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Abstract. Techniques to protect software implementations of the AES candidate
algorithms from power analysis attacks are investigated. New countermeasures
that employ random masks are developed and the performance characteristics of
these countermeasures are analyzed. Implementations in a 32-bit, ARM-based
smartcard are considered.

1 Introduction

The field of candidates for the final round of the Advanced Encryption Standard (AES)
selection process has been narrowed from fifteen down to five finalists: Mars [1],
RC6 [2], Rijndael [3], Serpent [4], and Twofish [5]. The cryptographic strength of the
remaining AES candidates is currently being evaluated and the winning algorithm will
soon be selected. One would expect that a cryptosystem using the AES winning algo-
rithm would be unbreakable. However, history has proven that otherwise secure cryp-
tographic algorithms can often succumb to weaknesses in their implementations [6].
Attackers of the AES algorithm may try to exploit such weaknesses.

Attacks on implementations are of particular concern to issuers and users of smart-
cards. Smartcards are becoming a preferred way of securely managing applications in
industries such as telecommunications [7], health care [8], transportation [9], pay-TV
[10] and internet commerce [11]. Smartcards have also been suggested for use in secu-
rity applications such as network access [12] and physical access to locations such as
automobiles, homes, and businesses [13]. Smartcards, however are potentially vulner-
able to implementation attacks. These attacks include power analysis attacks [14,15],
timing attacks [16,17], fault insertion attacks [18,19], and electromagnetic emission
attacks [20]. All of these attacks exploit the fact that a hardware device can sometimes
leak information when running a cryptographic algorithm. Kelsey et al. [21] use the
term “side-channel” to describe this unintended leakage of information.

In a power analysis attack the side-channel information is the device’s power con-
sumption. The power consumption of a vulnerable device, such as a smartcard, can leak
information about the secrets contained inside the device. Kocher et al. first described
power analysis attacks against the DES algorithm in a 1998 technical report [22] and
later followed up with a paper presented at CRYPTO ‘99 [14]. Researchers have also
begun to study the vulnerabilities of public-key cryptosystems to these attacks [23, 24].
Power analysis attacks against the AES algorithms have also been studied [25-27]. The
purpose of this paper is to introduce and describe new implementations of the AES can-
didate algorithms that are secure against power analysis attacks. I present masking tech-
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niques that are used to randomize the fundamental operations used by the AES
algorithms. I also provide results showing the performance and memory requirements
for these implementations in a 32-bit, ARM-based smartcard.

1.1 Research Motivation

Tamper-resistant devices, such as smartcards, can be used to store and apply secret keys
in symmetric-key cryptosystems. In a simple transaction, the smartcard might prove its
authenticity through a basic challenge-and-response protocol. In such a protocol, an
external device, called a reader, will challenge the smartcard to encrypt a random nonce.
The smartcard will then use its secret key to encrypt this nonce and produce a response.
Since the reader and smartcard share the same secret key, the reader can examine the
response and verify whether the smartcard is authentic.

Honest readers possess a copy of the smartcard’s secret key, thus these readers will
be able to verify the result of a challenge. However, dishonest readers will not know the
value of the smartcard’s secret key. Nevertheless, when the power consumption leaks
information from a smartcard, a dishonest reader might be able to ascertain the value of
the secret key. Successful attacks against a smartcard’s secret key might enable fraud-
ulent behavior such as the counterfeiting of smartcards. Thus, smartcard issuers and
users will want to ensure that the power consumption information cannot reveal the
value of a secret key.

Future smartcard cryptosystems will likely use the AES algorithm. Thus, it is vital
to begin understanding the issues involved in protecting smartcard AES implementa-
tions from attack.

1.2 Previous Work

The topic of power analysis attacks against the AES algorithms was discussed in March
1999 during the second AES Candidate Conference. At this conference, Biham and
Shamir [25] submitted a paper that describes ways to attack many of the AES algo-
rithms’ key scheduling routines. In their paper, Biham and Shamir use the fact that a
power consumption signal may leak the Hamming weight of the data being processed.
They show how knowledge of the Hamming weights can enable attacks. In another
paper, Chari et al. [26] look at attacks against the encrypt and decrypt routines of the
AES candidate algorithms. Chari et al. assess each of the AES algorithm’s vulnerabili-
ties and, as an example, give results from an actual power analysis attack against a naive
implementation of the Twofish algorithm. Daemen and Rijmen [27] also look at power
analysis attacks against the AES algorithms. In their paper, Daemen and Rijmen exam-
ine the fundamental operations used by the AES algorithms and comment on possible
vulnerabilities. Daemen and Rijmen also propose some possible countermeasures
against these attacks.

All three of these papers recommend that comparisons of smartcard AES implemen-
tations consider the performance of versions that are secured against power analysis
attacks rather than merely naive implementations.
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1.3 Paper Overview

A smartcard microprocessor has a minimal amount of computing power and memory.
Unfortunately, as pointed out by Chari et al. [26], software countermeasures against
power analysis attacks can result in significant memory and execution time overhead.
The amount of overhead seems to depend on the type and arrangement of the fundamen-
tal operations used by an algorithm. In this paper I examine the fundamental operations
used by each of the AES finalist algorithms. I then develop techniques that use random
masks to make software implementations of these operations resistant to power analysis
attacks. Finally, [ use these new countermeasures to implement masked versions of each
of the remaining AES algorithms. The performance and implementation characteristics
of these countermeasures in a 32-bit, ARM-based smartcard are analyzed.

The organization of this paper is as follows; first in Section 2, the fundamental oper-
ations used by each of the AES finalist algorithms are described. Next in Section 3, the
basic principles of power analysis attacks are reviewed and previously suggested coun-
termeasures are discussed. Then in Sections 4 and 5, my specific countermeasures for
the AES finalist algorithms are described and implementation details are provided.
Finally, the results for secure implementations of each of the algorithms are reported in
Section 6.

2 Fundamental Operations in the AES Algorithms

The fundamental operations used by the AES algorithms were previously summarized
by Daemen and Rijmen [27]. I review these fundamental operations and make the cau-
tious assumption that each of these operations is potentially vulnerable to some form of
power analysis attack. I then convert these vulnerable operations into secured opera-
tions using a strategy that employs random masks. Finally, I use these secured opera-
tions as the building blocks for the AES algorithms. Daemen and Rijmen [27] also
proposed countermeasures, however their countermeasures are different from the
masking strategies described in this paper. Daemen and Rijmen suggest software coun-
termeasures such as data balancing and instruction sequence scrambling, whereas my
countermeasures involve masking all intermediate data with random masks.

The AES candidate algorithms share many of the same fundamental operations.
These operations include table lookups, bitwise AND, OR and XOR functions, shift and
rotate operations, multiplication and addition modulo 232 operations, permutations,
polynomial multiplications over GF(2%), and other various types of linear transforma-
tions. In this paper, I consider only the fundamental operations that are needed for
implementations in a smartcard. Smartcards have a severely limited amount of memory,
especially RAM, so some operations that could make the algorithms run more effi-
ciently in a memory-rich environment are not considered in this paper.

A detailed description of the fundamental operations used in smartcard implemen-
tations of the AES algorithms is now given. A summary of these fundamental opera-
tions is also provided in Table 1.
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2.1 Table Lookup Operations

All of the AES finalist algorithms, except the RC6 algorithm and a bitslice implemen-
tation of the Serpent algorithm, require table lookup operations. A table lookup opera-
tion operates on n input bits and produces m output bits. The » input bits specify an
address into a table and the data at this address is the m-bit output. The size of the table
grows exponentially with n, thus for smartcard implementations #» must be kept fairly
small. A table lookup operation T that has x as input and y as output is symbolically
denoted as y = T'[x]. The countermeasures that I will propose in Section 4 require the
table be randomly masked prior to running the algorithm. This means that the table will
need to be copied into RAM. Thus, table size is critical when considering secure imple-
mentations in smartcards with a minimal amount of RAM.

Mars. The Mars algorithm requires the largest table size out of all the AES algorithms.
For Mars, n =9 and m = 32 resulting in a table size of 2,048 bytes. During the forward
and backwards mixing stages of Mars, this large table is viewed as two smaller tables
each with n = 8 and m = 32.

Rijndael. The Rijndael algorithm actually does not need a table lookup operation
because the table can be described arithmetically. However, this approach would result
in a very inefficient implementation. Thus, for efficiency, Rijndael uses a table lookup
operation where n =8 and m = 8. The resulting table size is 256 bytes. More tables
could be used for more efficient implementations, but these implementations are less
suitable for low-memory smartcards.

Serpent. The Serpent algorithm can be implemented in either standard mode or in a
more efficient bitslice mode. Only the standard mode requires table lookups. In this
case, there are eight tables where n = m = 4. Thus, for standard mode Serpent, there is
a need for 64 bytes of table memory.

Twofish. The Twofish algorithm can have its tables represented in a variety of forms.
The tables are all originally derived from eight small permutation tables that have a
combined memory requirement of 64 bytes. Implementations using these small tables
would be inefficient, so more optimized implementations represent these small tables
using two larger tables requiring a total of 512 bytes. More efficient implementations
have been described that use key dependent tables [5], but these implementations are
not suitable for low-memory smartcards.

2.2 Bitwise Boolean Functions

Bitwise Boolean functions include the AND, OR, and XOR functions. All of the AES
algorithms use the XOR function. A bitslice implementation of the Serpent lookup
tables and a routine to “fix”” Mars subkeys are the only two places where the AND and
OR functions are used. The logical operators @, A, and v are used to denote the bitwise
XOR, AND and OR functions, respectively. Smartcards can efficiently perform these
operations, but if countermeasures are not taken, information regarding the operands
and results may leak.
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2.3 Shift and Rotate Operations

There are two types of shift and rotate operations, fixed and data dependent. All of the
AES candidates use a fixed rotate or shift operation. Mars and RC6 also use data depen-
dent rotate operations. Data dependent rotate operations can be very difficult to mask
in smartcard implementations, especially if the smartcard microprocessor can only
rotate by one bit at a time. Shift operations are denoted using the >> or the << operator
and rotate operations are denoted using the << or the >>> operator.

2.4 Addition and Multiplication Modulo 23*

Mars, RC6, and Twofish extensively use addition modulo 232, The Mars and RC6 algo-
rithms also require a modular multiplication operation. In RC6, multiplication is used
twice during each round. In Mars, multiplication is used once during each of the sixteen
keyed transformation rounds.

2.5 Bitwise Permutations

A bitwise permutation is a rearrangement of the bits within a sequence of bits. The only
AES algorithm that uses a bitwise permutation is the Serpent algorithm, and Serpent
only uses the bitwise permutation if it is implemented in standard mode. A permutation
operation P that has x as input and y as output is symbolically denoted as y = 7p[x].

2.6 Polynomial Multiplications over GF(2%)

The Rijndael and Twofish algorithm are the only AES finalists that use polynomial
multiplications over GF(28). Polynomial multiplication can be implemented either
directly or through the use of table lookup operations. When implemented directly, the
multiplication decomposes into a series of conditional bitwise XOR operations and
shifts. Conditional operations, however may allow for timing attacks. Therefore, smart-
card implementations may instead use a combination of table lookups, XOR operations
and shifts.

2.7 Linear Transformations

Serpent uses a linear transformation during each round and a recursive linear transfor-
mation during the key scheduling. Mars also uses a recursive linear transformation
during the key schedule. Linear transformations can be implemented using shift and
XOR operations, so techniques to protect these operations can also apply to linear trans-
formations. A linear transform is symbolically denoted as y = LT[x], where x is the input
to the transform and y is the output.

3 Review of Power Analysis Attacks and Countermeasures

Before looking at ways to securely implement the AES fundamental operations, it is
useful to review the basic concepts of power analysis attacks. Kocher et al. [14] have
described two types of attacks, a Simple Power Analysis (SPA) attack and a Differential
Power Analysis (DPA) attack. An SPA attack is described as an attack where the adver-
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sary can directly use a single power consumption signal to break a cryptosystem.
Attacks where an adversary can learn the Hamming weight of data that was processed
or can learn how branch instructions were executed are examples of SPA attacks. The
information in the power signal is usually quite small; thus steps such as executing
random dummy code or avoiding memory accesses by processing data in registers can
often help to protect against SPA attacks.

DPA attacks, on the other hand, can be much harder to protect against. A DPA
attack uses statistical analysis to extract information from a power signal. Information
that might be imperceptible by using SPA can often be extracted using DPA. In its min-
imal form, DPA reduces to the analysis of the probability distributions of points in the
power consumption signal. For example, in the original DPA attack described by
Kocher et al., the means of the probability distributions are analyzed.

Let f(p) be the probability distribution function of a point in the power consumption
signal that is vulnerable to attack. The underlying mechanism that enables a DPA attack
is the fact that f{(p) can be dependent on the data input to the algorithm, the data output
from the algorithm, and the secret key used by the algorithm. Most operations per-
formed by an algorithm have this property, thus most operations are potentially vulner-
able to a DPA attack.

Daemen and Rijmen [27] suggested software countermeasures against DPA attacks.
These countermeasures include the insertion of dummy code, power consumption ran-
domization, and the balancing of data. These methods will degrade the strength of a DPA
attack, but may not be enough to prevent an attack. Chari et al. [28] suggest that ad hoc
countermeasures will not suffice since attackers can theoretically use signal processing
techniques to remove dummy code and can analyze more data to overcome the effects of
randomization and data balancing. They suggest a better approach is to split all interme-
diate data results using a secret sharing scheme, thereby forcing attackers to analyze joint
distribution functions on multiple points in the power signal. Goubin et al. [29] proposed
a similar strategy, called the duplication method, to protect the DES algorithm from DPA

Mars RC6 Rijndael Serpent Twofish
Table-Lookup two 8to 32, or| none one 8 to 8 none, or eight 4 to 4, or
one 9 to 32 eight 4 to 4 two 8 to 8
(Table Size) (2,048 bytes) [ (0 bytes) | (256 bytes) (64 bytes) (64 or 512 bytes)
Bitwise Boolean XOR XOR XOR XOR, AND, OR XOR
Shift or Rotate Operation Variable Variable Fixed Fixed
Multiplication mod 232 X X
Addition mod 232 X X X
Multiplication GF(28) X X
Bitwise Permutation standard mode
Linear Transformation X X

Table 1. Summary of the Fundamental Operations in the AES Finalist Algorithms

The fundamental operations used by the AES finalist algorithms are given in the above table.
The memory requirements are also provided for the table lookup operations. These memory
requirements are given assuming a typical smartcard implementation.
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attacks. The countermeasures I propose for the AES algorithms mask all intermediate data
results and are similar to those suggested by Chari et al. and Goubin et al.

Chari et al. [28] suggested that not all intermediate data in all rounds of an algorithm
need to be masked. For example, they suggest that only the first and last four rounds of
DES need to use their scheme. On the other hand, Fahn et al. [30] developed an Infer-
ential Power Analysis (IPA) method that can even attack the middle rounds of an algo-
rithm. My implementations take a conservative approach and mask all data for all
rounds.

4 Secure Implementations of the AES Fundamental Operations

My implementations resist SPA attacks by avoiding branch instructions. Other steps to
prevent SPA attacks can be taken as deemed necessary, but the main focus of my atten-
tion was on resisting DPA attacks. The DPA countermeasures that I implement use
random masks to obscure the calculations made by the fundamental operations. The
random masks force the power consumption signals to be uncorrelated with the secret
key and the input and output data; thus DPA attacks will require analysis of joint prob-
ability distributions.

In this paper I work exclusively with 32-bit words and use two types of masking
operations. One type, that I refer to as Boolean masking, uses the bitwise XOR opera-
tion as the mask operator. The other type, that I refer to as arithmetic masking, uses
addition and subtraction modulo 232 as the mask operator. As an example of each type
of masking strategy consider the masking of a word x with a random mask r,. The
results of masking x using each strategy give the following masked values x':

. . . . 32
Boolean mask: x' = x®r_ or arithmetic mask: x' = (x—r ) mod 2

My overall strategy is to randomly mask the input data and key data prior to execut-
ing the algorithm. The algorithm is then executed using the masked data so all interme-
diate results of the algorithm are also masked. Since new masks are randomly chosen
for each new run of the algorithm, simple statistical analysis of the algorithm’s power
consumption is inadequate for a successful attack. The only way attackers will be able
to mount a statistical attack will be to look at joint probability distributions of multiple
points in the power signal. Such an attack is referred to as a higher-order DPA [14]
attack and is much more formidable to execute than a normal DPA attack.

The above masking strategy is possible if all of the fundamental operations of the
AES algorithms can work with masked input data and produce masked output data. All
operations, except addition and multiplication, can readily work with Boolean masked
data. For addition and multiplication, arithmetic masking will be used. Many of the
AES algorithms combine Boolean and arithmetic functions, thus a way to convert back
and forth between Boolean masking and arithmetic masking is needed.

The conversion from one type of masking to another needs to be done in such a way
to avoid vulnerabilities to DPA attacks. The algorithm shown in Fig. 1 gives one possi-
ble approach. In this approach, the unmasked data is x, the masked data is x', and the
mask is r,. The algorithm works by unmasking x using the XOR operation and then by
arithmetically remasking x using modular subtraction. Of course, an unmasked x may
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be vulnerable to power analysis attack. Thus, a random value C is used to randomly
select whether x or x is unmasked. A DPA attack using statistical analysis of the means
will not work against this algorithm because the attacker does not know whether D or
D is being processed at the circled statement in the algorithm. Attackers that can deter-
mine the value of C will be able to run a DPA attack, but finding out the value of C is
an SPA attack and SPA attacks are protected against using other means. A similar algo-
rithm to that given in Fig. 1 can be used to convert from arithmetic masking back to
Boolean masking.

The following sections now describe how each of the fundamental operations can
work with masked data.

4.1 Table Lookup Operations

Recall that a table lookup operation takes an input x and produces an output y such that
y = T[x]. In order to mask a table lookup operation, the table itself needs to be
masked. The easiest way to mask a table is to use an input mask r;, and an output mask
Tout- A Boolean masked table 7" can then be defined in terms of 7, ry;, and r,, where

T'[x] = T[x®r ] ®ryy,

The masked table 7" takes inputs that are masked with r;,, and produces outputs that are
masked with r,,,. Thus, the table lookup operation has been converted to an operation
that takes masked data for inputs and produces masked data as outputs.

For practical implementations in a smartcard, the random values for r;, and r,,,; can
be chosen at the beginning of the algorithm. These values can then be used to construct
the masked table that will be stored in RAM. Now, anytime a table lookup operation
needs to be performed, the input data can be masked with r;, and the masked table can
be used. The output of the masked table will be masked with ry,, so it can either be
unmasked to reveal the true output or reused in another secure operation.

Fortunately, most of the AES algorithms use tables that are small enough to fit into
the RAM available in a smartcard. Mars is the only algorithm where this solution is
likely to pose a problem.

BooleanToArithmetic (x', 7, ){
randomly select: C = 0 or C = -1
B=C® r,; /* B=r,  or B=r7, */
/* A=x or A=3 */
A=A - B; /* A=x-r_ or A=X-F */
A=A+ C; /* A=x-r, Or A:X—i’x—l */
A=A® C; /* A=x—r */

return (3) ; }

Fig. 1. Algorithm to convert from Boolean to Arithmetic Mask

This algorithm takes masked data x' and mask r, as input, and returns a masked value A such
that (A + r,) is equal to (x' @ r,). The circled statement is where x or x is unmasked, depending
on the value of C.
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4.2 Bitwise Boolean Functions

The bitwise XOR operation trivially works with Boolean masked data. To compute the
XOR of two masked operands, simply compute the XOR of the masked operands and
then the XOR of their corresponding masks. Thus, if the masked operands x' and y' are
masked with r, and ry, respectively, then the masked outputis z' = x'® y' and the new
maskisr, = r,®ry.

The bitwise AND operator can also be masked, but the calculation of the mask is a
little more complicated. Again, the operands x' and y' are assumed to be Boolean
masked with r, and r,, respectively. The masked output of the AND operation is
Z' = x' Ay and the mask can be shown to be r, = (r A y) @ (ry AX)®(r, A ry) .
A similar expression can be derived for the bitwise OR operator.

A straightforward implementation of the above expression for r, will first calculate
r, A y"and then use the XOR operation to combine this with A x" or r, A r, . Unfor-
tunately, the intermediate result of this operation will cause some data of x or y to
become unmasked. A simple fix is to use an intermediate random mask during these
calculations.

4.3 Shift and Rotate Operations

Fixed rotate or shift operations can easily be performed on Boolean masked data. The
masks simply rotate or shift along with the data. Thus, if the masked operand is x' and
the mask is r, then the output of a right rotate by n is x' >>n and the new mask is
r, >>n.

For data dependent rotate operations, the rotation amount also needs to be masked.
This rotation amount, however, needs to be masked with an arithmetic mask rather than
a Boolean mask. Thus, the data to be rotated is still represented as masked operand x'
and Boolean mask r,, but the rotation amount is now represented as masked operand r'
and arithmetic mask r,. A masked data dependent rotate operation can now be per-
formed using two double rotations. The masked output of the right rotate operation is
(x' >> n')>> r,and the corresponding mask is (r, >> n')>> r,.

4.4 Addition and Multiplication Modulo 232

The arithmetic operations of addition and multiplication are more compatible with
arithmetic masking than with Boolean masking. The addition operation trivially works
with arithmetic masked data. Given masked operands x' and y', which are masked with
ry and ry, respectively, the masked output of the addition operation is simply
Z = (x'+y') mod 232 and the new mask is r, = (r,+r,) mod 232,

Multiplication of masked data is more involved. The masked result for multiplying
masked operands x' and y' is z' = (x'y') mod 232 and the corresponding mask can be
showntobe r, = (r,y'+ ryx' + rxry) mod 232

4.5 Bitwise Permutations

Bitwise permutations work very nicely with Boolean masked data. If the masked oper-
and is x' and the mask is r,, then the masked outputis 7' = 1p[x'] and the correspond-
ing mask is r, = nplr.].
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4.6 Polynomial Multiplications over GF(2%)

There are various ways that polynomial multiplications can work with Boolean masked
data. If the multiplications are performed using table lookups, shift and XOR opera-
tions, then the corresponding methods to protect these operations can be used. Also, a
data byte g that is Boolean masked with r, using the XOR operation is equivalent to
polynomial g(x) being arithmetically masked with polynomial r,(x) using polynomial
addition. Therefore, polynomial multiplication can be secured using an approach simi-
lar to that used for multiplication modulo 232,

4.7 Linear Transformations

Non-recursive linear transformations work nicely with masked data. Given a masked
operand x' which is Boolean masked with r,, the masked outputis z' = LT[x'] and the
corresponding mask is r, = LT[r,]. Recursive linear transformations can be repre-
sented as a series of shift and XOR operations, so the corresponding methods to protect
shift and XOR operations can be used.

5 Implementation Details

The previously described masking techniques were used to implement secure versions
of the five remaining AES candidates. Naive versions of the algorithms, without the use
of masking, were also implemented as a baseline. It was very difficult to determine the
best implementation methods from some of the algorithm specifications, so the details
provided by the algorithm authors to NIST [31] proved to be useful references.

Each of the secured algorithms begin with an initialization step where random
masks are generated and used to mask the input and key data. If needed, randomized
tables are also constructed. The algorithms are then executed normally, except the
masked data is processed with secure versions of the fundamental operations. The effi-
ciency is reduced because the number of computations is increased and extra memory
is required for the masks and the masked table data. Many operations need to be com-
puted twice, once for the masked data and once for the masks. The table lookup opera-
tions also require extra overhead because the input data needs to be remasked using the
mask that was originally used to construct the table. Some algorithms also require a sig-
nificant amount of overhead to convert between Boolean and arithmetic masking.

5.1 Implementations for a Specific Processor

I chose to use a 32-bit, ARM-based processor as an evaluation platform for my AES
implementations. The ARM processor, manufactured by ARM Ltd., is a RISC machine
with fourteen general use registers. A smartcard containing an ARM processor typically
has 4K bytes of RAM and 48K bytes of ROM. The ARM processor also has a barrel
shifter and a 32-bit multiply instruction, both of which proved useful for my AES
implementations. I wrote the code for the ARM processor completely in C and com-
piled the code using the C compiler that comes with the “ARM Software Development
Kit” available from ARM Ltd. The code was compiled using the “-Otime” compiler
flag, so the resulting machine code is optimized for time rather than size. More optimal
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code would likely be possible if some of the routines were written in assembly, but the
intent of my experiment was to determine the relative costs of implementing secure
code rather than producing the most efficient code possible.

I chose to implement my masking technique in a newer 32-bit smartcard processor,
but could also have chosen an 8-bit processor. My software implementations required
more than 256 bytes of RAM so low-memory 8-bit processors with only 256 bytes of
RAM would not be suitable. However, newer 8-bit processors, such as the ST19 micro-
processor manufactured by ST Microelectronics, would be sufficient for my implemen-
tations. An ST19 smartcard processor typically has 1K bytes of RAM and 32K bytes of
ROM.

For information on 8-bit versus 32-bit implementations one could look at the work
by Hachez et al. [32]. They examine implementations in both types of processors, so
their results are useful for comparing 32-bit to 8-bit implementations. Comparisons of
the Hachez et al. implementations to my implementations, however, should consider
that the implementations by Hachez et al. were optimized to maximize performance,
rather than to prevent power analysis attacks.

5.2 Algorithm Specific Issues

Masking the operations of the AES algorithms can be a very costly undertaking. The
simplest approach to masking assigns each variable in the algorithm its own unique
mask. Both the masks and the masked data need to be processed, thus both the amount
of processing and the memory requirements double. In addition, there is also the cost
associated with initializing the masks and storing and initializing masked lookup tables.
Fortunately, there are a few techniques that can be used to reduce these costs.

One technique to save memory is to reuse the masks. In my implementations, two
variables that are never directly combined are allowed to share the same mask, thus con-
serving valuable memory. Masks are also sometimes reused between rounds. For exam-
ple, all the subkeys can often be masked with the same mask.

One technique to save processing is to start each round of the algorithm with a fixed
set of masks. As the data for a round is manipulated, the masks will also change. In
some cases, the changes to the masks are independent of the data being masked. Thus,
in these cases the changes to the masks are predictable. A preprocessing step can calcu-
late the intermediate mask values based on the initial masks and these values can be
reused for every round. This technique reduces the need to continuously recalculate
new masks during each round.

These techniques and other previously described masking techniques were used to
implement the AES candidates. The main goal of these implementations was to keep
the RAM memory requirements relatively low (less than 1K bytes) and the processing
speed as fast as possible. The performance and memory requirements depend on the
type of operations used in an algorithm and also the order of these operations. Com-
ments on each of the AES implementations are now provided.

Mars. Mars was the most difficult algorithm to mask. The lookup table for Mars is
2K bytes, thus is unreasonably large to be masked and stored in RAM. As an alterna-
tive, two versions of the table were store in ROM. One table contained the normal
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unmasked data and the other table contained the complement data in reverse order. A
random bit was used to determine which table to use. Other issues with Mars are that
the multiplications are time consuming to mask and converting between Boolean and
arithmetic masking is often required.

RC6. The RC6 algorithm, due to its simple design, was very easy to mask, but again
multiplications and the need for repeatedly changing from Boolean to arithmetic mask-
ing caused a good deal of overhead. In general, the calculation of a mask for a multipli-
cation operation requires three multiplies and two add operations, thus causing much
overhead. Also, masks used in multiplications are dependent on the data being masked,
thus these mask values cannot be precalculated. This prevents the use of the speedup
technique based on precalculating the mask values.

Rijndael. The structure of the Rijndael algorithm made masking very efficient. There
was no extra overhead for arithmetic operations and the lookup table was small enough
to be masked and stored in RAM. During a Rijndael round, all operations on the masks
proved to be independent of the data. Thus, the technique of precalculating mask values
was used extensively in this implementation.

Serpent. The Serpent algorithm was only implemented in bitslice mode. An implemen-
tation in standard mode seemed too inefficient and potentially more vulnerable to a
power analysis attack because individual bits would need to be processed during the
permutation operation. The main source of overhead in the Serpent implementation is
due to the bitwise AND and OR operations. Calculating the masks for one AND oper-
ation requires three AND operations and four XOR operations. The OR operation also
requires two additional complement operations. Also, my technique to precalculate the
mask values could not be used with the AND and OR operations. Thus, even though
Serpent does not use costly arithmetic operations, the overhead was still relatively high.

Twofish. The Twofish algorithm uses arithmetic operations, but does not use multi-
plies. Thus, the masks can be precalculated. Also, the order of operations allowed for
many masks to be shared. Overall, these properties led to a more efficient implementa-
tion. The main source of overhead in Twofish is the 512 bytes of RAM that is needed
to store the masked lookup table.

6 Performance Measurements

Implementations of the encrypt mode of the AES algorithms were tested. The cycle
counts and memory requirements for masked and unmasked implementations on the
32-bit ARM processor are given in Table 2. The security cost for each algorithm is also
given in Table 2. The security cost was calculated by dividing the masked implementa-
tion result by the unmasked result.

It is clear that when the countermeasures described in this paper were used, some of
the algorithms fared better than others. As expected, algorithms that used multiplication
operations, such as Mars and RC6, showed the worst degradation in performance. Ser-
pent is also not ideally suited for masking countermeasures, but its performance is a
little more acceptable. Rijndael and Twofish are the best suited algorithms for random
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Cycle Count Mars RCeo6 Rijndael Serpent Twofish
Unmasked 9,425 5,964 7,086 15,687 19,274
Masked 72,327 46,282 13,867 49,495 36,694
Security Cost 7.67 7.76 1.96 3.16 1.90
RAM (bytes) Mars RC6 Rijndael Serpent Twofish
Unmasked 116 232 52 176 60
Masked 232 284 326 340 696
Security Cost 2.00 1.22 6.27 1.93 11.60
ROM (bytes) Mars RC6 Rijndael Serpent Twofish
Unmasked 2,984 464 1,756 2,676 1,544
Masked 7,404 1,376 2,393 9,572 2,656
Security Cost 2.48 297 1.36 3.58 1.72

Table 2. Implementation Results for an ARM-based Processor

The implementation results above show the cycle count and memory requirements for the
masked and unmasked versions of the AES algorithms. The security cost is calculated by
dividing the masked implementation requirement by the unmasked requirement.

masking. The overall results show that masking countermeasures can be implemented
in smartcards. The performance is degraded, but in some applications, security against
power analysis attacks is more important than efficiency.

7 Conclusions

This paper has introduced various strategies for randomly masking the operations used
by the AES finalists. These strategies were used in implementations of the AES algo-
rithms and the performance of these implementations was reported. The results provide
a useful means for comparing the efficiency of secure smartcard AES implementations.
Perhaps future researchers can continue searching for more efficient secure implemen-
tation techniques. The efficiency of masking arithmetic operations especially needs to
be addressed and secure implementations in hardware also need to be studied. Another
approach may be to mask only critical operations, such as the first and last few rounds
of an algorithm. Hopefully, the results of this paper can provide some initial guidance
towards the selection of the winning AES algorithm and also assist in the future devel-
opment of more secure software cryptosystems.
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