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ABSTRACT In this paper, we give attention to the robustness of the Cyber-Physical System, which consists

of interdependent physical resources and computational resources. Numerous infrastructure systems can

evolve into the Cyber-Physical System, e.g., smart power grids, traffic control systems, and wireless sensor

and actuator networks. These networks depend on their interdependent networks, which provide information

or energy to function. In a Cyber-Physical System, a small failure could trigger serious cascading failures

within the entire interdependent networks. In this paper, we try to alleviate these cascading failures between

interdependent networks to reduce losses. We discuss the robustness of systems for random attacks by

calculating the size of functioning components in entire networks. We change the inter-links topology

of the coupled networks to enhance the reliability of the entire system. Then we get the most effective

swapping strategy in enhancing the robustness of the Cyber-Physical System compared to previous studies.

Different systems’ structures would influence the performance of swap inter links strategies on improving the

reliability of networks. Moreover, our work could guide how to optimize a Cyber-Physical System topology

by reducing the influence of cascading failures.

INDEX TERMS Cyber-physical system, interdependent networks, cascading failures, swap inter-links

strategy, robustness, giant component.

I. INTRODUCTION

With the rapid development of the economy and society,

the Internet has been widely used in our daily life and society.

Since the networks bring great convenience and economic

benefits, more and more companies and countries are focus-

ing on them. Meanwhile, the networks have further grown

from single small-scale to complex large-scale. The network

plays an increasingly important role in our everyday life.

Over the last decade, extensive research on complex networks

has been conducted. This research demonstrates that many

critical properties of the network’s organization, growth, and

robustness. More recently, research on network robustness

has been pushed further. Nodes organize networks, but the

network does not occur in isolation. These depend on the way
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in which nodes are interconnected and relatively independent

with each node [1]. More networks are interdependent to

function properly [1]–[10]. A representative interdependent

networks example is Cyber-Physical Systems(CPS).

Cyber-Physical Systems are designed to seamlessly

integrate computing components, networks, and physi-

cal devices into well-defined environments for specific

purposes [11]–[15]. It is deeply embedded in cyber capabil-

ities in the physical world to transform interactions with the

physical world [16], [17]. A CPS typically consists of phys-

ical elements, a communication network, and a computation

and control unit. The communication network can exchange

data with other systems. A control unit is necessary to interact

with the real world and process the data obtained [18]–[20].

Data exchange is the essential feature of the CPS since the

data can be linked and evaluated centrally. In other words,

the CPS is an embedded system that can send and receive data
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over networks [19]. More and more infrastructure systems

evolve into CPSs in daily life. For example, we usually regard

the smart grid system [12], [21]–[23] and radar system [24]

as a typical representative of a CPS. If a failure occurs in an

infrastructure system, it can cause property damage or even

loss of human life. Therefore, the reliability of CPS is one

of the leading indicators to be considered by designers and

maintainers. It is especially important to prevent large-scale

failures of a CPS and enhance its robustness. We have known

that a small fault in an interdependent network could easily

lead to severe failures in entire networks, which have shown

in previous research work [2]. In this way, understanding how

to improve the ability of a CPS to resist cascading failures

poses a significant challenge, which is vital for understanding

the resilience of natural systems [1].

In order to maintain a healthy daily life and promote

social development, many researchers pay more attention to

enhance the robustness of the CPS. In this paper, we abstract

the concrete CPS into an unweighted and undirected net-

work graph are made up of points and lines. We achieve

the enhancement of CPS system reliability by changing the

topology relationship of the dependent edges. The main con-

tributions of this paper are listed as following:
(i) First, we simulate a variety of system models and

attack proportions to get as comprehensive as possible

the effects of different strategies on changing system

reliability.

(ii) Second, we get the high eigenvector centrality

swapping inter-links strategy has the best effect on

enhancing network reliability in all our situations.

This strategy performs better than the interlinking of

nodes by their intralayer degrees in the monotonic

order, which is discussed in [25] in enhancing network

reliability.
The outline of this work is as follows: we introduce the

review literature in Section II. In Section III, we propose our

functional model for CPS and the different swapping strate-

gies. Section IV performs the results of the simulation and

analysis points. Conclusions and summarized in Section V.

II. LITERATURE REVIEW

A. RELATED WORK

Cyber-Physical Systems are becoming increasingly critical

for daily life. Maintaining the reliability of CPS has become

an important research direction.Many scholars have explored

this topic from the hardware direction [24], [26]–[29].

Pennekamp et al. [22] study that CPS will lead to a plethora

of new dataflows on the Internet of Production (IOP).

Zhang et al. [30] investigate the security implications of mul-

tistate channel implementation and symbol energy, consid-

ering their effect on the CPS acceptance threshold. Many

scholars are gradually applying machine learning to enhance

the reliability of CPS [24], [26]. There are some researches

on CPS reliability based on software [29], [31]. This method

aims at changing the system state through software to ensure

that the system is always in a safe state. In addition to

changing network reliability from hardware and software,

some scholars have also promoted research on CPS reliability

from the direction of assessing the security of CPS [32].

The above approaches are always considered the physical

device and the cyber components. Another direction of study-

ing the reliability of the CPS is to abstract a CPS sys-

tem into an interdependent network. This direction ignores

the differences between devices and treats all devices and

components as objects with similar functions. It pays atten-

tion to the point-to-point topological relationship between

the networks. Since the specifics of actuation and physical

world reaction, a unique CPS model is infeasible [33]. The

challenge of establishing this model is to identify common

ingredients and components of a CPS present in a variety

of scenarios, models, and investigate them. To resolve this

challenge, Zhang et al. [34] propose a classification for CPS.

In a Cyber-Physical System, physical devices such as bat-

teries and sensors seem to be physical components. The

cyber components include embedded computers and com-

munication networks. The interaction and relation between

physical components and cyber components are essential to

maintain the operation of the system. Thus, combining and

applying these components and ingredients to certain cate-

gories of CPS and corresponding concrete systems are other

challenges to building a CPS model. To model the intercon-

nection and interconnection between cyber components and

physical components, Wang et al. [35] and Derler et al. [36]

have proposed different algorithms for focusing on the above

interaction and related challenges.

Based on the above CPS models, researchers propose var-

ious theories to enhance the robustness of networks. The first

approach is to protect critical nodes [37], [38]. However,

Nguyen et al. [38] proved that finding critical nodes is an

NP-hard problem. The second approach is to make nodes

autonomous, which is concluded by Shao et al. [39]. How-

ever, this approach is likely to cost millions of dollars [40].

The third approach is to refigure the topology of the net-

work by rewiring [21], [41], [42]. However, it is difficult to

come true in a factual existing network. The fourth approach

is adding links in networks. Cui et al. [40], Ji et al. [43],

Jiang et al. [44], and Beygelzimer et al. [45] discussed the

effects on the robustness of interdependent networks after

different addition strategies. The approach described in [25]

and [46] is to adjust the dependency links allocation. This

approachmight not increase or even reduce costs. It takes into

account the structure of the existing networks for optimiza-

tion. This approach is feasible if we consider the topology of

existing networks and the costs of entire networks. In [43],

some adding intra-links strategies are proposed. Through

adding intra-links by different strategies, researchers find that

the interdependent networks can get the best reliability by

adding intra-links in the order of low IDD values.

Tu et al. [47] study the robustness of a single network with

different values of network centralities. They find the opti-

mal network topology to achieve the best network robust-

ness. They do not mention how to change the topological
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networkmetrics. However, they conclude that themetrics will

change when the network gets better robustness.

Changing the relationship of interdependent networks will

not influence the links in one single network. Thus, this

method has less impact on network topology. Based on

the above favorable factors, we think swapping dependency

links as a better method to improve interdependent networks

reliability.

B. INTERDEPENDENT NETWORKS

Complex networks have been investigated extensively since

the 1960s. Both of Erdös-Rényi networks(ER networks) and

scale-free networks(SF networks) are briefly described to

depict the real-world networks. The compositions and char-

acteristics of these networks have been well studied. In a

single network, intra-links of nodes satisfy a certain degree

distribution. For example, nodes follow binomial distribution

in ER networks while following power-law degree distri-

bution in SF networks. Every node in the ER network has

the same number of intra-links [33]. Therefore, all nodes in

the ER network have the same degree [48]. Different from

the ER network, the SF network is a network whose degree

distribution follows a power-law distribution. SF network is

a skewed degree distributed network [46], which means that

most nodes have a few intra-links, and a few of the nodes have

lots of intra-links.

Tomodel interdependent networks, Buldyrev et al. [2] pro-

posed a ‘one-to-one’ correspondence model, where two inter-

dependent networks A and B have the same number of nodes

which means that NA = NB. The inter-link represents an

interdependent relationship between the two nodes which

are in different networks. This model could reflect one kind

of corresponding relationship of real networks, and it has

been deeply studied. Different from Shao et al. [39] consider

real networks as mutually dependent networks. One node in

network A depends on more than one node in network B, and

vice versa. This is the ‘multiple-to-multiple’ correspondence

model. But the ‘multiple-to-multiple’ correspondence model

has some limitations which don’t have solutions yet [33].

C. CASCADING FAILURES

The cascading failures are always caused by a small failure

in one network. The failure can lead to fragmentation of

the entire interdependent networks. Percolation theory is a

useful method to explore the reliability of networks. The

giant component is the largest connected subnetwork in all

interdependent networks. Generally, it is thought to be the

normal working part of the networks [21], [42], [47]. Thus,

the giant component is usually used to reflect network reli-

ability when cascading failures stop. The giant component

is the most widely used and persuasive measure of network

robustness. One node in interdependent networks can operate

after cascading failures only if it satisfies two conditions:
(i) The node has at least one inter-link with a node that

functions;

(ii) It belongs to the giant component of its network.

We assume that the cascading failures are triggered by

randomly removing (1 − p) fraction of nodes in network A.

After removing (1 − p) · |NA| of nodes in network A, both

of intra-links and inter-links of these nodes are removed.

In the next stage, some nodes in network B are removed if

they lose inter-links from network A. Since nodes and links

are removed, network B fragments into several components.

As the conditions of nodes can operate, we have shown above,

except the giant component that can still operate, and the rest

is removed. This stage results in network B split-up and some

nodes in network A have no inter-links from network B. Then

network A breaks up again. The cascading failures recurse

between network A and B. These cascading failures processes

will not stop until the interdependent networks reach one of

the two stable states:

(i) All nodes in the two networks are completely failed;

(ii) The networks are divided into giant components with-

out further cascading failures.

Fig 1 gives an example of failure propagation in interde-

pendent networks. In the initial stage, there are seven nodes

in network A and B. Then, node A3 is attacked and triggers

cascading failures. When the cascading stops, only two nodes

remain functioning in the network A and B, respectively.

After cascading failures, the giant component might disap-

pear. The number of giant components N ′
A and N ′

B is 0. The

relative size of the giant component G is 0 too. If there exists

the giant component in interdependent networks, G could be

calculated by:

G =
N ′
A + N ′

B

NA + NB
(1)

If (1 − p) is big enough, G will decrease to 0.

III. METHODOLOGY

In this section, we briefly introduce our CPS models and

strategies of swapping inter-links. We construct CPS models

by the most popular network models in recent research. After

that, we use the ‘one-to-one’ correspondence model to

interact with physical components and cyber components

together. Then we sort nodes by three kinds of centralities

values: degree centrality, betweenness centrality, and eigen-

vector centrality. Based on the above centralities, seven kinds

of swapping links approaches are simulated in our models.

A. CPS MODELS

Previous studies show that the ER network and SF network

could accurately simulate certain characteristics of natural

networks. In this way, the simulation results will be more per-

suasive and real-world usable. Depending on this, we select

one or two from the ER network and SF network to build

interdependent networks to construct a CPS model. There

are four kinds of CPS structures: ER network couples ER

network(ER-ER), ER network couples SF network(ER-SF),

SF network couples ER network(SF-ER) and SF network

couples SF network(SF-SF).
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FIGURE 1. Cascading failures in interdependent networks. Initially, network A and B have seven nodes in their own network. The random attack upon
network A causes failure of node A3. In stage 1, we remove all intra-links and inter-links with node A3. Thus, A6 and A7 are disconnected from the giant
component in the network A. As a result, B2 is removed since it loses its inter-link from network A. In stage 2, A6, A7 and B2 are removed with their all
links. Consequently, three nodes of network B fail, while node B1 is excluded from giant component and B5 and B7 lose supporting links. Therefore,
in stage 3, all of the node B1, B5, B7, and their links are removed, network B fragments into components, while node B6 is disconnected from the giant
component, so fails. Node A1 fails as it doesn’t have a supporting link. In stage 4, A2 fails because it doesn’t connect to the giant component. In the
final stage, the remaining nodes of this interdependent network reach one stable situation without further cascading failures.

Considering the two connection models mentioned in

section II-B, we apply a more mature ‘one-to-one’ correspon-

dence as to the model of interdependence in our simulation

CPS models. We define NA and NB as the number of nodes

in network A and network B. Each node in network A has

function depending on exactly only one node in network B,

and vice versa. In other words, one node in networkA only has

one inter-link from network B. This also applies to network B.

We apply the ‘one-to-one’ correspondence model between

networks to link inter-links to represent the interdependent

relationships. To conform to this model, we presume the

coupled networks have the same number of nodes.

B. SORT NODES BY CENTRALITY 1: DEGREE CENTRALITY

The degree is the simplest but important centrality to estimate

the significance of nodes in a network. If one node locals in

the center of the network, it has a high value of degree and

be considered as a crucial node [43], [48]. When high degree

nodes are attacked, a large number of nodes will be affected.

In this way, the network has worse reliability than destroying

low degree nodes. In an undirected network, a node degree is

equal to the number of nodes’ intra-links [43]. Sorting single

network nodes by their degrees, there are an ascending order

and a descending order.

Low degree swapping links algorithm (LD) defines as

ranking the nodes of network A and B with their degrees

in ascending orders, respectively. We select nodes in the

top array of increasing orders that are nodes Ai and Bj.

Then we determine if there is an inter-link between the two

nodes which we selected. There are two situations about

connection:
(i) The first is that an inter-link does not link node

Ai and Bj;

(ii) The second is that node Ai and Bj have linked by an

inter-link.

When the second case occurs, we check whether the next

array nodes of the two orders connect with an inter-link. In the

first case, we have to change the inter-links in Ai and Bj.

Firstly, we find there are two inter-links between Ai and Bn
and Am and Bj in the interdependent networks. Thus, these

two nodes Ai and Bj do not link by one inter-link. Then,

we remove all inter-links between Ai, Bn, Am, and Bj. Finally,

we linkAi andBj and connectAm andBn with a new inter-link,

respectively. After that, we complete a onetime swapping

inter-link operation. This swapping procedure repeats until

the demanded number appears.

The other algorithm which is based on the degree values

is the high degree swapping links algorithm(HD). It sorts

nodes in a descending sequence of nodes degree values. The

swapping inter-link process takes place between the nodes

with the highest degrees values. In [25], Chattopadhyay et al.

simulate that linking nodes with inter-links in HD order leads

to maximal ‘one-to-one’ interdependent network robustness.

In the interdependent networks, inter-similarity could

effectively reflect the degree differences of connected nodes

in coupled networks. Inter degree-degree difference(IDD)

[43], [49] is to quantitatively evaluate the inter-similarity of

interdependent networks. IDD is defined as:

IDDAB(u, v) = kAu − kBv (2)

where IDDAB(u, v) is the degree difference between node u

in network A and its dependent node v in network B. kAu and

kBv are the degree of node u and v. To ensure the inter-links

distribution, we need to calculate all A nodes IDD for each

node in network B. When NA is the same as NB, we set |NA|
2

times subtraction calculation to get all IDD values.

Low inter degree-degree difference swapping links algo-

rithm(LIDD) is to sort nodes in ascending order by IDD

values. Then we swap links that satisfy the first situation

which we described in LD. We do not swap links in high
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FIGURE 2. The fraction of function nodes in systems when fs = 30%. Figure (a), (b), (c), and (d) are the systems that are coupled by ER-ER, ER-SF,
SF-ER, and SF-SF, respectively. Seven exchange strategies are compared with original independent networks in different systems structures.
In (a) and (d), LEC and HEC are the best strategies in enhancing G and pc , which have similar advantages. The structures of (a) and (d) are coupled by
the same network. (b) and (c) show the results of random attack in ER-SF and SF-ER systems. HEC shows better performance to the other strategies.
There is an intersection between the LEC and NONE curves in (b) and (c). In four figures, LD yields the worst performance. LB and HB can be regarded
as equivalent.

inter degree-degree difference since it will be similar to HD.

As described in [43], if IDD > 0, swapping inter-links

with the values of high inter degree-degree is similar to the

high degree swapping links algorithm. We have measured the

robustness of networks by HD in the preceding. Thus, we take

LIDD as our swapping strategy. This swapping process will

be repeated a set number of times.

C. SORT NODES BY CENTRALITY CENTRALITY 2:

BETWEENNESS CENTRALITY

The betweenness centrality is a metric that reflects the routing

performance in one network. If one node sites in a large

number of the shortest paths in the network, the node is

more important than other nodes. Betweenness centrality is

defined as:

B(v) =
∑

i6=j

σij(v)

σij
(3)

where σij is the number of shortest paths going from node

i to node j and σij(v) is the number of shortest paths going

from node i to node j through node v [43], [48]. We calculate

nodes betweenness centralities by Eq 3 and order nodes

in ascending order and descending order. Low between-

ness swapping links algorithm(LB) is swapping inter-links

between the value of the lowest betweenness centrality.

High betweenness swapping links algorithm(HB) is rank-

ing nodes in descending order. The process of swapping

link occurs between the nodes with the highest betweenness

values in their respective networks. If the nodes with high-

est betweenness values have connected with an inter-links,

we judge whether there are edges between the nodes with

the second highest degree. We swap inter-links between the

nodes which are not linked by an inter-link. The specific

swapping process we have explained in LD. This process of

HB and LB will be repeated a set number of times.

D. SORT NODES BY CENTRALITY CENTRALITY 3:

EIGENVECTOR CENTRALITY

The eigenvector centrality is an extension of degree cen-

trality [48]. In degree centrality, all nodes importances are

regarded as equivalent. But the importance of nodes is

affected by their neighbors. If neighbor nodes are important,

then this node will be considered important, too. This char-

acteristic has been found in many realistic networks.
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FIGURE 3. The fraction of function nodes in systems under fs = 50%. These four figures represent the systems we build, which are ER-ER, ER-SF,
SF-ER, and SF-SF, respectively. In (a) and (d), LEC and HEC are the best strategies in enhancing G and pc , which have similar results. pc increases to
0.63. The structures of (a) and (d) are coupled by the same network. (b) and (c) are systems established by the ER network and SF network. These two
figures perform the results after a random attack. HEC has the best results in improving robustness. When 1 − p = 0.3, LEC and NONE have an
intersection in (b). The value of G in LEC is smaller than NONE as 1 − p < 0.3. While 1 − p > 0.3, LEC is better than NONE in (b). The intersection of
LEC and NONE appears at 1 − p = 0.4 in (c). In all figures, LD yields the worst performance. LB and HB can be regarded as equivalent.

xi means the eigenvector centrality of node i. The initial

values of all xi are set to 1. This is not a useful measure

of network centrality. Thus we use xi to calculate a better

one x ′
i , which we define to be the sum of the centralities of

i’s neighbors thus: [48]:

x ′
i = κ−1

1

∑

j

Aijxj (4)

where Aij is an element of the adjacency matrix. In one

network, all Aij can be written as a matrix notation A. κ1 is

the largest eigenvector value of A.

We calculate the eigenvector centrality of nodes in two

interdependent networks. Then we sort nodes by the values of

the eigenvector centrality in increasing order and descending

order separately. The high eigenvector centrality swapping

strategy (HEC) is that we choose the nodes with the highest

eigenvector centrality values in two networks. Low eigen-

vector centrality swapping strategy (LEC) is swapping links

between nodes that have the lowest value of eigenvector

centrality in the network A and B. The specific swapping

processes we have explained in LD. This process of HEC and

LEC will be repeated a set number of times.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To simulate a CPS model, we adopt two types of popular

networks, which are Erdös-Rényi networks(ER networks)

and scale-free networks(SF networks) to couple an interde-

pendent system. ER network orders Poisson distribution and

SF network obey power-law degree distribution. In order to

comply with the generality, we construct the ER network

with the size of the network N = 1000 and the average

degree 〈k〉 = 4. In SF network, the parameter γ = 3,

the average degree 〈k〉 = 4 and network size is N = 1000.

After distributing two single networks, we randomly assign

‘one-to-one’ correspondence interdependencies between sin-

gle networks. All of the intra-links and inter-links are bidirec-

tional in our models. After the above setting, we have built a

CPS completely.

We randomly remove (1−p)NA nodes to represent random

failures in a CPS. Then we calculate the fraction of working

nodes G in every (1− p) with (1− p) increasing 0.05 in each

step. So we simulate one kind of swapping link strategies for

20 times in a specified model. To obtain an accurate result,

we simulate 100 times in each (1 − p). We use NONE as

a comparative strategy with other strategies, which means

63572 VOLUME 8, 2020
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FIGURE 4. The fraction of function nodes in systems when fs = 70% and the systems are coupled by ER-ER, ER-SF, SF-ER, and SF-SF respectively
in figure (a), (b), (c) and (d). As shown in (a) and (d), it’s clearly finding that the best strategies are LEC and HEC to enhance not only G but also pc .
Especially in (d), the value of pc is increased to 0.8. (a) and (d) are systems that are the same network correspondence. According to the results shown
in (a) and (d), we easily concluded that when network A and B are in one type network, HEC and LEC are the best choices to swap inter-links to
improving robustness. (b) and (c) show the results of random attack in different coupled systems. HEC is the first selection to enhance reliability.
There is an intersection between the LEC and NONE curves in each figure. As 1 − p = 0.25 and 1 − p = 0.35, LEC and NONE have an intersection in
each figure. There is a negligible gap between LB and HB.

we do not change any inter-link. We assume the fraction of

swapping inter-links as fs:

fs = L ′/L (5)

where L ′ is the number of swapping inter-links, and L means

the total number of inter-links in one CPS. Since our systems

follow ‘one-to-one’ correspondence interdependent and the

inter-links are bidirectional, the number of inter-links should

be equal to the number of nodes NA(NB). Therefore, Eq 5

could be written as fs = L ′/1000.

In [25], scholars find that the interlinking of nodes by HD

to maximal network robustness. However, they only simu-

lated ER-ER interdependent networks to verify this conclu-

sion. Thus, we construct five different kinds of CPSmodels to

verify our proposed swapping inter-links strategies and com-

pare the results with the HD algorithm. To compare the effects

of different inter-links swapping strategies, we evaluate the

reliability of a CPS by G and pc. pc represents the maximum

tolerant ability against random failures. G and pc are bigger,

the reliability of CPS is better.

Here we compare different performances of the swapping

inter-links strategies shown in Section III when fs = 30%,

fs = 50% and fs = 70%. From Fig 2, Fig 3 and Fig 4,

we observe the following conclusions:

(i) Not all swapping strategies can enhanceCPS reliability.

In all of the above figures, we find that the network

reliability of using LD to change the connection rela-

tionship of inter-links is worse than that of the original

network.

(ii) Under the same experimental environment, the differ-

ence between HB and LB in enhancing the reliability of

CPS can be ignored. This finding can be concluded as

different betweenness centrally values have little effect

on system reliability.

(iii) Under one particular centrality, swapping nodes

inter-links with large values have a better influence on

improving network robustness than with small values.

The values of pc are not smaller in swapping nodes

inter-links with large values than with small values. For

example, in figure 4(a), the values of pc in LD and HD

are 0.45 and 0.5. In figure 4(c), the pc values of LEC

and HEC are 0.5 and 0.62.

When nodes have high centrality values linked by inter-

links, the giant components in two single networks

are huge. Although nodes are not operating since they
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lose inter-links, the other nodes in the giant compo-

nent which connect the above-failed nodes can operate.

This swapping inter-links operation will make a large

number of nodes that can still work after cascading

failure. In contrast, when we choose to swap inter-links

with low values of nodes, the nodes connect with failed

nodes with intra-links is easier to be apart from the

giant component after randomly attacking nodes. As a

result, the system is easier to collapse. This finding is

in agreement with the finding of [25].

(iv) For the same number of swapping inter-links, we find

that the LEC strategy has opposite results for enhancing

G at ER-SF and SF-ER interdependent networks for

different (1 − p) values. In ER-ER and SF-SF sys-

tems, LEC and HEC have a negligible difference in

improving G. Under the situation of fs = 30% and

ER network couples SF network situation, LEC has

worse performance than NONE in increasing G value

at (1 − p) < 0.25. This phenomenon is reversed

when (1 − p) > 0.25. The abscissa of the inter-

section of LEC and NONE in SF-ER interdependent

networks is 0.3. When the value of fs is fixed, the size

of G in LEC and NONE always have intersections in

ER-SF and SF-ER simulation diagrams. This shows

that different network structures and different attack

ratios play critical roles in choosing the swapping link

strategy.

(v) HEC has the best effect on enhancing network reliabil-

ity in all situations. It also performs a clear advantage

in increasing the value of pc. In figure 4(b), the value of

HEC is bigger than 0.6 and the other strategies pc values

are around 0.4. Compared with HEC and HD, both of

the values of G and pc have obvious advantages. In the

case of fs determination, the differences values of pc
between HEC and other strategies are most evident in

ER-SF and SF-ER interdependent networks. Besides,

HEC yields a clear advantage in relieving a sharply

dropping of G when p closes to pc. It means that the

system could be controlled to prevent the system from

completely collapsing.

Above all, the HEC strategy is the primary choice for

improving system robustness under a given number of swap-

ping inter-links. If we get one certain centrality value of

interdependent networks, we can swap inter-links with nodes

that have high centrality values. To ensure the best results in

enhancing system reliability, we need to figure out the system

structure and the fraction of attacks when determining the

swapping strategy. We considered three topological metrics

to quantify the location centrality of the nodes. When the

two nodes which are in the central position are connected,

there will be a large number of nodes in the central posi-

tion of the entire system. The giant component gets big-

ger and bigger. After the random attack, the number of the

giant component will also be relatively large. Based on the

above explanation, our experimental conclusions are easy to

understand.

V. CONCLUSION

To study the effect of cascading failures and robustness

in real social networks, we construct different CPS mod-

els which consist of interdependent physical-resources and

computational-resource networks. Meanwhile, we analyze

the reliability of an interdependent CPS by measuring the

value of the relative size of the giant component after cas-

cading failures. Based on three kinds of network centralities,

we design seven swapping inter-links strategies to change

the topology of interdependent CPS. By comparing the per-

formance of these strategies in a CPS, we find that it is

more advantageous to transform inter-links with high-values

centrality nodes than with low-values. At the same time,

the simulation results show that the high eigenvector cen-

trality swapping strategy is superior to the other strategies

in enhancing the reliability of a CPS. This finding can help

network builders to design a better network structure that can

survive random network attacks.

However, our proposed models have some limitations,

which could be our future work. In this study, we only con-

sider the ‘one-to-one’ correspondence as a relationship in

different networks. While some researchers build the ‘one-

to-multiple’ correspondence to represent inter-links topology

in a CPS [33], this paper still selects giant components as

the functional part. The small and isolated components could

also operate locally in reality. Furthermore, we will try to

find some schemes to maximize the number of the giant

component in forthcoming work.
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