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ABSTRACT

This paper considers optimal multi-carrier (multiple mes-

sages) spread-spectrum (SS) data embedding on linearly-

transformed host. We present information-theoretic security

analysis for the optimal SS embedding. The security is

quantified by both the Kullback-Leibler distance and Bhat-

tacharyya distance between the cover and stego probability

distributions. The main results of this paper permit to estab-

lish fundamental security limits for the optimal SS embed-

ding. Theoretical analysis and experimental results show the

impact of the number of embedding messages, the embedding

distortion, and the host transformation in the security level.

Index Terms–Bhattacharyya distance, covert communica-

tions, data hiding, Kullback-Leibler distance, steganography.

1. INTRODUCTION

Steganography, which literally means “covered writing” in

Greek, is an important sub-discipline of data embedding [1]-

[6]. The purpose of steganography is to embed secret mes-

sages within an innocuous looking cover medium in order to

conceal the existence of embedded messages and establish se-

cret communication between trusting parties. If any suspicion

about the hidden secret messages is raised, then the goal of

establishing a covert communication link is defeated. Unde-

tectability, i.e. hiding data perceptually as well as statistical-

ly, is a critical security issue and the primary requirement in

steganographic applications.

The security/undetectability of steganographic systems

can be evaluated in an information-theoretic framework. The

Kullback-Leibler (KL) distance between cover distribution

Pc and stego distribution Ps has become a popular metric

for analyzing and assessing the security of practical stegano-

graphic schemes [7]-[10]. In information theory, the KL

distance DKL(Pc||Ps) � EPc {log(Pc)− log(Ps)} can be

viewed as a measure of difference/similarity between Pc and
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Ps. If Pc = Ps, i.e. cover and stego are statistically identi-

cal, then DKL(Pc||Ps) = 0 and the steganogrphic system is

perfectly secure. The larger difference between Pc and Ps,

the larger KL distance and the presence of embedded data

is easier to be detected. A steganographic system is called

ε-secure if DKL(Pc||Ps) ≤ ε. Since KL distance is not a

symmetric function and sometimes it cannot reasonably re-

flect the difference between the cover and stego distributions,

Korzhik et al. proposed to use Bhattacharyya distance (BD)

as the measure of steganography security [11]. BD between

Pc and Ps is denoted as DB(Pc||Ps) � −ln(BC(Pc, Ps)),
where BC(Pc, Ps) �

∫ √
BC(Pc(x)Ps(x))dx.

As one of the most popular approaches, spread-spectrum

(SS) embedding has been widely used in many data hiding ap-

plications [12]-[18]. Recently, a novel optimal multi-carrier

(multiple message) SS embedding on the linearly transformed

host was proposed [19], [20]. This new approach exploits the

statistics of the host signals and designs optimal carriers and

transformation operator that maximize the output signal-to-

interference-plus-noise ratio (SINR) of the maximum-SINR

data receiver filter or, equivalently, minimize the average

embedding distortion for any target message extraction error

rate. It has been shown that the optimal multi-carrier SS

embedding is superior to its counterpart, the conventional SS

embedding and Improved SS (ISS) embedding [17], in terms

of recovery performance.

However, the security of this optimal multi-carrier SS em-

bedding scheme has not been investigated. Since its securi-

ty/undetectability is unknown, we are always in fear of stanal-

ysis attacks if we apply this optimal SS embedding scheme in

steganographic applications. In this paper, we aim to analyze

the information-theoretic security of the optimal multi-carrier

data embedding scheme by evaluating both the KL distance

and the Bhattacharyya distance between the cover and stego

distributions. The main results of this paper permit to estab-

lish fundamental security limits for the optimal multi-carrier

SS embedding and to draw conclusions about the tradeoffs be-

tween robustness and security. Specifically, theoretical analy-

sis and experimental results show the impact of the number of

embedding messages, the dimensionality of the embedding,



the host transformation, and the embedding distortion in the

security level.

2. OPTIMAL MULTI-CARRIER SS EMBEDDING

Consider a host image H ∈ MN1×N2 where M is the fi-

nite image alphabet and N1 × N2 is the image size in pix-

els. Without loss of generality, the image H is partitioned

into M local non-overlapping blocks of size N1N2

M . Each

block, H1,H2, ....,HM , is to carry one hidden information

bit bi ∈ {±1}, i = 1, 2, . . . ,M , respectively. Embedding

is performed in a 2-D transform domain T (such as the dis-

crete cosine transform, a wavelet transform, etc.). After trans-

form calculation and vectorization (for example by conven-

tional zig-zag scanning), we obtain T (Hi) ∈ R
N1N2

M , i =
1, 2, . . . ,M . From the transform domain vectors T (Hi) we

choose a fixed subset of L ≤ N1N2

M coefficients (bins) to form

the final host vectors xi ∈ R
L, i = 1, 2, . . . ,M . It is common

and appropriate to avoid the dc coefficient (if applicable) due

to high perceptual sensitivity in changes of the dc value. The

autocorrelation matrix of the host data x is defined as

Rx � E{xxT } = 1

M

M∑
i=1

xix
T
i . (1)

It is easy to verify that in general Rx �= αIL, α > 0; that

is, Rx is not constant-value diagonal or “white” in field lan-

guage.

We first review the optimal multi-carrier/multi-message

SS embedding on the linearly modified transform domain of

host[20]:

yi =
K∑

k=1

Akbk,isk + (IL −
K∑

k=1

cksks
T
k )xi + n (2)

where information bits {b1,i, b2,i, . . . , bK,i}, belonging po-

tentially to K distinct messages, are embedded simultaneous-

ly in the linearly transformed host (IL−
∑K

k=1 cksks
T
k )xi, of

block i = 1, . . . ,M , with corresponding amplitudes Ak > 0
and embedding carriers sk ∈ R

L, ‖sk‖ = 1, k = 1, 2, . . . ,K.

In an effort to reduce the interference effect of the host sig-

nal, the host vectors xi is steered away from the embedding

carriers using an operator of the form (IL −
∑K

k=1 cksks
T
k ) .

Under statistical independence across messages, the

mean-square-error (MSE) distortion per-block induced by

each individual message is

Dk =E

{∥∥(Akbk,isk + (IL − cksks
T
k )xi

)
− xi

∥∥2}
= A2

k + c2ks
T
kRxsk. (3)

The intended receiver of the kth-message bits will use a

linear filter wk to recover the corresponding embedded bits

b̂k,i = sgn
{
wT

k yi

}
. (4)

The linear filter that operates on yi and offers maximum SIN-

R at its output to the kth-message recipient is

wmaxSINR,k = R−1
/k sk. (5)

where R/k �
∑K

i �=k Aisis
T
i + (IL −

∑K
i=1 cisis

T
i ) Rx

(IL −
∑K

i=1 cisis
T
i ) +σ2

nIL denotes the “exclude-k” data

autocorrelation matrix. The output SINR value attained by

wmaxSINR,k is

SINRmaxSINR,k = A2
ks

T
kR

−1
/k sk . (6)

If we view SINRmaxSINR,k as a function of the embedding

carrier sk and the transformation parameter ck, then we can i-

dentify sk and ck that maximize the SINR value. The findings

in [20] are summarized in the following Proposition.

Proposition 1: Let q1,q2, . . . ,qL denote the eigenvec-

tors of Rx with corresponding eigenvalues λ1 ≤ λ2 ≤ . . . ≤
λL, then for any given kth-message-induced distortion lev-

el Dk, the optimal carriers and transformation parameters

(soptk , coptk ), k = 1, . . . ,K, that conditionally maximize the

output SINR of the maximum SINR filters

soptk = qk, (7)

coptk =
λk+σ2

n+Dk−
√

(λk+σ2
n+Dk)2−4λkDk

2λk
, (8)

k = 1, . . . ,K.
The target per-message distortion Dk is achieved when the

embedding amplitude is set to Ak =

√
Dk − coptk

2
λk, k =

1, . . . ,K. �

3. INFORMATION-THEORETIC SECURITY
ANALYSIS

If we can model the cover vector x as correlated (colored)

Gaussian distribution with zero mean and autocorrelation Rx,

then the probability density function of the cover data is

Pc(z) =
1

(2π)
L
2 det(Rx)

1
2

exp

(
−1

2
zTR−1

x z

)
. (9)

Since we attempt to evaluate the impact on the host distribu-

tion due to embedding optation only, the external noise term

in (2) can be ignored and the stego data has a form of

yi =

K∑
k=1

Akbk,isk + (IL −
K∑

k=1

cksks
T
k )xi

=
K∑

k=1

Akbk,isk + x̃i (10)

where x̃i � (IL −
∑K

k=1 cksks
T
k )xi is the linearly trans-

formed host data which also has Gaussian distribution with

zero mean and autocorrelation Rx̃ � E{(IL−
∑K

k=1 cksks
T
k )

xxT (IL−
∑K

k=1 cksks
T
k )

T } = (IL−
∑K

k=1 cksks
T
k )Rx(IL−∑K

k=1 cksks
T
k ). Then, under the assumption that the embed-

ded bits are independent identically distributed (i.i.d.), the

probability density function of the stego data can be ex-

pressed as

Ps(z) =
1

B

B∑
j=1

1

(2π)
L
2 det(Rx̃)

1
2

×



exp

(
−1

2
(z− uj)

TR−1
x̃ (z− uj)

)
(11)

where, uj =
∑K

k=1 Akb
j
i sk, j = 1, . . . , B, is one of B =

2K possible embedded vectors, bjk ∈ {±1}, k = 1, . . . ,K,

[bj1, b
j
2, . . . , b

j
K ] represents the jth distinct combination of K

bits.

3.1. KL Distance

The probability density function of the stego data (11) can

be viewed as Gaussian Mixed Model (GMM). Then, the KL

distance between Pc and Ps can be calculated by

DKL(Pc||Ps) ≈
1

B

B∑
j=1

DKL(Pc||(Ps|uj)). (12)

The KL distance between the Gaussians N (0,Rx) and

N (uj ,Rx̃) has the following closed form expression:

DKL(Pc||(Ps|uj)) =
1

2
log

det(Rx̃)

det(Rx)
+

1

2
Tr(R−1

x̃ Rx)

+
1

2
uT
j R

−1
x̃ uj −

L

2
. (13)

Now we attempt to evaluate the KL distance when the op-

timal carriers and transformation parameters in Proposition

1 are used in the data embedding. The autocorrelation ma-

trix Rx can be decomposed as Rx = QΛQT where Λ �
diag{λ1, λ2, . . . , λL}, λ1 ≤ λ2 ≤ . . . ≤ λL are eigenvlues,

Q = [q1,q2, . . . ,qL] is an eigenvector matrix. With the opti-

mal carriers soptk = qk, k = 1, . . . ,K, we have property that

sTkRx = λks
T
k . Then, the autocorrelation matrix Rx̃ can be

rewritten as

Rx̃ � (IL −
K∑

k=1

cksks
T
k )Rx(IL −

K∑
k=1

cksks
T
k )

= Rx − 2

K∑
k=1

ckλksks
T
k +

K∑
k=1

c2kλksks
T
k

= QΛ̃QT (14)

where Λ̃ = diag{λ̃1, λ̃2, . . . , λ̃L}, λ̃i = (1−ci)
2λi if i ≤ K,

λ̃i = λi if i > K, i = 1, 2, . . . , L.

With (14), the first term in (13) can be simplified as

1

2
log

det(Rx̃)

det(Rx)
=

1

2
log

∏L
i=1 λ̃i∏L
i=1 λi

=
1

2
log

K∏
k=1

λ̃k

λk

=
1

2
log

K∏
k=1

(1− ck)
2 =

K∑
k=1

log(1− ci). (15)

The second term in (13) can also be rewritten as

1

2
Tr

(
R−1

x̃ Rx

)
=

1

2
Tr

(
QΛ̃−1ΛQT

)
=

1

2
Tr

(
Λ̃−1Λ

)

=
1

2

(
L−K +

K∑
k=1

1

(1− ck)2

)
. (16)

We also can re-formulate the third term in (13) into following

form

1

2
uT
j R

−1
x̃ uj =

1

2
(

K∑
k=1

Akb
j
ksk)

TR−1
x̃ (

K∑
k=1

Akb
j
ksk)

=
1

2

K∑
k=1

A2
k

(1− ck)2λk
. (17)

By applying (15), (16), and (17) into (13) and then (12), we

finally obtain the KL distance of the optimal SS embedding

DKL(Pc||Ps)≈DKL(Pc||(Ps|uj))

=
K∑

k=1

log(1− ck)+
1

2

(
L−K +

K∑
i=1

1

(1− ck)2

)

+
1

2

K∑
k=1

A2
k

(1− ck)2λk
− L

2

=
K∑

k=1

log(1− ck) +
1

2

K∑
k=1

λk +A2
k

(1− ck)2λk
− K

2
. (18)

The KL distance is proportional to embedding amplitude

Ai and the number of messages K, but independent with the

dimensionality of the embedding L. This result accords with

our intuition on the SS embedding security. However, it is al-

so well known that KL distance is not a symmetric function.

Moreover, sometimes it cannot reasonably represent the dif-

ference between the host and stego distributions. As shown in

(18), when the transformation operator ck is selected close to

1, DKL goes to a very large value.

3.2. Bhattacharyya Distance

To find more appropriate security measure to replace KL dis-

tance, Korzhik et al. proposed to use Bhattacharyya distance.

With cover distribution Pc in (9) and stego distribution Ps in

(11), the Bhattacharyya distance DB(Pc||Ps) is

DB(Pc||Ps) =
1

8
uT
j Rx̃uj+

1

2
log

det(R)√
det(Rx)det(Rx̃)

(19)

where

R � 1

2
(Rx +Rx̃) =

1

2
QΛQT , (20)

Λ� diag{λ1, λ2, . . . , λL}, λi =
1
2 (λi+(1−ci)2λi) if i ≤ K,

λi = λi if i > K, i = 1, 2, . . . , L.

The first term in (19) can be rewritten as

1

8
uT
j Rx̃uj =

1

8
(

K∑
k=1

Akb
j
ksk)

TR−1(

K∑
k=1

Akb
j
ksk) (21)

=
1

8

K∑
k=1

2A2
k

λk + (1− ck)2λk
. (22)



Since we also have

det(R) =
L∏

i=K+1

λi

K∏
i=1

1

2
(λi + (1− ci)

2λi), (23)

det(Rx) =
L∏

i=1

λi, (24)

det(Rx̃) =

L∏
i=K+1

λi

K∏
i=1

(1− ci)
2λi, (25)

the second term in (19) can be re-formulated as

1

2
log

det(R)√
det(Rx)det(Rx̃)

=
1

2
log

∏K
k=1

1
2 (1 + (1− ck)

2)λk∏K
k=1(1− ck)λk

=
1

2
log

K∏
k=1

(
1

2(1− ck)
+

(1− ci)

2

)
. (26)

Applying (22) and (26) into (19), we finally obtain the BD

expression for optimal SS embedding in a form of

DB =
1

4

K∑
k=1

A2
k

λk + (1− ck)2λk
+

1

2

K∑
k=1

log

(
1

2(1− ci)
+

(1− ci)

2

)
. (27)

4. EXPERIMENTAL STUDIES AND DISCUSSION

To carry out an experimental study of the security analysis,

we consider data set which consists of 10, 000 8-bit gray-

scale photographic images [23]. We perform 8 × 8 block D-

CT embedding over all 63 bins except the dc coefficient (i.e.

L = 63) and embed K messages via the optimal multi-carrier

SS embedding. The per-message distortion Dk is set at five

levels Dk = {12, 14, 16, 20, 22}dB. The KL distance and the

Bhattacharyya distance are shown n Fig. 1 as a function of the

number of carriers/messages K. It can be observed that the

larger number of messages K (i.e. payload) or the larger dis-

tortionDk (i.e. embedding intensity) lead to a larger distance,

i.e. the less security. This results coincide our intuition about

the security of SS embedding. However, we also note that KL

distance is too sensitive to the distortion while Bhattacharyya

distance seems is more reasonable to evaluate the security of

the SS embedding with different numbers of messages and

distortion levels.

To further evaluate the security of the optimal SS embed-

ding scheme and validate the theoretic security shown in Fig.

1, we carry out experiments of a typical steganalysis attack.

The same image dataset is used and K = 4, 16, 32 messages

are embed messages via the optimal multi-carrier SS embed-

ding with per-message distortion Dk = 14, 20dB, respective-

ly. Therefore, six embedding settings are considered. A pop-

ular feature [22] and support vector machine (SVM) classifier
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Fig. 1. KL divergence versus number of messages K.
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Fig. 2. ROC curves of SS steganalysis (Dk = 14dB, 20dB,

K = 4, 16, 32).

are selected in our experiment. In Fig. 2, we plot the “receiver

operating characteristic” (ROC) curves that show the proba-

bility of correct identification (PC) versus the probability of

false alarm (PFA). Embedding scheme with higher security

can provide lower PC with a certain PFA. It can be observed

from Fig. 2 that the larger number of messages K (i.e. pay-

load) or the larger distortion Dk (i.e. embedding intensity)

lead to higher detection rate and result in less security. This

experimental results coincide with the theoretic security re-

sults shown in Fig. 1. Moreover, we notice that embedding

with K = 32 and Dk = 14dB has ROC curve close to em-

bedriding with K = 4 and Dk = 20dB. The finding is similar

to the results in Fig. 1(a) and implies that Bhattacharyya dis-

tance is more appropriate for evaluating the theoretic security

of the optimal multi-carrier SS embedding.

5. CONCLUSION

We considered optimal multi-carrier (multiple messages)

spread-spectrum (SS) data embedding and evaluated its secu-

rity which quantified by both the Kullback-Leibler (KL) dis-

tance and Bhattacharyya distance. Theoretical analysis and

experimental results demonstrated the impact on the security

due to the number of embedding messages, the embedding

distortion, and the host transformation. Bhattacharyya dis-

tance is more appropriate for evaluating the theoretic security

of the optimal SS embedding.
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