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Abstract. This paper studies the security of SHA-256, SHA-384 and
SHA-512 against collision attacks and provides some insight into the
security properties of the basic building blocks of the structure. It is
concluded that neither Chabaud and Joux’s attack, nor Dobbertin-style
attacks apply. Differential and linear attacks also don’t apply on the
underlying structure. However we show that slightly simplified versions
of the hash functions are surprisingly weak : whenever symmetric con-
stants and initialization values are used throughout the computations,
and modular additions are replaced by exclusive or operations, sym-
metric messages hash to symmetric digests. Therefore the complexity of
collision search on these modified hash functions potentially becomes as
low as one wishes.

1 Introduction

A cryptographic hash function can be informally defined as an easy to compute
but hard to invert function which maps a message of arbitrary length into a fixed
length (m-bit) hash value, and satisfies the property that finding a collision, i.e.
two messages with the same hash value, is computationally infeasible. Most
collision resistant hash function candidates proposed so far are based upon the
iterated use of a so-called compression function, which maps a fixed-length (m+
n-bit) input value into a shorter fixed-length m-bit output value.

The most popular hash functions today are based on MD4 [20]. Following
den Boer and Bosselaers [3], Vaudenay [23] and Dobbertin’s work [7], it is no
longer recommended to use MD4 for secure hashing, as collisions can now be
computed in about 220 compression function calls. In 1991, MD5 was introduced
as a strengthened version of MD4. Although no collision has been found so far
for MD5, pseudo-collisions were found on its compression function, so that MD5
is no longer considered as a very conservative hash function either [8, 9]. Other
variants include RIPEMD, RIPEMD-128 and RIPEMD-160 [11, 19]. Attacks on
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reduced versions of RIPEMD were published in [6, 10]. We call these functions
the MD family of hash functions.

SHA, which also belongs to the MD family of hash functions, was introduced
by the American National Institute for Standards and Technology and published
as a FIPS standard in 1993. This early version is known as SHA-0. In 1994 a mi-
nor change to SHA-0 was made, and published as SHA-1 [14, 15]. The best attack
known on SHA-0 is by Chabaud and Joux [4]. They show that in about 261 eval-
uations of the compression function it is possible to find two messages hashing
to the same value whereas a brute-force attack exploiting the birthday paradox
would require about 280 evaluations. The best known cryptanalysis reported on
SHA-1 addresses the existence of slid pairs [22]. Finally a new generation of SHA
functions with much larger message digest sizes, namely 256, 384 and 512 bits,
called SHA-256, SHA-384 and SHA-512, was introduced in 2000 and adopted as
a FIPS standard in 2002 [15]. As far as we know, the main motivation for intro-
ducing these new standard hash functions was to provide hash functions with
security levels against collision search attacks consistent with the security lev-
els expected from the three standard key sizes for the newly selected Advanced
Encryption Standard (128, 192 and 256 bits) [16].

In this paper we study the security of these new functions against known
attacks and report a very surprising property on a simplified version of these
functions. For practical reasons, whenever our results apply to all three variants
of SHA, we will denote these by SHA-2. For all other cases, the original name
of the function will be used.

The rest of this paper is organised as follows. Section 2 briefly describes
SHA-256, SHA-384, and SHA-512. Section 3 contains preliminary remarks on
their main design features and a comparison with the corresponding features of
SHA-1. Section 4 investigates the applicability of the currently known attacks
of cryptographic hash functions to SHA-2. Section 5 shows that close variants
of SHA-2 with modified constant values are not collision resistant, and sect. 6
concludes the paper.

2 Outline of SHA-256 and SHA-384/512

SHA-256, SHA-384, and SHA-512 belong to the MD family of hash functions.
Since SHA-384 and SHA-512 are almost identical, we will describe both functions
as a single algorithm SHA-384/512, and indicate their differences at the end of
this Section. SHA-256 (resp. SHA-384/512) results from the iteration of a 256+
512-bit to 256-bit (resp. 512 + 1024-bit to 512-bit) compression function. The
hash computations are the following.

Padding: First the message is right-padded with a binary ‘1’, followed by a suf-
ficient number of zeros followed by a 64-bit suffix (resp. a 128-bit suffix) contain-
ing the binary length of the original message, so that the length of the resulting



Security Analysis of SHA-256 and Sisters 177

T1 = h + Σ1(e) + Ch(e, f, g) + Kt + Wt;
T2 = Σ0(a) + Maj(a, b, c);
h = g;
g = f ;
f = e;
e = d + T1;
d = c;
c = b;
b = a;
a = T1 + T2;

 

Ma Ch Σ 0 Σ 1 

a b c d e f g h 

K t 

W t 

Fig. 1. State register update at each round of the compression function. The functions
Ch, Maj, Σ0 and Σ1 do not depend on the round number, whereas Kt and Wt represent
a constant and a message word the value of which depends on the round number t [15]

padded message becomes a multiple of 512 (resp. 1024) bits. The padded mes-
sage is then cut into 512-bit blocks (resp. 1024-bit blocks). This form of padding
is non-ambiguous and is an example of a valid padding for the Merkle-Damg̊ard
construction [5].

State Register Update: After the padding phase, the 8 state registers a, b, c, d,
e, f, g, h are initialized to pre-determined 32-bit constants (resp. 64-bit con-
stants) H0 to H7 (see [15] for a complete description) for the first message
block, and to the current intermediate hash value for the following blocks. Next,
64 rounds (resp. 80 rounds) of the compression function are applied following the
pseudo-code given below. Finally, the output value of the registers is added to
the previous intermediate hash value according to the Davies-Meyer construction
using addition (denoted ‘+’) modulo 232 (resp. 264) to give the new intermediate
hash value.

In the case of SHA-256, the functions Ch, Maj, Σ0 and Σ1 operate on 32-bit
input words, and produce the 32-bit words given by
Ch(X, Y, Z) = (X ∧ Y ) ⊕ (¬X ∧ Z);
Maj(X, Y, Z) = (X ∧ Y ) ⊕ (X ∧ Z) ⊕ (Y ∧ Z);
Σ0(X) = ROTR2(X) ⊕ ROTR13(X) ⊕ ROTR22(X);
Σ1(X) = ROTR6(X) ⊕ ROTR11(X) ⊕ ROTR25(X).
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Fig. 2. Message schedule recurrence

In the case of SHA-384/512, the functions Ch, Maj, Σ0 and Σ1 operate on
64-bit input words, and produce the 64-bit words given by
Ch(X, Y, Z) = (X ∧ Y ) ⊕ (¬X ∧ Z);
Maj(X, Y, Z) = (X ∧ Y ) ⊕ (X ∧ Z) ⊕ (Y ∧ Z);
Σ0(X) = ROTR28(X) ⊕ ROTR34(X) ⊕ ROTR39(X);
Σ1(X) = ROTR14(X) ⊕ ROTR18(X) ⊕ ROTR41(X).

Message Schedule: The ‘message schedule’ takes the original 512-bit message
block (resp. the original 1024-bit message block) as input and expands these 16
32-bit words (resp. these 16 64-bit words) W0 to W15 into 64 words W0 to W63

(resp. into 80 words W0 to W79), one for every round of the compression function.
This is done according to the following recurrence formula:

Wt = σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16

where σ0 and σ1 represent linear functions (see also Fig. 2). In the case of SHA-
256, the functions σ0 and σ1 operate on 32-bit input words, and produce the
32-bit words given by σ0(X)= ROTR7(X) ⊕ ROTR18(X) ⊕ SHR3(X) and σ1

(X)= ROTR17(X) ⊕ ROTR19(X) ⊕ SHR10(X). In the case of SHA-384/512,
the functions σ0 and σ1 operate on 64-bit input words, and produce the 64-
bit words given by σ0(X)= ROTR1(X) ⊕ ROTR8(X) ⊕ SHR7(X) and σ1(X)=
ROTR19(X) ⊕ ROTR61(X) ⊕ SHR6(X).

When all consecutive 512-bit message blocks (resp. all consecutive 1024-bit
message blocks) have been hashed, the last intermediate hash value is the final
overall hash value. The SHA-384 hash computations are exactly the same as
those of SHA-512, up to the two following differences : the constants H0 to H7

used in SHA-384 are not the same as those used in SHA-512, and the SHA-384
output is obtained by truncating the final overall hash value to its 6 leftmost
words.

3 Preliminary Remarks

3.1 Comparison with SHA-1

State Register Update Function: The overall structure of the 8-word state
register (a, b, c, d, e, f, g, h) update performed at each round of the compression
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function of SHA-2 is close to the one of the 5-word state register (a, b, c, d, e)
update performed at each round of SHA-1. However, one round of SHA-2 is
more complex than one round of SHA-1: the Σ0 and Σ1 GF(2)-linear functions
achieve a faster mixing than the circular rotations ROTL5 and ROTL30, the
non-linear functions Majority and Choice are applied in each round whereas
only one of the ternary functions Choice, Majority and Xor is applied in each
SHA-1 round, and finally two register variables of SHA-2 are substantially mod-
ified at each round compared to only one for SHA-1. The SHA-2 round function
is the same for all rounds except for the use of distinct constants Kt at each
round, whereas SHA-1 involves four different types of round functions used in
a subset of 20 consecutive rounds each. This lesser uniformity might represent
a security advantage for SHA-1. But on the other hand equal constants Kt are
used within each type of round function of SHA-1; unlike SHA-2, this makes
SHA-1 vulnerable to Saarinen’s sliding attack [22]. One can also notice that the
number of rounds to state register length ratio, which represents the number of
“full rotations” of the state register during each compression function computa-
tion, is much lower for SHA-2 than for SHA-1: its value is 64/8 = 8 in the case
of SHA-256 and 80/8 =10 in the case of SHA-384/512 instead of 80/5 = 16 for
SHA-1. The exact performance to security balance argumentation behind the
substantial reduction of this ratio is unclear to us. This may look at first glance
as a serious decrease of the security margin offered by SHA-2. On the other hand
one can probably consider that this is at least partly compensated by the higher
complexity of the round function (recall that two variables are updated in each
round).

Message Schedule: Both the SHA-1 and the SHA-2 message schedules pro-
duce a recurring sequence of depth 16 initialized with the 16-word message block
M = M0, M1, . . . , M15. However, unlike for SHA-1, the SHA-2 message sched-
ule computations are not GF(2)-linear, because of the involvement of the ‘+’
addition instead of ‘⊕’. This makes the properties of the message schedule re-
currence more difficult to analyze, because the set of possible difference patterns
is no longer a linear code. The SHA-1 property following which (unlike in SHA-
0) the recurrence relation mixes the various bit positions is strengthened thanks
to the involvement of the bit rotations in σ0 and σ1 (which play a similar role as
the ROTL1 rotation of the SHA-1 recurrence) and also because of the diffusion
effect introduced by the ‘+’ addition.

3.2 Majority and Choice Functions

In this section we recall the elementary properties of the majority and choice
functions as well as the modular addition operation [12]. Both the Choice and
Majority functions operate on individual bits and are balanced on their respec-
tive input domains, as shown in their difference distribution table 1. The notation
of table 1 is as follows: for every 3-bit input difference, a ‘0’ denotes that the
output difference is always zero, a ‘1’ denotes that it is always one, and a ‘0/1’
denotes that it is zero in half of the cases and one the rest of the time.
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Table 1. Difference distribution table for a 3-bit input difference

X Y Z Choice Majority

0 0 0 0 0

0 0 1 0/1 0/1

0 1 0 0/1 0/1

0 1 1 1 0/1

1 0 0 0/1 0/1

1 0 1 0/1 0/1

1 1 0 0/1 0/1

1 1 1 0/1 1

For the subsequent sections, it is useful to note that both functions achieve
a zero output difference (i.e. an internal collision) with average probability 1

2 if
exactly one of the three input differences is equal to 1.

Concerning the modular addition operation, one can easily see that if A
and B differ in only the i-th bit, then with probability 1

2 if a third word C is
added to A and B, (A + C) and (B + C) also differ in only the i-th bit. The
only special case here is when the difference is located in the most significant bit;
in this case the carry bit does not propagate any difference, thus (A + C) and
(B +C) differ also only in the most significant bit (with probability one) due to
the modular reduction. This is already described in [12]. Thus on average, a one-
bit difference before a modular addition does not propagate after the addition
operation with probability 1

2 .

3.3 Sigma Functions

In this section we state some elementary properties of the functions Σ0 and Σ1

used in the state register update function and of the functions σ0 and σ1 used
in the message schedule computations:

• The GF(2)-linear mappings Σ0 and Σ1 are one to one. In the case
of SHA-256, this results from the fact that if 32-bit words are represented
by polynomials over GF(2)[X ]/(X32 +1), then Σ

{256}
0 and Σ

{256}
1 are repre-

sented by multiplications by the polynomials X2+X13+X22 and X6+X11+
X25, and these two polynomials are co-prime with X32 + 1 = (X + 1)32.
Similarly, in the case of SHA-384/512, this results from the fact that the
polynomials X28 + X34 + X39 and X14 + X18 + X41 are co-prime with the
polynomial X64 + 1 = (X + 1)64.

• The GF(2)-linear mappings σ0 and σ1 are one to one (in order to
check this property for SHA-256 and SHA-384/512, we computed the two
32× 32 binary matrices (resp. the two 64× 64 binary matrices) representing
σ0 and σ1 and checked that the kernel of these matrices is restricted to the
null vector.
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These two observations tend to increase our confidence in the strength of
SHA-2 versus SHA-1 as they provide for a much faster diffusion effect and, more
importantly, no internal collisions can be achieved through either one of the Σ
and σ functions.

4 Security of SHA-2
against Known Hash Function Attack Techniques

In this section we investigate the applicability of the currently known attacks of
cryptographic hash functions to SHA-2.

4.1 Applicability of Chabaud and Joux’s Attack Techniques

Chabaud and Joux’s attack of SHA-0 is entirely differential in nature. It takes
advantage of the absence of any mixing of the various bit positions in the SHA-0
message schedule expansion function and of its linearity to construct relatively
low weight1 differences on the W message schedule output which are likely to
produce collisions during the SHA-0 compression.

This attack can be summarized as follows. First one considers the injection in
one of the words Wt of a one-bit difference, and one identifies the corresponding
corrective patterns, i.e. sets of differences in the subsequent words Wt+i that
cancel with high probability the resulting differences in the state registers after
a few rounds. Then we search for low weight sequences of 1-bit perturbative pat-
terns satisfying the linear recurrence of the message schedule (and some extra
technical conditions). Due to the structure of the SHA-0 message schedule, the
difference pattern resulting from the superposition of these perturbative pat-
terns and of the corresponding corrective pattern satisfies the linear recurrence.
Therefore, numerous pairs of messages leading to one of these difference patterns
are easy to construct and one of these pairs is likely to lead to a SHA-0 collision.

Following this attack, we investigate whether differential collisions may be
obtained on SHA-2 faster than by exhaustive search. Using the differential prop-
erties of the non-linear functions shown in Sect. 3.2, we approximate each ad-
dition by an exclusive or operation with probability 1

2 , and the majority and
choice functions by zero with probability 1

2 . We proceed in three steps:

• define a low weight perturbation and related corrective patterns;
• compute the probability that the corrective patterns produce a differential

collision;
• produce heuristic evidence that these patterns may not be generated ac-

cording to the SHA-2 message schedule.

Obviously, in order to obtain a minimum weight difference, the best strat-
egy is to inject a one bit difference in a given message word Wi, and for each
1 The difference weights encountered in this attack are higher by an order of magnitude

than the extremely low difference weights encountered in Dobbertin’s attacks.
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Table 2. Hamming weight of a propagating difference for SHA-2

W a b c d e f g h

1 1 0 0 0 1 0 0 0

6 0 1 0 0 3 1 0 0

9 0 0 1 0 0 3 1 0

0 0 0 0 1 0 0 3 1

1 0 0 0 0 1 0 0 3

6 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0

consecutive round, to disable the propagation into the register A by appropriate
corrective patterns of the next message words. Allowing for more than a single
bit difference is not realistic as each Σ function automatically multiplies the
Hamming weight of the difference by three in each step, and trying to match
these bit locations using several initial difference bits implies a fatal decrease of
the probability to obtain such differential collisions. Therefore we believe that
no other strategy can provide a sufficiently low weight perturbation pattern,
hence an acceptable overall collision probability. The pattern has been obtained
in a straightforward manner by setting the following equalities: let Wi be the
word containing the perturbative one-bit difference. Then we define the next
eight word differences by: Wi+1 = Σ1(Wi) ⊕ Σ0(Wi) ; Wi+2 = Σ1(Σ0(Wi));
Wi+3 = 0; Wi+4 = Wi; Wi+5 = Σ1(Wi) ⊕ Σ0(Wi); Wi+6 = 0; Wi+7 = 0;
Wi+8 = Wi.
This leads to the propagation of minimum weight differences in the 8 registers
as shown in table 2. Explicit examples of such a difference propagation is given
in Appendix A.

Fact 1. Using corrective patterns with weight one, six and nine in the message
words as shown in the W column of the above table gives rise to a differential
collision pattern over 9 rounds.

The next step is to evaluate the probability of the differential pattern. As
we already mentioned, we approximate the addition operation by an exclusive
or, and the non-linear functions by zero. Two relevant additions occur in every
round per one bit difference in a message word. These are: the addition of T1

and the register d to form the new register value e; the addition of T1 and T2 to
form the new register value a. The probability of a carry bit appearing in one
of these additions is bound by 1

2 for each addition, thus we upper bound the
overall probability for two additions per difference bit by 1

4 . There are a total of
1 + 6 + 9 + 1 + 6 + 1 = 24 difference bits over the 9-round pattern. Hence the
probability over all additions is upper bounded by (2−24)2 = 2−48.
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As for the non-linear choice and majority functions, the average probability
to obtain a zero difference is 1

2 per difference bit. A total of 18 such difference bits
occur in the non-linear functions over the 9 rounds; thus the overall associated
probability is upper bounded by 2−18.

Fact 2. The overall probability associated to the 9-round differential collision
pattern is upper bounded by 2−66.

In the third and last step, we provide evidence that these patterns may not
be concatenated (as is the case for SHA-0) in order to form message words that
follow the correct message schedule.

For SHA-256 suppose there is a block of 9 consecutive message words with
differences defined as above (i.e. following the differential collision pattern). This
block may not be followed or preceded by more than 15 zero difference message
words. Clearly if 16 consecutive words in the message schedule are identical,
then the whole message schedule is identical over the 64 words. If we apply the
pattern twice, we can separate both patterns by a block of zero difference words
of length at most 15. Therefore at most 15+9+15+9+15=63 difference message
words may be defined. This shows that at least 3 different patterns must be
combined to follow the correct message schedule.

If two of these patterns are applied, the probability to obtain a differential
collision becomes lower than 2−132 whereas the complexity of a birthday attack
on SHA-256 only represents 2128 computations on average.

Conclusion. The original attack by Chabaud and Joux on SHA-0 does not ex-
tend to SHA-256.

For SHA-384/512 suppose there is a block of 9 consecutive message words with
differences defined as above (i.e. following the differential collision pattern). This
block may not be followed by more than 7 pairs of identical message schedule
output words. Let us show why.

Recall that the simplified message schedule (i.e. where every addition has
been replaced by an exclusive or) is defined by:

Wt = σ1(Wt−2) ⊕ Wt−7 ⊕ σ0(Wt−15) ⊕ Wt−16

Then assuming that Wi to Wi+8 represent a differential collision pattern and
that Wi+9 to Wi+15 are equal to zero, the difference in the 16-th message word
is defined by:

Wi+16 = σ1(Wi+14)⊕Wi+9⊕σ0(Wi+1)⊕Wi

= σ0(Wi+1)⊕Wi

= σ0(Σ1(Wi)⊕Σ0(Wi))⊕Wi

�= 0 for a 1-bit difference in Wi.

Hence no more than 7 consecutive identical words may separate two consecutive
differential collision patterns, with the original message block difference having
at least one non-zero word.
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Combining up to four different patterns, we can define at most 15 + 9 + 7
+ 9 + 7 + 9 + 7 + 9 + 7 = 79 difference message words satisfying the message
schedule recurrence. This shows that at least 5 different patterns have to be
combined to follow the correct message schedule.

If four of these patterns are applied, the probability to obtain a differential
collision becomes lower than 2−264 whereas the complexity of a birthday attack
on SHA-512 only represents 2256 computations on average.

Conclusion. The original attack by Chabaud and Joux on SHA-0 does not ex-
tend to SHA-384/512.

4.2 Applicability of Dobbertin’s Attack Techniques

The hash function attack techniques introduced by H. Dobbertin in [7, 8, 9, 10]
exploit the extremely simple structure of the message schedule of hash functions
such as MD4 and MD5. In these functions, the 16-words of the message block
are just repeated in permuted order a small number r of times (namely 3 times
for MD4 and 4 times for MD5). Dobbertin’s attacks use pairs (M, M∗) of almost
equal messages, up to a difference of Hamming weight 1 in only one of their 16
words. The attack strategy consists in controlling the diffusion of the resulting
low weight (e.g. r-bit) message schedule output differences pattern through the
hash function computations, in order for the resulting state registers differences
after the r−1 first (16-step) rounds to be cancelled by the last message schedule
difference encountered in the last (16-steps) round. Depending on the round
considered, the control method consists either in differential techniques or in
more sophisticated equation solving techniques.

Due to the more complex and conservative expansion method used in the
message schedules of the SHA family of hash function, and in particular in
the message schedule of SHA-2, Dobbertin’s attacks do not seem applicable to
these functions. More explicitly, the recurrence relation of the SHA-2 function
(in particular the term σ0(Wt−2) in this recurrence) ensures a fast and strong
diffusion of any low weight difference in the message block M , and prevents any
(M, M∗) pair of message blocks from resulting in a very low weight difference
(e.g. 3, 4 or 5) at the message schedule expansion output.

4.3 Differential Attacks

Link between Differential Properties and Collision Resistance. In this
section we investigate differential properties of the compression function. The
idea behind this is that if it were possible to find any pseudo-collisions of the
special form compress(H, M) = compress(H ′, M) on the compression function
of SHA-2, then the Merkle-Damg̊ard security argument [5] could not be applied.
In other words, the existence of such pseudo-collisions on the compression func-
tion of SHA-2 would represent an undesirable property.
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In order to search for pseudo-collisions of this special form, it is convenient
to view the compression functions of SHA-256 and SHA-384/512 as a block ci-
pher2 encrypting a 256-bit (or 512-bit) input H = (a, b, c, d, e, f, g, h) under key
[W0, . . . , W63] (or key [W0, . . . , W79]) followed by the addition of the output with
the input H according to the Davies-Meyer construction. If it were possible to
predict the differential behavior of this block cipher, it might help find high
probability differential characteristics such that the output difference compen-
sates the input difference in the final Davies-Meyer addition, and thus to find
pseudo-collisions of the form compress(H, M) = compress(H ′, M). A similar
approach has already been taken for DES-based hash functions in [18] and for
SHA-1 in [12] in order to investigate the security of the underlying block ci-
pher. No high probability differentials (and thus no partial collisions) could be
found for SHA-1. However it should be mentioned that slid pairs (which result
in related-key attacks for block ciphers) have since been discovered on MD-type
hash functions used as block ciphers, including SHACAL-1 and MD5 [22].
Next we study the differential behavior of the block ciphers underlying SHA-2.

Search for Low Weight Differential Characteristics over a Few Rounds
As in Section 3.1, we approximate each addition by an exclusive or operation with
probability 1

2 , and the majority and choice functions by zero with probability 1
2 ,

using the differential properties of the non-linear functions shown in Sect. 3.2.
The most efficient differential characteristic over a few consecutive rounds we

have identified relates to 4 rounds, and has a probability of 2−8. See Appendix
B for details.

While this characteristic does not concatenate over the whole 64 rounds, we
can conclude that the best overall differential probability for SHA-256 appears
to be lower than 2−8∗16 = 2−128 which results in a work factor much higher than
the complexity of a collision search for a 256-bit hash function. Thus a standard
differential attack on the compression function is very unlikely to succeed.

While this characteristic does not concatenate over the whole 80 rounds, for
SHA-512 we can conclude that the best overall differential probability appears
to be lower than 2−8∗20 = 2−160. As opposed to the case of SHA-256, this does
not result in a work factor which is higher than the complexity of a collision
search on a 512-bit or even a 384-bit hash function. However, it remains to
be seen whether a global differential characteristic may be constructed from
this property. Having in mind that we need 80-round characteristics with input
and output differences that compensate each other in the final Davies-Meyer
addition, there is no obvious way to extend this result to the hash function
itself.

Search for Iterative Differential Characteristics We have also investigated
iterative differential differential characteristics of non-negligible probability on
2 In the case of SHA-256, this block cipher is the SHACAL-2 algorithm [13] recently

selected by the European NESSIE project
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a reduced number of rounds. For that purpose we have approximated the actual
differential transitions associated with each round of the SHA-2 register update
function by a linear function L of {0, 1}256 (resp. {0, 1}512). In order to iden-
tify candidate iterative differential characteristics over a restricted number r of
rounds, we computed, for the 32 first values of r, a basis of the vector space of
difference vectors δ = (δa, δb, δc, δd, δe, δf , δg, δh) which stay invariant un-
der Lr. See Appendix B for details. It was observed that for the first values of r,
all the 32-bit or 64-bit words of the vectors of the identified spaces of iterative
differences are “periodic”, of period 32, 16 or 8 (resp of period 64, 32 or 16) and
thus the weight of all candidate iterative differential characteristics we identified
using this method is a multiple of 8. Therefore, we believe that this approach
does not provide high probability iterative differentials for SHA-2.

Consequently, we find the differential behavior of the compression functions
of SHA-2 to be sound and believe it is highly unlikely that even pseudo-collisions
will be found through this approach.

5 Weakness in SHA-2 Variants
Using Symmetric Constants and Exor

In this Section we show that if some relatively slight variations are made in the
SHA-2 specification, the resulting modified hash function is no longer collision-
resistant. The considered variations consist in replacing all constants encountered
in the algorithm by highly symmetric values and all additions modulo 2n by the
exclusive or operation. In order to simplify the discussion, we only describe the
case of SHA-256, but the transposition to SHA-384/512 is straightforward.

Let us denote by Ω the set {0, 1}32, and by Ω′ the set of all symmetric 32-bit
words consisting of two equal 16-bit halves:

Ω′ = {C ∈ {0, 1}32 | ∃c ∈ {0, 1}16, C = c‖c}.

Let us denote by SHA’-256 the SHA-256 variant obtained by replacing:

• the words H
(0)
0 to H

(0)
7 of the initial hash value H(0) by any 8 constant 32-bit

words belonging to Ω′;
• the constants K0 to K63 involved in the hash computation by any 64 32-bit

words belonging to Ω′;
• the operation ‘+’(mod 232 addition) in the hash computation by ‘⊕’;
• the shift operation SHR3(x) in the function σ

{256}
0 by the circular shift op-

eration ROTR3(x) and the shift operation SHR10(x) of the function σ
{256}
1

by the circular shift operation ROTR10(x).

Now it is easy to see that if x, y ∈ Ω′ then x⊕y ∈ Ω′ and that if x, y, z ∈ Ω′,
then Ch(x, y, z) ∈ Ω′ and Maj(x, y, z) ∈ Ω′, so that if the H(i−1) and M (i)

inputs to the compression function sha’-256 of SHA’-256 both consist of Ω′

words, then the resulting H(i) output also consists of Ω′ words. Consequently:
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• the complexity of a collision search on the restriction of the sha’-256 com-
pression function to input values belonging to Ω′ is only 264 instead of 2128

(since for such values a collision on the left half of each output word implies
a collision on the whole output word);

• the complexity of a collision search on the SHA’-256 hash function is also
only 264 instead of 2128: to construct such a collision, one can for instance first
search two 512-bit initial message blocks M1 and M ′

1 ∈ Ω′16 such that sha′−
256(H0, M1) = sha′−256(H0, M

′
1). The complexity for this sha’-256 collision

search is 264. Now given any binary suffix message of any length M2 ∈
{0, 1}∗, the M = M1‖M2 and M ′ = M ′

1‖M2 messages provide a collision for
the SHA-256 hash function.

The above attack can easily be generalized to the SHA”-256; SHA”’-256, etc.
variants of SHA-256 in which all constants are selected in the subsets Ω′′ = {C ∈
{0, 1}32 | ∃c ∈ {0, 1}8, C = c‖c‖c‖c}, Ω′′′ = {C ∈ {0, 1}32 | ∃c ∈ {0, 1}4, C =
c‖c‖c‖c‖c‖c‖c‖c}, etc., of Ω instead of Ω′. This results in collision attacks of
complexity only 2256/4 = 264 for SHA’-256, 2256/8 = 232 for SHA”-256 and so
on.

We have checked these results experimentally by implementing the case of
SHA”’-256. In other words, for SHA-256, we applied the described modifications
to the compression function such that all constants were replaced by 32-bit values
showing 8 identical nibbles. Next we generated a large hash table and searched
for collisions on the compression function for 220 input messages of length one
block (512 bits) showing 8 identical nibbles in each one of the 16 32-bit input
words. On average, the number of collisions we expect to obtain is 220×220

2×232 which
is about 27. These numbers were confirmed by our experiments.

As an illustration, in table 3 we provide two messages showing the required
symmetry, a set of initial vectors showing the required symmetry, and the result-
ing collision we obtained on the compression function of SHA”’-256. (For this
example, the 64 32-bit constants Kt were obtained by repeating 8 times their
respective first nibble.)

Similarly, it is easy to define variants SHA’-512/384, SHA”-512/384, etc., of
SHA-512 in which constants are replaced by more symmetric values, and to show
that the collision search complexities for these variants are only 2512/4 = 2128,
2512/8 = 264, 232, etc.

Thus with some very simple modifications, one obtains variants of the hash
functions SHA-256 and SHA-384/512 which are surprisingly weak. We note that
similar modifications on SHA-1 and on SHA-0 would have the same effect (and
would not need any change in the message schedule). However, this does by no
means imply that the original hash functions are insecure, not even remotely,
but it casts some doubts on these designs.

6 Conclusion

We have investigated the security of SHA-2. We have shown that neither Dob-
bertin’s nor Chabaud and Joux’s attacks on MD-type hash functions seem to
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Table 3. Example of two symmetric message blocks compressing to the same sym-
metric value

Chaining variables

Initialisation vectors 0xaaaaaaaa 0xbbbbbbbb 0xcccccccc 0xdddddddd

0xeeeeeeee 0xffffffff 0x00000000 0x11111111

Message 1 0x99999999 0xbbbbbbbb 0xffffffff 0x44444444

0x99999999 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

Output 1 0x00000000 0xbbbbbbbb 0x77777777 0xeeeeeeee

0x99999999 0x99999999 0x11111111 0x88888888

Message 2 0xeeeeeeee 0x00000000 0xffffffff 0x33333333

0xffffffff 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

Output 2 0x00000000 0xbbbbbbbb 0x77777777 0xeeeeeeee

0x99999999 0x99999999 0x11111111 0x88888888

.

apply to SHA-2. Most features of the basic components of SHA-2 seem to pro-
vide a better security level than for preceding hash functions, even though the
relative number of rounds is somewhat lower than for SHA-1 for instance, and
though the selection criteria and security arguments for some design choices are
difficult to reconstruct from the specification, in the absence of any public de-
sign report. Finally, we have shown that a simplified version of SHA-2 where the
round constants are symmetric and where addition is replaced by exclusive or,
is insecure.
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A Example of 9-Round Differential Collision Patterns

SHA-384/512 Case

The following values are an example of the consecutive contents of the differences
in the SHA-384/512 registers a, b, c, d, e, f, g, h when a “perturbative pattern”
of Hamming weight one followed by the corresponding “corrective pattern” is
applied to nine consecutive message words W .

The values of the 9 consecutive differences in words W[0] to W[8] are the
following :

W[i]: 0x20 0x 0 W[i+1]: 0x50000000 0x880208
W[i+2]: 0x8a31001 0x4200000 W[i+3]: 0x 0 0x 0
W[i+4]: 0x20 0x 0 W[i+5]: 0x50000000 0x880208
W[i+6]: 0x 0 0x 0 W[i+7]: 0x 0 0x 0
W[i+8]: 0x20 0x 0 W[i+9]: 0x 0 0x 0

The corresponding values of the 10 consecutive differences in registers a, b, c,
d, e, f , g, h (represented by 2 32-bit half registers separated by a .) are the
following:
Round i : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 .
0x 0 0x 0 . 0x 0 0x 0
Round i+1 : 0x20 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x20 0x 0 . 0x 0 0x
0 . 0x 0 0x 0 . 0x 0 0x 0
Round i+2 : 0x 0 0x 0 . 0x20 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x40000000 0x208
. 0x20 0x 0 . 0x 0 0x 0 . 0x 0 0x 0
Round i+3 : 0x 0 0x 0 . 0x 0 0x 0 . 0x20 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x40000000
0x208 . 0x20 0x 0 . 0x 0 0x 0
Round i+4 : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x20 0x 0 . 0x 0 0x 0 . 0x 0 0x
0 . 0x40000000 0x208 . 0x20 0x 0
Round i+5 : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x20 0x 0 . 0x 0 0x
0 . 0x 0 0x 0 . 0x40000000 0x208
Round i+6 : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x20 0x
0 . 0x 0 0x 0 . 0x 0 0x 0
Round i+7 : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x
0 . 0x20 0x 0 . 0x 0 0x 0
Round i+8 : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x
0 . 0x 0 0x 0 . 0x20 0x 0
Round i+9 : 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x 0 . 0x 0 0x
0 . 0x 0 0x 0 . 0x 0 0x 0

SHA-256 Case

The following values are an example of the consecutive contents of the differences
in the SHA-256 registers a, b, c, d, e, f, g, h when a ” perturbative pattern ” (1-
bit difference on the least significant bit) followed by a ” corrective pattern ” is
applied to nine consecutive message words W.
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Round i : 0x 0 0x 0 0x 0 0x 0 0x 0 0x 0 0x 0 0x 0
Round i+1 : 0x 1 0x 0 0x 0 0x 0 0x 1 0x 0 0x 0 0x 0
Round i+2 : 0x 0 0x 1 0x 0 0x 0 0x40080400 0x 1 0x 0 0x 0
Round i+3 : 0x 0 0x 0 0x 1 0x 0 0x 0 0x40080400 0x 1 0x 0
Round i+4 : 0x 0 0x 0 0x 0 0x 1 0x 0 0x 0 0x40080400 0x 1
Round i+5 : 0x 0 0x 0 0x 0 0x 0 0x 1 0x 0 0x 0 0x40080400
Round i+6 : 0x 0 0x 0 0x 0 0x 0 0x 0 0x 1 0x 0 0x 0
Round i+7 : 0x 0 0x 0 0x 0 0x 0 0x 0 0x 0 0x 1 0x 0
Round i+8 : 0x 0 0x 0 0x 0 0x 0 0x 0 0x 0 0x 0 0x 1
Round i+9 : 0x 0 0x 0 0x 0 0x 0 0x 0 0x 0 0x 0 0x 0

B Investigation of Differential Characteristics for SHA-2

Search for Low Weight Differential Characteristics
over a Few Rounds:

The following table shows the evolution of the lowest weight differential charac-
teristic over 4 rounds we found. Only the weight of the difference in each register
is shown, as a circular rotation of the corresponding indexes of the initial differ-
ence bits achieves the same overall propagation pattern. We stress that in this
setting, all the message words are identical: Only the input registers differ in
a few bits.

probability a b c d e f g h
0 0 0 0 1 0 0 3

1/16 0 0 0 0 0 1 0 0
1/2 0 0 0 0 0 0 1 0
1/2 0 0 0 0 0 0 0 1
1/4 1 0 0 0 1 0 0 0

• The first difference bit in register E affects both the Choice and the non-
linear Σ1 function. With probability 1

2 , the output of the Σ1 function is equal
to zero, and with probability 2−3 the 3 input difference bits in register H
added to the 3 difference bits generated by the Σ1 function do not generate
any difference carry bits. Thus after the first round, with probability 2−4

only one difference bit propagates in register F .
• In rounds 2 and 3, with probability 1

2 , this difference bit does not cause any
difference in the output of the Choice function. Thus we now have a one-bit
difference in register H .

• In the last round of the characteristic, this one-bit difference is added respec-
tively into register A and E, thus with probability 1

4 ,the output difference
is a 2-bit difference after 4 rounds.

Putting everything together, this low weight differential characteristic has
a probability of 2−8.
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Search for Iterative Differential Characteristics

In order to investigate iterative differential characteristics for SHA-2 we approxi-
mated the actual differential transitions associated with each round of the SHA-2
register update function by a linear function of {0, 1}256 in the case of SHA-256
(resp. {0, 1}512 in the case of SHA-384/512) , by making the simplifying assump-
tion that the output difference (δa′, δb′, δc′, δd′, δe′, δf ′, δg′, δh′) associated
with an input difference (δa, δb, δc, δd, δe, δf , δg, δh) is equal to the output
difference one would obtain if SHA-2 the functions Choice and Majority were
ignored and if ‘+’ was replaced by ‘⊕’. Let us denote by L the 256 × 256 (resp.
512 × 512) binary matrix over GF(2) representing the above linear mapping.
Let us denote by A and E the matrices associated with Σ0 and Σ1 respectively
and by I and O the identity and the null 32 × 32 (resp. 64 × 64) matrices. L
can be described as the following 8x8 block matrix:

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A O O O E O O I
I O O O O O O O
O I O O O O O O
O O I O O O O O
O O O I E O O I
O O O O I O O O
O O O O O I O O
O O O O O O I O

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We are then using the matrix L to search candidate iterative differential char-
acteristics over a restricted number of rounds r. For that purpose, we computed
for each value r in {1, 16} a basis of the kernel Kr of Lr−I ,where I represents the
256 × 256 (resp. 512 × 512) identity matrix, using standard Gaussian reduction.
Elements of Kr represent those input differences δ = (δa, δb, δc, δd, δe, δf, δg, δh)
which stay invariant under r rounds, up to the approximation of the differen-
tial transition at each round by the linear function L. In other words, elements
of Kr represent iterative characteristics for r rounds, provided the probabilities
obtained when taking into account the approximations made in L are not too
low.

In the case of SHA-256, we obtained for K1 to K16 vector spaces of
respective dimensions given by the following table.

r = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
dim(Kr) =) 1 2 1 4 1 2 4 8 1 2 1 4 1 8 1 16

To develop on particular example more in detail, K4 has dimension 4. If we
denote by an the concatenation of n binary words equal to a (so that for instance
(0111)2 = 01110111, etc.), a basis {e40, e41, e42, e43} of K4 is given by:

e40 = ((10)16, 032, (01)16, 032, 032, (10)16, 032, (01)16)

e41 = ((01)16, 032, (10)16, 032, 032, (01)16, 032, (10)16)
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e42 = (032, (01)16, 032, (10)16, (01)16, 032, (10)16, 032)

e43 = (032, (10)16, 032, (01)16, (10)16, 032, (01)16, 032)

In the case of SHA-384/512, we obtained for K1 to K16 vector spaces
which dimensions given by the following table.

r = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
dim(Kr =) 2 4 2 8 2 4 8 16 2 4 2 8 2 16 2 32

As could be seen in the enumeration of the Kr base vectors for the first
values of r, Kr elements are highly symmetric, i.e. they consist of differences
δ = (δa, · · · , δh) such that the 32-bit or 64-bit patterns δa to δh be periodic, of
period 32 or 16 or 8 for SHA-256 (resp. 64, 32, 16 or 8 for SHA-512). Thus, any
non zero element of the first sets Kr contains at least some non zero periodic
words and thus cannot have an extremely low weight. Therefore we think that the
approach described above does not provide high probability iterative differentials
for SHA-2.
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