Security Analysis of PRINCE

Jérémy Jean, Ivica Nikolić, Thomas Peyrin, Lei Wang, <u>Shuang Wu</u>

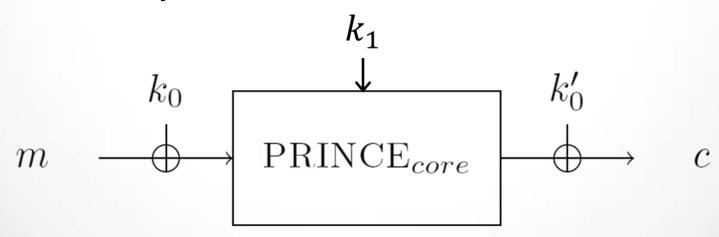
> École Normale Superieure, France Nanyang Technological University, Singapore

FSE 2013

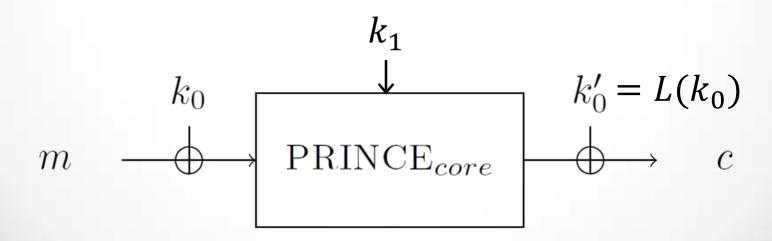
Singapore - March 11, 2013

What is PRINCE

- A lightweight block cipher published at ASIACRYPT 2012
- Based on Even-Mansour-like and more importantly FX construction
- o 128-bit key, 64-bit data



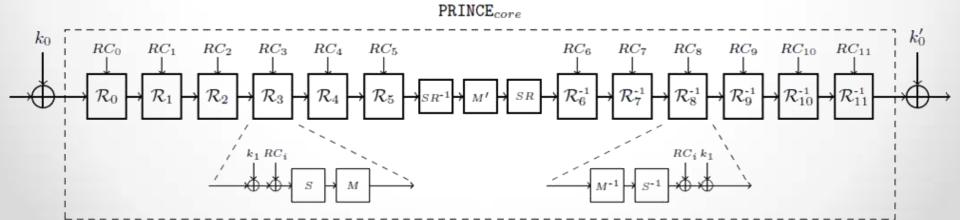
- Specification of PRINCE
 - o Key expansion:
 - $k = (k_0||k_1) \to (k_0||k_0'||k_1), k_0' = L(k_0)$
 - $L(x) = (x >>> 1) \oplus (x >> 63)$



Specification of PRINCE

- 12-round SPN structure in PRINCE_{core}
- Symmetric construction
- Round constants are related $RC_i \oplus RC_{11-i} = \alpha = 0xc0ac29b7c97c50dd$
- \circ α -reflection property

$$D_{k_0||k_0'||k_1}(\cdot) = E_{k_0'||k_0||k_1 \oplus \alpha}(\cdot)$$



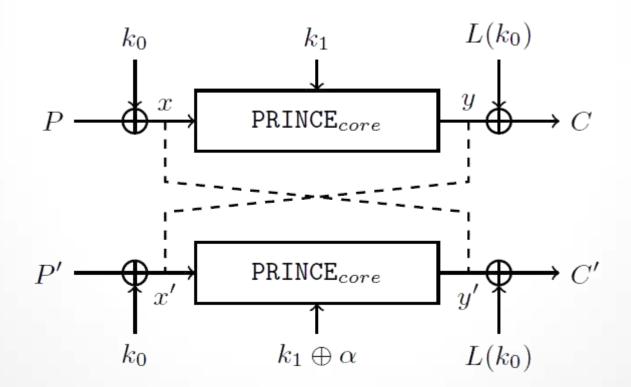
- Claimed Security of PRINCE
 - Single-key attack: 2¹²⁷⁻ⁿ
 - When 2^n queries are made
 - Related-key attack: No bound claimed
 - Only a trivial related-key distinguisher is given

Our Results

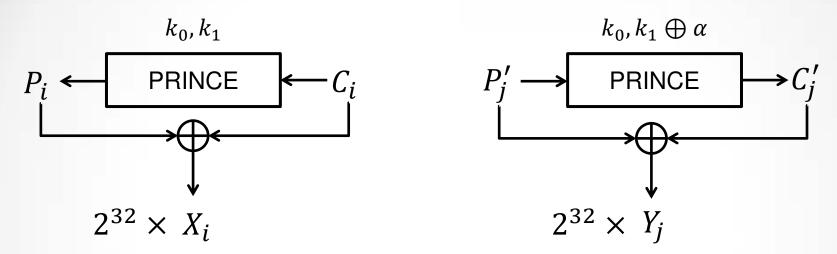
- Related-key Attacks on Full PRINCE
- Single-key Attack on PRINCE_{core} with chosen- α
- Single-key Attack on Full PRINCE with 2^{126.47-n}
- Integral Attack on 6 rounds
- Time-Memory-Data Tradeoffs

Related-key Attacks on full PRINCE

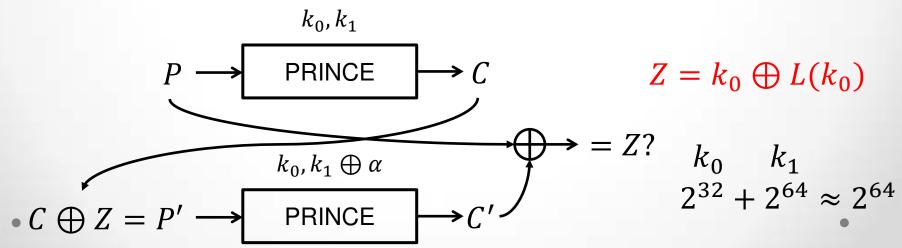
- $k = (k_0||k_1), k' = (k_0||k_1 \oplus \alpha)$
- Property 1. Let $C = PRINCE_k(P), C' = PRINCE_{k'}(P')$. $C \oplus P' = k_0 \oplus L(k_0) \Rightarrow C' \oplus P = k_0 \oplus L(k_0)$



Related-key Attacks on full PRINCE



A collision $X_i = Y_j$ suggests that $Z = C_i \oplus P'_j$ is a possible candidate of $k_0 \oplus L(k_0)$

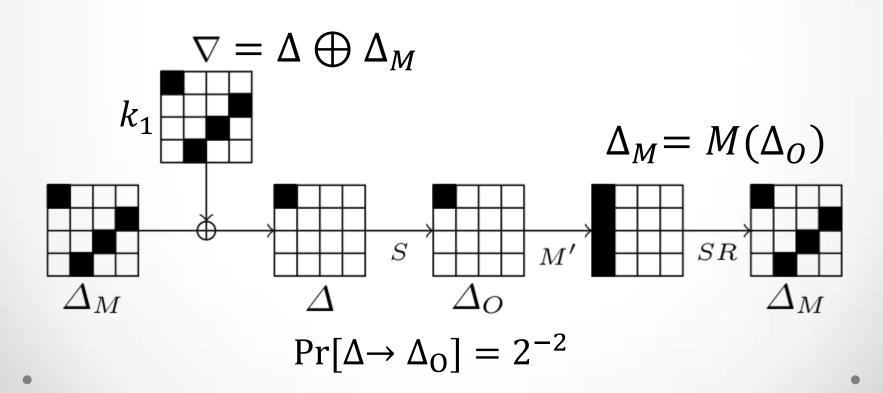


Our Results

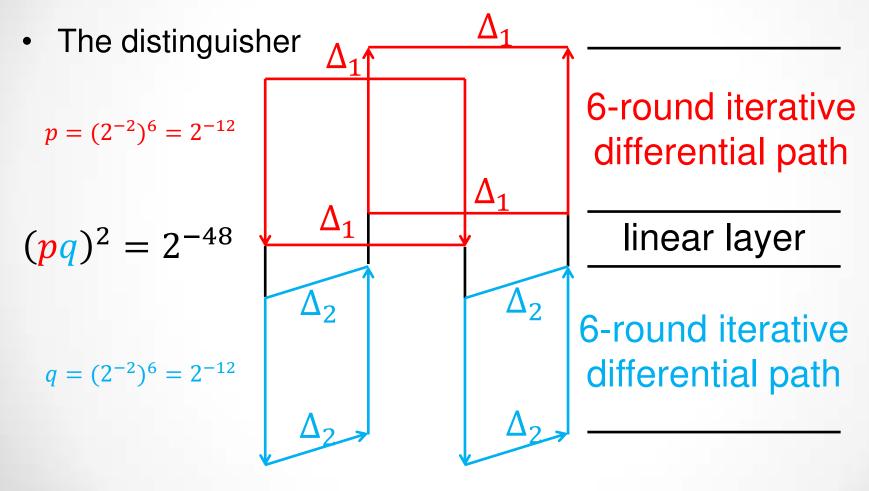
- Related-key Attacks on Full PRINCE
- Single-key Attack on PRINCE_{core} with chosen- α
- Single-key Attack on Full PRINCE with 2^{126.47-n}
- Integral Attack on 6 rounds
- Time-Memory-Data Tradeoffs

Related-key Boomerang Attack on PRINCE core

 Property 2. For the S-box of PRINCE, optimal inputoutput differences holds with probability 2⁻²



Related-key Boomerang Attack on PRINCE core

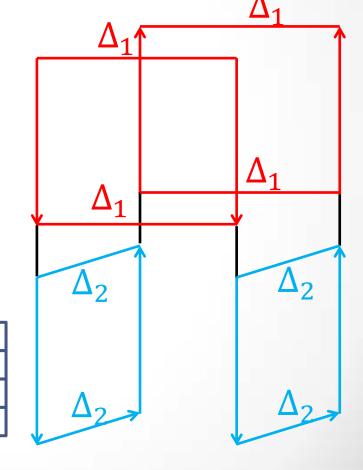


Experimental probability (amplified) $\approx 2^{-36}$

Related-key Boomerang Attack on PRINCE core

Key recovery

- Choose distinct difference positions in Δ_1 and Δ_2
- Find 8 boomerang quartets to cover all the 16 nibbles in the key
- Complexity: 8 · 2³⁶ time and chosen data

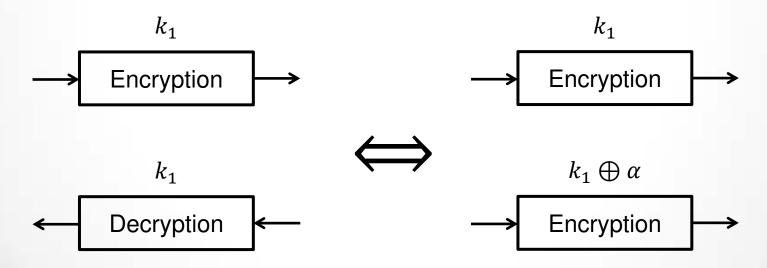


Single-key Attack on PRINCE_{core} with chosen- α

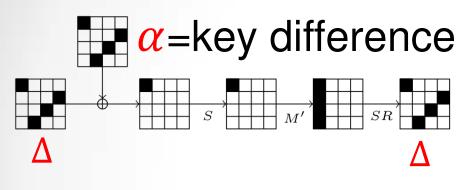
• The α -reflection property

 In single-key attack, the decryption oracle can be used as related-key encryption oracle

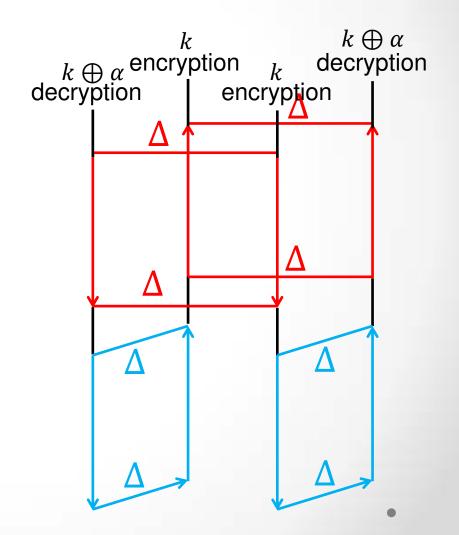
$$D_{k_1}(X) = E_{k_1 \oplus \alpha}(X)$$



Single-key Attack on PRINCE_{core} with chosen- α



Related-key boomerang attack chosen α
Single-key attack



Single-key Attack on PRINCE core with chosen- α

- Key differences have to be the same in the top and bottom paths
 - Amplified probability becomes 2⁻⁴⁰
- Cannot choose position of the active nibble
 - \circ Fixed by the chosen value of α
 - Can only recover a single nibble of the key
- Need 2 boomerang quartets to determine the value of the key nibble
 - \circ Complexity $2 \cdot 2^{40}$ to recover one nibble
- There are 240 possible choices for α
 - \circ The α chosen by the designers is not in the 240 values

Our Results

- Related-key Attacks on Full PRINCE
- Single-key Attack on PRINCE_{core} with chosen- α
- Single-key Attack on Full PRINCE with 2^{126.47-n}
- Integral Attack on 6 rounds
- Time-Memory-Data Tradeoffs

Single-key Attack on Full PRINCE with 2^{126,4-n}

- Linear relations with probability of 1
 - From FX construction

$$E_{k_0||k_1}(P) = E_{k_0 \oplus \Delta||k_1}(P \oplus \Delta) \oplus L(\Delta)$$

or
$$D_{k_0||k_1}(C) = D_{k_0 \oplus \Delta||k_1}(C \oplus L(\Delta)) \oplus \Delta$$

 \circ From the α -reflection property

$$D_{k_0||k_1}(C) = E_{k_0||k_1 \oplus \alpha} (C \oplus k_0 \oplus L(k_0)) \oplus k_0 \oplus L(k_0)$$

Single-key Attack on Full PRINCE with 2^{126.4-n}

- (P, C) is a known plaintext-ciphertext pair
- One offline computation to test 4 keys:

$$\circ E_{\mathbf{k}_0||\mathbf{k}_1}(P) = C'$$

 \circ If $\delta = C' \oplus C \neq 0$, let

$$X = L^{-1}(P \oplus C \oplus k_0), Y = P \oplus C' \oplus L(k_0),$$

obtain the other three equations:

$$E_{\mathbf{k}_0 \oplus L^{-1}(\delta)||\mathbf{k}_1} (P \oplus L^{-1}(\delta)) = C$$

$$D_{\mathbf{X}||\mathbf{k}_1 \oplus \alpha}(C) = C' \oplus L(\mathbf{k}_0) \oplus L^{-1}(P \oplus C \oplus \mathbf{k}_0) = P?$$

$$E_{\mathbf{Y}||\mathbf{k}_1 \oplus \alpha}(P) = P \oplus \mathbf{k}_0 \oplus L(P \oplus C' \oplus L(\mathbf{k}_0)) = C?$$

Single-key Attack on Full PRINCE with 2^{126.4-n}

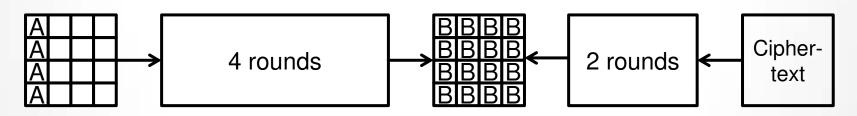
- Speeding up the key recovery
 - o One query: Time complexity 2126.47, Claimed bound 2127
 - o Two queries: Time complexity 2125.47, Claimed bound 2126
- A proven new bound
 - \circ With 2^n data, the bound is $2^{126.47-n}$

Our Results

- Related-key Attacks on Full PRINCE
- Single-key Attack on PRINCE_{core} with chosen- α
- Single-key Attack on Full PRINCE with 2^{126.47-n}
- Integral Attack on 6 rounds
- Time-Memory-Data Tradeoffs

Integral Attack on 6 rounds

- 6-round integral attack
 - Similar technique as in original SQUARE attack
 - 4-round integral path
 - 2-round guess of key nibbles



Guess part of the key

Our Results

- Related-key Attacks on Full PRINCE
- Single-key Attack on PRINCE_{core} with chosen- α
- Single-key Attack on Full PRINCE with 2^{126.47-n}
- Integral Attack on 6 rounds
- Time-Memory-Data Tradeoffs

A Memory-Data Trade-off

$$P \xrightarrow{k_0} L(k_0)$$

$$P \oplus k_0 = A$$

$$B \oplus L(k_0) = C$$

$$\Rightarrow L(P) \oplus L(A) = L(k_0)$$

$$\Rightarrow L(P) \oplus C = L(A) \oplus B$$

online

offline

2^d known plaintext-ciphertext pairs

For 2^{64-d} values of A and 2^{64} k_1 , build a table (size 2^{128-d})

$$N = 2^{128}, P = 2^{128-d}, M = 2^{128-d}, T = 2^{64}, D = 2^{d}$$

$$DM = N, T = N^{1/2}, M > N^{1/2}$$

Time-Memory-Data Trade-offs

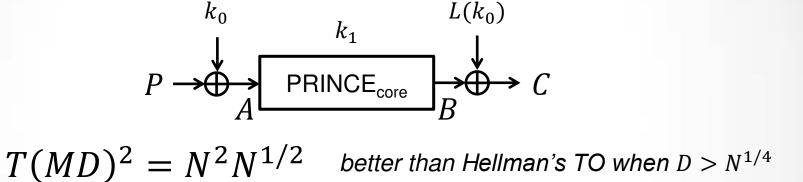
Hellman's trade-off

o t tables with $m \times t$ sizes $A \rightarrow PRINCE_{core} \rightarrow B$ $N = 2^n, T = t^2, M = mt$ $TM^2 = N^2$

Built for given plaintext A

Time-Memory-Data Trade-offs

Build Hellman's table for chosen values of A



Hellman's single table trade-off

 $TMD = NN^{1/2}$ better than Hellman's TO when $D > M/N^{1/2}$

Summary

Cipher	Rounds	Data	Time	Memory	Technique
PRINCE	4	2^4	2^{64}	24	Integral
	5	$5 \cdot 2^4$	2^{64}	28	Integral
	6	2^{16}	2^{64}	2 ¹⁶	Integral
	12	2^1	$2^{125.47}$	negl.	Single-Key
	12	2^{33}	2^{64}	2^{33}	Related-Key
	12	$MD = N, T = N^{1/2}$			Memory-Data Trade-off
	12	$T(MD)^2 = N^2 N^{1/2}$			Time-Memory-Data Trade-off
	12	$TMD = NN^{1/2}$			Time-Memory-Data Trade-off
PRINCE _{core}	4	2^4	28	24	Integral
	5	$5 \cdot 2^4$	2^{64}	28	Integral
	6	2^{16}	2^{64}	2 ¹⁶	Integral
	12	2^{39}	2 ³⁹	2 ³⁹	Related-Key Boomerang
	12	2^{41}	2 ⁴¹	negl.	Single-Key Boomerang, Chosen α

Thank you for your attention!