly Detection

Anomaly detection methods aim at identifying abnor-
mal events based on a learned model of normality.
The majority of anomaly detection methods are de-
fined for vectorial data, and thus are not directly suit-
able for application to IMS protection. To address this
issue, we derive a technique for embedding SIP mes-
sages in a vector space, which reflects typical charac-
teristics of observed traffic patterns.

4.1 Feature Extraction

The anomaly detection approach builds on the vec-
tor space model, a generic method for feature em-
bedding commonly used in the domain of informa-
tion retrieval [6,20]. A document—in this case a SIP
message—is characterized by occurrence frequencies
of contained feature strings, S. Given a string s ∈ S
and a SIP message x , one determines the number of
occurrences of s in x and thus obtains a frequency
value f (x , s ). The frequency of s acts as a measure of
its importance in x , e.g., f (x , s ) = 0) indicates no im-
portance, while f (x , s )> 0 reflects the specific contri-
bution of s to x . An embedding function m is derived
by mapping SIP messages to an |S|-dimensional vec-
tor space spanned by the frequencies of all strings in
S. The function m is defined as

m : X →R|S| with m (x ) 7→
�

f (x , s )
�

s∈S

where X denotes the set of all possible SIP messages
and R|S| a vector space over the real numbers. In con-
trast to textual documents, however, we cannot define
a feature set S a priori, as patterns of unknown and
novel attacks are impossible to determine in advance.
To solve this problem the set of feature strings S is de-
fined implicitly using the definitions of “tokens” and
“n-grams”.

In an implicit view, tokens correspond to all possi-
ble strings separated by specific delimiter symbols. If
we denote all byte values by B and define D as delim-
iter symbols, a set S referred to as tokens is given by
S := (B\D)∗, where * is the Kleene closure correspond-
ing to all possible concatenations. The granularity of
this feature extraction can be controlled using the de-
limiter set D. The fewer delimiters are defined, the
more specific are the extracted tokens. The following
example illustrates how a SIP message is mapped to a
vector space using the notion of tokens, where the set
of delimiters is D = {�,@,:,/}.

m ( BYE�SIP:JOHN@DOE�SIP/2.0 ) 7→















1
2
1
1
1















BYE

SIP

JOHN

DOE

2.0

Tokens are intuitive and expressive to the hu-
man analyst, yet they may not always identify novel
threats, due to the definition of delimiter symbols in
advance. An alternative technique for implicit defini-
tion of feature strings S is the extraction of n-grams.
Feature strings are extracted by moving a sliding win-
dow of length n over the SIP message. At each po-
sition, a substring of length n is considered and its
occurrences are counted. Formally, the set of feature
strings S referred to as n-grams is defined as S := B n ,
where B n corresponds to all possible strings of length
n from the set B . For example, if n = 4 we obtain 4-
grams, which for a simplified SIP message yields the
following feature vector

m ( BYE�SIP:JOHN@DOE�SIP/2.0 ) 7→

















1
1
2
2
...

















BYE�
YE�S
E�SI
�SIP

...

The vector space induced by tokens and n-grams is
high-dimensional, e.g., for n = 4 there exist 2564 dif-
ferent dimensions. Computing and comparing vec-
tors in such high-dimensional spaces seems infeasi-
ble at a first glance. However, for both types of fea-
tures, the number of feature strings contained in a
single SIP message is linear in its length. This sparse
representation of the embedding can be exploited to
derive linear-time methods for extraction and com-
parison of feature vectors [18], which ultimately en-
ables efficient anomaly detection over embedded SIP
messages.

4.2 Anomaly Detection

The proposed embedding function m maps SIP mes-
sages into a vector space in which various learning al-
gorithms can be applied for anomaly detection. We
herein concentrate on two simple methods based on
geometric models of normality: a global and a lo-
cal anomaly detection. The basis for such geometric
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Figure 4: Global and local anomaly detection.

learning models is a distance function d , which as-
sesses the dissimilarity of two messages x and z by
d (x , z ) = ||m (x ) −m (z )|| and corresponds to a Eu-
clidean distance in the vector space. Messages orig-
inating from a similar context yield small distances
and lie close to each other, while messages from dif-
ferent contexts result in greater distances.

Based on this notion of a distance for SIP messages
X = {x1, . . . ,xn }, a global model for anomaly detec-
tion is defined by placing a hypersphere around a set
of given SIP messages embedded into a vector space.
In particular, one seeks the smallest representation of
X corresponding to the hypersphere with minimum
volume, which can be determined by solving the fol-
lowing optimization problem:

µ∗ = argmin
µ

max
1≤i≤n
||m (x i )−µ||,

where µ∗ is the center of the optimal hypersphere.
Figure 4 depicts global anomaly detection. As an
example, Figure 4(a) shows a set of points enclosed
by a two-dimensional sphere with minimum volume.
Anomalies lie outside the sphere due to their large
distance from the center. Unfortunately, unknown at-
tacks in X may spoil this process and lead to hyper-
spheres with larger volume. This problem is alleviated
by the technique of regularization, which âĂIJsoften-
sâĂİ the margin of the hypersphere, such that outliers
and unknown attacks can be compensated. An intro-
duction to this regularized learning model is provided
in [9] and [25], which cover the respective theory as
well as the efficient computation.

Once the center µ∗ of the smallest hypersphere has
been found, the deviation g from this global model
of normality is determined by computing the distance

of an incoming SIP message z from µ∗. Formally, this
distance is defined using the vectors µ∗ and m (z ) in
the feature space spanned by frequencies of n-grams
or tokens as follows

g (z ) = ||m (z )−µ∗||.

Application of the learned model requires comput-
ing only a single distance value for each incoming
message, as µ∗ is fully determined from X during the
prior learning phase.

If the SIP traffic monitored at a network node is
inherently heterogeneous, e.g., at a large gateway, a
global model of normality might not suffice for detec-
tion of unknown and novel attacks. To detect anoma-
lies in such settings, we introduce a local anomaly
detection scheme which assesses deviation of a mes-
sage by considering only a fraction of messages in the
training data. The model is derived using the notion
of k -nearest neighbors. We define the neighbors of a
vector M (z ) using a permutation p of X , such that the
embedded message m (xp [i ]) is the i -th nearest neigh-
bor to z in terms of distance. The local deviation l is
then computed by

l (z ) =
1

k

k
∑

i=1

||m (z )−m (xp [i ])||

−
1

k 2

k
∑

i=1

k
∑

j=1

||m (xp [j ])−m (xp [i ])||.

Messages strongly deviating from their k -nearest
neighbors yield a large average distance, while mes-
sages close to their neighbors get a low deviation
score. In particular, the first term emphasizes points
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that lie far away from its neighbors, whereas the sec-
ond term discounts abnormality of points in wide
neighborhood regions. Figure 4(b) illustrates local
anomaly detection, where the anomalies are identi-
fied by a large distance to neighboring points. In
contrast to the global model, local anomaly detec-
tion requires determining several distance values. For
each incoming message O(nk 2) distance computa-
tions need to be performed for finding the k -nearest
neighbors and calculating l .

To demonstrate the capabilities of the proposed de-
tection methods, we conducted experiments on real-
istic SIP traffic and attacks. For our experiments we
generated an evaluation data set comprising 4,428 SIP
messages and 10,000 attacks. These SIP traces con-
tain contiguous and interleaved SIP dialogs recorded
at a network edge ingress. The messages originated
from several NGN test labs and research setups where
multiple services and inter-working tests are per-
formed. In the absence of a large collection of SIP
attacks, we conducted our experiments using artifi-
cially generated attacks. A VoIP version of the secu-
rity and syntax testing tool, Codenomicon Defensics2

was applied to produce several thousand anomalous
SIP messages—covering syntactical anomalies as well
as security probes for boundary condition, format
string, and input validation vulnerabilities. The gen-
erated attacks are post-processed to eliminate any re-
maining redundancy by permuting the sequence of
the header fields and randomizing certain header and
parameter values.

Figure 5 depicts the detection performance of
the anomaly detection methods averaged over in-
dependent samples of the evaluation data using 2-
grams, 4-grams, and tokens as string features. Fig-
ure 5(a) shows results for the global anomaly detec-
tion method and Figure 5(b) for the local anomaly
detection method. The performance is presented as
receiver operating characteristic (ROC) curves, which
show the false positive rate of a method on the x-axis,
and the true positive rate on the y-axis for different
thresholds. High detection accuracy is reflected in the
top left of a ROC curve, while random detection cor-
responds to a diagonal line.

The local anomaly detection method yields signif-
icantly higher detection accuracy in comparison to
the global detection method. In particular, for all
types of feature strings a true-positive rate over 97

2Defensics is a trademark of Codenomicon, Inc.

percent is achieved with no false positives. More-
over, for the 4-grams features, over 99 percent of the
attacks are detected—even though all attacks were
unknown to the system during application. For the
global anomaly detection method only the 4-gram
features enable similar accuracy and in contrast, the
token features provide a very poor performance. The
embedding to a vector space using 4-grams hence en-
ables a very effective discrimination of normal traffic
and attacks by capturing particular substrings related
to normal or anomalous messages.

4.3 Signature Generation

An additional step towards integration of anomaly
detection methods into practice is inter-linkage with
existing signature-based detection systems. Once a
novel attack has been identified by anomaly detec-
tion, a further step is to automatically generate a
corresponding attack signature and distribute it to
signature-based detection systems in the IMS do-
main. However, deriving a signature from a sin-
gle anomaly is cumbersome and thus, as a pre-
processing step, detected anomalous messages are
grouped into attack clusters using algorithms such
as linkage clustering or k-means [5]. By averaging
the vectors of all anomalies in a cluster and prun-
ing dimensions that occur in single or few instances
only, we can construct a general vectorial model A for
each attack cluster. The vector A comprises the av-
erage frequencies of prevalent feature strings in the
considered attack cluster. We refer to the set of fea-
ture strings associated with A as a unilateral signa-
ture. Similarly, we can average and prune vectors of
normal SIP messages to a vectorial model N . By com-
puting B = A −N we obtain a bilateral signature, B ,
that indicates malicious strings through large positive
values and normal patterns by negative values [17].
Both types of signatures—unilateral and bilateral—
can be represented as sets of strings and thus dis-
tributed to the majority of available signature-based
systems. While unilateral signatures correspond to
regular signatures as deployed in most systems, bilat-
eral signatures improve attack detection by also incor-
porating traffic patterns characteristic for the partic-
ular IMS domain, such as typical SIP headers, whose
absence also indicates anomalous activity.

The technique for embedding SIP messages to
a vector space and measuring similarity of objects
introduced in this section provides a generic in-
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Figure 5.
Global and local ROC curves.

(a) Global anomaly detection method (b) Local anomaly detection method

ROC—Receiver operating characteristic
Figure 5: Global and local detection performance.

strument for learning with SIP traffic, even beyond
anomaly detection and signature generation [12]. For
instance, embedded messages can also be processed
using classification methods (e.g., for identification
and categorization of unsolicited content such as
spam over Internet telephony (SPIT)) and clustering
algorithms (e.g., for identification of common groups
of regular messages). Moreover, analysis of embed-
ded messages may also help in identifying trends and
deviations in SIP traffic as induced by temporal or lo-
cal events, e.g., through learning methods for identi-
fication of principle and independent components in
data [21].

5 Advanced Architecture

We are now ready to present the advanced archi-
tecture of the SIP reactive security subsystem, il-
lustrated in Figure 6. Two new and major compo-
nents are introduced into the architecture: SIP sig-
nature analysis and SIP anomaly detection. Here,
the SIP pre-processing module initially shown in Fig-
ure 3 is separated into two sub-modules. The SIP
ABNF checker sub-module remains in its original po-
sition, whereas the SIP normalization sub-function
processes the SIP messages after the SIP signature
analysis and the anomaly detection have been per-
formed. The SIP ABNF checker can be designed with
very high throughput and is therefore inserted di-
rectly into the SIP message path. A SIP ABNF checker
implementation by Bell Labs’ Alan Jeffrey proofed this

high efficiency (high throughput by low processing ef-
fort used). The theoretical background of the applied
algorithm is explained in [2].

The SIP signature analysis module uses signatures
to identify known anomalies within SIP message
streams. This module also can be inserted into the
data stream as it does not hinder the throughput. The
key difference from previous approaches to SIP secu-
rity is that the set of signatures can be updated with
new signatures which are derived from the loop con-
sisting of SIP anomaly detection and the protection
overlay.

The SIP anomaly detection as explained in the pre-
vious section is not inserted directly into the SIP mes-
sage data path due to a relatively high computational
effort per SIP message, especially for local anomaly
detection techniques. The session queue module de-
cides for current session and/or client states which
SIP message has to be analyzed by the anomaly detec-
tion module. Based on the results from this module,
the session queue module can forward the message
either to one of the SIP stacks, or to a secure SIP stack
running in a sandbox, so that a malicious message
does not disturb the operating throughput of the bor-
der node. If the SIP anomaly detection module iden-
tifies any message anomaly, it reports this anomaly
towards the protection overlay where further offline
processing can be performed.

The current SIP anomaly detection module pro-
cesses single SIP messages and makes a decision on
each individual SIP message without being aware of
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Figure 6: Advanced SIP security architecture. Abbreviations: ABNF–Augmented Backus-Naur form, DoS–Denial
of service, IP–Internet Protocol, SIP–Session Initiation Protcol.

any sessions, clients, or history in general. But it may
happen that application layer attacks may not be visi-
ble by investigating single SIP messages or a sequence
of SIP messages without being aware of any states or
history. The applied machine learning algorithm used
by the SIP anomaly detection module allows the mod-
ule to be “trained” by using enhanced SIP messages
where additional proprietary header fields for session
context are appended, as shown in Figure 7. These
fields may contain supplementary session state in-
formation or more generic and higher layer informa-
tion on client, node, or domain states. The anomaly
detection inserts the additional header fields gener-
ated using a context database referenced by a client or
session identifier (ID) from the original SIP message.
The resulting extended SIP message is not standards-
compliant, but the anomaly detection module was
trained with these extended messages. The succes-
sive module receives the decision of the anomaly de-
tection module and adds these results to the context
database, which may in turn effect the decisions of
the messages to come.

6 Domain-Wide Protection Solution

One of the important features of the advanced secu-
rity architecture of a border node is the interface to

the protection overlay. The protection overlay pro-
vides additional non-real time functionality for hard-
ening the security of border nodes. This functionality
also contributes to acceleration of processing on a SIP
path because any occurrence of a zero-day attack(s)
at any border node can immediately be taken into ac-
count without a need to resort to a relatively complex
anomaly detection unit. The main functionality of the
protection overlay is to derive an appropriate signa-
ture from the anomaly reports (as explained earlier)
and to distribute it as soon as possible to all border
nodes connected to the protection overlay. Hereby,
the protection overlay may span all border nodes be-
longing to the same domain, but in principle could
even be expanded across border nodes of the same
manufacturer deployed in different domains.

In order to ensure a high quality of generated signa-
tures, various verification functions are carried out by
the protection overlay, such as testing for false pos-
itives on clean data and incorporation of advanced
diagnostic information from hardened SIP stacks. A
general architecture of the domain-wide protection
functionality is shown in Figure 8.
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7 Conclusion

The capability to detect previously unknown attacks
is essential for the security of IMS infrastructures,
especially in view of the long deployment horizon
of such systems. The proposed architecture for en-
hanced protection of IMS edge nodes against novel
attacks introduces an anomaly detection component
that can effectively identify malicious anomalies in
SIP traffic. The advanced architecture further extends
this component with automatic signature generation
that can be used for site-wide or domain-wide deploy-
ment. Experimental evaluation of the proposed archi-
tecture on real SIP traffic has verified excellent (up to
99 percent) detection accuracy for the system.

The principles underlying the proposed anomaly
detection system—embedding of SIP messages in
a high-dimensional features space and similarity-
based operations—can be used for a number of other
potential applications in the context of the IMS sys-
tem. With the help of advanced machine-learning
techniques, the proposed technology can be used for
identifying clusters of related signaling patterns, find-
ing unsolicited messages (SPIT), or performing ad-
vanced load balancing in the SIP stack. Future work
will address the fine-grain incorporation of semantic
information from all stages of SIP processing into the
learning algorithms for further performance and ac-
curacy improvements.
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