Securing the IoT: Introducing an Evaluation
Platform for Secure Elements

LEA ZIMMERLI, TOBIAS SCHLAPFER, ANDREAS RUST

Zurich University of Applied Science (ZHAW)
Institute of Embedded Systems (InES)

November 8, 2019

Abstract

Security for resource constrained IoT devices is an important subject. Rising awareness and up-coming regulations will require
manufacturers to increase the level of security on their IoT devices. Semiconductor vendors are addressing this demand with dedicated
chips, so-called secure elements. Secure elements provide hardware accelerated support for cryptographic operations and tamper proof
memory for the secure storage of cryptographically sensitive material. Specifically, they physically isolate sensitive cryptographic material
from the application. However, experience from various projects shows, that the selection and the integration of a secure element into a
specific application represents a challenge. Accordingly, the paper discusses the development of a multi-vendor evaluation platform.
Particularly, the platform, adopting the widespread Arduino shield form factor, features secure elements from five different vendors.
Together with the provided integration into Zephyr OS, the board can be easily fitted to various microcontroller development boards. The
presented work intends to support developers in the selection process for secure elements and therefore to contribute to their adoption in

IoT devices.

I. INTRODUCTION

1th the ever faster growing number of IoT
Wdevices that are put into operation, many IoT

protocols have emerged as well. One of them is
the Thread[?] protocol. Among other things, one of the
main characteristics of the Thread protocol is the native
IPv6 connectivity through to the end device, without
the need for a gateway. Although this brings many new
features, such as service discovery, end-to-end security
and transparent routing from end device to end device,
it also exposes the device to attacks from the outside.
The end device must therefore be protected sufficiently
to prevent attacks from succeeding. One way to do this,
is to encrypt all the messages, which are sent from the
end device to the server and vice versa. To provide
proper encryption, powerful encryption algorithms are
needed and keys and certificates need to be handled. But
cryptographic operations need a lot of computing power
and have relatively long execution times, thus consuming a
lot of energy. The typical end device in an IoT network has
scarce resources regarding energy supply and computing
power. To solve these issues, secure elements have been
introduced to the market, offloading the cryptographic

operations to dedicated components. Besides, they also
offer a tamper proof secure storage for the management
of keys and certificates as well as protection against side
channel attacks.

When it comes to integrating such a component, de-
bugging has proven to be rather tedious. The secure
elements provide an attacker/developer with the least
amount of information possible on a failed request.
In terms of security, this is a good characteristic yet
somewhat ineffective for development. This, in turn,
makes the evaluation of several secure elements a very
time-consuming process. However, the evaluation should
not be neglected. When developing a new device, the
evaluation of components is an important part of the
development process. Choosing the right components can
prevent the need of corrective measures later in the project
and save a lot of time and money. But a good evaluation
takes time and can therefore be costly as well. For economic
reasons, investment into the evaluation process may come
off badly, which leads developers to neglect it. Ideally
the evaluation process is fast and straightforward but still
thorough, hence the need for an evaluation platform. In
the following, an evaluation platform and its featured

secure elements are presented, as well as the application
framework. Moreover, the advantages when adopting
a secure element in terms of energy consumption and
execution time are discussed.

This paper is structured accordingly. Section two specifies
the characteristics of secure elements and their role in the
IoT environment. Section three presents the developed
evaluation platform. In doing so, both the hardware
with its featured secure elements and the test application
are described. With it, the advantages of adopting the
presented evaluation platform are stated. Section four
then gives an example of how such an evaluation can be
performed. This consists of the description of the test setup
and the tested operations. Eventually, the results of power
measurements are presented given by a generic example.

II. SECURE ELEMENTS [?]

This section describes the characteristics of secure elements
and introduces two distinct categories. Furthermore, it out-
lines the usage of secure elements and the process of finding
an appropriate secure element for a given application.

i. What is a secure element?

Secure elements emerged from smart/banking card appli-
cations. Traditionally, semiconductor vendors designed a
pure hardware piece of silicon without any firmware. These
security chips were then loaded with an application specific
firmware, written by external firmware specialists. Since
IoT security has become more important, semiconductor
vendors now strive to offer a more general solution with
their own firmware. Which should be applicable for many
different IoT applications.

So, what is a secure element? A secure element is a small
integrated circuit (IC) dedicated to execute cryptographic
operations mostly in hardware. Such operations include
advanced encryption standard (AES), elliptic curve digital
signature algorithm (ECDSA) and allow a fast and ener-
gythrifty execution of intensive cryptographic operations.
Furthermore, the secure elements provide tamper proof
memory for secure storage as well as different physical
protection measures, such as actively shielded circuits, volt-
age and temperature tampering detection. Additionally,
secure elements provide protection measures against side
channel attacks e.g. screaming side channels [?], power
or clock observation-based attacks. One very important

feature of all secure elements is, that sensitive data never
leaves the tamper proof memory. This is especially impor-
tant considering that all secure elements, supporting and
standalone, use an I2C interface to communicate with the
MCU, which is not encrypted by default. The I2C interface
poses therefore an additional security risk. The interface
has either to be protected by encrypting the communication
or by actively shielding the 12C lines. If adopting the first
method, one has to consider, that the key for encryption has
to be stored in the readable memory of the MCU, which is
an additional risk. The second method can be realized by
putting the I2C lines between two reference planes (VCC,
GND) of the printed circuit board. This makes probing
more difficult.

ii. Categories of secure elements

Yet, not all secure elements have the same range of features
nor do they target the same application use cases. Essen-
tially, they can be divided in two categories. First there
is the category of the supporting secure elements. These
secure elements are intended to support the execution of
cryptographic software running on a host MCU. Supporting
secure elements provide secure storage for sensitive mate-
rial and support the host MCU with hardware acceleration
for a variety of cryptographic operations. This may signifi-
cantly reduce the energy consumption. If a cryptographic
software is needed on the MCU, e.g. because special cryp-
tographic algorithms like the JPAKE cipher suite are used,
supporting secure elements are an appropriate choice. The
second category are the standalone secure elements. These
secure elements are capable to autonomously handle a se-
curity layer. To achieve this, they provide a complete set of
cryptographic operations with additional control features
to establish and maintain a secure and authentic connection
without software support on the MCU. In this case, the cho-
sen standalone secure elements are able to handle messages
for a (D)TLS [?] session, but of course, other options are
possible. Yet, standalone secure elements are also able to
support an MCU which uses a cryptographic software, like
the supporting secure elements. However, if all the cryp-
tographic operations can be executed on the standalone
secure element itself, the overall security of an IoT device
can be enhanced, because all the sensitive material for the
cryptographic operations always remains within the tamper
proof memory of the secure element.

iii. Usage of Secure elements

A secure element can be used in many different ways. Ap-
plications include authentication, secure storage of sensi-
tive material, cryptographic operation support, protection
of intellectual property and many more. A secure ele-
ment increases the overall security of an IoT device by
providing tamper proof memory and hardware support
for cryptographic operations involving protected private
and immutable public keys. All secure elements provide
mechanisms to generate key pairs, with the private key
never leaving the secure element or the possibility to insert
private keys at manufactory site in a secure environment.
In general, it is not feasible to extract any private key from
a secure element, neither by software nor physically. Fur-
thermore, secure elements provide authentication features
to prevent usage or altering of data stored within a secure
element by unauthorized parties. This also allows for au-
thentic storage of public-key certificates, which may be used
to authenticate the device towards services or to authen-
ticate services towards the end device using a stored root
of trust certificate. Figure ?? shows a simple application
example how a secure element may be used.

v, 20T NoDE ;
I, 5P, Single Wire

Clonied

oo
Sunsur

ny

Secure Element
I

“gensrat: ECC| |

Keypair (rode_public_key)

| jcloud_public_key)
*store cloud
PUBIC key

sentfnode_public_key)

st e
public kay serd
o pubic key

receivecloud pubic_key) |

[measurernent)
“pr
{messane i
*ancrypl message " % P n
message] semimessnge) :
‘process
Wesmage and
(response) TECelvE[rEspOnsE, glve responas
Herypt messane

response: (OypherTedt) === [Plain Text)

‘procEss
REQONEE e

~eryptian

Figure 1: Simple application example for a secure element

In the example given, the end device with the secure
element on it sends an encrypted sensor value to the cloud
and receives the corresponding response. In order to do
so, the secure element generates a key pair and sends the
public key to the MCU, which forwards it to the cloud. The
cloud stores the public key of the secure element and sends
its own public key to the MCU, which again forwards
it to the secure element. Now the MCU can send the
measured value, which it received from the sensor, to the

secure element to be encrypted. The encrypted message
is sent to the cloud. The cloud processes the message
and sends a response to the secure element. The secure
element decrypts the message and sends it to the MCU to
be processed.

iv. Selection of a secure element

To find an appropriate secure element for an application, a
set of key questions has to be answered. These include:

e Which cryptographic operations are needed for the
application?

e What's the sensitive material in the application? Where
does the sensitive material come from? Generated or
preinstalled in a secure environment?

e If ECC is used, which curves need to be supported?

e In case a (D)TLS session is required, which cipher suite
is used? How many sessions have to be established
and maintained in parallel?

e How often are the cryptographic operations executed,
rarely or often?

e Available amount of energy?

Depending on the application, the list of questions con-
tinues. By answering these questions, a list of requirements
for the secure element is assembled. Furthermore, the an-
swers indicate if a cryptographic software on the MCU is
needed or not. In the final step, a fitting secure element has
to be selected.

III. EVALUATION PLATFORM

This paragraph describes the developed hardware with its
featured secure elements and describes the test application
design.

i. Secure element shield

To ensure the compatibility and a fast adoption of the
secure element shield, the form factor of the widespread
Arduino shield has been employed, see Figure ??. Like that,
it fits most microcontroller development boards. It features
six secure elements from five different vendors; Infineon
Technologies, Maxim Integrated, Microchip Technology,
NXP Semiconductors and Trusted Objects. Additionally,
an interface for the Shield2Go Security OPTIGA™Trust E
board is incorporated. The selection of the featured secure
elements has been elaborated in an earlier project. Main

Manufacturer Secure Element Standalone | Supporting
Infineon ™ »
Technologies OPTIGA"MTrust X [?] X
Maxim
?
Integrated MAXQI061 [?] x
Microchip »
Technology ATECC608A [?] X
NXP A71CH [?] X
Semiconductors SE050 [?] X
Trusted Objects TO136 [?] X

Table 1: List of featured secure elements

criteria were the range of supported cryptographic features,
power consumption and execution times. Table ?? shows a
list of the featured secure elements.

Figure 2: Secure element shield

Several features are integrated on the shield that allow
to isolate each secure element for individual evaluation.
Every secure element can thus be evaluated with the least
amount of bias from other components. This makes the
shield an ideal platform for evaluation. First of all, each
secure element can be completely disconnected from the
power supply via a jumper connector if not needed. There-
fore, no current will be drawn from disconnected secure
elements and hence power measurements will not be dis-
torted. Second, each secure element is connected to the
I2C bus via a bus switch. This ensures that the I2C lines
are not pulled down due to a secure element, which is not
powered but still on the I2C bus. In addition, pin arrays
are added where the shield connects to the development
board, this will make debugging the I2C line much more
convenient. To indicate which secure elements are powered,
an LED is assigned to each secure element. The LED may
be disconnected for power measurements.

ii. A portable software structure based on
Zephyr RTOS

Similarly to the hardware, compatibility between different
test environments and a fast adoption to individual setups
were the main criteria when developing the test application.
As a consequence, all the components of the application
are open source, except for some of the secure element
libraries. Figure ?? shows the structure of the application.
This paragraph gives an overview over the structure and
describes the most important components, which consist of
the Zephyr RTOS [?], the mbedTLS module and the secure
element libraries.

Application

AP1

CoAPs

DTLS {mbedTL5)

Device OpenThread

Manage ment

e Zephyr~

802154 Secure Element

Low Level API API

12C

Radio [

Figure 3: Application software structure

The application is based on Zephyr. Zephyr is a
small real-time operating system for connected, resource-
constrained and embedded devices supporting multiple
architectures. Zephyr offers a wide range of protocol
stacks, drivers, supported hardware architectures etc. Since
Zephyr adopts a modular approach, one can pick and
choose only the necessary components. By doing so, the
size of the application can be reduced to a minimum and
thereby save a lot of memory on the device. One of the
core modules used for this application is the mbedTLS
library[?], which implements the TLS protocol and its basic
cryptographic operations.

mbedTLS provides the basic transport layer security for
this application. It has been designed to easily integrate
with existing embedded applications. It’s not only
responsible for secure communication, but it also handles
cryptographic operations, key and certificate management.
mbedTLS itself can be configured in a way, that only the
necessary parts are integrated. Again, minimizing the
required memory. But, the most important aspect for
this application, is the interface mbedTLS provides for
an alternate cryptographic engine, such as a secure element.

The secure elements, much alike the mbedTLS library,
provide a range of cryptographic operations, secure stor-
age and some can even handle a security layer on their
own, namely the standalone secure elements. All of the
featured secure elements are integrated as a supporting
secure element. Additionally, the standalone secure ele-
ments handle a security layer on their own. Except for
the OPTIGA™Trust X and the ATECC608A, the libraries
providing the APIs are not open source.

IV. EVALUATION SETUP

The following outlines the evaluation process. The objec-
tive of the evaluation is to measure the average current,
execution time and the thereby resulting overall power con-
sumption of each cryptographic engine. Two evaluation
setups were done. The first setup focuses on the secure ele-
ment as hardware acceleration for cryptographic operations
(supporting role). The second evaluation setup showcases
how a secure element can be used for establishing a secure
channel between an IoT device and an application server
(supporting and standalone roles). In both cases a reference
measurement with mbedTLS as a cryptographic engine is
shown. Reason for mbedTLS serving as a reference are
NDAs with vendors that prevent the publication of detailed
results.

i. Secure element as hardware acceleration for
cryptographic operations

Figure ?? shows the first evaluation setup. It consists of the
MCU (nRF52840 [?]) and a secure element. The nRF52840
development board is connected to the power supply. On
top of the development board is the secure element shield,
to which the power analyzer [?] is connected through the
jumper connection. In Figure ??, the power analyzer is
indicated at the jumper connection of the NXP, A71CH.

For the power measurement, basic cryptographic oper-
ations were tested, which are available on all the featured
secure elements. Those are:

Generate random number
Generate elliptic key pair
Calculate SHA256 hash
Calculate ECDSA signature
Verify ECDSA signature

Power Analyzer

Figure 4: Power measurement with the nRF52840 development board
and the SE shield

Figure ?? shows the measurement results of the first eval-
uation setup executing these five cryptographic operations
with mbedTLS. On one hand, Figure ?? shows the graph
of the measurement and on the other, it lists the individ-
ual operations with their execution time, average current
and resulting energy consumption of the nRF52840. The
operations are marked with the corresponding number in
the graph. The application executes the five operations
consecutively. Between each operation, the MCU is put into
sleep mode for 100 milliseconds. To measure the execution
time, a GPIO pin is set to high before the function call and
to low directly after the function exits.

Wollage:
2vidiv
o

B ARG T
= el o
|
=TT e |0 0 ®
ﬂ;- —-------‘;5 1 . "1!5 2) 25
Time [s]
Exec. | Avg. Power
Nr. | Operation Time | Current
[nWh]
[ms] | [mA]
1 Random Number 0.3 3.61 0.9
2 ECC Key Pair 439.7 3.27 | 1318.0
3 SHA256 0.4 3.46 1.1
4 ECDSA Sign 187.9 3.25 559.8
5 ECDSA Verify 607.2 3.27 | 1820.1

Figure 5: Cryptographic operations with mbedTLS without support of
a secure element

For the listed operations, we have measurement results
available for all secure elements. However, they are not
presented here due to existing NDAs. The results show
that in some cases, the compute intense operations 2, 4 and
5 are significantly faster when executed on a secure element
compared to an execution in software on the MCU. In con-
trast, the short operations 1 and 3 are faster when executed
in software on the MCU. However, as can be seen in Figure
??, operations 1 and 3 have rather short execution times
compared to the remaining operations. This is also true
for all secure elements. Therefore the impact of those two
operations on the overall energy consumption is relatively
small. In addition, one has to consider, that the random
number generated by a secure element is a true random
number whereas the MCU only provides a deterministic
random number (pseudo random number). Determinis-
tic random numbers are generated by algorithms and can
be reproduced if the starting sequence is known. As a
consequence, the random number generated by the secure
element provides higher security.

ii. Secure elements authenticating a device in an
IoT network

The goal of the second evaluation setup is to secure the
communication between the end device and the application
server by means of a DTLS session. The test environment is
intentionally kept simple, but the same functionality can of
course be applied to more complex environments. Figure ??
shows the environment of the second test setup. It includes
only a single end device[?], a border router[?], an IPv6
router[?] and a Californium CoAPs server|?].

LoWPAN /1Pv6 / UDP / CoAPs

IPvE Router

il

Internet

L .

fHREAD

Californium

."\HTZ'End device . Border Router Thread Link Secure DTLS Channel

Figure 6: Network test setup

For the second evaluation setup the mbedTLS handshake
was measured. After the handshake, a CoAP GET message
is sent on the encrypted channel from the end device to the
application server. The application server then responds

with "hello security". The message is then decrypted on
the MCU. Among other things, the handshake performs
operations such as generating and verifying signatures and
encrypting messages. Therefore, it represents a process that
is demanding for the MCU.

Figure ?? shows the measured handshake as well as send-
ing and receiving encrypted data. The measurements show
the execution time, average current and power consump-
tion of the nRF52840. The handshake has a relatively long
execution time and therefore also a high energy consump-
tion. The measurements have shown, that secure elements
can cut the execution time of the handshake in half reduce
the required energy by a factor five.

Voltaga:
2Vidiv
o}

Currant:
i BmAidlv |

M
I

1] 5.1 1 15 2 25 1 35 4 4.5 5

o ® ®
; I 5 8 65
Time []

Exec. | Avg. Power

Nr. | Operation Time | Current
[nWh]

[ms] | [mA]

1 Handshake 4140.0 8.52 | 32257.2
Send 1.6 8.92 13.1
3 Receive & Decrypt | 980.1 6.32 | 5677.4

Figure 7: DTLS handshake and communication in software using
mbedTLS

V. SUMMARY AND OUTLOOK

Secure elments are an important option to bring security
to resource constrained devices. Our measurements with
devices from several manufacturers confirm fast execution
times and low power consumption. However, so far, the
integration of such secure elements needs a lot of effort.
Targeting different applications, several manufacturers
are offering their secure elements on the market, each of
them with its individual firmware, API and certificate
management. This makes the seletion of a fitting device
challenging and costly.

Our evaluation results for various secure elements show,
that there are indeed significant differences in terms of
execution time and power consumption. But, since every
application has distinct requirements, it is best to test each
component separately in a demonstration setup. As a conse-
quence, we have created an evaluation platform for secure
elements. The provided hardware and software integration
allows the developer of an IoT device to easily add a secure
element to an existing setup. As a result, secure elements
from different vendors can be directly evaluated and com-
pared for various applications. Clearly, this facilitates the
selection of an appropriate secure element.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

191

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

REFERENCES

Thread Group, November 8, 2019. URL:
https:/ /www.threadgroup.org/what-Is-thread

T. Schlapfer, A. Riist. Embedded Security for IoT: Opportunities and
Challenges of Secure Elements

G. Camurati, S. Poeplau, M. Muench, T. Hayes, and A.
Francillon. Screaming Channels: When Electromagnetic Side
Channels Meet Radio Transceivers, EURECOM, 2018. URL:
http://s3.eurecom.fr/docs/ccs18n camuratin preprint.pdf

E. Rescorla and N. Modadugu. Datagram Transport Layer Se-
curity Version 1.2, RFC 6347, Jan. 2012. URL: https://rfc-
editor.org/rfc/rfc6347.txt

Maxim Integrated, MAXQ1061, DeepCover Cryp-
tographic Controller for Embedded Devices URL:
https:/ /www.maximintegrated.com/en/products/microcontrollers/
MAXQ1061.html

Microchip Technology Inc. ATECCG608A, Se-
cure element to secure authentication URL:
https:/ /www.microchip.com/wwwproducts/en/ATECC608A

Infineon Technologies AG OPTIGA™TRUST X SLS 32AIA URL:
https:/ /www.infineon.com/cms/en/product/security-smart-card-
solutions / optiga-embedded-security-solutions / optiga-trust/optiga-
trust-x-sls-32aia/

NXP Semiconductors A71CH, Plug & Trust Secure Element URL:
https:/ /www.nxp.com/docs/en/data-sheet/ A71CH-SDS.pdf

NXP Semiconductors SE050, Plug & Trust Secure Ele-
ment URL: https:/ /www.nxp.com/docs/en/data-sheet/SE050-
DATASHEET.pdf

TRUSTED OBJECTS TO136 Secure Element URL:
https:/ /www.trusted-objects.com/webtest/index.php?page=en-
TO136-secure-element

Arm Limited Mbed TLS, version 2.16.0 URL:
https:/ /www.mbed.com/en/technologies/security /mbed-tls /
Zephyr Project, November 8, 2019. URL:
https:/ /www.zephyrproject.org/what-is-zephyr/

Nordic Semiconductors nRF52840 DK URL:

https:/ /www.nordicsemi.com/Software-and-Tools/Development-
Kits/nRF52840-DK

Keysight Technologies N6705B DC Power Analyzer, Modular, 600
W, 4 Slots URL: https://www.keysight.com/en/pd-1842303-pn-
N6705B/ dc-power-analyzer-modular-600-w-4-slots?cc=CHé&lc=ger

nRF52840 DK with the secure element shield and test application
Silicon Labs, Border Router, firmware version 2.3.0 GA

Ubiquiti Inc. Ubiquiti VPN-Router EdgeRouter X SFP ER-X-SFP URL:
https:/ /www.ui.com/edgemax/edgerouter-x-sfp /

Eclipse Eclipse Californium (Cf) CoAP Framework URL:
https:/ /projects.eclipse.org/projects/iot.californium

Figueredo, A. J. and Wolf, P. S. A. (2009). Assortative pairing and life
history strategy - a cross-cultural study. Human Nature, 20:317-330.

	Introduction
	Secure Elements scpf
	What is a secure element?
	Categories of secure elements
	Usage of Secure elements
	Selection of a secure element

	Evaluation Platform
	Secure element shield
	A portable software structure based on Zephyr RTOS

	Evaluation setup
	Secure element as hardware acceleration for cryptographic operations
	Secure elements authenticating a device in an IoT network

	Summary and outlook

