
Securing Wireless Data: System Architecture Challenges

Srivaths Ravi, Anand Raghunathan and Nachiketh Potlapally
Computer & Communications Research Labs

NEC USA, Princeton, NJ 08540
fsravi,anand,nachikethg@nec-lab.com

ABSTRACT
Security is critical to a wide range of current and future wireless data ap-
plications and services. This paper highlights the challenges posed by the
need for security during system architecture design for wireless handsets,
and provides an overview of emerging techniques to address them. We fo-
cus on the computational requirements for securing wireless data transac-
tions, revealing a gap between these requirements and the trends in process-
ing capabilities of embedded processors used in wireless handsets. We also
demonstrate that the use of security protocols causes significant degradation
in battery life, a problem that will worsen due to the slow growth in battery
capacities. These trends point to a wireless security processing gapthat, un-
less addressed, will impede the deployment of secure high-speed wireless
data and multi-media applications. We discuss approaches that are currently
being pursued to bridge this gap, including low-complexity cryptographic
algorithms, security enhancements to embedded processors, and advanced
system architectures for wireless handsets that are enabled by new system-
level design methodologies.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer-Communication
Networks- General (Security and protection); C.2.1 [Computer Systems
Organization]: Computer-Communication Networks- Network Architec-
ture and Design (Wireless Communication); E.3 [Data]: Data encryp-
tion; K.6.5 [Computing Milieux]: Management of Computing and In-
formation Systems- Security and Protection; D.4.6 [Software]: Operating
Systems- Security and Protection; C.5.3 [Computer Systems Organiza-
tion]: Computer System Implementation- Microcomputers (Portable de-
vices); C.0 [Computer Systems Organization]: General- System architec-
tures

General Terms
Security, Performance, Design, Algorithms

Keywords
Security, Security processing, Encryption, Decryption, Mobile Computing,
Wireless Communications, Handset, Embedded system, Performance, DES,
3DES, AES, RSA, SSL, IPSec, WTLS, Design methodology, Platform, Sys-
tem architecture

1. SECURITY CONCERNS IN WIRELESS NET-
WORKS

The large scale adoption of wireless communication and mobile com-
puting technologies has led to several applications that involve access to,
and transmission of, sensitive information, making security a serious con-
cern [1, 2, 3]. While security has been extensively addressed in the context
of wired networks, the deployment of high-speed wireless data and multi-
media communications ushers in new and greater challenges. The use of a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’02,October 2–4, 2002, Kyoto, Japan.
Copyright 2002 ACM 1-58113-576-9/02/0010 ...$5.00.

public transmission medium implies that the physical signal is easily acces-
sible to malicious entities. Furthermore, the mobility of wireless handsets,
and the possibility of their being lost or stolen, present added security con-
cerns. Perhaps most significantly, wireless clients (e.g., smart phones, PDAs,
networked sensors) are much more constrained in their processing capabil-
ities and energy supplies (batteries), than their wired counterparts. Several
security protocols and standards have been developed in the context of wired
networks [4, 5], however, the above factors make wireless security an impor-
tant field in its own right [6, 7, 8, 9].

The role of security mechanisms and protocols is to ensure privacy and
integrity of data, and authenticity of the parties involved in a transac-
tion. In addition, it is also desirable to provide functionality such as non-
repudiation, preventing the use of handsets in denial-of-service attacks, fil-
tering of viruses and malicious code, and in some cases, anonymous com-
munication.

It is important to recognize that wireless security is an end-to-end require-
ment, and can be sub-divided into various security domains.

� Appliance domain securityattempts to ensure that only authorized
entities can use the appliance, and access or modify the data stored
on it.

� Network access domain securityensures that only authorized devices
can connect to a wireless network or service, and ensures data privacy
and integrity over the wireless link.

� Network domain securityaddresses security of the infrastructure
(voice and data) networks that support a wireless network. Infras-
tructure networks are typically wired, could include public networks,
and could span networks owned by multiple carriers.

� Application domain securityensures that only safe and trusted appli-
cations can execute on the appliance, and that transactions between
applications executing on the client and application servers across the
Internet are secure.

Wireless security can be best addressed only if it is considered during the
design of the network architecture, security protocols, and cryptographic al-
gorithms, as well as the software (operating system, application software)
and hardware architecture of the handset. In this paper, we focus on the re-
quirements imposed by security protocols on system architectures for wire-
less handsets. We present an analysis of the computational requirements for
securing wireless data transactions, revealing a gap between these require-
ments and the trends in processing capabilities of embedded processors used
in wireless handsets. We also demonstrate that the use of security mecha-
nisms significantly degrades battery life, and that the growth in battery ca-
pacities will lag far behind the energy requirements for secure wireless data
communications. These trends result in a wireless security processing gap,
which needs to be addressed through new system architectures and design
methodologies.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of current and emerging security protocols that are relevant to wire-
less handsets. Section 3 analyzes the computational requirements for secure
data transactions, and demonstrates the presence of a wireless security pro-
cessing gap. Section 5 describes various approaches to bridging this gap,
including low-complexity cryptographic algorithms and security protocols,
security-specific enhancements to embedded processors, and new system ar-
chitectures and design methodologies.

2. BACKGROUND
Wireless data communications can be secured by employing security

protocols that are added to various layers of the protocol stack, or within
the application itself. Security protocols utilize cryptographic algorithms
(asymmetric or public-key ciphers, symmetric or private-key ciphers, hash-
ing functions, etc.) as building blocks in a suitable manner to achieve the

195

Transport Layer (WDP)

Bearers:

GSM IS-136 CDMA

PHS CDPD PDC-P

Security Layer (WTLS)

Transaction Layer (WTP)

Session Layer (WSP)

Application Layer (WAE)

Internet

Server

Base Station Wireless
gatewayWireless

client

Bearer security
protocols

Transport-laye
Security
(wireless link)

Transport-laye
Security
(wired network)

Application-level security

Transport Layer (WDP)

Bearers:

GSM IS-136 CDMA

PHS CDPD PDC-P

Security Layer (WTLS)

Transaction Layer (WTP)

Session Layer (WSP)

Application Layer (WAE)

Transport Layer (WDP)

Bearers:

GSM IS-136 CDMA

PHS CDPD PDC-P

Security Layer (WTLS)

Transaction Layer (WTP)

Session Layer (WSP)

Application Layer (WAE)

Internet

ServerServer

Base Station Wireless
gatewayWireless

client

Bearer security
protocols

Transport-laye
Security
(wireless link)

Transport-laye
Security
(wired network)

Application-level security

Figure 1: Security protocols in a wireless data network

desired objectives (peer authentication, privacy, data integrity, etc.). In the
wired Internet, the most popular approach is to use security protocols at the
network or IP layer (IPSec), and at the transport or TCP layer (TLS/SSL) [4,
5].

In the wireless world, however, the range of security protocols is much
broader. Different security protocols have been developed and employed in
cellular technologies such as CDPD [10] and GSM [11, 12], wireless local
area network (WLAN) technologies such as IEEE 802.11 [13], and wireless
personal area network technologies such as Bluetooth [14]. Many of these
protocols address only network access domain security, i.e., securing the
link between a wireless client and the access point, base station, or gateway.
Several studies have shown that the level of security provided by most of the
above security protocols is insufficient, and that they can be easily broken or
compromised by serious hackers [15, 16, 17, 18, 19, 20, 21]. While some
of these drawbacks are being addressed in newer wireless standards such as
3GPP [22, 23] and 802.11 enhancements [13], it is generally accepted that
they need to be complemented through the use of security mechanisms at
higher protocol layers.

With the push to bring wired Internet data and applications to wireless
handsets, and to enhance the wireless data experience, conventional Internet
protocols are being increasingly used in wireless networks, by overlaying
them on top of the underlying “bearer” technologies. This is leading to an
increased adoption of widely accepted Internet security protocols to secure
wireless data as well.

To illustrate how various security protocols fit into the context of a wire-
less handset, we consider a wireless network that uses the Wireless Applica-
tion Protocol (WAP) [24]. Figure 1 shows a network architecture in which a
wireless client communicates with a web server across the Internet, through
a base station and a wireless gateway. The WAP standard defines proto-
cols for the wireless link, which can be overlaid on top of existing wireless
bearer technologies, such as GSM, CDPD, CDMA, etc. The WAP gateway
translates traffic to/from the wireless handset (which uses the WAP protocol
stack), to conventional Internet protocols (HTTP/TCP/IP), thereby facilitat-
ing inter-working with existing Internet servers. The architecture of Figure 1
allows for the use of security schemes at multiple layers of the protocol stack.

� Security protocols provided in the bearer technologies (such as
CDPD, GSM, CDMA, etc.) may be used to provide network access
domain security, including user authentication to the serving network,
as well as a basic level of confidentiality and integrity over the wire-
less link. Note that, these security protocols may be employed for
both voice and data, and independent of the nature of the data or ap-
plication. However, as mentioned earlier, security protocols used in
bearer technologies are mostly considered to be insufficient for data
requiring high levels of security. Moreover, these techniques do not
address the problem of maintaining end-to-end security across the
wired infrastructure network.

� The WAP protocol stack includes a transport-layer security protocol,
called WTLS, which provides higher layer protocols and applications
with a secure transport service interface and secure connection man-
agement functions. WTLS bears similarities to the Internet security
standard TLS/SSL, while including additional features such as data-
gram support, optimized handshake, and dynamic key refresh.

� Finally, specific applications may decide to directly employ security

mechanisms instead of, or in addition to, the aforementioned options
(through an application-level security protocol such as SET [4], or to
provide additional functionality, such as non-repudiation, that is not
provided in the transport-layer security protocol).

A well known concern with the WAP security architecture is the exis-
tence of a “security gap” at the wireless gateway, which arises since the
translation between different transport-layer security protocols causes data
to exist in decrypted form. This problem can be somewhat alleviated by
maintaining the WAP gateway within a secure network domain (e.g., be-
hind the same firewall as the web server) [7]. Alternatively, the use of an
end-to-end security protocol between the wireless handset and wired server
eliminates this problem. For example, NTT DoCoMo’s iMode service uses
SSL to secure end-to-end connections [25], and the recently released WAP
2.0 specification includes a new mode that uses standard Internet protocols
(HTTP/TLS/TCP/IP) between the wireless client and a server across the In-
ternet [24].

3. WHAT MAKES WIRELESS SECURITY PRO-
CESSING CHALLENGING?

In this section, we focus on the significant system design challenges to
implementing security protocols (and the cryptographic algorithms they em-
ploy) on wireless handsets. Wireless data requires at least equal, and often
a higher level of, security compared to wired data transmission. In addition,
the need to maximize inter-operability with existing Internet applications,
while providing end-to-end security, requires wireless clients to execute the
same security protocols as servers across the wired Internet. However, wire-
less clients differ significantly from wired clients (such as desktop PCs) in
their computational ability (processing power), and energy supply (battery).
Furthermore, due to their small size and portability, wireless handsets must
be designed considering the increased risk of being lost or stolen. Due to the
above factors, wireless handset designers must face the following challenges:

� Security processing gap: It is well known that security proto-
cols significantly increase computational requirements at the network
clients and servers [6, 26]. These security processing requirements
stretch the limited resources of wireless clients, significantly impair-
ing user experience due to poor connection latencies and data rates,
and shorter battery life. For example, a PalmIIIx handset requires
3.4 minutes to perform 512-bit RSA key generation, 7 seconds to
perform digital signature generation, and can perform (single) DES
encryption at only 13 kbps, even if the CPU is completely dedicated
to security processing [27]. The computational requirements for se-
curity processing, and the disparity between these requirements and
the computational capabilities of the embedded processors used in
wireless handsets, are further explored in Section 4.

� Battery gap: Another critical bottleneck to security processing on
wireless handsets is battery capacity, whose growth (5-8% per year)
is far slower than the growth in security processing requirements or
processor performance. Even without the energy overhead of security
processing, the increase in energy requirements of wireless handsets
is already out-pacing the growth in battery capacities, leading to a

196

battery gap [28]. It is only to be expected that the addition of secu-
rity will further widen the battery gap. However, the magnitude by
which energy requirements increase due to the addition of security is
alarming. For example, based on the data presented in [29], a Sen-
soria WINS wireless sensor network node requires 21�5mJ (14�3mJ)
to transmit (receive) a 1024-bit message, while encrypting the same
message using RSA imposes an additional energy overhead of 42mJ.

� Flexibility: The need for efficiency in security processing has to be
considered together with, and traded off against, the need for flexibil-
ity. Each security protocol standard typically specifies a wide range
of cryptographic algorithms that the network servers and clients need
to execute in order to facilitate inter-operability [4, 5]. Further, a
wireless handset is often required to execute multiple distinct security
protocol standards in order to support (i) security processing in differ-
ent layers of the network protocol stack (e.g.a wireless LAN enabled
PDA that needs to connect to a virtual private network, and support
secure web browsing may need to execute WEP, IPSec, and SSL), or
(ii) inter-working among different networks (e.g., an appliance that
needs to work in both 3G cellular and wireless LAN environments).
Finally, it is desirable, and often necessary, to allow for easy upgrade
to future security protocols and evolving standards. Flexibility is ob-
tained through the use of programmable processors and software im-
plementations, while efficiency is typically obtained through custom
hardware implementations. Marrying flexibility and efficiency is a
significant challenge that requires the use of well designed HW/SW
system architectures and system-level design methodologies.

� Tamper-proof implementation: It is critical to ensure that the secu-
rity of a wireless handset is minimally compromised even if it phys-
ically falls into the hands of a malicious entity (e.g., if it is lost or
stolen), or if malicious software executes on it. While simple tech-
niques such as password or PIN protection provide a basic level of
user authentication, advanced biometric identification techniques are
of increasing interest [30]. Biometric identification techniques in-
troduce new system design challenges, such as integration of bio-
sensor peripherals (e.g., for fingerprint acquisition) into the system,
secure storage for the valid templates, and efficient implementations
of matching techniques. The use of “sandbox” execution environ-
ments, together with the use of digital certificates to verify the au-
thenticity of downloaded programs, can minimize the possibility of
malicious software executing on the handset [9]. However, the high-
est level of security requires hardware and firmware schemes such as
isolation of relevant regions of system memory and peripherals, en-
cryption of data on the system bus, etc. A variety of advanced tech-
niques, such as linear and differential cryptanalysis [5], fault analy-
sis [31], timing attacks [32], and power analysis [33], have been de-
veloped to break even the most complex ciphers. Resistance to some
of these techniques can be built in only through careful circuit and
HW/SW architecture design. While we do not discuss these issues
further in this paper, it bears mentioning that several tamper-proof
design techniques have been developed in other contexts, such as the
design smart cards [34], and will be increasingly used by wireless
handset architects and designers.

4. WIRELESS SECURITY PROCESSING GAP
In this section, we analyze the computational requirements of some pop-

ular cryptographic algorithms used in security protocols, and demonstrate
that they impose a significant burden relative to the capabilities of embed-
ded processors used in wireless handsets. Most security protocols employ at
least three basic categories of cryptographic algorithms - symmetric ciphers,
message authentication or hash functions, and public key ciphers. Public key
algorithms (e.g., RSA, DSA, Diffie-Hellman key exchange, ECC, etc.) are
typically used for authentication and key exchange, while symmetric algo-
rithms (e.g., DES, 3DES, IDEA, RC4, AES, etc.) are used to ensure confi-
dentiality, and message authentication algorithms (e.g., MD2, MD5, SHA,
etc.) are used to implement data integrity.

Figure 2 plots the security processing requirements in MIPS (millions of
instructions per second) for the popular symmetric encryption algorithms,
3DES and AES, and integrity algorithms, MD5 and SHA, for different data
rates. The data rates typical of current and emerging cellular (128 kbps - 2
Mbps) and wireless LAN (2 Mbps - 60 Mbps) technologies are indicated in
the figure. For example, the processing requirements for 3DES, AES, SHA
and MD5 at 10 Mbps are 535.9, 206.3, 115.4 and 33.1 MIPS, respectively.
Note that security protocols require combined usage of a symmetric key en-
cryption algorithm and a message authentication algorithm during the bulk
data transfer phase. The curve labeled composite in Figure 2 plots the
total processing requirement for using 3DES for encryption/decryption and
SHA for message authentication in a security protocol. This curve indicates
the workload that a security protocol can impose on the handset processor
in order to support a given data rate. For example, to support data rates

100kbps 1Mbps 10Mbps 100Mbps

0
10

00
20

00
30

00
40

00
50

00
60

00

3DES

AES

SHA

MD5

composite

DATA RATE

P
R

O
C

E
S

S
IN

G
 R

E
Q

U
IR

E
M

E
N

TS
 (M

IP
S

) 3G Cellular Data
 Rates
(128kbps - 2Mbps)

Wireless LAN Data
 Rates (2 - 60Mbps)

Figure 2: Processing requirements of cryptographic algorithms
at different data rates

of 2 Mbps and 10 Mbps, the security processing requirements are 130.3
MIPS and 651.3 MIPS, respectively. In comparison, a state-of-the-art hand-
set processor, such as Intel’s StrongARM processor SA-1110, is capable of
delivering around 150 MIPS at 133 MHz and 235 MIPS at 206 MHz [35].
The above data indicates a clear disparity between security processing re-
quirements and available processor capabilities, even when assuming that
the handset processor is fully dedicated to security processing. In reality, the
handset processor also needs to execute the operating system, network pro-
tocols, and application software, which by themselves represent a significant
processing workload.

PR
O

C
ES

SI
N

G
 R

EQ
U

IR
EM

EN
TS

(M
IP

S)

500 1000 1500 2000

0
50

0
10

00
15

00

1024-bit
modulus

Connection
Latency = 0.1s

Connection
Latency = 0.5s

Connection
Latency = 1s

2048-bit
modulus

RSA MODULUS SIZE (BITS)

300 MIPS
processor

Figure 3: Processing requirements of RSA-based SSL hand-
shake for different connection latencies and modulus sizes

While calculating the MIPS requirements for a wireless client, we should
also factor in the processing burden due to authentication and key exchange
services provided by a security protocol. For example, connection-oriented
protocols such as SSL use public-key algorithms during connection setup
for this purpose. The security processing performed during connection setup
adds directly to connection latency. Figure 3 shows the processing require-
ments for RSA-based SSL handshake, for varying modulus sizes and three
different connection latencies (0�1sec, 0�5sec, and 1sec). For any given con-
nection latency, the MIPS required rises with increasing levels of security,
i.e., increasing modulus/key sizes. The figure also indicates clearly the com-
binations of security levels and connection latencies that can be supported by
a given handset processor. For example, a 300 MIPS handset processor can
support 1024-bit RSA-based authentication at connection latencies of 0�5sec
and 1sec, but not at 0�1sec. Note that the above analysis assumes that the
processor is completely dedicated to security processing; other processing
requirements will further add to the connection latency.

197

 300 MIPS
 processor

0
2

4
6

8
10

0

500

1000

1500

2000

2500

3000

3500

4000

(data rates & connection latencies
in regions above the 300 MIPS
plane cannot be achieved)

WIRELESS SECURITY
 PROCESSING GAP

Connection Latency (sec)Data Rate

P
ro

ce
ss

in
g

R
eq

ui
re

m
en

ts

 (

M
IP

S
)

100Mbps
1Mbps

100Kbps

Confidentiality and Integrity
 MIPS requirements
 dominate

Authentication MIPS
 requirements
 dominate

Figure 4: The wireless security processing gap

Figure 4 combines the data from Figures 2 and 3, and captures the ef-
fective workload on a processor for various combinations of connection la-
tencies and data rates. Any given tuple (cl,dr,mips) in this 3-dimensional
space specifies the workload (mips) involved in performing RSA-based au-
thentication with a latency of cl as well as 3DES-based confidentiality and
SHA-based integrity computations at data rates of dr. In general, the pro-
file shows that for low values of cl, processing MIPS due to RSA-based
authentication dominate, while for high values of dr, 3DES and SHA re-
lated processing dominate. Any embedded processor is represented in the
3-d space by a plane corresponding to its MIPS specification. For example,
a 300 MIPS processor is represented by the white plane shown in the figure.
Regions in which the processing requirements surface lies below the proces-
sor capability plane capture security processing workloads that can be met
by the processor, while regions above the plane correspond to the collection
of data rates and connection latencies that can not be met with the given
processing capability.

The data presented in this section clearly demonstrates the presence of a
wireless security processing gap, due to a mismatch between wireless se-
curity processing requirements and the processing capabilities of embedded
processors used in wireless handsets. While embedded processor perfor-
mance can be expected to increase due to improvements in fabrication tech-
nologies and innovations in processor architecture, the increase in data rates
(due to advances in wireless communication technologies), and the use of
stronger cryptographic algorithms (to stay beyond the extending reach of
malicious entities) threaten to further widen the wireless security processing
gap.

5. BRIDGING THE WIRELESS SECURITY
PROCESSING GAP

The wireless security processing gap defined in Section 4 is simply a mis-
match between the computational workload demanded by security protocols
and the computational horsepower supplied by the processor in the hand-
set. Several attempts have been made to lower this gap either by making the
wireless security protocols and their constituent cryptographic algorithms
lightweight, or by enhancing the security processing capabilities of the hand-
set processor. Sections 5.1 and 5.2 examine these developments. Finally,
Section 5.3 describes a novel security processing platform that combines in-
novations in design methodologies and system architecture to realize flexible
and efficient wireless security processing.

5.1 Low Complexity Security Protocols and Cryp-
tographic Algorithms

The design of efficient security protocols for wireless handsets remains an
active area of research. To maintain inter-operability of the wireless hand-
set with peers across the wired network, many of the existing wired security
protocols such as SSL need to be supported on the wireless handset. While
many of these security protocols are considered unwieldy for small-footprint
devices, it has been shown in [36] that by carefully selecting and implement-
ing only a subset of a protocol’s many features, it is possible to reduce the

security processing workload on a wireless client. The security processing
workload of a security protocol can also be reduced by selecting optimal SW
implementations for its constituent cryptographic algorithms [37]. Security
protocols can also also be made to adapt their encryption policies based on
the content of the data being encrypted. Video encryption algorithms such
as [38, 39] focus on protecting the more important parts of a video stream,
thereby reducing the total amount of data encrypted.

Another way of reducing the workload of a security protocol is to use
lightweight cryptographic algorithms for various security functions. For ex-
ample, protocols such as SSL, WTLS etc. generally use RSA-based public-
key cryptography for authentication. The security of the basic RSA algo-
rithm is derived from the NP-hard problem, integer factorization [5]. RSA
can thus provide high security if the modulus is a large integer (1024 or 2048
bits) whose factoring becomes extremely difficult. However, this means that
the basic computation for decrypting data (modular exponentiation) must be
performed using a large key, making it computationally expensive.

Security protocols can now take advantage of alternative public-key cryp-
tosystems that provide high levels of security while demanding less comput-
ing and memory resources. Elliptic Curve Cryptosystems (ECC) [40] are
based on the observation that there are no fast algorithms for computing dis-
crete logarithms of points on elliptic curves. For a given level of security, the
key sizes required in ECC, as well as the computed signatures, are smaller
than RSA, making encryption more efficient. This feature makes ECC highly
suitable for small-footprint handheld devices.

The lattice based cryptosystem NTRU [41] is another example of a public-
key cryptosystem that is increasingly being used in wireless security soft-
ware toolkits. Though NTRU uses private keys whose lengths are compa-
rable to the ones used in RSA and other conventional algorithms, the basic
operations in NTRU work only on portions of the key (7 or 8 bits) at a time.
Consequently, manipulation of data with full keys is not needed, leading to
simpler computations that can be performed at reasonable speeds on even
8-bit processors.

For bulk data encryption/decryption, the security limitations of the tradi-
tional DES, and the high computational requirement of 3DES have led to the
development of the AES encryption standard [42]. In the 3G cellular stan-
dards, confidentiality and integrity are maintained using a low complexity
block cipher Kasumi [22, 23].

5.2 Embedded Processors with Enhanced Security
Processing Capabilities

There have been several attempts to improve the security processing capa-
bilities of general purpose processors. Since most microprocessors today are
word-oriented, researchers have targeted accelerating bit-level arithmetic op-
erations such as the permutations performed in DES/3DES. Multimedia in-
struction set architecture (ISA) extensions such as those in PA-RISC’s Max-
2 [43] or IA-64 [44] already incorporate instructions for permutations of
8-bit or larger sub-words. For arbitrary bit-level permutations, only recently
have efficient instructions been proposed [45]. Instruction set extensions
have also been proposed for other operations such as substitutions, rotates
and modular arithmetic present in different private-key algorithms [46].

Many such extensions have already been applied to embedded proces-
sors used in the wireless handset domain. For example, the SmartMIPS [47]
cryptographic enhancements extend the basic 32-bit MIPS ISA to speed up
secure data processing. Similar features are also found in the ARM Se-
cureCore family [48]. The security processing capabilities of SecureCore
processors can also be further extended by adding custom-designed cryp-
tographic processing units through a co-processor interface. This is useful
for delivering efficient performance on new and proprietary cryptographic
algorithms without having to re-design the basic processor core.

The importance of adding cryptographic accelerators to the basic proces-
sor core is being increasingly recognized by processor developers for wire-
less handsets. TI’s OMAP platform for 2.5G and 3G handsets [49] features
an ARM processor and a TI DSP core for enhancing the performance of
wireless data and multimedia applications. TI also offers a wireless security
library that includes both hardware and software implementations of several
cryptographic functions. These cryptographic accelerators can be integrated
with the basic OMAP platform to improve the performance of security pro-
tocols such as SSL, IPSec and WTLS [50].

5.3 MOSES: A Mobile Security Processing Plat-
form

MOSES (MObile SEcurity processing System) is a programmable secu-
rity processor platform being developed at NEC to enable secure data and
multi-media communications in next-generation wireless handsets. The ob-
jective is to address the wireless security processing gap indicated in Sec-
tion 4, while allowing for easy programmability in order to support a wide
range of current and future security protocol standards. The system architec-
ture, shown in Figure 5 consists of layered, optimized software libraries that
implement the cryptographic algorithms, and a state-of-the-art configurable
and extensible processor that is customized for efficient security processing.

198

The MOSES project employs a novel system-level design methodology to
build the HW/SW platform shown in Figure 5. The MOSES design method-
ology combines state-of-the-art commercial design tools with several novel
domain-specific methodologies that are indispensable in deriving an opti-
mized system architecture.

We next present a brief overview of various aspects of the MOSES project,
including hardware/software architectures and design methodologies, and
conclude with a performance analysis of the platform when used for acceler-
ating a complete end-to-end secure wireless transaction. Further details are
available in [37, 51, 52].

Xtensa CPU

P
IF

C
IF

High-speed Bus

Program
RAM

Data
RAM

Custom
Instr. HW

Cache

Co-
processors

Platform HW

Bridge

SOC
Bus

HW
accelerators

Std. C libraries

Gnu GMP – basic ops

Security
primitives

SSL IPSec WTLS Apps.

Platform SW

Complex ops.

RSA_keygen(...)
RSA_encrypt(...)
DES_encrypt(...)
......

mpn_add_n(...)
mpn_submul_1(...)
udivsi3(...)
......

Mod_exp(...)
Mod_mul(...)
Sbox(...)
...

Xtensa CPU

P
IF

C
IF

High-speed Bus

Program
RAM

Data
RAM

Custom
Instr. HW

Cache

Co-
processors

Platform HW

Bridge

SOC
Bus

HW
accelerators

Std. C libraries

Gnu GMP – basic ops

Security
primitives

SSL IPSec WTLS Apps.

Platform SW

Complex ops.

RSA_keygen(...)
RSA_encrypt(...)
DES_encrypt(...)
......

mpn_add_n(...)
mpn_submul_1(...)
udivsi3(...)
......

Mod_exp(...)
Mod_mul(...)
Sbox(...)
...

Figure 5: Overview of the MOSES security processing platform

5.3.1 SW Architecture
The software architecture for MOSES was designed using a layered phi-

losophy, much like the layering used in the design of network protocols.
At the top level, the SW architecture provides a generic interface (API) us-
ing which security protocols and applications can be ported to the platform.
This API consists of security primitives such as key generation, encryption,
or decryption of a block of data using a specific public- or private-key cryp-
tographic algorithm (e.g. RSA, ECC, DES, 3DES, AES, etc.). The secu-
rity primitives are implemented on top of a layer of complex mathemati-
cal operations such as modular exponentiation, prime number generation,
Miller-Rabin primality testing etc.. These complex operations are in turn de-
composed into basic mathematical operations, including bit-level operations
(typically used in private-key algorithms) and multi-precision operations on
large integers (typically used in public-key algorithms).

The use of such a layered SW approach has several advantages. The de-
sign of each SW layer can proceed concurrently, leading to drastic reductions
in design times. Custom instructions can be developed for the basic opera-
tions layer without waiting for the SW implementation of higher layers to
become available. The most important advantage, however, lies in the abil-
ity of the layered SW architecture to enable the use of design methodologies
for co-designing the hardware and software constituents of MOSES (see dis-
cussion on design methodologies below).

5.3.2 HW Platform Architecture
The hardware platform is based on the Xtensa configurable and extensi-

ble processor from Tensilica, Inc. [53]. Security processing enhancements

to the basic hardware configuration are made in three different ways. For
small granularity computations identified during design space exploration of
a cryptographic algorithm, the instruction set of the processor is extended
through the addition of custom instructions that speed up their operation.
The added instructions are executed by custom hardware, which is tightly
integrated into the processor execution pipeline. However, based on the spec-
ified area and performance constraints for the processor core, more coarse-
grained cryptographic functions may be mapped to custom hardware outside
the basic processor core. The custom hardware is added in some cases as
a co-processor that interfaces to the Xtensa’s single-cycle cache interface.
In other cases, where high-performance communication with the processor
core is not required, the cryptographic functions are implemented as periph-
eral hardware connected to the processor bus.

5.3.3 System Design Methodologies
The system design methodology for the MOSES platform included state-

of-the-art commercial tools for tasks such as cross-compilation, profiling, in-
struction set simulation (ISS), and automatic generation of RTL descriptions
of the extended processor. However, no well-developed tools/methodologies
exist commercially for system design tasks such as exploration of algorithm
and architectural design spaces, fast performance estimation, etc. Absence
of such a system design tool suite can lead to unacceptable design times
and inefficient design solutions. The system design methodologies used to
design MOSES attempt to fill such missing links.

For example, in designing the optimized SW architecture for MOSES, it
becomes necessary to find the best performing RSA algorithm for the SW
platform in MOSES from nearly 500 RSA algorithm candidates [51]. Us-
ing just an instruction set simulator (ISS) for evaluation takes over a month
of CPU time. However, by exploiting the layered SW architecture, perfor-
mance macro-models can be derived for the different primitives in the basic
operation layer, which can then be instantiated in the source code of the dif-
ferent RSA algorithm candidates. Native compilation and execution of the
instrumented code can be used to estimate the performance of each algo-
rithm. Finding the best performing algorithm using such a macro-modeling
based performance estimation methodology takes only 4 hours and 40 min-
utes [51].

The overall MOSES system-level design flow includes novel techniques
for algorithmic exploration and tuning (based on automatic performance
characterization and macro-modeling of the software libraries), and archi-
tectural refinement based on selection of instruction extensions to acceler-
ate performance critical, computation intensive operations. Details of these
techniques are available in [52].

0

10

20

30

40

50

60

70

80

90

100

Pu blic -k ey algo. M isc . Sym m etric A lgo.

SS
L

 c
om

pu
ta

ti
on

 t
im

e
br

ea
ku

p
(o

ri
gi

na
l n

or
m

al
iz

ed
 t

o
10

0%
)

Transaction size

O
ri

gi
na

l

O
pt

im
iz

ed

O
ri

gi
na

l

O
ri

gi
na

l

O
ri

gi
na

l

O
ri

gi
na

l

O
ri

gi
na

l

O
pt

im
iz

ed

O
pt

im
iz

ed

O
pt

im
iz

ed

O
pt

im
iz

ed

O
pt

im
iz

ed

1 K 4 K 8 K 16 K 32 K2 K

Note: Due to large speedups in the optimized case, the public-key and private-key
components are not always visible in the above graph

Figure 6: Estimated speedups for SSL transactions

5.3.4 Performance
The MOSES platform facilitates the speed-up of security protocols such

as SSL, IPSec, WTLS, etc. Figure 6 shows the estimated speedup from us-
ing MOSES as a handset processor that performs secure transactions using
the OpenSSL [54] implementation of the SSL protocol. The SSL proto-
col includes a handshake phase, which first allows the server and client to
authenticate each other, using public-key techniques such as RSA. Then, it
allows the server to create symmetric keys, which are exchanged and used
for rapid encryption and decryption of bulk data transferred during the ses-
sion. The breakup of the computation workload for SSL processing be-
tween the private-key algorithm, public-key algorithm, and other miscella-
neous computations, is indicated in Figure 6 for various session sizes. For

199

small data transactions (where public-key algorithm computations in the SSL
handshake dominate), the MOSES platform contributes to an overall trans-
action speedup of around 2�18X. In the case of large transactions, (where the
private-key algorithm starts to dominate the overall computation) MOSES
achieves an overall transaction speedup of 3�05X.

MOSES can also be used as a co-processor in a handheld device to ac-
celerate security-specific computations. Functioning as a co-processor to an
IPAQ 3870 PDA [55] playing a 10 MByte secure real-time video, MOSES
facilitates a 9X reduction in connection setup latency and a 32X improve-
ment in effective data rate. The significant speedups obtained through the
MOSES platform indicate that new HW/SW architectures and system-level
design methodologies can play an important role in bridging the wireless
security processing gap.

6. CONCLUSIONS
Adequate security will be critical to enabling growth in a wide range of

wireless applications and services. However, there are several challenges
unique to wireless devices and their environment, which need to be ad-
dressed. We envision that, in addition to new security protocols optimized
for the wireless environment, new system architectures and system design
methodologies will be required to address many of these challenges, includ-
ing the wireless security processing gap defined in this paper. Security con-
siderations will become an integral part of system design for wireless hand-
sets, rather than being addressed as an afterthought.

7. REFERENCES
[1] U. S. Department of Commerce, The Emerging Digital Economy II.

http://www.esa.doc.gov/508/esa/TheEmerging
DigitalEconomyII.htm, 1999.

[2] World Wide Web Consortium, The World Wide Web Security FAQ.
http://www.w3.org/Security/faq/www-security-faq.html,
1998.

[3] ePaynews - Mobile Commerce Statistics. http://www.epaynews.com/
statistics/mcommstats.html.

[4] W. Stallings, Cryptography and Network Security: Principles and Practice.
Prentice Hall, 1998.

[5] B. Schneier, Applied Cryptography: Protocols, Algorithms and Source Code in
C. John Wiley and Sons, 1996.

[6] S. K. Miller, “Facing the Challenges of Wireless Security,” IEEE Computer,
vol. 34, pp. 46–48, July 2001.

[7] P. Ashley, H. Hinton, and M. Vandenwauver, “Wired versus wireless ecurity -
The Internet, WAP and iMode for e-commerce,” in Proc. 17th Annual Computer
Security Applications Conf., Dec. 2001.

[8] Wireless Security Basics. Certicom (http://www.certicom.com/
about/pr/wireless_basics.html).

[9] A. K. Ghosh and T. M. Swaminatha, “Software security and privacy risks in
mobile e-commerce,” Communications of the ACM, vol. 44, pp. 51–57, february
2001.

[10] Cellular Digital Packet Data System Specification, Release 1.1. CDPD Forum,
Jan. 1995.

[11] European Telecommunication Standard GSM 02.09. Digital Cellular
Telecommunications System (Phase 2+): Security Aspects.

[12] C. Brookson, “GSM security: A description of the reasons for security and the
techniques,” in Proc. IEE Colloqium on Security and Cryptography Applications
to Radio Systems, pp. 2/1–2/4, June 1994.

[13] IEEE 802.11 Wireless LAN Standards. IEEE 802.11 Working Group
(http://grouper.ieee.org/groups/802/11/).

[14] Bluetooth security white paper. Bluetooth SIG Security Expert Group
(http://www.bluetooth.com/), Apr. 2002.

[15] Y. Frankel, A. Herzberg, P. A. Karger, H. Krawczyk, C. A. Kunzinger, and
M. Yung, “Security issues in a CDPD wireless network,” IEEE Personal
Communications, vol. 2, pp. 16–27, August 1995.

[16] S. Patel, “Weaknesses of North American wireless authentication protocol,”
IEEE Personal Communications, vol. 4, pp. 40–44, june 1997.

[17] J. R. Walker, Unsafe at any key size: An analysis of the WEP encapsulation.
IEEE document 802.11-00/362
(http://grouper.ieee.org/groups/802/11/Documents/), Oct.
2000.

[18] N. Borisov, I. Goldberg, and D. Wagner, “Intercepting mobile communications:
The insecurity of 802.11,” in Proc. ACM Int. Conf. Mobile Computing and
Networking, pp. 180–189, July 2001.

[19] W. A. Arbaugh, An inductive chosen plaintext attack against WEP/WEP2. IEEE
document 802.11-01/230
(http://grouper.ieee.org/groups/802/11/Documents/), May
2001.

[20] A. Mehrotra and L. S. Golding, “Mobility and security management in the GSM
system and some proposed future improvements,” Proceedings of the IEEE,
vol. 86, pp. 1480–1497, July 1998.

[21] ISAAC group, U. C. Berkeley, GSM cloning.
http://www.isaac.cs.berkeley.edu/isaac/gsm.html.

[22] 3GPP Draft Technical Specification 33.102. 3G Security Architecture.
[23] C. W. Blanchard, “Wireless security,” BT Technology Journal

(http://www.bt.com/bttj/), vol. 19, pp. 67–75, July 2001.
[24] Wireless Application Protocol 2.0 - Technical White Paper. WAP Forum

(http://www.wapforum.org/), Jan. 2002.
[25] S. Okazaki, A. Takeshita, and Y. L. Lin, “New trends in mobile phone security,”

in Proc. RSA Conference
(http://www.rsasecurity.com/conference/), Apr. 2001.

[26] G. Apostolopoulos, V. Peris, P. Pradhan, and D. Saha, “Securing electronic
commerce: Reducing SSL overhead,” in IEEE Network, pp. 8–16, July 2000.

[27] D. Boneh and N. Daswani, “Experimenting with electronic commerce on the
PalmPilot,” in Proc. Financial Cryptography, pp. 1–16, Feb. 1999.

[28] K. Lahiri, A. Raghunathan, and S. Dey, “Battery-driven system design: A new
frontier in low power design,” in Proc. Joint Asia and South Pacific Design
Automation Conf. / Int. Conf. VLSI Design, pp. 261–267, Jan. 2002.

[29] D. W. Carman, P. S. Krus, and B. J. Matt, “Constraints and approaches for
distributed sensor network security,” Tech. Rep. #00-010, NAI Labs, Network
Associates, Inc., Glenwood, MD, Sept. 2000.

[30] G. Lawton, “Biometrics: A new era in security,” IEEE Computer, vol. 31,
pp. 16–18, Aug. 1998.

[31] D. Boneh, R. DeMillo, and R. Lipton, “On the importance of checking
cryptographic protocols for faults,” Springer-Verlag Lecture Notes in Computer
Science (Proceedings of Eurocrypt’97), vol. 1233, pp. 37–51, 1997.

[32] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems,” Springer-Verlag Lecture Notes in Computer Science,
vol. 1109, pp. 104–113, 1996.

[33] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Springer-Verlag
Lecture Notes in Computer Science, vol. 1666, pp. 388–397, 1999.

[34] O. Kommerling and M. G. Kuhn, “Design principles for tamper-resistant
smartcard processors,” in Proc. USENIX Wkshp. on Smartcard Technology
(Smartcard ’99), pp. 9–20, May 1999.

[35] Intel StrongARM SA-1110 Microprocessor Brief DataSheet. http://www.
intel.com/design/strong/datashts/278241.htm.

[36] V. Gupta and S. Gupta, “Experiments in Wireless Internet Security,” in Proc.
Wireless Communications and Networking Conference, pp. 860–864, Mar. 2002.

[37] N. Potlapally, S. Ravi, A. Raghunathan, and G. Lakshminarayana, “Optimizing
Public-Key Encryption for Wireless Clients,” in Proc. IEEE Int. Conf.
Communications, pp. 1050–1056, May 2002.

[38] A. S. Tosun and W. Feng, “Lightweight Security Mechanisms for Wireless Video
Transmission,” in Proc. Intl. Conf. on Information Technology: Coding and
Computing, pp. 157–161, Apr. 2001.

[39] J. Wen, M. Severa, W. Zheng, M. Luttrell, and W. Jin, “A Format-Compliant
Configurable Encryption Framework for Acess Control of Multimedia,” in Proc.
Intl. Wkshp. on Multimedia Signal Proc., pp. 435–440, Oct. 2001.

[40] N. Koblitz, A Course in Number Theory and Cryptography. Springer-Verlag,
1987.

[41] NTRU Communications and Content Security. http://www.ntru.com.
[42] AES Algorithm (Rijndael) Information.

http://csrc.nist.gov/encryption/aes/rijndael.
[43] R. B. Lee, “Subword Parallelism with Max-2,” IEEE Micro, vol. 16, pp. 51–59,

Aug. 1996.
[44] Intel Corp., Enhancing Security Performance through IA-64 Architecture.

http://developer.intel.com/design/security/rsa2000/itanium.pdf, 2000.
[45] R. B. Lee, Z. Shi, and X. Yang, “Efficient Permutations for Fast Software

Cryptography,” IEEE Micro, vol. 21, pp. 56–69, Dec. 2001.
[46] J. Burke, J. McDonald, and T. Austin, “Architectural Support for Fast

Symmetric-Key Cryptography,” in Proc. Intl. Conf. ASPLOS, pp. 178–189, Nov.
2000.

[47] SmartMIPS. http://www.mips.com.
[48] ARM SecurCore. http://www.arm.com.
[49] OMAP Platform - Overview. Texas Instruments Inc.

(http://www.ti.com/sc/omap).
[50] Reducing the Security Threats to 2.5G and 3G Wireless Applications. Texas

Instruments Inc. (http://focus.ti.com/pdfs/vf/wireless/
securitywhitepaper.pdf).

[51] N. Potlapally, S. Ravi, A. Raghunathan, and G. Lakshminarayana, “Algorithm
exploration for efficient public-key security processing on wireless handsets,” in
Proc. Design, Automation, and Test in Europe (DATE) Designers Forum,
pp. 42–46, Mar. 2002.

[52] S. Ravi, A. Raghunathan, N. Potlapally, and M. Sankaradass, “System Design
Methodologies for a Wireless Security Processing Platform,” in Proc.
ACM/IEEE Design Automation Conf., pp. 777–782, June 2002.

[53] Xtensa application specific microprocessor solutions - Overview handbook.
Tensilica Inc. (http://www.tensilica.com), 2001.

[54] Open SSL Project. http://www.openssl.org.
[55] iPAQ 3870 PDA. Compaq Corp.

(http://www.compaq.com/products/handhelds/).

200

