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Abstract. We investigate the security of several cryptosystems based
on the Chinese remainder theorem (CRT) against side channel attack
(SCA). Novak first proposed a simple power analysis against the CRT
part using the difference of message modulo p and modulo q. In this
paper we apply Novak’s attack to the other CRT-based cryptosystems,
namely Multi-Prime RSA, Multi-Exponent RSA, Rabin cryptosystem,
and HIME(R) cryptosystem. Novak-type attack is strictly depending
how to implement the CRT. We examine the operations related to CRT
of these cryptosystems, and show that an extended Novak-type attack
is effective on them. Moreover, we present a novel attack called zero-
multiplication attack. The attacker tries to guess the secret prime by
producing ciphertexts that cause a multiplication with zero during the
decryption, which is easily able to be detected by power analysis. We
examine the zero-multiplication attack on the above cryptosystems. Fi-
nally, we propose countermeasures against these attacks. The proposed
countermeasures are based on the ciphertext blinding, but they require
no inversion operation. The overhead of the proposed scheme is only
about 1% to 5% of the whole decryption.

Keywords: RSA, Multi-Prime RSA, Factoring, Chinese Remainder
Theorem, Side Channel Attacks, PKCS #1

1 Introduction

RSA cryptosystem is the most famous public-key cryptosystem in practical use,
and it is implemented in plenty of security applications. Especially, security so-
lutions with smart cards have been focused because of its flexibility and high
security. However, recent research results point out weakness of RSA implemen-
tations on memory constraint devices against side channel attack (SCA) [Koc96,
KJJ99,JLQ99,BDL01], etc. Several experimentation ensure practical feasibility
of SCA [Nov02,BB03,ABF+02]. These attacks are particularly effective on the
implementation using the Chinese remainder theorem (CRT), which accelerates
the decryption speed [PKCS]. The attack on RSA-CRT can factor the public
modulus, and RSA cryptosystem is completely broken. We have to carefully
deal with these attacks.

M. Jakobsson, M. Yung, J. Zhou (Eds.): ACNS 2004, LNCS 3089, pp. 383–397, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



384 K. Okeya and T. Takagi

The decryption algorithm of RSA-CRT consists of two parts: (C1) to decrypt
mp, mq (message modulo p, q) from ciphertext c, (C2) to recover the proper
message m from mp, mq using CRT, where p, q are secret primes. The most side
channel attacks deal with the first part, e.g., a timing attack using the difference
of timing between c < p and c > p [Koc96,BB03], the power analysis on the
modular multiplication cdp mod p with secret exponent dp [MDS99,BLW02], the
timing attack using the final subtraction of Montgomery multiplication (See, for
example, [Sch00]). However, Novak first proposed the attack on the second part
[Nov02]. CRT is usually implemented the Garner algorithm [PKCS], and it causes
operation mq −mp. He showed that a characteristic function δ of mq −mp < 0
can be detected by power analysis, and the modulus can be factored using δ. A
standard countermeasure against these attacks is to randomize the ciphertext
using the blind signature technique [Koc96,Kal96]. A message is randomized
by multiplying re and the randomization is removed by multiplying r−1 after
decryption. A drawback of this method is the computation of the inverse r−1,
which is not usually equipped on smartcards designed for RSA cryptosystem.

Incidentally, several cryptosystems based on CRT have been proposed in
order to accelerate the decryption speed of RSA-CRT moreover, namely Multi-
Prime RSA [PKCS] and Multi-Exponent RSA [Tak98]. Multi-Prime RSA utilizes
a public modulus comprised several pair-wise distinct secret primes. Multi-Prime
RSA is practically used, e.g., Compaq implemented it for a SSL sever [Com], Sun
offers it in the specification of Java Cryptography Architecture [JCA]. Multi-
Exponent RSA uses a modulus of form p2q. The message modulo p2 is recovered
from modulo p using fast Hensel lifting, and the total decryption time of Multi-
Exponent RSA is faster than that of Multi-Prime RSA for small exponent e.
Other CRT-based cryptosystems are Rabin cryptosystem and HIME(R) cryp-
tosystem [NSS01]. Their advantage over RSA is that they can be proven as
secure as factoring problem in the sense of one-wayness or semantic security
against chosen ciphertext attack.

1.1 Contribution of This Paper

In this paper, we investigate the security of the above CRT-based cryptosystems
against SCA. First, the operations related to CRT of the cryptosystems are
examined in the sense of Novak’s attack. It is not obvious to construct a Novak-
type attack on CRT-based cryptosystems, because the CRT computes with two
numbers of different bit-length in these cryptosystems. Note that Novak’s attack
assume that these numbers are of nearly equal bit-length. In addition, the Novak-
type attack is strictly depending how to implement the second CRT. We examine
the operations related to CRT of these cryptosystems, and show that extended
Novak-type attack is effective on them. Secondly, we present a novel attack called
zero-multiplication attack. The attacker tries to guess the secret prime by pro-
ducing ciphertexts that cause a multiplication with zero during the decryption.
Note that Goubin [Gou03] proposed a side channel attack using a point with the
zero value and an enhancement was proposed by Akishita-Takagi [AT03]. The
crucial point of Goubin’s attack is that a zero-valued register, which is known for
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the attacker, appears during the computation. In other words, Goubin’s attack
is a differential power analysis (DPA) using the data zero. On the other hand,
the proposed zero-multiplication attack utilizes the instruction of the multipli-
cation by zero for revealing the secret. That is, the zero-multiplication attack is
a simple power analysis (SPA) using the instruction of zero. In fact, the zero-
multiplication appears at CRT with small messages like m < p ∧ m < q, namely
mq − mp = 0. We point out that Multi-Exponent RSA and HIME(R) cryp-
tosystem involve additional zero-multiplications arisen from the Hensel lifting.
Finally, we propose novel countermeasures against these attacks. The counter-
measures are based on the ciphertext blinding technique, but they require no
inversion operation. We can randomize ciphertexts and remove the randomiza-
tion using only modular multiplication. This provides us a practical implication,
because no library of computing an inversion is usually equipped on smartcards
designed for RSA cryptosystem. The overhead of the proposed scheme is only
about 1% to 5% of the whole decryption.

The paper is organized as follows: Section 2 reviews the RSA cryptosystems
using RSA-CRT. Section 3 extends Novak’s attack to Multi-prime RSA, and pro-
poses zero-multiplication attack on it. Section 4 examines the proposed attacks
on the CRT-based cryptosystems. Section 5 proposes countermeasures against
these attacks.

2 RSA Cryptosystem with CRT

In this section we review the RSA cryptosystem using the Chinese remainder
theorem (RSA-CRT).

Let n = pq be the RSA modulus, where p, q are two secret primes that have
the same bit length. Let e, d be the integers such that ed = 1 mod φ(n), where
φ(n) = (p−1)(q−1). The public key and the secret key of the RSA cryptosystem
are (e, n) and d, respectively. The message m ∈ ZZn is encrypted by computing
c = me mod n. The integer c is called ciphertext. The person who knows the
secret key d can decrypt the ciphertext by computing m = cd mod n.

In order to make the RSA cryptosystem semantic secure against the chosen
ciphertext attack, we usually deploy the OAEP padding [PKCS]. We convert
the message m to PKCS format µ(m) before computing encryption. In the de-
cryption, if cd mod n does not satisfy the PKCS format, c is rejected as invalid
ciphertext. Note that the attacker is able to choose any ciphertext c as the input
for primitive computation cd mod n (the manipulated ciphertexts are eventually
rejected at the padding check with overwhelming probability). Although clas-
sical chosen ciphertext attacks, e.g. [Dav82] are not feasible, chosen ciphertext
attacks using side channel information on the primitive decryption are feasible.

↓ side channel information
Ciphertext c−→ Primitive Decryption cd mod n −→ Padding Check µ(m) −→ Reject

If we use the Chinese remainder theorem for the decryption of RSA, its speed
can be accelerated with additional memory. Let dp = d mod p − 1 and dq =



386 K. Okeya and T. Takagi

d mod q− 1. RSA-CRT deciphers mp = m mod p and mq = m mod q instead of
computing m = cd mod n. Indeed we can obtain them by mp = cdp mod p and
mq = cdq mod q. Then the proper message is recovered by applying the Chinese
remainder theorem for mp and mq. We describe the standard algorithm of the
decryption of the RSA-CRT [PKCS]:

RSA-CRT Decryption
Input: ciphertext c, secret keys p, q, dp, dq, pInv
Output: message m
1. mp ← cdp mod p, mq ← cdq mod q,
2. h← (mq −mp) ∗ (pInv) mod q, mpq ← mp + p ∗ h
3. return(mpq)

The Chinese remainder theorem at Step 2 is computed using Garner’s algo-
rithm [PKCS]. We pre-compute pInv = p−1 mod q, and Step 2 requires only two
multiplications of ZZn. Because the bit-size of p, q is half of n, the running time
of computing cdp mod p is about 23 = 8 times faster. The total improvement of
the running time is about 4 times.

2.1 Known Attacks

We review several known attacks against the RSA-CRT.
Timing Attack: Kocher proposed a timing attack of computing cdp mod p

[Koc96]. If c < p holds, then we do not reduce c modulo p. There is a difference
of timing between c < p and c > p. The attacker can recover p by the binary
search. This attack is called the timing attack. Recently Boneh et al. showed
an experimental result of this timing attack against the server-client model —
several implementation of SSL are vulnerable [BB03].

Fault Attack: If we can manipulate one bit of the register for mp = m mod p
(say m′, the related fake message), then the modulus can be factored by com-
puting gcd(m−m′, n) due to m′ = m mod q and m′ �= m mod p [JLQ99]. This
attack is called the fault attack. This attack was extended to more sophisticated
fault attack [BDL01], etc. Aumüller et al. showed an experimental result of this
attack [ABF+02]. They also proposed a countermeasure, which checks every
process during the decryption, e.g. mp = m mod p, me = c mod p, etc.

SPA/DPA: We can break the secret key by utilizing the side channel in-
formation related to the secret key, e.g., the simple power analysis (SPA), the
differential power analysis (DPA) [KJJ99]. Messerges et al. showed the modu-
lar multiplication cd mod n is vulnerable against SPA/DPA [MDS99]. A DPA
against the modular multiplication cdp mod p was demonstrated by den Boer et
al. [BLW02]. The ciphertext blinding method resists this type of attacks. The
other countermeasure is the exponent blinding method, which randomizes the
secret exponent by computing d′ = d + φ(n)r for some integer r (or we can use
a randomized representation of d, for example, MIST [Wal02]).

Timing Attack against Montgomery Multiplication: Schindler et al. pointed
out the weakness of the implementation using the Montgomery multiplication
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(See, for example, [Sch00]). The attacker tries to guess the secret key by observ-
ing the final subtraction of Montgomery multiplication. A countermeasure is to
always perform the final subtraction, and then we choose the proper residue.

Novak Attack: Novak proposed an SPA against Step 2, namely the Chi-
nese remainder theorem [Nov02]. He focused on the following implementa-
tion of mq − mp mod q; first compute y = mq − mp and then y = y + q if
y = mq −mp < 0 holds. The experimental result shows the side channel infor-
mation of y = mq − mp < 0 can be detected by SPA. He developed a binary
search algorithm of finding secret key q with about log q calls. We should note
that Novak’s attack is effective for mq ≈ mp only, because y often takes different
signs. A countermeasure against SPA is to always compute y′ = y + q, and then
we choose y′ if and only if mq−mp < 0. Note that the exponent blinding method
or MIST does not resist Novak attack.

Remark 1. The timing attack and Novak attack are effective on the chosen ci-
phertext setting. However, they are not feasible to the probabilistic signature,
e.g., RSA-PSS [PKCS]. Even if the attacker chooses a message m, it is random-
ized by padding function ρ such that ρ(m). The attacker cannot control the size
of ρ(m). Very recently, Fouque et al. proposed an extension of Novak attack on
RSA with the randomly chosen messages, but this attack is restricted to the
unbalanced modulus s.t. p �≈ q [FMP03].

3 Multi-prime RSA

In this section we investigate the security of Multi-Prime RSA against SCA.
We assume the chosen ciphertext setting, that is, the attacker can freely choose
ciphertexts for revealing the secret.

The public modulus of general Multi-Prime RSA consists of the product of
several pair-wisely distinct secret primes [PKCS]. The current practically rele-
vant Multi-Prime RSA modulus is a 1024-bit modulus n = pqr with the same
size secret primes p, q, r. In this paper we discuss this modulus, but the attack
can be easily extended to other types.

The public-key of Multi-Prime RSA is (n, e), where n = pqr. The secret key
is (p, q, r, dp, dq, dr, pInv, pqInv), where dp = e−1 mod p−1, dq = e−1 mod q−1,
dr = e−1 mod r − 1, pInv = p−1 mod q, and pqInv = (pq)−1 mod r. A message
m ∈ ZZn is encrypted by c = me mod n, which is equal to the RSA encryption.
The ciphertext c is decrypted as follows:

Multi-Prime RSA Decryption
Input: ciphertext c, secret key (p, q, r, dp, dq, dr, pInv, pqInv)
Output: message m
1. mp ← cdp mod p, mq ← cdq mod q, mr ← cdr mod r
2. h← (mq −mp) ∗ (pInv) mod q, mpq ← mp + p ∗ h
3. h← (mr −mpq) ∗ (pqInv) mod r, mpqr ← mpq + (pq) ∗ h
4. return(mpqr)
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Each modular multiplication modulo p, q, r is about 27 times faster than
cd mod n, because we choose these primes have the same size. Thus, the decryp-
tion algorithm of Multi-Prime RSA is about 9 times faster than that of RSA for
the modulus n with same bit length.

At Step 2, we use the Chinese remainder theorem for p and q. Novak’s attack
can detect the approximation of prime q and we can factor n into q and pr. In
this case, the number field sieve can factor pr much faster than pqr. We consider
that the Multi-Prime RSA is broken, since it does not keep the expected security.

At Step 3, we compute CRT for pq and r using pre-computed value pqInv =
(pq)−1 mod r. If we can develop a Novak-type algorithm for Step 3, the Multi-
Prime RSA is also no longer secure. Note that a straight-forward extension of
Novak’s attack fails, because mpq > mr holds in most cases, namely the value
mpq −mr is positive with high probability. In order to construct a Novak-type
attack, we need to overcome this problem. In addition, Novak’s attack against
Step 3 strongly depends on how to implement “h← (mr−mpq)∗(pqInv) mod r”.
There are several ways to implement it. The possible ways are as follows:

(MP1) y ← mpq mod r, t← mr − y mod r, h← t ∗ pqInv mod r,
(MP2) y ← −mpq mod r, t← mr + y mod r, h← t ∗ pqInv mod r,
(MP3) y ← mr −mpq, t← y mod r, h← t ∗ pqInv mod r.

The first way is a natural implementation, since we can reuse the modular
subtraction module, because we should implement the modular subtraction
mq − mp mod q of Step 2. When we compute −mpq mod r in the second al-
gorithm, it is usually computed y = mpq mod r and then r − y. This procedure
avoids treating a signed integer. The third way is a straight-forward implemen-
tation.

3.1 Novak-Type Attack on Multi-prime RSA

In the following we investigate Novak’s attack against the first implementation
(MP1). For m in ZZn, we define the following characteristic function:

δ(m) =
{

1 if (m mod r)− ((m mod pq) mod r) ≥ 0
0 otherwise

Because the integer mpq is reduced modulo pq before computing modulo
r, it differently behaves from Novak’s attack. Indeed, we have the following
proposition. In ascending order of m, the sign δ(m) has the pattern

1, .., 1, 0, .., 0, 1, .., 1, 0, .., 0, 1, ..,

and it is changed 1 to 0 if and only if r|m holds. In other words, the attacker
can factor n into r and pq if he/she detects such m.

Proposition 1. Let N = P1 ∗ P2, where gcd(P1, P2) = 1 and P1 > P2. For
M in ZZN , define δ[P1, P2](M) = 1 if M mod P2 − ((M mod P1) mod P2) ≥ 0,
otherwise δ[P1, P2](M) = 0. Then we have following properties:
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(1) δ[P1, P2](M) = 1 holds for all M < P1,
(2) For all P1 ≤M < N , we have

δ[P1, P2](kP2) = ... = δ[P1, P2](kP2 + l) = 0,

δ[P1, P2](kP2 + l + 1) = ... = δ[P1, P2]((k + 1)P2 − 1) = 1,

where k, l are integers with 0 < k < P1 and 0 < l < P2 − 2.

Proof. Let N = LP ∪ UP , where LP = {0, 1, ..., P1 − 1} and UP = {P1, P1 +
1, ..., N−1}. For successive M = 0, 1, 2, ..., N−1, we evaluate the values (M mod
P1) mod P2 and M mod P2 in the following. If M ∈ LP , then (M mod P1) mod
P2 = M mod P2 holds due to M mod P1 = M . Thus δ(M) = 1 for all M ∈ LP .
Next we consider the case of M ∈ UP . Let f(M) = (M mod P2) − ((M mod
P1) mod P2). Then δ(M) = 1 iff f(M) ≥ 0. Note that M mod P1 �= M mod P2
for M ∈ UP due to gcd(P1, P2) = 1. Then the value (M mod P1) mod P2 is
never equal to (M mod P2) for M ∈ UP because of the Chinese remainder
theorem. Therefore, we obtain f(kP2) < 0, namely δ(kP2) = 0, and f(kP2−1) =
P2 − 1 − ((kP2 − 1 mod P1) mod P2) > 0, namely δ(kP2 − 1) = 1, where k is a
positive integer. Next we consider f(kP2+l) for 0 < l ≤ P2−2. For 0 < l ≤ P2−2,
we have two cases:

(i)M = kP2 + l is not divisible by P1, (ii)M = kP2 + l is divisible by P1.

Let g(M) = M mod P1. In the first case, we have g(M +1) = g(M)+1 and g(M)
is monotonously increasing for M = kP2 + l, l = 1, ..., P2 − 2. If we reduce them
modulo P2, then all numbers are pair-wised different due to P1 > P2. Thus, two
sets (M mod P1) mod P2 and M mod P2 have the following pattern:

(M mod P1) mod P2 = {s, s + 1, ..., P2 − 1, 0, 1, ..., s− 1},
M mod P2 = {0, 1, ..., P2 − s− 1, P2 − s, P2 − s + 1, ..., P2 − 1},

where for some 0 < s < P2. (M mod P1) mod P2 is the set of s-left-sift of
M mod P2. Thus the corresponding δ sequence is δ[P1, P2] = 0, .., 0︸ ︷︷ ︸

P2−s

, 1, .., 1︸ ︷︷ ︸
s

. We

have obtained the desired sequence. Next we discuss the second case. There is
only one integer which is divisible by P1 in any interval with length P2. Let t be
the number divisible by P1 in interval [kP2, ..., kP2 +P2−1]. The integers M < t
have the same pattern above. For M ≥ t we always have f(M) > 0, namely
δ[P1, P2](M) = 1. Thus we have the following pattern:

(M mod P1) mod P2 = {P1 − v, P1 − v + 1, .., P1 − 1, 0, 1, ..., u− 1},
M mod P2 = {0, 1, ..., v − 1, P2 − u, P2 − u + 1, ..., P2 − 1},

where v = t mod P2 and u = P2 − v. Thus the corresponding δ sequence is
δ[P1, P2] = 0, .., 0︸ ︷︷ ︸

v

, 1, .., 1︸ ︷︷ ︸
u

. Consequently we have proved the proposition. 
�
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If we choose P1 = pq and P2 = r we can construct the Novak-type attack
from this proposition. The condition P1 > P2 is satisfied, because the three
primes are chosen with same bit length. We describe the Novak-type attack in
the following. It is modified from the original Novak attack in order to reduce
the number of the oracle calls.

Novak Type Attack
INPUT: modulus n, public exponent e, upper bound B of r.
OUTPUT: secret prime r such that n = pqr.
1. Randomly choose x0 ∈ ZZn

1.1. Compute δ(x0) of c0 ← xe
0 mod n using SPA

1.2. Set δ(x1)← δ(x0)
2. While δ(x1) = δ(x0)

2.1. If δ(x0) = 1, randomly choose x1 s.t. x1 > x0 and x1 − x0 < B
else randomly choose x1 s.t. x1 < x0 and x0 − x1 < B

2.2. Compute δ(x1) of c1 ← xe
1 mod n using SPA

3. LB ← x0, UB ← x1.
3.1. If δ(x0) = 0 then LB ← x1, UB ← x0.

4. While LB �= UB do:
4.1. m← �(LB + UB)/2.
4.2. Compute δ(m) of c← me mod n using SPA.
4.3. If δ(m) = 1 then LB ← m; otherwise UB ← m.

5. Compute r ← gcd(n, m).
6. Return(r).

At Step 1 we choose an initial integer x0 randomly from ZZn, and compute
δ(x0) of c0 ← xe

0 mod n using SPA. At Step 1 we try to find integer x1, which
satisfies δ(x0) �= δ(x1) and |x0 − x1| < B, where B is the upper bound of secret
prime r. At step 3 we assign upper bound UB and lower bound LB of the target
whose signs are exactly opposite. Step 4 is the main loop. We find the target
based on the binary search of UB and LB. If UB = LB(= m) holds, then we
obtain the target. From the above lemma, the secret prime r yields by computing
gcd(m, n) = r.

We estimate the average oracle calls. At Step 4 we requires at most �log2r
oracle calls because |UB − LB| < B, where B = 2�log2r�. We assume that
pq mod r is randomly distributed in modulo r. Then at Step 2 we can obtain x1
with a few trials, because the probability of finding x1 at Step 2 is about 1/2 on
average due to randomness of x1 and s = pq mod r. At Step 1 we use only one
oracle call. Thus we need about (log2 n)/3 oracle calls on average.

Remark 2. If we modify the characteristic function δ, the attack described above
is basically applicable to implementation (MP2) in the previous section, because
the following two conditions are equivalent: mr − (mpq mod r) ≥ 0 and mr +
(r − (mpq mod r)) ≥ r.

On the other hand, our attack is not applicable to implementation (MP3),
because mr−mpq is negative with high probability. However, we show a different
attack on (MP3) in the next section.
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3.2 Zero-Multiplication Attack

In this section we deal with the SPA using the multiplication with zero.
In the previous section we discussed that the Novak-type attacks are applica-

ble to the decryption algorithm of Multi-Prime RSA if it deploys a subtraction
related to the secret primes, e.g. mr−(mpq mod r) mod r. However, its practical
feasibility causes a controversy, because we can avoid the operation as follows:
at first we always compute t = mr − (mpq mod r) and t′ = t + r, and then “if
t < 0 then t = t′”. It is more difficult to detect the last operation using SPA.

However we can mount Novak’s attack to the stronger SPA using the multi-
plication with zero. We call it zero-multiplication attack in this paper.

We have the following observation for the Multi-Prime RSA. If we choose m <
r, then h(m) = mr −mpq mod r = 0 holds. Then we compute 0 ∗ pqInv mod r
at Step 3 of the decryption. The chosen ciphertext attack is allowed to generate
the ciphertext c with c = me mod n and m < r. Thus the binary search on r
is possible using the SPA, and thus the secret prime r can be found. We show
an algorithm to find the secret key r in the following. Define δZERO(x) = 1 if
h(x) = 0 otherwise δZERO(x) = 0.

Zero Multiplication Attack
INPUT: modulus n, public exponent e, bit-length L of r.
OUTPUT: secret prime r such that n = pqr.
1. Set x← 0
2. For i = L− 1 down to 0

2.1. Set y ← x + 2i mod n and c← ye mod n
2.2. Compute δZERO(y) of c using SPA
2.3. If δZERO(x) = 1 holds, then set x← y

3. Return(x).

This attack is also applicable to the secret prime p at Step 2. If m satisfies
both m < p and m < q, then we always have h = mq −mp = 0.

Remark 3. Implementation (MP3) in the previous section is vulnerable against
zero-multiplication attack. Because y ← mr −mpq is always 0 if m < r satisfies.

4 Application to Other CRT-Based Cryptosystems

There are several cryptosystem based on the Chinese remainder theorem, namely
Rabin cryptosystem, Multi-Exponent RSA [Tak98], and HIME(R) cryptosystem
[NSS01]. We discuss the effectiveness of the Novak-type attack and the zero-
multiplication attack on them. We keep assuming the chosen ciphertext setting
in this section.

4.1 Rabin Cryptosystem

We discuss the Novak attack against the Rabin cryptosystem. Let p, q be primes
with p mod 4 = q mod 4 = 3. The public-key and secret-key of the Rabin cryp-
tosystem are n and (p, q), respectively. A message m ∈ ZZn is encrypted by
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c = m2 mod n. This encryption function is a 4 : 1 mapping, and thus there are
4 different solutions for c = x2 mod n. The 4 messages are decrypted as follows:

Rabin Decryption
Input: ciphertext c, secret key (p, q, dp, dq, pInv)
Output: messages m

1. mp ← c(p+1)/4 mod p, mq ← c(q+1)/4 mod q
2. h← (mq −mp) ∗ (pInv) mod q, m← mp + p ∗ h
3. Compute m̄ from Step 1 to Step 2 for (−mp, mq)
4. Set m1 ← m, m2 ← m̄, m3 ← n−m, m4 ← n− m̄
5. Find proper m from m1, m2, m3, m4
6. Return(m1, m2, m3, m4)

At Step 1 the message modulo p, q are recovered. At Step 2 we compute the
original m using the Chinese remainder theorem. The original Novak attack is
applicable to Step 2. In order to recover other 3 different solutions for a given
ciphertext c, we perform Step 1,2 for messages (−mp, mq) and we obtain m̄.
Then all 4 solutions are m1 = m, m2 = m̄, m3 = n−m, m1 = n− m̄.

Two negative integer −mp is usually converted to its positive representative
class, namely p−mp. There is additionally one more possible oracle:

(R1) if mq − (p−mp) < 0, then y = mq − (p−mp), h = y + q.

Using this oracle we can construct a Novak-type attack. If the sign of the oracle
changes 1 to 0, then the secret prime p or q appears. Indeed we have the following
proposition, which is similarly to Proposition 1.

Proposition 2. Let n = pq be the RSA modulus. For m in ZZN , define
δRabin(m) = 1 if m mod q − (p − (m mod p)) ≥ 0, otherwise δRabin(m) = 0.
The sequence of δRabin(m) has the consecutive pattern 0, .., 0︸ ︷︷ ︸

ai

, 1, .., 1︸ ︷︷ ︸
bi

for succes-

sive m = q, q + 1, ..., n − 1, where 0 < ai, bi < max(p, q) and i = 0, 1, 2, .... The
integer g that satisfies δRabin(g− 1) = 1 and δRabin(g) = 0 is divisible by p or q.

Proof. The proof is quite similar to that of Proposition 1. Thus we only describe
the sketch of it. There are two cases: p < q and p > q. At first we deal with the
case of p > q. The sequences of m mod q and (p− (m mod p)) are as follows:

m mod q = 0, 1, ..., q − 2, q − 1,

p−m mod p = s, s− 1, ..., 2, 1, p, p− 1, ..., t + 1, t,

where 0 < s, t < p. Therefore the sequence of δ associated to it has following fixed
pattern: 0, .., 0︸ ︷︷ ︸

a1

, 1, .., 1︸ ︷︷ ︸
b1

, 0, .., 0︸ ︷︷ ︸
a2

, 1, .., 1︸ ︷︷ ︸
b2

for some 0 < a1, b1 < p and 0 ≤ a2, b2 < p.

The signs are changed at most twice modulo q. If a2 �= 0 holds, then the integer g
such that δ(g−1) = 1 and δ(g) = 0 always satisfies p|g or q|g. Next we deal with
the case of p < q. The δ sequence is as follows: 0, .., 0︸ ︷︷ ︸

a1

, 1, .., 1︸ ︷︷ ︸
b1

, ..., 0, .., 0︸ ︷︷ ︸
ai

, 1, .., 1︸ ︷︷ ︸
bi

,
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where 0 < a1, b1, ..., ai−1, bi−1 < p and 0 ≤ ai, bi < p for some i. The signs are
changed at most �q/p+ 1 modulo q. The integer g such that δ(g − 1) = 1 and
δ(g) = 0 always satisfies p|g for the first (i − 1) changes of the sign and q|g for
the last one. Consequently, we proved the proposition. 
�

The zero-multiplication attack is also applicable to Step 2, because mq −mp

is zero if m satisfies both m < p and m < q. However, it is not clear to find a
zero multiplication for the other three Chinese remainder theorems. For example,
without knowledge of p, q we are not able to find the message m that satisfies
p−mp = mq.

4.2 Multi-exponent RSA

We discuss the variant of RSA using modulo p2q proposed by Takagi [Tak98].
In this paper we call it Multi-Exponent RSA according to [BS02]. The mes-
sage m is recovered from messages mp2 modulo p2 and mq modulo q. The mes-
sage mp2 is lifted from the message mp using the Hensel lifting, which requires
only quadratic complexity O((log p)2). We present a modified version in the
following. The public key is equal to that of the original RSA cryptosystem,
namely (e, n) but n = p2q where p, q have the same bit length. The secret key
is (p, q, dp, dq, p

2Inv, eInv), where dp = e−1 mod (p − 1), dq = e−1 mod (q − 1),
p2Inv = (p2)−1 mod q, eInv = e−1 mod p. A message m ∈ ZZn is encrypted
c = me mod n. The ciphertext c is decrypted as follows:

Multi-Exponent RSA Decryption
Input: ciphertext c, secret key (p, q, dp, dq, p

2Inv, eInv)
Output: message m
1. k ← cdp−1 mod p, mp ← ck mod p, mq ← cdq mod q
2. g ← c−me

p mod p2, b← g ∗ k ∗ eInv mod p2, mp2 ← mp + b
3. h← (mq −mp2) ∗ (p2Inv) mod q, m← mp2 + p2 ∗ h
4. Return(m)

At Step 1 we decrypt message modulo p, q, and the additional information
k = cdp−1 mod p. At Step 2 we compute message modulo p2 using the Hensel
lifting. Note that mp2 is uniquely represented as mp2 = mp+b, where b is divisible
by p and 0 ≤ b/p < p. Thus we have relationship: c mod p2 = me

p2 mod p2 =
me

p+eme−1
p b mod p2, and thus we obtain b = g((eme−1

p )−1 mod p) mod p2, where
g = c −me

p mod p2. Because (me−1
p )−1 mod p = cdp−1 mod p, we can correctly

decrypt mp2 at Step 2. At Step 3 we compute the Chinese remainder theorem
for mp2 and mq. Thus the Novak-type attack is applicable to Step 3. Note that
there is a multiplication with zero at Step 3 if the message is smaller than q.
Therefore we can find the secret prime q using the zero-multiplication attack
described in Section 3.2.

We discuss the zero-multiplication attack on Step 2. There is the following
relation:
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(ME1) if m < p, then mp = m, g = c−m2
p mod p2 = 0.

(ME2) if m > p, then mp �= m, g = c−m2
p mod p2 �= 0 with overwhelming

probability over m ∈ ZZn.

Thus there are two zero-multiplications at Step 3 if m < p holds. The attacker
detects whether g is zero or not. Define δMERSA(x) = 1 if x < p otherwise
δMERSA(x) = 0. Therefore, we can construct a binary search algorithm for p
described Section 3.2 using this characteristic function δMERSA.

4.3 HIME(R) Cryptosystem

We discuss the security of HIME(R) cryptosystem developed [NSS01]. HIME(R)
is a provably secure cryptosystem, which is IND-CCA2 under the factoring as-
sumption of modulus p2q. The decryption algorithm utilizes the Chinese remain-
der theorem and the Hensel-like lifting, and thus it is faster than RSA-CRT with
the same modulus size. We describe the HIME(R) primitive in the following with
a modification. Let p, q be primes with p mod 4 = q mod 4 = 3 with the same bit
length. Let pInv = p−1 mod q and 2Inv = 2−1 mod p. The public-key and secret
key of HIME(R) is n and p, q, pInv, 2Inv, respectively. A message is m ∈ ZZn

is encrypted by c = m2 mod n. This encryption function is same as the Rabin
encryption (4 : 1 mapping). The message c is decrypted as follows:

HIME(R) Primitive Decryption
Input: ciphertext c, secret key (p, q, pInv, 2Inv)
Output: message m
0. Check c mod p and c mod q are quadratic residue
1. k ← c(p−3)/4 mod p, mp ← c ∗ k mod p, mq ← c(q+1)/4 mod q
2. h← (mq −mp) ∗ (pInv) mod q, mpq ← mp + p ∗ h
3. g ← c−m2

pq mod n, b← g ∗ k ∗ (2Inv) mod n, m← mpq + b
4. Compute m̄ from Step 2 to Step 3 for (−mp, mq)
5. Set m1 ← m, m2 ← m̄, m3 ← n−m, m4 ← n− m̄
6. Find proper m from m1, m2, m3, m4
7. Return(m)

At Step 0 we check the ciphertext c is quadratic residue or not. At Step 1
we compute the message modulo p and q, and additionally k = c(p−3)/4 mod p.
At Step 2 the message modulo pq are recovered using the Chinese remainder
theorem. Here we can apply the original Novak attack. Note that an integer
m ∈ ZZn is uniquely represented as m = mpq + b, where mpq = m mod pq,
b is divisible by pq and 0 ≤ b/pq < p. At Step 3 we find the unique integer
b for given mpq and c. From c mod n = m2 mod n = m2

pq + 2mpqb mod n, we
obtain b = (c −m2

pq)((2mp)−1 mod p) mod n. Here we have k = m(p−3)/2 mod
p = m(p−1)/2−1 mod p = ±m−1

p mod p due to m(p−1)/2 = ±1 mod p. We can
correctly recover the message m at Step 3. At Step 4 and 5 we generate other 3
candidates of the proper message. The Novak-type attack described in Section
4.1 is applicable to the message (−mp, mq) at Step 4.
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There are several operations related to the secret keys p, q. We examine the
zero-multiplication attack on Step 3. Recall c = m2 mod p2q, since c is the
ciphertext of m. Then we have following relationship:

(H1) if m < pq, then mpq = m, c−m2
pq mod p2q = 0.

(H2) if m > pq, then mpq �= m, c−m2
pq mod p2q �= 0 with overwhelming

probability over m ∈ ZZn.

Thus in Step 3 two zero-multiplications appear if E(m) = c−m2
pq is zero. The

attacker detects whether E(m) is zero or not. Define δHIME(x) = 1 if E(x) = 0
otherwise δHIME(x) = 0. Therefore, we can construct a binary search algorithm
for pq described Section 3.2 using this characteristic function δHIME .

5 New Countermeasures

In this section we discuss how to randomize a ciphertext of RSA cryptosystem.
A standard way is the ciphertext blinding method (see Section 2.1). A draw-

back of this scheme is the computation of the inverse r−1 mod n. A library that
computes an inversion is not usually equipped on smartcards, so that the de-
signer has to additionally develop it. While we can compute r−1 mod n using
the modular exponentiation rφ(n)−1 mod n, it requires a large overhead.

We present a randomization method, which requires no modular inversion.
The proposed algorithm is as follows:

Ciphertext Blinding Without Inversion
Input: public keys n, e, ciphertext c, secret keys p, q
Output: message m s.t. c = me mod n
1. Compute s← re−1 mod n for random r ∈ ZZ∗

n and t← s ∗ r ∗ c mod n
2. Compute u← td−1 mod n
3. Compute v ← u ∗ s mod n and m← v ∗ c mod n
4. Return(m)

At Step 1 the ciphertext c is blinded by re mod n such that t = rec mod n,
but we store the value s = re−1 mod n. At Step 2 we decrypt message t using
exponent d − 1 instead of d, namely u = td−1 mod n. Note that u ∗ s mod n =
(mere)d−1re−1 mod n = m1−e mod n. Thus at Step 3 we can recover message m
by u ∗ s ∗ c mod n. The attacker tries to analyze the computation of Step 4, but
ciphertext c is randomized as rec mod n. At Step 2 we can also compute td−1 mod
n using the Chinese remainder theorem. In that case, we have to modify the
secret key dp and dq to dp = d − 1 mod p − 1 and dq = d − 1 mod q − 1,
respectively. We also note that public exponent e has to be known, which is not
always the case in real-life applications.

This countermeasure is efficient for small encryption exponent. If we choose
standard e = 216 + 1, then it requires about only 20 multiplications of ZZn.
Therefore the overhead is about 5% of the whole decryption computation of
RSA with CRT. We require 2 registers of ZZn for auxiliary paramters (s, u).
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In the following we discuss other possible randomization schemes. If we store
(S, T ) = (re mod n, r−1 mod n) in non-volatile memory for a random integer r ∈
ZZn, then we can randomize a ciphertext c by computing m = (Stc)dT t mod n,
where t is a small random exponent. If we choose 16-bit or 32-bit t, then the
overhead of this scheme is about 47 or 98 multiplications of ZZn (namely about
12% or 26% comparing with RSA-CRT), respectively. We require 2 registers
of ZZn for auxiliary paramters (Stc, T t). Consequently, our proposed scheme is
more efficient than these schemes.

5.1 Application to Rabin Cryptosystem

The proposed countermeasure is also applicable to Rabin or HIME(R) cryptosys-
tem. The encryption exponent of these schemes is 2, so that this countermeasure
is particularly effective. In that case we have to choose quadratic residue r, other-
wise the valid ciphertext is not decrypted. Indeed we can construct it as follows:

Rabin Ciphertext Blinding Without Inversion
Input: public key n, ciphertext c, secret keys p, q
Output: message m s.t. c = m2 mod n
1. Compute s← r2 mod n for random r ∈ ZZ∗

n

2. Randomize the ciphertext t← s2 ∗ c mod n
3. Compute up ← t(p−3)/4 mod p and uq ← t(q−3)/4 mod q
4. Compute 4 different w mod n corresponding to up, uq using CRT
5. Compute m← w ∗ c ∗ s mod n
6. Return(m)

At Step 1 we generate a random quadratic residue s. At Step 2 the ciphertext
c is randomized by computing t = s2c mod n, so that the attacker cannot ma-
nipulate the randomized message ms mod n. At Step 3 we decrypt the inversion
of the randomized message (ms)−1 mod p and (ms)−1 mod q, respectively. Note
that t(p−3)/4 mod p = t(p+1)/4−1 mod p = (±ms)t−1 mod p = ±(ms)−1 mod p.
At Step 4 we recover 4 different messages related to w = (ms)−1 mod n. At Step
5 we compute the proper message m by m = w ∗ c ∗ s mod n.

The overhead of the proposed method is only 5 multiplications of ZZn. It is
about 1% of the whole decryption computation.
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