
Security Analysis of RAPP: An RFID

Authentication Protocol based on Permutation

Wang Shao-hui1,2,3, Han Zhijie1,2, Liu Sujuan1,2, Chen Dan-wei1,2

{1.College of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210046, China

2. Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing, Jiangsu 210003, China
3. Network and Data Security Key Laboratory of Sichuan Province }

Abstract. One of the key problems in Radio Frequency Identification(RFID) is security and privacy. Many RFID authentication
protocols have been proposed to preserve security and privacy of the system. Nevertheless, most of these protocols are analyzed
and it is shown that they can not provide security against some RFID attacks. RAPP is a new ultralightweight authentication
protocol with permutation. In RAPP, only three operations are involved: bitwise XOR, left rotation and permutation. In this paper,
we give an active attack on RAPP. We first collect some authentication messages through impersonating valid tag and readers;
Then we forge valid reader to communicate with the tag about times. Using the property of the left rotation and permutation
operation, we can deduce the relationship of bits of random number or secret keys at different positions, thus obtain all the secret
shared by the reader and the tag.

302

Keywords: RFID; Lightweight Authentication; Permutation; Privacy; Active Attack

1. Introduction
Radio Frequency Identification (RFID) systems are used for automated identification of objects and people.

Applications that use RFID technology include warehouse management, logistics, railroad car tracking, product
identification, library books check-in/check-out, asset tracking, passport and credit cards, etc. Most of the RFID
systems comprise of three entities: the tag, the reader and the back-end database. The tag is a highly constrained
microchip (with antenna) that stores the unique tag identifier and other related information about an object. The
reader is a device that can read/modify the stored information of the tags and transfer these data to a back-end
database, with or without modification. Back end database stores this information and will keep track of the data
exchanged by the reader [1].

One of the key problems in RFID is privacy and security. It is typically critical to the communication between the
reader and the tag because wireless transmissions are more vulnerable to malicious adversaries. The possible security
threats to RFID systems include denial of service (DoS), man in the middle (MIM), counterfeiting, spoofing,
eavesdropping, traffic analysis, traceability, de-synchronization etc.

An effective and flexible way to assure privacy and security is to adopt authentication protocols. The low cost
deployment demand for RFID tags forces the lack of resources for performing true cryptographic operations to
provide security. It is worthwhile to study ultralightweight authentication protocols which require tags to involve
only simple bitwise operations such as bitwise XOR, bitwise OR, bitwise AND and rotation.

Providing light weight security in RFID systems is not a trivial task. Several ultralightweight protocols have
already been proposed. However, they all have certain flaws and vulnerabilities. Vajda and L.Buttyan [2] have
proposed a set of extremely lightweight challenge response authentication algorithms. These can be used for
authenticating the tags, but they may be easily attacked by a powerful adversary. Juels [3] proposed a solution based
on the use of pseudonyms, without using any hash function. But after a set of authentication sessions, the list of
pseudonyms will need to be reused or updated through an out-of-band channel, which limits the practicality of this
scheme.

Peris-Lopez et al. proposed a family of ultralightweight mutual authentication protocols (e.g., [4] and [5]). But
later it was reported that these protocols are vulnerable to desynchronization attack and full-disclosure attack [6]. In
addition to this there are other lightweight mutual authentication protocols proposed in the literature and attacks have
been successfully mounted on all of these as demonstrated in literature [7-10]. Chien introduced another
ultralightweight protocol called SASI [11] to provide strong authentication and strong integrity. However,
vulnerabilities have also been illustrated such as tag traceability, de-synchronization and secret disclosure attack [12-
15]. [16] presented Gossamer protocol which is inspired by SASI and tries to be devoid of the weakness of SASI.
Nonetheless, the de-synchronization attack in [14] still works.

Recently, Yun Tian et.al.[17] propose a new ultralightweight RFID authentication protocol with permutation
(called RAPP). They introduce the permutation operation to break the orders of the bits. Moreover, in their scheme,
the last messages are sent by the reader rather than by the tag to resist de-synchronization attacks. This also
economizes the storage of the tag. Tags in RAPP involve three operations: bitwise XOR, left rotation and
permutation.

In this paper, we give a security analysis of this new proposed protocol—RAPP. An active attack is proposed, in
which we first collect some authentication messages through impersonating valid tag and reader; Then we forge valid

reader to communicate with the tag. The analysis shows when querying about times with the tag, we can deduce
all the secrets shared by the reader and the tag utilizing the property of the left rotation and permutation operations. The
rest of the paper is organized as follows: RAPP is briefly illustrated in section 2. Section 3 describes the detail
security analysis of this new protocol with permutation, and shows how to extract all the secrets shared by the reader
and the tag. Section 4 gives the complexity of the attack and an example of our attack with reduced length is
presented. Conclusion is given in section 5.

302

2. RAPP Scheme
In this section, we give a brief description of RAPP. In this protocol, costly operations such as multiplications and

hash evaluations are not used at all, and random number generation is only done at the reader’s side. All the variables
in the protocol are 96 bit. Frequently used notations in this paper are listed below:

ID : Tag’s unique identifier
)(nIDS : Tag’s dynamic pseudonym at the successful run of protocol. thn

)(
1

nK , , : Secret keys shared at the successful run of protocol.)(
2

nK)(
3

nK thn

1n , : Pseudorandom numbers generated by Reader. 2n
EDCBA ,,,, : Messages transferred between Reader and Tag.

⊕ Bitwise XOR operation
In RAPP, the tags and readers only involve 3 operations: bitwise XOR ⊕ , left rotation and

permutation . Suppose
),(yxRot

),(yxPer x and are two 96-bit strings, is defined to left rotate y),(yxRot x by
bits, where is the Hamming weight of .

)(ywt
)(ywt y

The permutation operation is defined as follows:),(yxPer
Definition 2.1: Suppose x and are two 96-bit strings, where y

9621xxxx = , 96,...,2,1},1,0{ =∈ ixi ; 9621yyyy = , 96,...,2,1},1,0{ =∈ iyi
Moreover, the Hamming weight of , , is (y)(ywt m 960 ≤≤ m) and

1...
21

====
mkkk yyy , 0...

9621
====

++ kkk yyy
mm

,
where and 96...1 21 ≤<<<≤ mkkk 96...1 9621 ≤<<<≤ ++ kkk mm . Then, the permutation of x according to ,
denoted as , is .

y
),(yxPer

12959621
......),(

++
=

mmm kkkkkkk xxxxxxxyxPert
In RAPP, every tag shares a fixed and unique identifier () with the reader. At the authentication, the tag

and the reader share a pseudonym and three secrets (, ,), which will update to ,
, , if authentication is successful. Every authentication contains three rounds: tag identification,

mutual authentication and , secrets updating, which is presented as follows:

ID thn
)(nIDS)(

1
nK)(

2
nK)(

3
nK)1(+nIDS

)1(
1

+nK)1(
2

+nK)1(
3

+nK
IDS

(I.) Tag Identification. After receiving the “Hello” message from the reader, the tag sends the to the
reader, which will look up the tags in the database with the same pseudonym and get the corresponding information.

)(nIDS

(II) Mutual Authentication. The reader and tag will authenticate to each other through the following step:
Step1. Reader first generates a random number , computes and sends the tag the messages as equation

(1) and (2) . The tag can deduce the random number through message
1n),(BA

1n A , and make sure whether the reader is
valid via checking the correctness of message B :

1
)(

1
)(

2),(nKKPerA nn ⊕= (1)
),()),(,()(

1111
)(

2
)(

1
nnn KnPernnRotKKPerB ⊕⊕= (2)

Step2. If the reader is valid, the tag sends back the answer message to authenticate himself: C
IDKnnKPerC nn ⊕⊕⊕=),()(

311
)(

1 (3)
Step3. After authenticating the validity of the tag, Reader generates another random number , computes and

sends the tag the messages as follow. The tag can deduce the random number through message , and
make sure that is not changed via checking the correctness of message

2n
),(ED 2n D

2n E :

2
)(

2
)(

3),(nKKPerD nn ⊕= (4)

),()),(,()(
2

)(
3122

)(
3

nnn KKnPernnRotKPerE ⊕⊕= (5)
(III) and Secrets Updating. After authenticating successfully, the reader and tag will update the pseudonym

 and secrets in the follow way:
IDS

IDS
)(

3
)(

2
)(

112
)()1(),(nnnnn KKKnnIDSPerIDS ⊕⊕⊕⊕=+ (6)

)(
21

)(
1

)1(
1),(nnn KnKPerK ⊕=+ (7)

)(
12

)(
2

)1(
2),(nnn KnKPerK ⊕⊕=+ (8)

)(
12

)(
3

)1(
3),(nnn IDSnnKPerK ⊕⊕=+ (9)

3. Security Analysis of RAPP
In the section, we give the security analysis of the RAPP and some superscripts are omitted for convenience in the

following paper. We denote by the bit at position i in ix][x and 1, +iix the string with the same bit as x

except for the bits in position and . i 1+i 1,0 +ii means the string with all the bits are 0 except that the bit in
position and is 1. i 1+i

As to the operations),(⋅⋅Per and , we can get the following observations:),(⋅⋅Rot
Observation 1. As to any two 96-bit strings x , and y z , it is easy to see that operation has the

property: .
),(⋅⋅Per

),(),(),(yzxPeryzPeryxPer ⊕=⊕

Observation 2. As to any , if and are different, 95,...,2,1=i ix][1][+ix 1, +iix and x have the same hamming

weight. If , 0][][1 == +ii xx 2)()(1, +=+ xwtxwt ii ; and if 1][][1 == +ii xx , 2)()(1, −=+ xwtxwt ii .

Observation 3. As to any , if and are different, 95,...,2,1=i ix][1][+ix 1,1,1, 0),(),(+++ =⊕ ssiiii xxRotxxRot for

some bit position s . That is to say),(1,1, ++ iiii xxRot is almost the same as except for the bits in position),(xxRot
s and . 1+s

In addition, there is only one different number in the sequence of number satisfying i 1)],([1,1, =++ iiiii xxRot
from that of , and also one different position number in the sequence of number satisfying 1)],([=ixxRot j

0)],([1,1, =++ jiiii xxRot from that of 0)],([=jxxRot .

Observation 4. From the observation 3, we can see as to any 95,...,2,1=i , if and are different, ix][1][+ix
)),(,(1,1, ++ iiii xxRotyPer either equals to , or has different bits in 2 positions , i.e.)),(,(xxRotyPer
⊕++)),(,(1,1, iiii xxRotyPer tsxxRotyPer ,0)),(,(= with bit position s and t .

Example: Given , we can get 10100111=x 110001113,2 =x , 101111115,4 =x , 5)()(3,2 == xwtxwt ,

2)()(5,4 += xwtxwt . , 11110100),(=xxRot 11111000),(3,23,2 =xxRot and 11011111),(5,45,4 =xxRot .

),(3,23,2 xxRot has the different bits from at bit position 5 and 6, while),(xxRot),(5,45,4 xxRot has 4 different
bits from . At position 1, 2, 3, 4, 5, the bit of),(xxRot),(3,23,2 xxRot is 1, and position 6, 7, 8, the bit of

),(3,23,2 xxRot is 0; while the bit of is 1 at the position 1, 2, 3 ,4 ,6, and 0 at the position 5 ,7 ,8.),(xxRot
In the following, we will illustrate how to deduce all the secrets shared between the tag and reader. Our attack

belongs to active attack, that the adversary can impersonate a legal tag or reader to communicate with the
corresponding reader or tag. We first show how to recover the random number generated by the reader; Then the
secret key is deduced and secret key is obtained by analyzing some linear equations; All the other secrets
including and

1n

3K 2K

1K ID can be recovered in the end.

3.1 Recovery of random number 1n

In our attack, the adversary first forges a legal reader to communicate with the tag to obtain its pseudonym ;
Then he forges as the legal tag to authenticate himself. After receiving the pseudonym , the reader generates
random number to compute messages

IDS
IDS

1n A and B as equation (1) and (2):

112),(nKKPerA ⊕= ;),()),(,(111121 KnPernnRotKKPerB ⊕⊕=
To recover the random number , the adversary forge a legal reader to launch the authentication with the valid

tag. And for any , the adversary calculates the message
1n

95,...,2,1=i 1,' += iiAA , and it is easy to know the random
number used by adversary is

1,1 +iin . From the observation 1, we can see the valid message 'B must satisfy:

),()),(,(),()),(,(' 11112111,11,11,121 KnPernnRotKKPerKnPernnRotKKPerBB iiiiii ⊕⊕⊕⊕⊕=⊕ +++

),0()),(,()),(,(11,11211,11,121 KPernnRotKKPernnRotKKPer iiiiii +++ ⊕⊕⊕⊕=
 From the observation 2, 3 and 4, we can see:

1. If and are different, in][1 11][+in)),(,(1,11,121 ++⊕ iiii nnRotKKPer either equals

to or

)),(,(1121 nnRotKKPer ⊕⊕

0 ts,0 with unknown position s and t , and),0(11, KPer ii + equals to vu ,0 with unknown bit
position and u v . That is to say, in this conditions, 4)'(≤⊕BBwt .

2. If and are the same, the permutation of in][1 11][+in 21 KK ⊕ according to),(1,11,1 ++ iiii nnRot behaves
randomly compared with . So it is hard to predicate the changes and will be bigger
than 4 with overwhelming probability.

),(11 nnRot)'(BBwt ⊕

From the above analysis, we proceed the following algorithm to deduce the random number : 1n
Algorithm 1. Recovery of the random number 1n
for i=1 to 95

with all the possible 961 <<≤ vu , the adversary sends the tag)0,()','(,1, vuii BABA ⊕= +
if tag sends back the message , we conclude 'C 1][][+≠ ii xx .

Otherwise)00,()','(,,1, vutsii BABA ⊕⊕= + is send with all the possible 961 <<≤ ts , 961 <<≤ vu
if tag sends back the message , we conclude 'C 1][][+≠ ii xx .
Otherwise we conclude . 1][][+= ii xx

3.2 Recovery of secret key 3K

It is easy to see we do not deduce the actual value of random number but the relationship of adjoining bit . So
we can always obtain 2 possible random numbers, one starting with the bit 1, and the other with bit 0. In fact, the two
possible random numbers are and

1n

1n 1n . After obtaining the random number , we can get
.

1n

112),(nAKKPer ⊕=
To recover the secret key , we use the following observation: 3K
Observation 5. As to any , if and are different, 95,...,2,1=i ix][1][+ix),(1, +iixyPer either equals to

, or has different bits at 2 positions.),(xyPer
The adversary first sends the actual message to the tag, and receives the response message . From the

Algorithm 1, if and are different, the adversary can forge valid message and tag sends back
message , which satisfies:

),(BA C
in][1 11][+in)','(BA

'C
),(),(),(' 31,11,11311131,11,11 KnnKPerIDKnnKPerIDKnnKPerCC iiiiiiii ⊕⊕=⊕⊕⊕⊕⊕⊕⊕=⊕ ++++

),())(,(),(31111,311,113111 KnnKPerKnnKPerKnnKPer iiii ⊕⊕⊕⊕⊕=⊕⊕⊕ ++

From the observation 5, we can see if and are different, must equal to 2;
while if equals to ,

iKn][31 ⊕ 131][+⊕ iKn)'(CCwt ⊕

iKn][31 ⊕ 131][+⊕ iKn)'(CCwt ⊕ will be larger than 2 with overwhelming probability.
However, as shown in Algorithm 1, we can not obtain all the relationship of adjoining bit of , because if

 and are the same, we can not forge valid message to obtain . So, the adversary can forge
tag and the reader again to communicate with the corresponding valid ones obtain other authentication messages

, . The value of will be discussed in section 4. Because is known, the
random numbers can be computed as .

31 Kn ⊕

in][1 11][+in)','(BA 'C

),,()()()(rrr CBA lr ,...,2,1= l),(12 KKPer
lrn r ,...,2,1,)(

1 =),(12
)()(

1 KKPerAn rr ⊕=
Thus we present the following Algorithm 2 to recover the secret key . 3K

Algorithm 2. Recovery of the secret key 3K
for i=1 to 95

if 111][][+≠ ii nn
if , we conclude , which means 2)'(=⊕CCwt 13131][][+⊕≠⊕ ii KnKn 133][][+= ii KK
Otherwise, we conclude , which means 13131][][+⊕=⊕ ii KnKn 133][][+≠ ii KK

Otherwise find the value t : and call the Algorithm 1 to obtain ,][][1
)(

1
)(

1 +≠ i
t

i
t nn ')(tC

if , we conclude 2)'()()(=⊕ tt CCwt 13131][][+⊕≠⊕ ii KnKn
Otherwise, we conclude . 13131][][+⊕=⊕ ii KnKn

3.3 Recovery of secret key 1K

We should note that just as Algorithm 1, Algorithm 2 is utilized to obtain the relationship of adjoining bit of
. As to each possible random number and 31 Kn ⊕ 1n 1n , there are 2 possible secret key and 3K 3K . So there are

4 possible combinations (,), (,1n 3K 1n 3K), (1n ,) and (3K 1n , 3K). We should try all these 4 possible combinations.
We use the variable and to show how to recover the secret key 1 . 3K 1n K

From the equation , we can obtain: C
IDKnKPerKnnPerIDKnnKPerC ⊕⊕⊕⊕=⊕⊕⊕=),(),(),(3113113111

i.e. IDKnnPerCKnKPer ⊕⊕⊕=⊕),(),(311311

As to different s and t , we can get :
),(),(),(),(3

)(
1

)(
13

)(
1

)(
1

)()(
3

)(
113

)(
11 KnnPerKnnPerCCKnKPerKnKPer ttssstts ⊕⊕⊕⊕⊕=⊕⊕⊕

Secret key and all the random numbers are known, so the right part of the above equation
can be computed. and are two different permutations of secret key .
Thus the left part of the equation involves the relationship of bit at different bit position and the linear equations can
be set up. However we do not solve the linear equations, we can obtain the relationship of bit of at different
positions from the equations.

3K lin i ,...,2,1,)(
1 =

),(3
)(

11 KnKPer s ⊕),(3
)(

11 KnKPer t ⊕ 1K

1K

3.4 Recovery of all the other secrets
After obtaining the random number and secret keys and , the identifier 1n 1K 3K ID can be deduced using

equation (3), and the secret key of can be computed through the equation (1). In addition, we can use the
messages , to check whether the possible guessing is right or not.

2K
),,()()()(rrr CBA mr ,...,2,1=

4. Experiment Results

In this section, we first give an attack example with all the variables having 24 bits, and then the general

complexity of our attack is analyzed.

4.1 An Example with Reduced Length
Here we give an example with reduced length. We take the identifier acxID 76860= , three secrets keys

, and the first random number chosen . Thus we can
compute:

bfxKexKaxaK 49150,842630,06490 321 === 361701 bxcn =

=),(12 KKPer 011100001011000010010110, 100110001100110110000110 =⊕ 12 KK
=),(11 nnRot 111101100111100011000010, 101100111110010111000001 =),(11 KnPer

=⊕)),(,(1112 nnRotKKPer 100100100110101000101101
So the messages the reader generated are:

=A 101101101010011100100101, =B 001000011000111111101100,
The attack procedure is present briefly as follows:
Step1 Recovery the random number . when 1n 1=i , we know now 3061702,11 bxn = , =),(2,112,11 nnRot

101111011001100000110000,
 =⊕)),(,(2,112,1112 nnRotKKPer 101100101000110011010100, and =),(12,11 KnPer

001100111110010111000000. The message 'B should equal to 100000010110100100010100, and
. So as to the Algorithm 1, the adversary can not compute the valid 12)'(=⊕ BBwt 'B to authenticate himself. We

can conclude . 2111][][nn =
In the table 1, as from 1 to 12, we list the corresponding values with the new random number i 1,1 +iin . We can

see when , , and we can forge a valid 12,11,7,5,2=i 4)'(≤⊕ BBwt 'B from the Algorithm 1. So
when .

111][][+≠ ii nn
12,11,7,5,2=i

Table 1 part of the values with new random number

1,1 +iin

i

1,1 +iin

)),(,(1,11,112 ++⊕ iiii nnRotKKPer

),(11,1 KnPer ii +

'B

)'(BBwt ⊕

1 0x0617b3 101100101000110011010100 001100111110
010111000000

100000010110
100100010100

12

2 0xa617b3 100100100110101000101101 111100111110
010111000000

011000011000
111111101101

2

3 0xf617b3 101101100101010100011000 111100111110
010111000011

010001011011
000011011011

14

4 0xde17b3 101101101101010100010000 101100111110
010111000111

000001010011
000011010111

14

5 0xca17b3 100100100110101000101101 100100111110
010111000101

000000011000
111111101000

2

6 0xc017b3 101100101100110000110100 100000111110
010111000001

001100010010
100111110101

8

7 0xc517b3 100100100110101000101101 101000111110
010111001001

001100011000
111111100100

2

8 0xc797b3 101101100110010100110000 101100111110
010111011001

000001011000
000011101001

8

9 0xc6d7b3 101101100100010101110000 101110111110
010111010001

000011011010
000010100001

12

10 0xc677b3 101101100100010101110000 101110111110
010111100001

000011011010
000010010001

14

11 0xc627b3 100100100110101000101101 101100111110
010110100001

001000011000
111110001100

2

12 0xc60fb3 100100100110011000101101 101101111110
010110000001

001001011000
001110101100

4

Finally We can conclude that

. So the two

possible random numbers are 110001100001011110110011 and

≠===≠=≠==≠= 111101918171615141312111][][][][][][][][][][][nnnnnnnnnnn

241231221211201191181171161151141131121][][][][][][][][][][][][][nnnnnnnnnnnnn =≠=≠=≠≠===≠≠

=1n =1n 001110011110100001001100.
Step2 Recovery the secret key . As to the original message 3K A and , we know =

011000000101111000010011, 110100111110001100101000, =01000010100011
0100111001，and the response message send by the tag is

B 11 nK ⊕

=⊕ 13 nK),(3111 KnnKPer ⊕⊕

=C 110001000100101001010011.
As to the algorithm 2, we know when , the adversary can forge valid authentication message 12,11,7,5,2=i 'A

and , and the tag will send back . Taken 'B 'C 7,5,2=i as an example, we show how to deduce the relationship of
: 3K

2=i : =⊕ 3,213 nK 101100111110001100101000, =⊕ 3,211 nK 000000000101111000010011,

=⊕⊕),(33,213,211 KnnKPer 000000101000110100111000, and ='C 100001000100101001010010. Because

, we conclude . Because , . 2)'(=⊕CCwt 313213][][nKnK ⊕≠⊕ 3121][][nn ≠ 3323][][KK =

5=i : =⊕ 6,513 nK 110111111110001100101000, =⊕ 6,511 nK 011011000101111000010011,

=⊕⊕),(36,516,511 KnnKPer 0101100001010001101001111, and ='C 110111100110010000100101. Because

, we conclude . Because , 12)'(=⊕CCwt 613513][][nKnK ⊕=⊕ 6151][][nn ≠ 6353][][KK ≠

7=i : =⊕ 8,713 nK 110100001110001100101000, =⊕ 8,711 nK 011000110101111000010011,

=⊕⊕),(33,213,211 KnnKPer 010010100011010011111001, and ='C 110011001111001110010011. Because
, we conclude . Because , . 8)'(=⊕CCwt 813713][][nKnK ⊕=⊕ 8171][][nn ≠ 8373][][KK ≠

To obtain all the relationship of bit in conjoining position, we need to collect other random numbers and we do not
show this in detail here. The relationship of bit at different position that we can get is:

====≠≠≠≠≠== 113103938373635343332313][][][][][][][][][][][KKKKKKKKKKK
 243233223213203193183173163153143133123][][][][][][][][][][][][][KKKKKKKKKKKKK =≠≠=≠=≠≠=≠≠≠

So the two possible secret key are 000101011111010010011011 and 3K =3K =3K 111010100000101101100100.

Step3 Recovery the secret key . Here we get 4 possible combinations , 1K),(31 Kn),(31 Kn ,),(31 Kn and

),(31 Kn . Suppose we get another authentication messages)1(A , and from the valid reader and tag. The
new random number chosen is

)1(B)1(C

axr 493770= , and)1(A =001110011000011111101100,
=100100110111011110111110 and =001100000000110010010101.)1(B)1(C

We only choose as an example. Now We know 011100001011000010010110, and we
can get the new random number is . Set and , then we have:

),(31 Kn =),(12 KKPer
axr 493770= 11 nKK ⊕= rKK ⊕= 1

*

⊕=⊕⊕⊕=⊕ 3,5,6,12,13,14,17,18,20,22,23,24,21,19,16,15,11,10,9,8,7,4,2,13
*

13),(),(' KrKKPernKKPerCC

=1,3,7,8,11,12,13,14,20,21,22,23,24,19,18,17,16,15,10,9,6,5,4,2
*K 111101000100011011000110.

3,5,6,12,13,14,17,18,20,22,23,24,21,19,16,15,11,10,9,8,7,4,2,1K means the permutation of K according to 1,2,4,7,…,6,5,3. So we can

get , Because , so . Thus we can
get the relationship of bit at different positions in the same way.

1][][][][][][21211112
*

1 =⊕⊕⊕=⊕ KrKnKK 1][,1][211 == rn 1][][2111 =⊕ KK

Usually we can not get all the relationship we need. In the example, we can not get the relationship of bit with
position 19 and 20. At that time, we need to choose another messages to try the above procedure to get the
relationship of bit in position 19 or 20 with other bit positions.

As the computation of the other secret and identifier is straightforward, we do not discuss here.

4.2 Complexity Analysis of the Attack
Here we will analysis the complexity of our attack. There are two factors we should consider:
1. The number() of authentication messages that the adversary need to collect through impersonating valid tag or

reader. If the number is chosen randomly, we know for any
l

1n 95,...,2,1=i , 5.0)][]([111 == +ii nnpr . For random
number, the probability that the bit at position i equals to the bit at position

l
1+i is . Take l)5.0(,10=l

. That is to say, when collecting 10 authentication messages, we can find with
overwhelming probability for any .

00097.0)5.0(=l
111][][+≠ ii nn

95,...,2,1=i
2. the number we need to query the tag. To recover the random number and secret key , we need to send the

forged messages () to the tag to deduce the relationship of bit in different positions. From the Algorithm 1 and
algorithm 2, we can conclude the number is about .

3K
',' BA

302
96

2
96 248 ≈×× CC

5. Conclusion
In this paper, we give an active attack on RAPP, a new ultralightweight authentication protocol with permutation. We

first collect some authentication messages through impersonating valid tag and readers; Then we forge valid reader to
communicate with the tag about times. Using the property of the left rotation and permutation operation, we can
deduce relationship of bits of random number or secret keys at different positions, thus obtain all the secret shared by
the reader and the tag. In practice, the number needed to query the tag is much larger. How to reduce the analysis
complexity will be considered in the future work.

302

Acknowledgements
This work is supported by the Priority Academic Program Development of Jiangsu Higher Education

Institutions(PAPD), National Natural Science Funds (Grant No.60903181) and Nanjing University of Post and
Telecommunication Funds (Grant No.NY208072).

REFERENCE
1. Hunt, V.D., Puglia, A., Puglia, M.: RFID: A Guide to Radio Frequency Identification. Wiley-Inter science (2007).
2. Vajda, I., Buttyan, L.: Lightweight authentication protocols for low-cost RFID tags. In: Proc. of UBICOMP 2003
(2003)
3. Juels, A.: Minimalist Cryptography for Low-Cost RFID Tags (Extended Abstract). In: Blundo, C., Cimato, S. (eds.)
SCN 2004. LNCS, vol. 3352, pp. 149–164. Springer, Heidelberg (2005)
4. P. Peris-Lopez, J. C. Hernandez-Castro, J. M. E. Tapiador, and A. Ribagorda. LMAP: a real lightweight mutual
authentication protocol for low-cost RFID tags. in Proc. 2006 Workshop RFID Security.
5. P. Peris-Lopez, J. C. Hernandez-Castro, J. M. E. Tapiador, and A. Ribagorda. M2AP: a minimalist mutual-
authentication protocol for lowcost RFID tags. in Proc. 2006 International Conference on Ubiquitous Intelligence
and Computing, pp. 912–923.
6. T. Li and G. Wang. Security analysis of two ultra-lightweight RFID authentication protocols. in Proc. 2007 IFIP
RC-11 International Information Security Conference, pp. 109–120.
7. Sadighian, Jalili, R.: Afmap: Anonymous forward-secure mutual authentication protocols for rfid systems. In: Third IEEE
International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2009), pp. 31–36 (2009)
8. Sadighian, Jalili, R.: Flmap: A fast lightweight mutual authentication protocol for rfid systems. In: 16th IEEE International
Conference on Networks (ICON 2008), New Delhi, India, pp. 1–6 (2008)
9. Safkhani, M., Naderi, M., Bagher, N.: Cryptanalysis of AFMAP. IEICE Electronics Express 7(17), 1240–1245 (2010)
10. Bárász, M., Boros, B., Ligeti, P., Lója, K., Nagy, D.: Passive Attack Against the M2AP Mutual Authentication Protocol for
RFID Tags. In: First International EURASIP Workshop on RFID Technology, Vienna, Austria (2007)
11. Chien, H.-Y.: SASI: A New Ultralightweight RFID Authentication Protocol Providing Strong Authentication and Strong
Integrity. IEEE Transactions on Dependable and Secure Computing 4(4), 337–340 (2007)
12. T. Cao, E. Bertino, and H. Lei. Security analysis of the SASI protocol. IEEE Trans. Dependable and Secure Computing, vol. 6,
no. 1, pp. 73–77, Jan.-Mar. 2009.
13. R. C.-W. Phan. Cryptanalysis of a new ultralightweight RFID authenticaion protocol—SASI. IEEE Trans. Dependable and
Secure Computing, vol. 6, no. 4, pp. 316–320, Oct.-Dec. 2009.
14. H.-M. Sun, W.-C. Ting, and K.-H. Wang. On the security of Chien’s ultralightweight RFID authentication protocol. IEEE
Trans. Dependable and Secure Computing, vol. 8, no. 2, pp. 315–317, Mar.-Apr. 2011.
15. P. D’Arco and A. De Santis. On ultralightweight RFID authentication protocols. IEEE Trans. Dependable and Secure
Computing, vol. 8, no. 4, pp. 548–563, July-Aug. 2011.
16. P. Peris-Lopez, J. C. Hernandez-Castro, J. M. E. Tapiador, and A. Ribagorda, “Advances in ultralightweight cryptography for
low-cost RFID tags: Gossamer protocol,” in Proc. 2008 International Workshop on Information Security Applications, pp. 56–68.
17. Y. Tian, G. Chen, and J. Li. A New Ultralightweight RFID Authentication Protocol with Permutation. IEEE Communications
Letters, Vol. 16, No. 5, May 2012, pp.702-705.

	1. Introduction
	2. RAPP Scheme
	3. Security Analysis of RAPP
	3.1 Recovery of random number
	3.2 Recovery of secret key
	3.3 Recovery of secret key
	3.4 Recovery of all the other secrets

	4. Experiment Results
	4.1 An Example with Reduced Length
	4.2 Complexity Analysis of the Attack

	5. Conclusion
	Acknowledgements
	REFERENCE

