
Securing OLAP Data Cubes Against Privacy Breaches ∗

Lingyu Wang, Sushil Jajodia, and Duminda Wijesekera
Center for Secure Information Systems

George Mason University
Fairfax, VA 22030-4444, USA

{lwang3,jajodia,dwijesek}@gmu.edu

Abstract

An OLAP (On-line Analytic Processing) system with

insufficient security countermeasures may disclose sensi-

tive information and breach an individual’s privacy. Both

unauthorized accesses and malicious inferences may lead

to such inappropriate disclosures. Existing access control

models in relational databases are unsuitable for the multi-

dimensional data cubes used by OLAP. Inference control

methods in statistical databases are expensive and apply

to limited situations only. We first devise a flexible frame-

work for specifying authorization objects in data cubes. The

framework can partition a data cube both vertically based

on dimension hierarchies and horizontally based on slices

of data. We then study how to control inferences in data

cubes. The proposed method eliminates both unauthorized

accesses and malicious inferences. Its effectiveness does not

depend on specific types of aggregation functions, external

knowledge, or sensitivity criteria. The technique is efficient

and readily implementable. Its on-line performance over-

head is comparable to that of the minimal security require-

ment. Its enforcement requires little modification to existing

OLAP systems.

1. Introduction

OLAP (On-line Analytic Processing) is one of the most

popular decision support techniques in use today. OLAP en-

ables the exploration of large amounts of data in data ware-

houses. Aggregations at different levels compose a multi-

dimensional data cube along real enterprise dimensions. By

rolling up to coarser aggregations, a user may obtain pat-

terns and trends of data. Upon observing an exception to

such patterns or trends, the user drills down to finer aggre-

gations to catch the outliers. The interactive exploration re-

∗ This work was partially supported by the National Science Foundation
under grant CCR-0113515.

peats over slices of the data cube until the user ultimately

constructs a satisfactory mental image of the underlying

data.

Like other technologies, OLAP is also a double-edged

sword. Without sufficient security countermeasures, it may

become a powerful tool in the hands of malicious users

in stealing an enterprise’s secrets. Those secrets may in-

clude an individual’s personal data collected during elec-

tronic transactions. Improper disclosures of such data is a

threat to the individual’s privacy. Unfortunately, most of to-

day’s OLAP systems lack effective security countermea-

sures. Existing mechanisms are usually limited to data san-

itization and access control in relational back-ends. Data

sanitization removes explicit identifiers such as names. The

data is then deemed anonymous and made available to all

users. However, data sanitization by itself has long been rec-

ognized as insufficient for preserving privacy [15, 25, 26].

Re-identification is possible by combining seemingly un-

related information, such as visiting patterns at different

web sites [23]. ROLAP (Relational OLAP) systems rely on

their relational back-ends for the control of unauthorized ac-

cesses to sensitive data. However, the different data models

make it difficult for relational databases to understand the

security requirements of OLAP. Moreover, MOLAP (Multi-

dimensional OLAP) systems do not have relational back-

ends. To overcome such difficulties, we allow authorization

objects to be directly specified in data cubes.

OLAP is especially vulnerable to another security threat,

malicious inferences of sensitive data. OLAP heavily de-

pends on aggregations such as SUMs, MAXs, and so on.

Those aggregations hide insignificant details of data and

hence accentuate general patterns. However, aggregations

do not completely destroy sensitive information. The re-

maining vestiges, together with external knowledge 1, make

malicious inferences possible [11]. As a simple example,

Bob can infer the amount of Alice’s commission from the

amount of their total commission, with the external knowl-

1 The knowledge obtained through channels other than queries [11].

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

edge of his own commission. Access control cannot cap-

ture this inference, as the total salary is a seemingly inno-

cent aggregation. Inference control has been studied in sta-

tistical databases and census data from 1970’s. However,

the complexity results are usually negative in tone [7] for

on-line systems, and the proposed methods are rarely seen

in commercial products. Many lessons can be learned. For

example, most restriction-based methods adopt a detecting-

then-removing approach. However, the detection of infer-

ences usually demands on-line (that is, after queries are

posed) complicated computations over entire data or the

bookkeeping of every single answered query. This results

in prohibitive on-line performance overhead and storage re-

quirements. Even at such a high cost, the detection is usu-

ally only effective in limited situations with unrealistic as-

sumptions. Many methods assume only one specific type

of aggregation (for example, SUM-only), and a fixed sensi-

tivity criterion (for example, only exact values causing pri-

vacy breach). Compared to statistical databases, OLAP usu-

ally demands shorter response time for larger queries. Ap-

plying existing techniques to OLAP places us in no better

situations than before. Nevertheless, this literature has laid

a solid foundation from which our study stems.

The contribution of this work is two-fold. Firstly, we de-

vise a framework for specifying authorization objects in

data cubes. The specification is flexible. It partitions the

data cube both vertically based on dimension hierarchies

and horizontally based on slices of data. The objects in the

model are closures of the specified data cube cells. This

approach ensures that the finer aggregations implied by

the specified ones are also protected. The specification is

also distributive over set union, making overlapping objects

easy to handle. Secondly, we propose a solution for con-

trolling malicious inferences caused by unprotected coarser

aggregations. Instead of detecting inferences, we first pre-

vent complicated inferences through restrictions, and then

remove remaining inferences. This novel approach greatly

eases inference control. The result is provably secure. It

not only eliminates malicious inferences, but also prevents

unauthorized accesses by enclosing the result of access con-

trol. The method is broadly applicable. It applies to any ag-

gregation functions, external knowledge, and sensitivity cri-

teria, given that some clearly stated properties are satisfied.

The technique is efficient and readily implementable. The

on-line performance overhead is comparable to that of ba-

sic access control, which comprises the minimal security

requirement. The off-line complexity and storage require-

ment are both bounded. The pre-computed result can be en-

forced with little modification to existing OLAP systems.

The rest of the paper is organized as follows. Section 2

reviews related work. Section 3 illustrates the data cube

model and gives our notations. Section 4 devises a frame-

work for specifying authorization objects in data cubes.

Section 5 proposes a solution for controlling malicious in-

ferences in data cubes. Section 6 discusses the implemen-

tation options and complexity. Section 7 concludes the pa-

per and describes future directions. All of the proofs can be

found in the appendix.

2. Related Work

The need for security and privacy in data warehouses

and OLAP has long been identified [4, 29, 30]. However,

to the best of our knowledge, solid progress has yet to

be made. This is evidenced by most of today’s commer-

cial OLAP products, in which the support of access con-

trol is limited, and that of inference control is absent [29].

On the other hand, relational databases have mature tech-

niques for both access control and inference control. Ac-

cess control models regulate direct accesses to sensitive

data through owner-specified grants and revokes [18], user-

role and role-permission assignments [27], or authorization

derivation and resolution rules [20]. Inference control has

been extensively studied in statistical databases and census

data [1, 12, 35]. The proposed methods can roughly be clas-

sified into restriction-based techniques and perturbation-

based techniques. Restriction-based techniques place re-

strictions on queries, including the minimal number of val-

ues aggregated by each query [12], the maximal number

of common values aggregated by different queries [13],

and the maximal rank of a matrix representing all an-

swered queries [8]. Perturbation-based techniques add ran-

dom noises to source data [31], query answers [3], or

database structures [28]. Our study addresses both unautho-

rized accesses and malicious inferences of sensitive values,

but devotes more effort to the latter, as it actually encloses

the former in the specific settings of data cubes.

Related to our work, cell suppression is used to protect

census data released through statistical tables [9, 10]. Cells

containing sensitive COUNTs are suppressed according to

a given sensitivity criterion. Possible inferences of the sup-

pressed cells are then detected and removed using linear (or

integer) programming-based techniques. While the detec-

tion method is effective for two-dimensional cases, it is in-

tractable for three or more dimensional tables even of very

small size [10, 11]. We also restrict sensitive cells in data

cubes. However, we adopt a fundamentally different ap-

proach of preventing complicated inferences instead of de-

tecting them. Our method is thus feasible for data cubes of

any size and any dimensional. It is also effective for aggre-

gation functions other than COUNT. Partitioning first de-

fines a partition on the set of sensitive data and then re-

stricts queries to aggregate only complete blocks in the par-

tition [7, 36]. As a variation of partitioning, microaggre-

gation replaces clusters of sensitive values with their av-

erages [24, 35]. The result of our method can also be in-

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

terpreted as partitions of sensitive data. Unlike partitioning

or microaggregation, where partitions are especially created

for inference control, the focus of our study is to find natu-

ral partitions already existing in data cubes. This makes our

method readily implementable, since it incurs little modifi-

cation to existing OLAP systems. The inherent partitions

also provide users with a more meaningful answer and

hence more semantics of the underlying data.

Parallel to our work, perturbation-based methods have

been proposed for privacy-preserving data mining [2]. Ran-

dom noise is added to sensitive values to preserve privacy,

while the statistical distribution of unperturbed data can be

approximately reconstructed to facilitate data mining tasks.

The problem of protecting sensitive data in OLAP is dif-

ferent from that in data mining. The knowledge discov-

ered by data mining, such as classifications and association

rules, depend on the distribution models of data. In contrast,

OLAP users heavily depend on ad-hoc queries that aggre-

gate small, overlapping sets of values. The precise answers

to such queries are not obtainable from distribution models,

even if the models can be successfully reconstructed. As

suggested by the literature of statistical databases, having

both significant noises in sensitive data and unbiased con-

sistent answers to ad-hoc queries is usually infeasible. Our

work is not based on perturbation. While all queries are not

answered as a result of security requirements, the answer is

always precise. Secure multi-party computation allows mul-

tiple distrusted parties to cooperatively compute aggrega-

tions over each other’s data [32]. Cryptographic protocols

enable each party to obtain the final result with the min-

imal disclosure of their own data. This problem is differ-

ent from inference control, because the threat of inferences

comes from what users know, not from the way they know

it.

As a special case of our problem, inferences of exact val-

ues in SUM-only data cubes are studied in [5, 33, 34]. The

maximal number of queries that can be answered without

causing inferences in a data cube containing no previously

known values is given in [5]. A tight upper bound on the

number of such known values is given in [34], such that data

cubes remain inference-free [34]. Even range queries (that

is, multi-dimensional axis-parallel boxes containing even

number of sensitive values) are not subject to simple infer-

ences, and all inferences can be detected in linear time in

the number of queries and values [33]. However, like many

other studies on SUM-only inference control in the litera-

ture, those results improve our understanding of the prob-

lem, but may not be practical. Because in practice an OLAP

system is rarely SUM-only, and privacy breach is not only

caused by exact values. In this paper, we avoid the pitfall

by proposing a method that is independent of the aggrega-

tion functions, external knowledge, and sensitivity criteria.

3. The Basic Model of Data Cubes

We closely follow the data cube model proposed in [17],

which is one of the most popular multi-dimensional models

for OLAP. Instead of re-inventing terms, we illustrate the

concepts through an example. Then we introduce our nota-

tions for those concepts, and state any differences in their

interpretation.

Figure 1 depicts a fictitious data cube. It has two di-

mensions: time and organization. The time dimen-

sion has three attributes: quarter, year, and all 2. The

organization dimension has four attributes: employee,

department, branch, and all. The attributes of each di-

mension are partially ordered (totally ordered in this spe-

cial case) by the dependency relation � into a dependency

lattice [19]. That is, quarter � year � all for the time di-

mension and employee � department � branch � all

for the organization dimension. The product of the two

lattices gives the dependency lattice of cuboids. Each ele-

ment of this dependency lattice is a tuple < T, O >, where

T is an attribute of the time dimension and O is an at-

tribute of the organization dimension. Attached to each

such tuple < T, O > is an empty two-dimensional ar-

ray, namely, a cuboid. Each cell of the cuboid < T, O >

is also a tuple < t, o >, where t and o are attribute val-

ues of the attribute T and O, respectively. The dependency

relation between cuboids extend to their cells. For exam-

ple, the cuboid < year, employee > depends on the cuboid

< quarter, employee >, hence a cell < Y 1, Bob > of

the former also depends on the cells < Q1, Bob >,

< Q2, Bob >, < Q3, Bob >, and < Q4, Bob > of the lat-

ter. Similarly, the cell < Q1, Book > depends on the

cells < Q1, Bob >, < Q1, Alice >, < Q1, Jim >, and

< Q1, Mallory > (suppose the book department only has

those four employees). Hence, all cells also form a depen-

dency lattice.

A fact table is a relational table having the schema

(quarter, employee, commission). The fact table is used

to populate the data cube with values of the measure at-

tribute commission. Each record in the fact table, a triple

(q, e, m), is used to populate a cell < q, e > of the core

cuboid < quarter, employee >, where q, e, and m are val-

ues of the attributes quarter, employee, and commission,

respectively. Some cells of < quarter, employee > re-

main empty (or having the NULL value), if corresponding

records are absent in the fact table. All cuboids are then pop-

ulated using the aggregation function SUM (for simplicity

purposes, only three populated cuboids are shown in Fig-

ure 1). For example, in the cuboid < year, employee >,

a cell < Y 1, Bob > takes the value 8500, which is the to-

2 We regard all as a special attribute having one attribute value ALL,
which depends on all other attribute values.

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

tal amount of the four cells it depends on, < Q1, Bob >,

< Q2, Bob >,< Q3, Bob >, and < Q4, Bob >. An

empty cell is deemed as zero in the aggregation. As an-

other example, the cuboid < all, employee > (its cells

are not shown in Figure 1) can be computed from either

the core cuboid < quarter, employee > or the cuboid

< year, employee >, because it depends on both.

Assume a fixed order among dimensions, among at-

tributes of each dimension, and among values of each at-

tribute. Denote the ith (1 ≤ i ≤ k for some fixed k)

dimension Di as a set of attributes Di = {dj
i : 1 ≤

j ≤| Di |} (superscripts and subscripts will be omitted

whenever appropriate), where | Di | denotes the cardinal-

ity of Di. The data cube is the collection of all cuboids,

denoted by the Cartesian product of the k dimensions,

L =
∏k

i=1
Di. Each cuboid �c ∈ L is a k-tuple of at-

tributes �c =< d1, d2, . . . , dk >, with di ∈ Di. Similarly,

each attribute di is also viewed as a set of attribute values.

A cuboid �c =< d1, d2, . . . , dk > is thus a collection of

cells 3, denoted by the Cartesian product
∏k

i=1
di. Each cell

�t ∈ �c (here �c means
∏k

i=1
di) is a k-tuple of attribute val-

ues. Use A =
⋃

�c∈L
�c for the set of all cells in a data cubeL.

Use < L,�> for the dependency lattice of cuboids. Then

< A,�> is the dependency lattice of all cells. The con-

tent of a cell, an aggregation of the measure attribute, is not

explicitly denoted. Instead we use a cell to interchangeably

refer to both the cell itself and its content, when the actual

meaning is clear from context.

We borrow some terms from lattices [14]. In a lattice

< L,�> (such as < L,�> and < A,�>), any x ∈ L

and y ∈ L is non-comparable, if neither x � y nor y � x

hold; they are comparable, otherwise. Any y ∈ L is an an-

cestor of x ∈ L (and dually x is a descendant of y) if y � x

holds 4. For any L′ ⊆ L, the GLB (greatest lower bound)

of L′ is any x ∈ L satisfying that the condition x � y

for any y ∈ L′ holds, and no descendant of x satisfies the

condition. The dual concept of GLB is LUB (lowest upper

bound). The GLB and LUB of any (set of) two elements

x ∈ L and y ∈ L are called their meet and joint, and de-

noted as x ∧ y and x ∨ y, respectively. x is a maximal (or

minimal) element of any L′ ⊆ L, if x � y (or y � x) and

y ∈ L implies y = x.

Different from [17], we regard a cell as empty if and only

if its value is known from external knowledge. An empty

cell has the NULL value in [17]. In our study, a cell having

the NULL value may be non-empty, if users do not know

this fact; conversely, any previously known cell is empty

regardless of its value. Because from the security point of

view, the specific value of a cell not longer matters, if it

3 Here the k-tuple of attributes < d1, d2, . . . , dk > can be viewed as a
label of the collection of cells it represents.

4 Notice that in our graphical representation, such as in Figure 1, the de-
scendants are always above the ancestors.

has been learned by the malicious user before he/she poses

queries. Another difference is that we consider an attribute

as a measure attribute(such as the commission in Figure 1)

only if it is sensitive. In [17], any numerical attribute may

be a measure attribute.

4. Specifying Authorization Objects in Data

Cubes

In this section, we devise a framework for specifying au-

thorization objects in data cubes. An authorization is usu-

ally a triple: (object, subject, (signed)action), indicating

that the subject is allowed (or prohibited, depending on the

sign of action) to execute the action on the object [20]. We

only consider one type of action, read. Because we regard

the confidentiality of data as the major security concern in

OLAP. Other actions such as updates are relatively infre-

quent, and are accessible to only a few privileged operators.

Subjects are users or user groups. We assume subjects do

not collude, but users may. That is, a group of users inclined

to collusion should be regarded as a single subject. We as-

sume an open policy, where only prohibitions are speci-

fied, and permissions are implied by the absence of prohibi-

tions 5.

The major difference between the authorization require-

ments of OLAP and that of relational databases lies in their

authorization objects. This is decided by their different data

models. In a relational model, typical objects include tables,

records in a table, or fields of a record. By partitioning ta-

bles vertically into records and horizontally into fields, au-

thorizations can be more precise. An analogous spectrum of

objects needs to be defined in a multi-dimensional model,

such as a data cube. Two independent aspects of a data cube

come across. Firstly, a data cube includes aggregations at

different granularity levels, as in Figure 1. A subject’s re-

sponsibilities may only entitle him/her to the aggregations

above a certain level. Anything below is either sensitive or

irrelevant, and hence should be protected according to the

principle of least privilege (that is, only what is needed is

permitted). Secondly, a data cube can be divided into slices

by selections over one or more dimensions. Similarly, the

least privilege principle also requires a subject to be con-

fined to some slices based on his/her needs. Example 4.1 il-

lustrates such requirements.

Example 4.1 Suppose an analyst Eve is invited to ana-

lyze the data cube in Figure 1. However, two authoriza-

tion requirements exist. Firstly, due to privacy concerns,

Eve should not learn the value of any employee’s commis-

sion, although she may access the values of departments

5 Our framework can be easily extended to specify both prohibitions
and permissions, using techniques such as FAF [20].

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

<quarter,employee>

<year,department>

<year,employee><quarter,department>

SUM

SUM

... ...

... ...CD
$11000 $6000 $9000Book

... ...

<all,all>

<year,all>

<all,department> <year,branch> <quarter,all>

Y1 Y2

Bob
Alice
Jim
Mallory

$8500

$6100

...
$10000...

...
$12400...

SUM

<all,branch>

<quarter,branch>

Q1 Q2 Q3 Q4 Q5

$11000

Q1 Q2 Q4 Q5

$1500

$3100
$6400

$1500
$4500

$3000
$6000

Q3

$5500
$5500

Bob
Alice
Jim
Mallory

<all,employee>
The cuboid <quarter,department>

quarter commission

$6400
$3100
$1500

$1500

Bob

BobQ2

Q1
Q1

... ...

employee

Mallory
Jim

The cuboid <year,employee>

The fact table

The core cuboid <quarter,employee>

time
organization

Q1

Figure 1. An Example of Data Cubes

or branches. Secondly, any data no older than the quar-

ter Q5 should not be used for analysis. Clearly, Eve should

not access the three cuboids < quarter, employee >, <

year, employee >, and < all, employee >. Moreover, she

is also prohibited from reading cells such as < Y 2, Book >

(now shown in Figure 1), since the data is no older than

Q5 (suppose Y 2 depends on Q5, Q6, Q7, and Q8). No-

tice the difference between the two requirements. The for-

mer divides the organization dimension into two parts:

employee and {department, branch, all}, based on the

dimension hierarchy. The latter partitions the time dimen-

sion into older than Q5 and no older than Q5, based the at-

tribute values.

In Example 4.1, suppose an administrator speci-

fies the first requirement with a cuboid < all, employee >.

The other two cuboids < year, employee > and

< quarter, employee > are implied by this specifica-

tion. Because the specified cuboid < all, employee > can

be computed from either of them, if not protected. How-

ever, the administrator should not be burdened to ensure

that all implied cuboids be included by a specification. In-

stead, we allow an l-specification (that is, level specifi-

cation) Sl to be an arbitrary set of cuboids. The closure

Below(Sl) of an l-specification Sl is formalized in Def-

inition 1. A closure gives all and only the cuboids to be

protected. The closure can be regarded as a vertical parti-

tion of the data cube.

Definition 1 In any data cube L, a function Below(.) :
2L → 2L is defined as Below(Sl) = {�c : there exists �cs ∈
Sl, such that �c � �cs holds }. We say a set of cuboids

Sl is an l-specification (that is, level specification), and

Below(Sl) is the closure of Sl.

Example 4.2 The requirement that Eve should not learn

an employee’s information can now be represented by the

closure Below(< all, employee >) of the l-specification

< all, employee >.

The second requirement in Example 4.1 requires

a horizontal partition of the data cube. Generally, an

s-specification (that is, slice specification) r is an ar-

bitrary set of cells (usually, but not necessarily, in one

cuboid). The slice Slice(r) of an s-specification r, as for-

malized in Definition 2, includes all and only the cells

comparable to at least one cell in the s-specification.

Definition 2 In any data cube L with the set of all cells A
(that is, A =

⋃
�c∈L

�c), define a function Slice(.) : 2A →

2A as Slice(r) = {�t : there exists �t1 ∈ r such that �t �
�t1 or �t1 � �t holds }. We say any r ⊆ A is an s-

specification (that is, slice specification), and Slice(r) is

the slice of r.

Example 4.3 The requirement that Eve should not learn

anything no older than Q5 can be represented by the slice

Slice({< q, e >: q ∈ quarter, e ∈ employee, q ≥ Q5}).

The authorization object may be specified by different

administrators over time. Hence, for each subject there may

be more than one pair of s-specification and l-specification.

Without loss of generality, suppose two pairs (r1, S1) and

(r2, S2) are specified for a subject, where r1 and r2 are

s-specifications, and S1 and S2 are l-specifications. Fur-

ther suppose that neither Below(S1) ⊆ Below(S2) nor

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

Below(S2) ⊆ Below(S1) holds. Then the intersection of

the two slices Slice(r1) ∩ Slice(r2) corresponds to a new

closure Below(S1 ∪ S2). It would be prohibitive if such a

new closure needs to be computed for every intersection of

slices. Because there may be an exponential (in the number

of slices) number of intersections. However, the function

Below() is distributive over set union, as stated in Propo-

sition 1. This desired property allows the intersections of

slices to be ignored in controlling accesses to an object,

given that the open policy is properly enforced (that is, a re-

quest is permitted only if no prohibition exists). Similarly,

the boundary cells among slices can also be ignored. For ex-

ample, a cell < ALL, Book > (not shown in Figure 1) be-

longs to both the slice older than Q5 and the slice no older

than Q5 (since the value ALL depends on all other values).

The request for such a cell will be denied, because a prohi-

bition exists in the second slice, according to Example 4.3.

Proposition 1 In any data cube L, Below(S1 ∪ S2) =
Below(S1)∪Below(S2) holds for any S1 ∈ L and S2 ∈ L.

We define authorization objects in Definition 3 by

combining closures and slices. An example of ob-

jects is then given in Example 4.4. Given an autho-

rization (Object(O), subject), the basic access control

denies accesses to any protected cell. Specifically, a re-

quest for a cell �t is denied, if �t ∈ Object(O) holds; the

request is granted, otherwise. However, while the basic ac-

cess control comprises the minimal security requirement,

it is ineffective to protect the object because of mali-

cious inferences, as illustrated in Section 5.1. Moreover, we

shall show in Section 5.2.2 that the object of the basic ac-

cess control is actually enclosed by that of the inference

control. Hence, we conclude this section without further ad-

dressing the basic access control.

Definition 3 In any data cube L with the set of all

cells A, define a function Object(.) : 22
A
×2

L

→ 2A

as Object({(ri, Si) : 1 ≤ i ≤ n}) = {�t : �t ∈
Slice(ri) and �t ∈ �c both hold, for some 1 ≤ i ≤
n and �c ∈ Below(Si) }. We say Object(O)) is an

authorization object (or simply an object) speci-

fied by the pairs of s-specification and l-specification

O = {(ri, Si) : 1 ≤ i ≤ n}. We say any

cell �t ∈ Object(O) is protected, and any cell
�t ∈ A \ Object(O) unprotected.

Example 4.4 Following previous examples, the object for

Eve is Object(O), where O = {(r1, S1), (r2, S2)}.

The specifications are r1 =< ALL, ALL >,

S1 =< all, employee >, r2 = {< q, e >: q ∈
quarter, e ∈ employee, q ≥ Q5}, and S2 =< all, all >

(notice that < ALL, ALL > is a cell and < all, all > is a

cuboid). Examples of protected cells include < Y 1, Bob >

(in both Slice(r1) and Below(S1)), < ALL, Book >(in

both Slice(r2) and Below(S2)) and < Y 2, Alice > (in

both Slice(r1) ∩ Slice(r2) and Below(S1 ∪ S2)).

5. Controlling Malicious Inferences in Data

Cubes

The definition of an authorization object prevents any

protected cell from being computed from below (that is,

from its ancestors). However, in many cases a protected

cell can be inferred from above (that is, from its descen-

dants). Such inferences can easily infiltrate the line of de-

fense established by the basic access control. In this section,

we address inference control in data cubes. First, in Sec-

tion 5.1 we illustrate different kinds of inferences in data

cubes through examples. Then, in Section 5.2 and 5.3 we

propose methods to prevent and eliminate inferences.

5.1. Inferences in Data Cubes

In data cubes, an inference occurs when sensitive infor-

mation about the values of some protected cells are derived

from the values of their unprotected descendants as well as

from external knowledge. The inference thus depends on

several factors. That is, the source and target, which is the

set of unprotected cells causing the inference and the set

of protected cells being inferred, respectively; the aggrega-

tion function, which is used to compute the value of each

cell; the sensitive criterion, which decides what informa-

tion is sensitive; and external knowledge, which has been

learned through channels other than queries. Most inference

control methods adopt a detecting-then-removing approach.

Such an approach usually assumes a specific type of ag-

gregation functions, sensitivity criteria, and external knowl-

edge, in order to reduce the complexity of detecting infer-

ences. For example, only SUMs are allowed; only the exact

values are sensitive; or subjects know nothing about the data

type of sensitive attributes. Extending a detection method to

remove such assumptions is usually infeasible. For exam-

ple, Chin shows that detecting inferences by auditing [8] is

polynomial for both SUM-only and MAX-only cases. How-

ever, it is NP-hard for the case of both SUM and MAX [6].

Even for the SUM-only case, the detection becomes infea-

sible, if both exact sensitive values and the small intervals

enclosing such values are considered as sensitive [10, 22],

or when a subject knows that the sensitive attributes are bi-

nary [21]. Unfortunately, a practical OLAP system does not

restrict its users to SUM-only, nor hides from users the data

type of an attribute. Different systems may also adopt differ-

ent sensitivity criteria. Hence, the detecting-then-removing

approach may not be practical for data cubes.

However, a special kind of inferences, 1-d inferences

(that is, one-dimensional inferences), can be effectively de-

tected in data cubes. As illustrated in Example 5.1, in 1-d

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

inferences, the source, as well as the target, is the subset of

a single cuboid. In such a case, the cells in the source de-

pend on disjoint sets of cells in the target. In Example 5.1,

each cell in the source < quarter, department > depends

on a different column (in the viewable area) of the target

< quarter, employee >. Informally, this property of 1-d

inferences implies that the detection of 1-d inferences can

be partitioned, in the sense that the cells in the source do

not help each other in gaining inferences (a more formal

statement is given in Definition 4). Hence, 1-d inferences

can be detected by evaluating each cell in the source against

its ancestors in the target, using any given sensitivity cri-

teria. This simple detection procedure is effective in most

cases.

Example 5.1 (1-d Inferences) Suppose that in Fig-

ure 1 the cuboid < quarter, employee > is protected from

Eve, but its descendant < quarter, department > is un-

protected. Further suppose Eve already knows about the

empty cells, and the fact that Bob and Alice are tak-

ing the same amount of commission in Q3. Eve can then in-

fer the cell < Q3, Bob > and < Q3, Alice > as 5500,

which is half the amount 11000 of < Q3, Book >.

The detection becomes expensive and less effec-

tive for the complementary case, m-d inferences (that

is, multi-dimensional inferences). In m-d inferences, the

source causes inferences to the target, but the intersec-

tion of the source with any single cuboid does not. m-d in-

ferences come from multiple non-comparable descendants

of the target. Example 5.2 illustrates two-dimensional in-

ferences in SUM-only data cubes 6. Example 5.3 and 5.4 il-

lustrate m-d inferences in MAX-only data cubes and in

the data cubes where SUM, MAX, and MIN are all al-

lowed. From those examples, two observations are possible.

Firstly, different aggregation functions require different de-

tection methods. Secondly, unlike the detection of 1-d

inferences, the detection of m-d inferences is not partition-

able.

Example 5.2 (m-d Inferences in SUM-only Data Cubes)

Suppose that the external knowledge about identical val-

ues cannot be learned, and hence the inference described

in Example 5.1 can no longer by achieved by Eve. Assume

Eve has accesses to the cuboid < quarter, department >

as well as to < year, employee >. Notice that the

two cuboids are both free of 1-d inferences, because

each of their cells depends on two or more cells in the tar-

get < quarter, employee > (suppose only exact values are

sensitive). However, m-d inferences are possible in the fol-

lowing way. Eve first sums the two cells < Y 1, Bob >

and < Y 1, Alice > in the cuboid < year, employee >,

6 Three or more dimensional inferences can be easily constructed, al-
though we do not give examples here due to space limitations.

then subtracts from the result 18500 the two cells

< Q2, Book > (that is, 6000) and < Q3, Book > (that is,

11000) in the cuboid < quarter, department >. The pro-

tected cell < Q1, Bob > is then inferred as 1500.

Example 5.3 (m-d Inferences in MAX-only Data Cubes)

Suppose the external knowledge about empty cells is now

prevented. Now the cuboid < quarter, employee >

seems to Eve as being full of unknown values. Such a full

SUM-only data cube is safe from m-d inferences [34]. How-

ever, the following m-d inference is possible with MAXs

(the MAXs are not shown in Figure 1). Eve applies the

MAX to < Y 1, Mallory > and < Q4, Book > and gets

6400 and 6000 as the result, respectively. She can then in-

fer that one of the three cells < Q1, Mallory >,

< Q2, Mallory >, and < Q3, Mallory > must be

6400, because < Q4, Mallory > must be no greater than

6000. Similarly, Eve concludes that < Q2, Mallory >

and < Q3, Mallory > cannot be 6400, either. The pro-

tected cell < Q1, Mallory > is then successfully inferred

as 6400.

Example 5.4 (m-d Inferences with SUM, MAX and MIN)

Finally, suppose Eve can ask SUMs, MAXs and MINs. By

Example 5.3, < Q1, Mallory > is 6400. Eve then ap-

plies to < Y 1, Mallory > MAX,MIN, and SUM,

and gets 6400,6000, and 12400 as the answers (the

MAXs and MINs are not shown in Figure 1). Eve in-

fers < Q2, Mallory >,< Q3, Mallory >, and

< Q4, Mallory > must be 6000 and two zeroes, al-

though she does not know exactly which is 6000. Eve

then applies MAX,MIN, and SUM to < Q2, Book >,

< Q3, Book > and < Q4, Book >, whose result tells

Eve the following facts. In < quarter, employee >, two

cells in Q2 are 1500 and 4500; in Q3 are 5500 and 5500;

in Q4 are 3000 and 6000; and the rest are all zeroes, al-

though she cannot match the values to exact cells yet. Eve

then conclude that < Q4, Mallory > must be 6000, be-

cause the values in Q3 and Q2 cannot be. Similarly,

Eve can infer < Q4, Jim > as 3000, and conse-

quently all cells in the cuboid < quarter, employee >,

and hence the whole data cube, even without any exter-

nal knowledge.

In a few special cases, such as in the SUM-only or MAX-

only data cubes in Example 5.2 and 5.3, detecting m-d infer-

ences is possible [8, 33]. To the best of our knowledge, no

known methods can effectively detect m-d inferences in the

more general case. Moreover, even for those special cases,

the computational complexity and storage requirement ren-

der the detection infeasible. Because unlike 1-d inferences,

any cells in a source may help each other in gaining m-d in-

ferences. To make it worse, any cells answered in the past

may also help the currently requested ones. Consequently,

a detecting method must either keep track of all answered

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

cells for each subject or examine the whole data cube for

even a few requested cells.

5.2. Preventing Multi-Dimensional Inferences

From the examples and discussions in Section 5.1, m-d

inferences are clearly the major obstacle in making infer-

ence control practical for data cubes. In this section, we pro-

pose a method to prevent m-d inferences, instead of detect-

ing and then removing them. This novel approach makes

our method effective for different aggregation functions,

sensitivity criteria, and external knowledge. It also reduces

the complexity of the method to a practical level.

5.2.1. Assumptions Although we do not assume specific

aggregation functions, sensitivity criteria or external knowl-

edge, we require some assumptions. They are stated as the

three conditions in Definition 4. Although those conditions

are only required for sensitivity criteria, they also reflect

the assumptions about aggregation functions and external

knowledge. The first condition says that if a source S in-

cludes both a cell and all its ancestors in a cuboid, then re-

moving the cell from S does not change its sensitivity with

respect to the target T . This is reasonable, because the cell

can be computed from the ancestors by assuming distribu-

tive aggregation functions [17] such as SUM, MAX, and

MIN. For a non-distributive aggregation function, we can

keep the assumption by replacing the function with an in-

termediate functions. For example, AVG is not distributive,

but the pair (SUM, COUNT) is distributive, and AV G

can certainly be computed from (SUM, COUNT). As an-

other example, the identity function, which is clearly dis-

tributive, can act as an intermediate function for any ag-

gregation function. The second condition in Definition 4

says that inferences come from descendants only. This does

not hold if external knowledge can relate two cells in non-

comparable cuboids. In that case, we could regard one as

empty (that is, known from external knowledge) if the other

is unprotected. The third condition basically generalizes the

observation we made about Example 5.1. That is, inferences

can be partitioned, if the source S can be divided into blocks

that depend on disjoint sets of cells in the target T .

Definition 4 In any data cube L with the set of all cells

A, any binary function Sensitive(.) : 2A × 2A →
{TRUE, FALSE} is a sensitivity criterion, if the fol-

lowing all hold:

1. Sensitive(S, T) = Sensitive(S \ {�t1}, T), for any

cell �t1 in a cuboid �c1, if there exists �c ≺ �c1 satisfying

{�t : �t ∈ �c,�t � �t1} ⊆ S.

2. Sensitive(S, T) = Sensitive(S \ �c1, T), for any

cuboid�c1, if �c1 is non-comparable to any cuboid�c sat-

isfying �c ∩ T = φ.

3. Sensitive(S, T) = Sensitive(S1, T ∩ T1))∧Sensi-

tive(S2, T ∩ T2)), if S1 ∪ S2 = S and T1 ∩ T2 = φ,

where T1 = {�t : �t � �t1 holds for some �t1 ∈ S1} and

T2 = {�t : �t � �t2 holds for some �t2 ∈ S2}

For any set of cells S and T , if Sensitive(S, T) =
TRUE, we say S is sensitive with respect to T ; S is in-

sensitive, otherwise.

5.2.2. A Special Case We first consider a special case,

where the s-specification r is always a complete cuboid in-

stead of a subset of it. The object Object((r, Sl)) is thus

simply (the union of) protected cuboids in Below(Sl) (we

shall omit the union and simply say a set of cuboids when-

ever possible). Example 5.5 describes such an object. Con-

sider the set of protected cuboids Below(Sl) as the target,

and the set of unprotected cuboids L \ Below(Sl) as the

source. Our objective is to find a subset of the source that is

free of m-d inferences to the target and is at the same time

maximal.

Example 5.5 Figure 2 shows part of the dependency lattice

of a four-dimensional data cube with a Hasse diagram [14].

Each ai, bi, ci, and di is an attribute. The dot lines de-

note the dependency relation (those implied by the reflex-

ivity and transitivity of the dependency relation are omit-

ted). Let Sl = {< a1, b1, c2, d2 >, < a1, b2, c1, d2 >

}), the lower curve in the solid line depicts an object

Below(Sl). All cuboids below the lower curve are pro-

tected, and those above are unprotected. Apparently, m-d in-

ferences are possible from unprotected cuboids to protected

ones, such as from {< a1, b2, c2, d2 >, < a2, b1, c2, d2 >}
to < a1, b1, c2, d2 >. Because the former includes two non-

comparable descendants of the latter.

Firstly, to simplify the tasks, not all cuboids in the source

need to be considered for m-d inferences to each cuboid in

the target. According to the first and second conditions in

Definition 4, for each cuboid �ct in the target Below(Sl), we

can reduce the source to a minimal subset without chang-

ing the sensitivity. Specifically, we remove a cuboid if it ei-

ther is non-comparable to �ct, or is a descendant of other

cuboids in the source. The result includes only the minimal

elements in the set of descendants of �ct, namely, the ba-

sis Basis(S) of the source S with respect to the cuboid �ct,

as formalized in Definition 5. An example of the basis is

given in Example 5.6.

Definition 5 In any data cube L, we define a function

Basis(.) : 2L × L → 2L as Basis(S,�ct) = {�c : �c ∈
S,�ct � �c, (�c1 ∈ S ∧ �c1 � �c) implies�c1 = �c}. We say

Basis(S,�ct) is the basis of the source S with respect to a

cuboid �ct in the target.

Example 5.6 From Example 5.5, we have Basis(L \
Below(Sl), < a1, b1, c2, d2 >) = {< a1, b2, c2, d2 >

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

... ...

... ...

< a1, b2, c2, d3 >
< a3, b2, c2, d1 >

< a3, b2, c2, d2 >

< a2, b2, c2, d1 >

< a1, b1, c1, d2 >

< a1, b2, c2, d2 >

< a1, b1, c2, d1 > < a1, b2, c1, d1 >

< a1, b1, c2, d2 >

< a1, b1, c1, d1 >

�cr

< a2, b2, c1, d1 >

< a2, b2, c2, d2 >

< a2, b2, c1, d2 >< a2, b1, c2, d2 >

< a2, b1, c2, d1 >< a1, b2, c1, d2 >

Below(Sl)

Sl
< a2, b1, c1, d1 >

Above(�cr)

< a1, b2, c2, d1 > < a2, b1, c1, d2 >

Figure 2. An Example of Preventing m-d Inferences

, < a2, b1, c2, d2 >}. That is, for inferences to the pro-

tected cuboid < a1, b1, c2, d2 >, we only need to consider

its two non-comparable descendants < a1, b2, c2, d2 > and

< a2, b1, c2, d2 >.

Because a basis includes only non-comparable cuboids,

m-d inferences are possible from the source S to �ct only

if Basis(S,�ct) includes more than one cuboid. For exam-

ple, m-d inferences are possible in Example 5.6, since the

basis includes two cuboids. Conversely, we can construct a

subset free of m-d inferences to �ct by growing from a sin-

gle root. More specifically, we first choose an unprotected

cuboid �cr satisfying �cr � �ct, then we include all the descen-

dants of �cr. The result must satisfy that its basis with respect

to �ct includes only one cuboid, the root �cr. Hence, the re-

sult is free of m-d inferences to �ct. This process is formal-

ized as a function Above() in Definition 6 7. An example is

then given in Example 5.7.

Definition 6 In any data cube L, we define a function

Above(.) : L → 2L as Above(�cr) = {�c : �cr � �c}. We

say the cuboid �cr is the root of Above(�cr).

Example 5.7 In Figure 2, the cuboids above the upper

curve in the solid line comprise Above(�cr), where the

root �cr =< a2, b1, c1, d1 > is an unprotected descen-

dant of the core cuboid < a1, b1, c1, d1 >. Clearly, no

m-d inference is possible from Above(< a2, b1, c1, d1 >)

7 The concept is known as an ideal in lattice theory [14].

to < a1, b1, c1, d1 >, since the basis Basis(Above(<
a2, b1, c1, d1 >), < a1, b1, c1, d1 >) includes only the root

itself.

However, we need to prevent m-d inferences to not

only the cuboid �ct, but also all cuboids in the target. Con-

sider another protected cuboid �c1 that is non-comparable

to the root �cr. Then Basis(Above(�cr),�c1) must be differ-

ent from Basis(Above(�cr),�ct), because at least the root

�cr is not included by the former. The question arises: is

Basis(Above(�cr),�c1) also a singleton set? Lemma 1 shows

this is indeed the case. Moreover, the cuboid included by

Basis(Above(�cr),�c1) is the joint �c1 ∨ �cr. Hence, we have

successfully obtained a subset Above(�cr) of the source

L \ Below(Sl) that is free of m-d inferences to the tar-

get Below(Sl). Moreover, Lemma 1 extends the target from

Below(Sl) to L \ Above(�cr). This is important because

otherwise m-d inferences may first get to the unprotected

cuboids between Below(Sl) and Above(�cr), and then con-

tinue to infer the protected cuboids in Below(Sl).

Lemma 1 In any data cube L, given any l-specification S l

and a root �cr ∈ L \ Below(Sl), for any cuboid �ct ∈ L \
Above(�cr), Basis(Above(�cr), {�ct}) = {�cr ∨ �ct} holds.

Example 5.8 In Figure 2, now consider the cuboids

above the upper curve as the source, and those be-

low the upper curve as the target. From any cuboid in

the target, exactly one dot line goes into the source.

Each such line points to the joint of this cuboid and

the root < a2, b1, c1, d1 >. For example, a line goes

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

from the leftmost cuboid < a1, b1, c2, d2 > to its joint

with the root, < a2, b1, c2, d2 > (another line points to

< a1, b2, c2, d2 >, which is not in the source). Similarly,

from < a1, b2, c2, d2 >, a line points to < a2, b2, c2, d2 >

but other lines do not point to the source. Those observa-

tions indicate the absence of m-d inferences.

Next we consider the maximality of this result. The max-

imality is achieved by choosing a minimal root. More pre-

cisely, we let �cr be a minimal element of the set of unpro-

tected cuboids L \ Below(Sl). Lemma 2 then states that

for any unprotected cuboid not included by Above(�cr), its

meet with the root must be a protected cuboid. Hence, this

cuboid together with the root may cause m-d inferences to

their meet. That is, Above(�cr) is indeed maximal.

Lemma 2 In any data cube L, given any l-specification

Sl and a minimal element of �cr ∈ L \ Below(Sl), �c1 ∧
�cr ∈ Below(Sl) holds for any �c1 ∈ L \ (Below(Sl) ∪
Above(�cr)).

Example 5.9 Following Example 5.8, suppose we enlarge

the source Above(< a2, b1, c1, d1 >) by redrawing the up-

per curve, such that the cuboid < a1, b2, c2, d2 > is now

above the new curve. Then we have that < a1, b2, c2, d2 >

∧ < a2, b1, c1, d1 >=< a1, b1, c1, d1 >, indicating poten-

tial m-d inferences from the former two cuboids to the lat-

ter.

As another aspect of the maximality, Above(�cr) is not

arbitrary, but instead the only choice to satisfy both the pre-

vention of m-d inferences and the maximality. This is for-

malized as the only if part in Theorem 1 (the if part is given

by Lemma 1 and 2). Hence, Above(�cr) is the best possi-

ble result with respect to the prevention of m-d inferences.

Any further improvement of this result will require the de-

tection of m-d inferences, which is possible in only a few

special cases, as discussed in Section 5.1.

Theorem 1 In any data cube L, given any l-specification

Sl, any set of unprotected cuboids C ⊆ L \ Below(Sl)
satisfies the following two properties, if and only if C =
Above(�cr), where�cr is a minimal element of L\Below(Sl).

1. | Basis(C,�c) | = 1, for any �c ∈ L \ C.

2. | Basis(S,�c) | > 1, for any S satisfying C ⊂ S ⊆
L \ Below(Sl), and some �c ∈ Below(Sl).

5.2.3. The General Case Next we consider the general

case of an authorization object Object(O), where O =
{(ri, Si) : 1 ≤ i ≤ n} are pairs of s-specification and

l-specification. As in Section 4, the key issue is the poten-

tially exponential number of intersections among slices. In-

ference control will be prohibitive if it needs to deal with

each such intersection.

The result stated in Lemma 1 is distributive over

the set intersection operation. Without loss of gen-

erality, suppose neither Below(S1) ⊆ Below(S2)
nor Below(S2) ⊆ Below(S1) holds, and

Object((r1, S1)) ∩ Object((r2, S2)) = φ (that is,

some protected cells are included by the intersec-

tion). We divide Slice(r1) and Slice(r2) into three dis-

joint parts Slice(r1) \ Slice(r2), Slice(r2) \ Slice(r1)
and Slice(r1) ∩ Slice(r2). Then by the third condition of

Definiton 4, we can consider each part independently for in-

ferences. By Theorem 1, we can prevent m-d inferences in

Slice(r1) \ Slice(r2) and Slice(r2) \ Slice(r1) by choos-

ing a root for each part respectively. Now for the intersec-

tion Slice(r1)∩Slice(r2), we simply regard the joint of the

two chosen roots as a new root. Lemma 3 then states two re-

sults. Firstly, this new root is unprotected with respect to

the closure Below(S1 ∪ S2). This means the root is in-

deed valid for preventing m-d inferences according to

Lemma 1. Secondly, the function Above() is distribu-

tive over set intersection. Hence, the intersection can be

ignored in inference control, if the open policy is prop-

erly enforced. That is, the cells in the intersection are free

of m-d inferences only if both slices say so.

Lemma 3 In any data cube L, given any two pair of s-

specification and l-specification (r1, S1) and (r2, S2), let

�c1 ∈ L \ Below(S1) and �c2 ∈ L \ Below(S2). Then both

�c1 ∨ �c2 ∈ L \ Below(S1 ∪ S2) and Above(�c1 ∨ �c2) =
Above(�c1) ∩ Above(�c2) hold.

However, while intersections are free of m-d inferences,

the maximality stated in Lemma 2 is not guaranteed for

them. When the two roots�c1 and �c2 are minimal elements of

L\Below(S1) and L\Below(S2), respectively, their joint

is not necessarily a minimal element of L\Below(S1∪S2).
In order to preserve the maximality for the intersection, we

must coordinate the choice of both roots. In general, pre-

serving maximality for all the intersections is difficult. Even

a restricted case where the number of intersections is linear

in that of slices is no easier than the maximal independent

set problem, which is known as NP-complete [16]. Consid-

ering that intersections are usually not intentional, and the

choices of roots also depend on other probably more impor-

tant factors (such as the elimination of 1-d inferences dis-

cussed in Section 5.3), the maximality is not further pur-

sued for intersections. We define the answerable set given

by a set of roots in Definition 7. We also extend the func-

tion Basis() defined in Definition 5.

Definition 7 In any data cubeL, let A be the set of all cells,

1. define a function Answerable(.) : 22
A
×L → 2A as:

Answerable({(ri,�ci) : 1 ≤ i ≤ n}) = {�t : for 1 ≤
i ≤ n,�t ∈ Slice(ri) implies �t ∈ �c holds for some �c ∈
Above(�ci)}. We say Answerable(R) is the answer-

able set given by the set of roots R = {(ri,�ci) : 1 ≤

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

i ≤ n}. We say each cell �t ∈ Answerable(R) is an-

swerable, and each cell �t ∈ A \ Answerable(R) re-

stricted, and

2. define a function gBasis(.) : 2A × A → 2A as

gBasis(S,�tt) = {�t : �t ∈ S,�tt � �t, (�t1 ∈ S ∧ �t1 �
�t) implies �t1 = �t}. We say gBasis(S,�tt) is the ba-

sis of a set of cells S with respect to a cell �tt.

The answerable set is characterized in Theorem 2. The

first claim says that an answerable set given by unprotected

roots is always free of m-d inferences to any restricted cell.

The second claim shows that an answerable set is maximal

if all the roots are minimal and no protected cells are in-

cluded by intersections of slices. The third claim says that

finding an appropriate set of roots to maximize the answer-

able set is NP-hard, if such disjoint slices are not the case.

Notice that this NP-hardness result only states the infeasi-

bility of maximizing the answerable set, but does not imply

that of finding an answerable set.

Theorem 2 In any data cube L with the set of all cells

A, given pairs of s-specification and l-specification O =
{(ri, Si) : 1 ≤ i ≤ n)}, and a set of roots R = {(ri,�ci) :
1 ≤ i ≤ n,�ci is a minimal element of L \ Below(Si)}.

The following conditions 1 and 2 hold, if Object((r i, Si))∩
Object((rj , Sj)) = φ is true for any 1 ≤ i = j ≤ n; the

following conditions 1 and 3 hold, otherwise.

1. | gBasis(Answerable(R),�tt) | = 1, for any re-

stricted cell �tt ∈ A \ Answerable(R).

2. | gBasis(S,�tt) | > 1, for any set of cells S satisfying

Answerable(R) ⊂ S ⊆ A \ Object(O), and some

protected cell �tt ∈ Object(O).

3. Finding the set R satisfying the above two conditions

is NP-hard.

5.3. Eliminating One-Dimensional Inferences

In this section, we address the elimination of 1-d infer-

ences. For a given set of specifications O = {(ri, Si) :
1 ≤ i ≤ m}, the answerable set Answerable(R) given

by a set of unprotected roots R = {(ri,�ci) : 1 ≤ i ≤ n}
is free of m-d inferences. However, Answerable(R) may

not be truly answerable, because some of its cells may still

cause 1-d inferences, as illustrated in Example 5.1. With-

out loss of generality, consider the first slice Slice(r1). Let

r ⊆ Answerable((r1,�c1)) be the set of cells in Slice(r1)
that cause 1-d inferences according to a given sensitivity cri-

terion Sensitive(). It may seem a viable solution to simply

restrict r to remove 1-d inferences from Slice(r1). How-

ever, such basic access control never works. Both m-d in-

ferences and 1-d inferences are possible from the unre-

stricted cells in Answerable((r1,�c1)) \ r to those in r (and

then to the protected cells in Slice(r1) ∩ Object(O)). On

the other hand, considering r as a new object, then noth-

ing prevents it from being protected by the same methods

used to protect Object(O). Specifically, by the third condi-

tion of Definition 4, we can consider Slice(r1) \ Slice(r)
and Slice(r) separately for inferences. The former is now

free of both m-d inferences and 1-d inferences. Let S be

the union of S1 and the set of cuboids with which r has

a non-empty intersection. Then Object((r, S)) is a new

object to be protected, if we consider r and S as the s-

specification and l-specification, respectively. Now we have

reached the same point as to protect Object(O). That is,

we first find a new root �cr to prevent m-d inferences from

Answerable((r1,�c1)) \ Object((r, S)) to Object((r, S)).
Then again, the result Answerable((r,�cr)) is free of m-d

inferences to Object((r, S)), but may cause 1-d inferences.

Hence, we repeat the above process until either no more 1-d

inferences are detected, or there is no cuboid left to be cho-

sen for the root. Then the root is set as a dummy cuboid �cnil,

which depends on the topmost cuboid < all, all, . . . , all >

(hence Above(�cnil) = φ, causing no 1-d inferences). The

process terminates in at most | Above(�c1) | steps, because

in each round the root is chosen from fewer candidates, with

the cuboids causing 1-d inferences excluded. The procedure

SeCube shown in Figure 3 computes a set of roots as de-

scribed above.

Proposition 2 states that the result of the procedure Se-

Cube given in Figure 3 is provably secure. The first claim

says the set of restricted cells is itself an object, and this

new object is a superset of the originally specified object

(that is, the set of protected cells). This result has two im-

plications. Firstly, the protection provided by inference con-

trol actually meets the requirements of the basic access con-

trol discussed at the end of Section 4 (notice that this is dif-

ferent from access control in general, which may go beyond

the open policy we have assumed). Hence, unauthorized ac-

cesses to the specified object are eliminated by the infer-

ence control, if the authorizations are specified as in Sec-

tion 4. Intuitively, any protected cells (explicitly specified

so by administrators) will be restricted, although the reverse

may not be true. Secondly, the result of such inference con-

trol can be enforced through access control, since it is noth-

ing but an object. The task of implementing inference con-

trol can thus be fulfilled using existing access control mech-

anisms. The second claim in Proposition 2 states that the an-

swerable set is always free of inferences to restricted cells,

regardless what sensitivity criterion is given, as long as it

meets the requirements stated in Definition 4. This claim

implies that sensitivity criteria can be implemented as cus-

tomizable modules, in order to incorporate the different re-

quirements in different applications.

Proposition 2 Taken as input a data cube L with the set

of all cells A, pairs of s-specification and l-specification O,

and any sensitivity criterion Sensitive(), the procedure Se-

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

Procedure SeCube

Input: a data cube L with the set of all cells A, pairs of s-specification and l-specification {(ri, Si) : 1 ≤ i ≤ n},

and a sensitivity criterion Sensitive()
Output: R = {(ui, �wi) : 1 ≤ i ≤ l}, where each ui is an s-specification, and �wi is a root

Method:

Let L = L ∪ {�cnil}, where �cnil satisfies < all, all, . . . , all >� �cnil, and R = φ

For i = 1 to n

Let R = R ∪ {(ri,�ci)}, where �ci ∈ L \ Below(Si)
Let r = ri, S = Si, and �cr = �ci

While TRUE

Let Ans = Answerable((r,�cr)) and r = {�t : �t ∈ Ans, Sensitive(�t,A \ Ans) = TRUE}
If r = φ Break

Let S = S ∪ {�c : �c ∈ Above(�cr),�c ∩ r = φ}
Let �cr ∈ Above(�cr) \ Below(S)
Let R = R ∪ {(r,�cr)}

Return R

Figure 3. A Procedure for Inference Control in Data Cubes

Cube in Figure 3 outputs a set R = {(ui, �wi) : 1 ≤ i ≤ l}
satisfying

1. A \ Answerable(R) = Object(Oa) and

Object(Oa) ⊇ Object(O) both hold, where

Oa = {(ui, Wi) : 1 ≤ i ≤ l} and each Wi is the set

of maximal elements of L \ Above(�wi), and

2. Sensitive(Answerable(R), Object(Oa)) =
FALSE is true.

6. Implementation Options and Complexity

The methods proposed in previous sections provably

eliminate both unauthorized accesses and malicious infer-

ences in data cubes. In this section, we discuss the imple-

mentation options and the computational and storage re-

quirements.

The implementation options largely depend on the exist-

ing security capability of an OLAP system. Most ROLAP

systems have access control mechanisms in their relational

backend. Such mechanisms can check incoming queries and

deny any request for protected cells. However, the access

control mechanisms are not aware of inferences. Our meth-

ods can enhance those existing mechanisms with the capa-

bility of inference control. Proposition 2 states that the re-

sult of inference control is simply a larger object contain-

ing restricted cells, which encloses the originally specified

object containing protected cells. Once this result of infer-

ence control is computed off-line by the Procedure SeCube,

it can be enforced by existing access control mechanisms,

in the same way as the specified object is enforced. That

is, the request for any restricted cell will be denied. Ide-

ally, such an inference control-through access control ap-

proach brings no additional on-line performance overhead

to the OLAP system with access control already in place.

Because a query needs to be checked by access control

mechanisms anyway. The distributivity stated in Proposi-

tion 1 and Lemma 3 also implies that the result of inference

control can be incrementally maintained, when new spec-

ifications arrive. Hence, old specifications do not need to

be kept once the result is computed, meaning no additional

storage is required, either.

For an OLAP system with no existing access con-

trol mechanisms, the implementation can adopt a query-

modification approach. The core cuboid �cc is mate-

rialized in most data cubes [19]. Hence, the answer-

able set can be encoded by attaching the root to each

cell in �cc. The root can be implemented as a new at-

tribute of the size O(k), for a k-dimensional data cube.

The storage requirement is thus O(| �cc | · k). After a re-

quest for a set of cells S in a cuboid �c is received, the

system modifies the request by appending to it a simple re-

striction. The restriction says that a cell in the core cuboid

�cc is aggregated by the answer only if its root is an an-

cestor of the requested cuboid �c (in ROLAP this will be a

simple WHERE clause, which is appended to the SQL com-

mand formed by the front-end). Such a restriction ensures

that all aggregated cells are included by the answer-

able set, and hence lead to neither inferences nor unau-

thorized accesses. The dependency relationship between

any two cuboids can be checked in O(k) time (by com-

paring two k-tuples), and hence the on-line delay is

O(| S | · k). Additional processing may be necessary to in-

form the subject about the restricted cells. This approach

causes on-line performance delay and also requires mod-

ifications of existing OLAP systems. However, the cost

of our solution is comparable to that of the basic ac-

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

cess control (that is, denying any request for protected

cells).

The off-line complexity of our solution depends on the

implementation and optimization of the procedure SeCube

shown in Figure 3. In the worst case, the complexity of Se-

Cube is bounded by the number of specifications, the size

of the data cube, and the size of the dependency lattice. The

outer loop of the procedure runs n times, where n is the

number of specification pairs. The inner loop of the proce-

dure runs at most | Above(�ci) | times for the ith round of

the outer loop. 1-d inferences are detected once for each

protected cell �tt (against its single descendant in the ba-

sis gBasis(Answerable(R),�tt), according to Theorem 2)

in the slice Slice(ri), whose results are stored and reused.

The total number of detections is thus bounded by O(| A |).
The detection is done by a customizable module that im-

plements the function Sensitive() in Definition 4. Each

such detection usually takes constant time (such as check-

ing whether a requested cell has less than two ancestors in

a specific cuboid). In practice, the likelihood of 1-d infer-

ences can usually be estimated based on statistics such as

cuboid sizes [11]. Hence, the choice of roots can be op-

timized to reduce both the number of 1-d inferences in the

initial answerable set, and the number of rounds in eliminat-

ing 1-d inferences. In most OLAP systems, materializations

and pre-computations are extensively adopted, and off-line

computational complexity is usually not a major concern in

those systems. Our approach also reflects such an effort in

achieving less on-line delay through more off-line process-

ing. Our ongoing work addresses the evaluation and opti-

mization of the proposed methods.

7. Conclusion

We provided a solution to protecting sensitive data in

OLAP data cubes from unauthorized accesses and mali-

cious inferences. We first devised a flexible framework

for specifying authorization objects. We then proposed a

method for controlling malicious inferences. The result is

provably secure in that both malicious inferences and unau-

thorized accesses are eliminated. The method is applicable

to any aggregation functions, external knowledge, and sen-

sitivity criteria, given that they satisfy the stated properties.

The technique is efficient and its implementation requires

little modifications to existing OLAP systems. As the first

part of a continuing effort to secure OLAP systems, this pa-

per has outlined our approach and especially focused on the

security aspect. Ongoing and future work addresses other

important aspects, including the tradeoff between the effi-

ciency and usefulness of a secure OLAP system, the opti-

mal choices of roots, and the variation in which, instead of

being static, the roots are driven down by queries.

Acknowledgements The authors are grateful to the

anonymous reviewers for their valuable comments.

References

[1] N.R. Adam and J.C. Wortmann. Security-control methods

for statistical databases: a comparative study. ACM Comput-

ing Surveys, 21(4):515–556, 1989.

[2] R. Agrawal and R. Srikant. Privacy-preserving data min-

ing. In Proceedings of the Nineteenth ACM SIGMOD Con-

ference on Management of Data (SIGMOD’00), pages 439–

450, 2000.

[3] L.L. Beck. A security mechanism for statistical databases.

ACM Trans. on Database Systems, 5(3):316–338, 1980.

[4] B. Bhargava. Security in data warehousing (invited talk). In

Proceedings of the 3rd Data Warehousing and Knowledge

Discovery (DaWak’00), 2000.

[5] L. Brankovic, M. Miller, P. Horak, and G. Wrightson. Us-

ability of compromise-free statistical databases. In Proceed-

ings of the Ninth International Conference on Scientific and

Statistical Database Management (SSDBM ’97), pages 144–

154, 1997.

[6] F.Y. Chin. Security problems on inference control for sum,

max, and min queries. Journal of the Association for Com-

puting Machinery, 33(3):451–464, 1986.

[7] F.Y. Chin and G. Özsoyoglu. Statistical database design.

ACM Trans. on Database Systems, 6(1):113–139, 1981.

[8] F.Y. Chin and G. Özsoyoglu. Auditing and inference con-

trol in statistical databases. IEEE Trans. on Software Engi-

neering, 8(6):574–582, 1982.

[9] L.H. Cox. Suppression methodology and statistical disclo-

sure control. Journal of American Statistical Association,

75(370):377–385, 1980.

[10] L.H. Cox. On properties of multi-dimensional statisti-

cal tables. Journal of Statistical Planning and Inference,

117(2):251–273, 2003.

[11] D.E. Denning. Cryptography and data security. Addison-

Wesley, Reading, Massachusetts, 1982.

[12] D.E. Denning and J. Schlörer. Inference controls for statisti-

cal databases. IEEE Computer, 16(7):69–82, 1983.

[13] D. Dobkin, A.K. Jones, and R.J. Lipton. Secure databases:

protection against user influence. ACM Trans. on Database

Systems, 4(1):97–106, 1979.

[14] T. Donnellan. Lattice Theory. Pergamon press, Oxford,

1968.

[15] L.P. Fellegi and A.B. Sunter. A theory for record linkage.

Journal of American Statistic Association, 64(328):1183–

1210, 1969.

[16] M.R. Garey and D.S. Johnson. Computers and Intractabil-

ity: A guide to the Theory of NP-Completeness. W.H. Free-

man and Company, San Francisco, 1979.

[17] J. Gray, A. Bosworth, A. Bosworth, A. Layman, D. Reichart,

M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A re-

lational aggregation operator generalizing group-by, cross-

tab, and sub-totals. Data Mining and Knowledge Discovery,

1(1):29–53, 1997.

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

[18] P. Griffiths and B.W. Wade. An authorization mechanism

for a relational database system. ACM Transactions on

Database Systems, 1(3):242–255, September 1976.

[19] V. Harinarayan, A. Rajaraman, and J.D. Ullman. Implement-

ing data cubes efficiently. In Proceedings of the Fifteenth

ACM SIGMOD international conference on Management of

data (SIGMOD’96), pages 205–227, 1996.

[20] S. Jajodia, P. Samarati, M.L. Sapino, and V.S. Subrahmanian.

Flexible support for multiple access control policies. ACM

Transactions on Database Systems, 26(4):1–57, dec 2001.

[21] J. Kleinberg, C. Papadimitriou, and P. Raghavan. Au-

diting boolean attributes. In Proceedings of the Ninth

ACM SIGMOD-SIGACT-SIGART Symposium on Principles

of Database Systems (PODS’00), pages 86–91, 2000.

[22] Y. Li, L. Wang, X.S. Wang, and S. Jajodia. Auditing

interval-based inference. In Proceedings of the Fourteenth

Conference on Advanced Information Systems Engineering

(CAiSE’02), pages 553–568, 2002.

[23] B. Malin, L. Sweeney, and E. Newton. Trail re-identification:

Learning who you are from where you have been. Techni-

cal Report, 2003. Available at http://privacy.cs.cmu.edu/.

[24] J.M. Mateo-Sanz and J. Domingo-Ferrer. A method for data-

oriented multivariate microaggregation. In Proceedings of

the Conference on Statistical Data Protection’98, pages 89–

99, 1998.

[25] H.B. Newcombe, J.M. Kennedy, S.J. Axford, and A.P. James.

Automatic linkage of vital records. Science, 130(3381):954–

959, 1959.

[26] P. Samarati. Protecting respondents’ identities in microdata

release. IEEE Transactions on Knowledge and Data Engi-

neering, 13(6):1010–1027, 2001.

[27] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman.

Role-based access control models. IEEE Computer,

29(2):38–47, 1996.

[28] J. Schlörer. Security of statistical databases: multidimen-

sional transformation. ACM Trans. on Database Systems,

6(1):95–112, 1981.

[29] A. Shoshani. OLAP and statistical databases: Similar-

ities and differences. In Proceedings of the Sixteenth

ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems (PODS’97), pages 185–196, 1997.

[30] G. Pernul T. Priebe. Towards olap security design - sur-

vey and research issues. In Proceedings of 3rd ACM

International Workshop on Data Warehousing and OLAP

(DOLAP’00), pages 114–121, 2000.

[31] J.F. Traub, Y. Yemini, and H. Woźniakowski. The statistical

security of a statistical database. ACM Trans. on Database

Systems, 9(4):672–679, 1984.

[32] J. Vaidya and C. Clifton. Privacy preserving association rule

mining in vertically partitioned data. In Proceedings of the

eighth ACM SIGKDD international conference on Knowl-

edge discovery and data mining (KDD’02), pages 639–644,

2002.

[33] L. Wang, Y.J. Li, D. Wijesekera, and S. Jajodia. Precisely

answering multi-dimensional range queries without privacy

breaches. In Proceedings of the Eighth European Symposium

on Research in Computer Security (ESORICS’03), 2003.

[34] L. Wang, D. Wijesekera, and S. Jajodia. Cardinality-based

inference control in sum-only data cubes. In Proceedings of

the Seventh European Symposium on Research in Computer

Security (ESORICS’02), pages 55–71, 2002.

[35] L. Willenborg and T. de Walal. Statistical disclosure control

in practice. Springer Verlag, New York, 1996.

[36] C.T. Yu and F.Y. Chin. A study on the protection of statisti-

cal data bases. In Proceedings of the ACM SIGMOD Inter-

national Conference on Management of Data (SIGMOD’77),

pages 169–181, 1977.

Appendix

Proof of (Proposition 1) We show that Below(S1∪S2) ⊆ Below(S1)∪
Below(S2) and Below(S1)∪Below(S2) ⊆ Below(S1∪S2) hold. By
Definition 1, Below(S1 ∪ S2) = {�c : ∃�cs ∈ S1 ∪ S2 �c � �cs}. Hence,
for any �c ∈ Below(S1 ∪ S2), either �c � �c1 ∈ S1 or �c � �c2 ∈ Ss

(or both) holds. That is, Below(S1 ∪ S2) ⊆ Below(S1) ∪ Below(S2)
holds. Conversely, any �c1 ∈ Below(S1) must satisfy �c1 � �c ∈ S1 ⊆
S1 ∪ S2, and hence �c1 ∈ Below(S1 ∪ S2) holds. Similar case for any
�c2 ∈ Below(S2). Hence, Below(S1)∪Below(S2) ⊆ Below(S1∪S2)
holds. This shows that Below(S1)∪Below(S2) = Below(S1 ∪S2) is
true. ✷

Proof of (Lemma 1) By Definition 5, we have that any
�c ∈ Basis(Above(�cr), {�ct}) only if �c ∈ Above(�cr) and �c � �ct

both hold. Then by Definition 6, �c � �cr must also be true. Hence,
Basis(Above(�cr), {�ct}) ⊆ S = {�c : �c � �cr, �c � �ct} holds.
Clearly, �cr ∨ �ct ∈ S holds. Moreover, any �c ∈ S must sat-
isfy �c � �cr ∨ �ct. Then again by By Definition 5, any �c ≻ �cr ∨ �ct

must not satisfy �c ∈ Basis(Above(�cr), {�ct}), because other-
wise �c ≻ �cr ∨ �ct implies �c = �cr ∨ �ct, a contradiction. Consequently,
Basis(Above(�cr), {�ct}) ⊆ {�cr ∨�ct} is true. On the other hand, the def-
inition of joint says that �c ∈ S and �c � �cr ∨ �ct implies �c = �cr ∨ �ct.
That is, �cr ∨ �ct ∈ Basis(Above(�cr), {�ct}) is also true. This im-
plies Basis(Above(�cr), {�ct}) = {�cr ∨ �ct}. ✷

Proof of (Lemma 2) Because �cr is a minimal element of L\Below(Sl),
�cr ∧ �c1 � �cr implies either �cr ∧ �c1 = �cr or �cr ∧ �c1 /∈ L \ Below(Sl)
holds. However, �cr ∧ �c1 = �cr must not hold, because otherwise �c1 � �cr

implies the contradiction �c1 ∈ Above(�cr). That is, �cr∧�c1 ∈ Below(Sl)
holds. ✷

Proof of (Theorem 1) The if part is given by Lemma 1 and Lemma 2.
We only show the only if part. Any non-empty C ⊆ L \ Below(Sl) is
a poset , and hence has a unique non-empty set of minimal elements Cm.
We first show that | Cm |> 1 must not hold by contradiction. Let �c be
GLB of Cm. Then �c ∈ Below(Sl) must not hold. Otherwise, by Defi-
nition 5, Basis(C,�c) = Cm and hence | Basis(C,�c) |=| Cm |> 1
is a contradiction to the first condition. Hence, �c ∈ L \ Below(Sl)
is true. Because �c is the GLB of Cm, it is also the GLB of C. Then
by Definition 6, C ⊆ Above(�c) holds. However, | Cm |> 1 implies
C = Above(�c) must not hold, because Above(�c) has only one mini-
mal element �c. Hence, C ⊂ Above(�c). This contradicts the second condi-
tion of maximality, because Above(�c) clearly satisfies the first condition.
Consequently, | Cm |= 1 must hold. Let Cm = {�c}. Then again, to sat-
isfy the maximality, C = Above(�c) must be true. ✷

Proof of (Lemma 3) We first show �c1 ∨�c2 ∈ Below(S1 ∪ S2) must not
hold by contradiction. Suppose it is true, then by Proposition 1, either �c1∨
�c2 ∈ Below(S1) or �c1 ∨ �c2 ∈ Below(S1) (or both) holds. However, if
�c1 ∨�c2 ∈ Below(S1) is true, then �c1 � �c1 ∨�c2 � �c must hold for some
�c ∈ S1. This leads to the contradiction �c1 ∈ Below(S1). Similarly, �c1 ∨
�c2 ∈ Below(S1) implies �c2 ∈ Below(S2). This shows that �c1 ∨ �c2 ∈
L \ Below(S1 ∪ S2) must be true. Then we show Above(�c1 ∨ �c2) =
Above(�c1)∩Above(�c2) also holds. By Definition 6, �c ∈ Above(�c1∨�c2)
holds if and only if �c � �c1 ∨ �c2 and hence both �c � �c1 and �c � �c1 hold.
This is equivalent to saying �c ∈ Above(�c1) ∩ Above(�c2). ✷

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

Proof of (Theorem 2) We first justify the first claim. Suppose
�tt ∈ �ct holds for some �ct ∈ L, and let I = {i : 1 ≤ i ≤

n,�tt ∈ Slice(ri)}. Then �tt ∈ A \ Answerable(R) implies

that �ct ∈
⋃

i∈I
Below(Si) = Below(

⋃
i∈I

Si) holds. By Def-

inition 7, gBasis(Answerable(R), �tt) ⊆ Answerable(R) ∩
(
⋃

i∈I
Slice(ri)) = (

⋂
i∈I

Above(�ci)) ∩ (
⋃

i∈I
Slice(ri)).

By Lemma 3, we have that gBasis(Answerable(R), �tt) ⊆
Above(

∨
i∈I

�ci) ∩ (
⋃

i∈I
Slice(ri)) and

∨
i∈I

�ci ∈

L \ Below(
⋃

i∈I
Si), where

∨
i∈I

�ci dentoes the LUB of {ci : i ∈ I}.

By Lemma 1, Basis(Above(
∨

i∈I
�ci), �ct) = {�ct ∩

∨
i∈I

�ci}

holds. Denotes �ct ∩
∨

i∈I
�ci by �cr . Because �ct � �cr , there must ex-

ist one and only one �tr ∈ �cr satisfying �tt � �tr . Then �tr ∈ S holds, be-
cause both �tr ∈ �cr ∈ Above(

∨
i∈I

�ci) and �tr ∈
⋃

i∈I
Slice(ri)

are true. For any �t ∈ S satisfying �tt � �t, if �t ∈ �c then �cr � �c must
hold, and �tr � �t follows. Hence, �t � �tr will imply �t = �tr . That is,
gBasis(Answerable(R), �tt) = {�tr}.

Next we justify the second claim by contradiction. Suppose
some S satisfies both Answerable(R) ⊂ S ⊆ A \ Object(O)

and | gBasis(S,�tt) |= 1 for any �tt ∈ Object(O). Let
�ts ∈ S \ Answerable(R), and �ts ∈ �cs for some �cs ∈ L. Be-
cause Object({(ri, Si)}) ∩ Object({(rj , Sj)}) = φ is true for any

1 ≤ i �= j ≤ n, | I = {i : 1 ≤ i ≤ n,�ts ∈ Slice(ri)} |= 1 must

be true. Without loss of generality, suppose �ts ∈ Slice(r1) holds. Then
�ts ∈ S ⊆ A \ Object(O) implies �cs ∈ L \ Below(S1). Moreover,
�ts ∈ Slice(r1) and �ts /∈ Answerable(R) implies �cs /∈ Above(�c1).

By Lemma 2, �cs ∧ �c1 ∈ Below(S1). Denote �cs ∧ �c1 as �tt, and sup-

pose �tt ∈ �ct ∈ Below(S1). Then �tt ∈ Object(O) follows. Because

�ct � �c1, there must exist �t1 ∈ �c1 ∩ Slice(r1) ⊆ Answerable(R) sat-

isfying �tt � �t1. Moreover, �cs /∈ Above(�c1) implies �cs and �c1 are non-

comparable, and hence �t1 and �ts are also non-comparable. Consequently,
gBasis(S,�tt) ⊇ {�ts, �t1}, a contradiction to | gBasis(S,�tt) |= 1.

Finally we show the third claim holds by reducing the maximal inde-

pendent set problem to a restricted case of our problem. Given any sim-
ple undirected graph G(V, E), with the vertex set V = {i : 1 ≤ i ≤ n},
the edge set E = {{i, j} : 1 ≤ i �= j ≤ n}, and the vertices i and j be-
ing incidenced by the edge {i, j}, we construct a new graph G′(V ′, E′)
as the follows. First we let G′ = G. Then for any isolated vertex i ∈ V ,
we add a new vertex 2i to V ′ and a new edge {i, 2i} to E′. Then for
any vertex i ∈ V that is incidenced by only one edge, we add a new ver-
tex 3i to V ′ and a new edge {i, 3i} to E′. The new graph G′ satisfies that
| V ′ |≤ 3n, and each 1 ≤ i ≤ n in V ′ is incidenced by at least two
edges, while each vertex i > n in V ′ is incidenced by a single edge. For
each vertex 1 ≤ i ≤ n in V ′, we use Ii for the set of its adjacent ver-
tices {j : {i, j} ∈ E′}.
We then construct a data cube L, so a subset S = {�ci : 1 ≤ i ≤ 3n} ⊆ L
satisfies that any two cuboids in S are non-comparable, and their joint is the
topmost cuobid �call =< all, all, . . . , all >. For any edge {i, j} ∈ E,
we let Sij be the maximal elements of the set L \ {�ci, �cj , �call}. Consid-
ering Sij as an l-specification, then �ci and �cj are the two minimal ele-
ments of L \ Below(Sij), while �ch ∈ Below(Sij) holds for any h �= i
and h �= j. For each Sij , we also choose one s-specification rij , such that

for any 1 ≤ i ≤ n and any J ⊆ Ii,
⋂

j∈J
Object({(rij , Sij}) �= φ

holds, while
⋂

j∈J∪{h}
Object({(rij , Sij}) = φ holds for any h /∈ Ii.

That is, any two objects overlap if and only if the two corresponding edges
incidence the same vertex. Let O = {(rij , Sij) : {i, j} ∈ E}. Let
R = {(rij , �cij) : {i, j} ∈ E,�cij ∈ {�ci, �cj}}.

We claim that if we can find an R such that Answerable(R) is maxi-
mal, then we immediately have Vs ⊆ V such that for any i ∈ Vs and
j ∈ Vs, {i, j} /∈ E, and Vs is maximal. The latter is an instance of the
maximal independent set problem, which is known as NP-complete [16],
and hence finding an R to maximize Answerable(R) is NP-hard. Now
we justify the claim. Because for 1 ≤ i ≤ n, each root �cij ∈ {�ci, �cj}
is a minimal element of L \ Below(Sij), Answerable(R) is maximal
if and only if the intersections are. Without loss of generality, consider the
intersection at �c1. That is, (

⋃
i∈I1

Slice(r1i)) ∩ Answerable(R) =

(
⋃

i∈I1
Slice(r1i)) ∩ Above(

∨
i∈I1

�c1i). Above(
∨

i∈I1
�c1i) is max-

imal if and only if �c1i = �c1 for all i ∈ I1, and hence (
∨

i∈I1
�c1i) = �c1.

Because if�clj = �cj holds for some j, then (
∨

i∈I1
�c1i) = �c1∧�cj = �call.

We know that Above(�call) includes only a single cell, which must be less
than the number of cells in Above(�c1) (considering that | �ci |>> 1 for
any i). However, by assigning �c1i = �c1 for all i ∈ I1, the answerable set
of the intersection at �c1 is maximized, but those of the intersections at �ci

for i ∈ I1 are not maximized. Consequently, Answerable(R) is maxi-
mal if and only if for most of i (1 ≤ i ≤ n), �cij = �ci holds for all j ∈ Ii.
This is equivalent to finding a maximal subset Vs ⊆ [1, n], so that for any
i ∈ Vs and j ∈ Vs, we can let �cih = �ci and �cjk = �cj (h ∈ Ii and
k ∈ Ij). This is possible only if {i, j} /∈ E holds for all i ∈ Vs and
j ∈ Vs. That is, Vs is the maximal independent set of V = [1, n]. ✷

Proof of (Proposition 2) We first justify the first claim. In order to
show that A \ Answerable(R) ⊆ Object(Oa) holds, for any �t ∈

A \ Answerable({(ui, �wi) : 1 ≤ i ≤ l}), suppose �t ∈ �ct for

some �ct ∈ L. Let I = {i : 1 ≤ i ≤ l, �t ∈ Slice(ui)}. By
Definition 7, �ct /∈ Above(�wj) holds for some j ∈ I . Equivalently,
�ct ∈ L\Above(�wj) holds. Then �ct � �cw holds for some �cw ∈ Wj , and

hence �ct ∈ Below(Wj) and �ct ∈ Below(
⋃

i∈I
Wi) both follow. Con-

sequently, �t ∈ (
⋃

i∈I
Slice(ui)) ∩ Below(

⋃
i∈I

Wi) ⊆ Object(Oa)

is true. This shows A \ Answerable(R) ⊆ Object(Oa) is true. In
order to show that A \ Answerable(R) ⊇ Object(Oa) also holds,

for any �t ∈ Object(Oa), suppose �t ∈ �ct for some �ct ∈ L. Let

I = {i : 1 ≤ i ≤ l, �t ∈ Slice(ui)}. Then �ct ∈ Below(
⋃

i∈I
Wi)

implies that �ct /∈ Above(Wj) must hold for some j ∈ I . Consequently,
�ct /∈ Answerable(R) is true and A\Answerable(R) ⊇ Object(Oa)
follows.

Next we show Object(Oa) ⊇ Object(O) holds. For any �t ∈

Object(O), suppose �t ∈ �ct for some �ct ∈ L. Let I = {i : 1 ≤ i ≤

n,�t ∈ Slice(ri)}. By Definition 3, �ct ∈ Below(
⋃

i∈I
Si) holds. Ac-

cording to the procedure SeCube in Figure 3, (ri, �ci) ∈ R holds for all

1 ≤ i ≤ n. Hence, I ⊆ J = {i : 1 ≤ i ≤ l, �t ∈ Slice(ui)} is true.

Then �ct ∈ Below(
⋃

i∈I
Wi) ⊆ Below(

⋃
i∈J

Wi) also holds. Conse-

quently, �t ∈ (
⋃

i∈J
Slice(ui))∩Below(

⋃
i∈J

Wi) ⊆ Object(Oa) is
true.

Finally we justify the second claim by contradiction.

Firstly, by Theorem 2, m-d inferences are impossible. That is,

Sensitive(Answerable(R), Object(Oa)) = TRUE only if for some

�t ∈ Answerable(R), Sensitive(�t, Object(Oa)) = TRUE holds.

Then according to the procedure SeCube in Figure 3, for some 1 ≤ j ≤ l,

�t /∈ Above(�wj) must hold. Hence, �t /∈ Answerable((uj , �wj)) must be

true, because Answerable((uj , �wj)) = Above(�wj) ∩ Slice(uj). By

Definition 7, �t ∈ Answerable(R) cannot hold, either, which is a contra-

diction. ✷

Proceedings of the 2004 IEEE Symposium on Security and Privacy (S&P’04)
1081-6011/04 $ 20.00 © 2004 IEEE

