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Abstract. The overall structure is one of the most important properties
of block ciphers. At present, the most common structures include Feistel
structure, SP structure, MISTY structure, L-M structure and Gener-
alized Feistel structure. In [29], Choy et al. proposed a new structure
called GF-NLFSR (Generalized Feistel-NonLinear Feedback Shift Regis-
ter), and designed a new block cipher called Four-Cell which is based on
the 4-cell GF-NLFSR. In this paper, we first study properties of the n-
cell GF-NLFSR structure, and prove that for an n-cell GF-NLFSR, there
exists an (n2 +n− 2) rounds impossible differential. Then we present an
impossible differential attack on the full 25-round Four-Cell using this
kind of 18-round impossible differential distinguisher together with dif-
ferential cryptanalysis technique. The data complexity of our attack is
2111.5 and the time complexity is less than 2123.5 encryptions. In addi-
tion, we expect the attack to be more efficient when the relations between
different round subkeys can be exploited by taking the key schedule al-
gorithm into consideration.

Keywords: GF-NLFSR structure, Four-Cell block cipher, Impossible
differential cryptanalysis, Data complexity, Time complexity.

1 Introduction

The overall structure is one of the most important properties of block ciphers,
and it plays important roles in the round number choice, software and hardware
implementation performances and so on. At present, the most often used struc-
tures include Feistel structure, SP structure, MISTY structure, L-M structure
and Generalized Feistel structure. Feistel structure was introduced by H. Feistel
in the design of Lucifer block cipher and later got famous since it was used in the
design of DES. Feistel structure can transfer any function (usually called round
function F ) to a permutation. Now there are a lot of block ciphers employing
the Feistel structure, such as Camellia, FEAL, GOST, LOKI, E2, Blowfish, RC5
and so on. The security of Feistel structure against differential and linear crypt-
analysis was evaluated by many researchers, for example [1,2,3], and meanwhile
there are many results such as [4,5,6,7,8,9,10] about the pseudorandomness of
Feistel structure. Besides the Feistel structure, the other most often used struc-
ture is the SP structure, the well known block ciphers such as AES, Serpent
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and ARIA all employ the SP structure. In each round of the SP structure, first
a layer of key-dependent inversive function named S is applied to the input,
and then applies a permutation or an inversive linear transformation named P .
Hence the SP structure is very simple and clear, and S is usually called the con-
fusion layer which achieves confusion in the cipher and P is usually referred to
as the diffusion layer which diffuses efficiently. MISTY structure is another kind
of important structures which was proposed by M. Matsui in [11], and it was
used in the design of the block ciphers MISTY [12] and KASUMI [13]. There
are many results about the security analysis of the MISTY structure such as in
[14,15,16,17]. S. Vaudenay et al. named the structure of the block cipher IDEA
as the L-M structure or Lai-Massey structure [18], and the FOX [19] cipher also
employs a variant of the L-M structure. The generalized Feistel structure was
first introduced by B. Schneier and J. Kelsey which can be considered as an
unbalanced Feistel structure[20], and then many variants of generalized Feistel
structure are proposed such as CAST-256-type [21], MARS-type [22], SMS4-type
[23], CLEFIA-type [24] and so on. All these kinds of generalized Feistel struc-
tures have similar advantages such as decryption - encryption similarity and the
inverse of round function is not necessary in decryption. Furthermore, this can
make the design of round function more simple and flexible. The security analysis
of generalized Feistel structure is very important when they are used to design
new block ciphers, and there are many results [25,26,27,28] about the security of
different kinds of generalized Feistel structures against the differential and linear
cryptanalysis and also their pseudorandomness.

In [29], Choy et al. proposed a new structure called GF-NLFSR (Generalized
Feistel-NonLinear Feedback Shift Register). It can be considered as an n-cell
extension of combining the MISTY structure and Generalized Unbalanced Feis-
tel Network together. The security of the structure against many attacks such
as differential, linear, impossible differential and integral cryptanalysis are also
considered in [29]. For an n-cell GF-NLFSR, an upper bound for the differential
and linear hull probabilities for any n + 1 rounds are given, and a 2n− 1 rounds
impossible differential distinguisher and a 3n−1 rounds integral distinguisher on
the n-cell GF-NLFSR are demonstrated. Furthermore, a new block cipher called
Four-Cell which is based on the 4-cell GF-NLFSR was designed in [29]. The block
and key size of Four-Cell are both 128-bit, and there are 25 rounds in total.

Impossible differential cryptanalysis [30] was first proposedby Biham, Biryukov
and Shamir in 1999, and it was applied to analyze the Skipjack block cipher. Un-
like differential cryptanalysis which exploits differentials with the highest possible
probability, impossible differential cryptanalysis uses the differentials which hold
with probability 0, which can thus be called impossible differential. The impossible
differentials can usually be built in a miss-in-the-middle manner. Recently, impos-
sible differential cryptanalysis had received worldwide attention, and its applica-
tion to block ciphers such as AES, Camellia and MISTY all achieved very good
results [31,32,33,34,35].

In [29], Proposition 3 stated that for an n-cell GF-NLFSR, there exist at most
2n−1 rounds impossible differential distinguishers using the U-method proposed
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in [36]. However, we examine the property of n-cell GF-NLFSR structure and
demonstrate that there exists a (n2 +n−2) rounds impossible differential distin-
guisher. Then we present an impossible differential attack on the full 25-round
Four-Cell using this kind of 18-round impossible differential distinguisher to-
gether with differential cryptanalysis technique.

This paper is organized as follows. In Section 2, we give a brief description
of the n-cell GF-NLFSR structure and Four-Cell block cipher. In Section 3,
we describe some useful properties of the n-cell GF-NLFSR structure and the
(n2 + n − 2) rounds impossible differential. Then in Section 4, we present our
impossible differential attack on the full 25-round Four-Cell block cipher. Finally,
in Section 5 we summarize this paper.

2 The n-Cell GF-NLFSR Structure and Four-Cell Block
Cipher

2.1 The n-Cell GF-NLFSR Structure

In this section, we will give a brief description of the n-cell GF-NLFSR structure,
and Fig. 1 below illustrates one round of GF-NLFSR.

For an n-cell GF-NLFSR structure, suppose the size of the internal sub-block
is m-bit, and then we can denote the mn-bit input block as (x1, x2, x3, ..., xn) ∈
({0, 1}m)n. If we denote the round subkey as sk, then the output of one round
n-cell GF-NLFSR transformation is defined as follows.

x2 = x2,
x3 = x3,
· · ·
xn = xn,
xn+1 = f(x1, sk) ⊕ x2 ⊕ x3... ⊕ xn,

where the output block is denoted as (x2, x3, ..., xn, xn+1) ∈ ({0, 1}m)n. Note
here the symbol ⊕ is used to denote finite field addition (XOR) over GF (2)m, and
the function f : {0, 1}m × {0, 1}k → {0, 1}m is the round function. Specifically,
for each fixed round key sk, the round function f(·, sk) : {0, 1}m → {0, 1}m must
be a permutation, or else the n-cell GF-NLFSR structure is not able to decrypt
correctly. Therefore, in our later analysis, we will assume the round function f
is a permutation when the round key is fixed.

2.2 Four-Cell Block Cipher

The block and key size of Four-Cell are both 128-bit, and it uses the 4-cell GF-
NLFSR structure. Since the designers only give a rough suggestion for the key
schedule algorithm, namely using a similar cipher with 26 rounds to generate
the round keys needed. Hence in this paper, we will omit the key schedule and
just assume that the round keys are randomly chosen. The encryption algorithm
of Four-Cell can be described briefly as follows.
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Fig. 1. One Round of n-Cell GF-NLFSR structure

Let the plaintext be denoted by P = (x1, x2, x3, x4) ∈ ({0, 1}32)4, then after
applying the full 25 rounds encryption, the 128-bit ciphertext can be denoted
by C. Let (xi, xi+1, xi+2, xi+3) ∈ ({0, 1}32)4 denote the input of the i-th round,
then the output of the i-th round can be computed as follows.

xi+1 = xi+1,
xi+2 = xi+2,
xi+3 = xi+3,
xi+4 = fi(xi, ski) ⊕ xi+1 ⊕ xi+2 ⊕ xi+3.

For rounds i = 1, 2, .., 5 and i = 21, 22, .., 25, the round keys are denoted as ski ∈
{0, 1}32 and the round function is defined as fi(xi, ski) = MDS(S(xi ⊕ ski)).
For rounds i = 6, 7, .., 20, the round keys are denoted as ski = (ski0, ski1) ∈
({0, 1}32)2, and the round function is defined as fi(xi, ski) = S(MDS(S(xi ⊕
ski0)) ⊕ ski1).

Here in each round function, S : ({0, 1}8)4 → ({0, 1}8)4 is four parallel 8 × 8
s-boxes, and the s-box is similar with the s-box used in the SubBytes operation
in AES. The transformation MDS : ({0, 1}8)4 → ({0, 1}8)4 is a 4-byte to 4-byte
maximal distance separable transform with optimal branch number 5, and it is
similar with the MixColumn operation in AES. In the end, the output after 25
rounds is XORed with a 128-bit post-whitening key K26 = (k1

26, k
2
26, k

3
26, k

4
26) to

get the ciphertext, namely C = (x26 ⊕ k1
26, x27 ⊕ k2

26, x28 ⊕ k3
26, x29 ⊕ k4

26).

3 Differential Property of the n-Cell GF-NLFSR
Structure

For the n-cell GF-NLFSR structure, we can express the nm-bit input as n
words which consists of m bits each. Suppose we have a pair of plaintexts
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X = (x1, x2, x3, ..., xn) and X∗ = (x∗
1, x

∗
2, x

∗
3, ..., x

∗
n), and their difference is de-

noted by ΔX = (Δx1, Δx2, ..., Δxn), where Δx1 = x1 ⊕ x∗
1, ..., Δxn = xn ⊕ x∗

n.
Note the symbol 0 in the difference ΔX = (Δx1, Δx2, Δx3, 0, ..., 0) means that
the corresponding byte difference is zero.

Lemma 1. For the n-cell GF-NLFSR structure, there exists the following n
rounds differential characteristic whose probability is equal to 1.

(Δx1, Δx2, ..., Δxi−1, Δxi, 0, ..., 0) n rounds−−−−−−→ (Δy1, Δy2, ..., Δyi, Δyi+1, 0, ..., 0).

We denote this kind of differential characteristic as Δi, where 1 ≤ i ≤ n − 1,
and these differential characteristics Δi satisfy the following two properties.

1. Δy1 ⊕ Δy2 ⊕ ... ⊕ Δyi ⊕ Δyi+1 = 0.
2. If Δxi �= 0, then Δyi+1 �= 0.

Proof. Let the round function of Round i be fski(xi) = fi(xi, ski). Then when
the round key ski is fixed, the round function fski must be a permutation, or else
one can not decrypt correctly for the n-cell GF-NLFSR structure. According to
the structure of the n-cell GF-NLFSR, we can get the following equations which
are illustrated in Table 1.

Δy1 = fsk1(x1) ⊕ fsk1(x1 ⊕ Δx1) ⊕ Δx2 ⊕ ... ⊕ Δxi (1)

Δyi = fski(xi) ⊕ fski(xi ⊕ Δxi) ⊕ Δy1 ⊕ ... ⊕ Δyi−1 (2)

Δyi+1 = Δy1 ⊕ ... ⊕ Δyi−1 ⊕ Δyi (3)

Table 1. The n rounds differential characteristic of the n-cell GF-NLFSR structure

Round\Diff. Δx1 Δx2 . . . Δxi−1 Δxi 0 . . . 0

1 Δx2 Δx3 . . . Δxi 0 . . . 0 Δy1

...
...

...
...

...
...

...
...

...

i − 1 Δxi 0 . . . 0 0 Δy1 . . . Δyi−1

i 0 . . . 0 0 Δy1 . . . Δyi−1 Δyi

i + 1 0 . . . 0 Δy1 . . . Δyi−1 Δyi Δyi+1

i + 2 0 . . . Δy1 . . . Δyi−1 Δyi Δyi+1 0
...

...
...

...
...

...
...

...
...

n Δy1 Δy2 . . . Δyi Δyi+1 0 . . . 0

According to Equ. (3), the following one round differential characteristic will
hold with probability 1.

(0, ..., 0, Δy1, ..., Δyi−1, Δyi, Δyi+1)
1 round−−−−−→ (0, ..., 0, Δy1, ..., Δyi, Δyi+1, 0).
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Similarly, we can know that all the differential characteristics from Round (i+2)
to Round n in Table 1 hold with probability 1. Therefore, for the n-cell GF-
NLFSR structure, there exists the following n rounds differential characteristic
and its probability is equal to 1.

(Δx1, Δx2, ..., Δxi−1, Δxi, 0, ..., 0) n rounds−−−−−−→ (Δy1, Δy2, ..., Δyi, Δyi+1, 0, ..., 0)

Then according to Equ. (3), we can easily get the first property, i.e. Δy1 ⊕
Δy2 ⊕ ... ⊕ Δyi ⊕ Δyi+1 = 0. Therefore, in the following we only need to prove
the second property.

According to Equ. (2) and Equ. (3), we can get the following equation.

Δyi+1 = Δy1 ⊕ ... ⊕ Δyi−1 ⊕ Δyi = fski(xi) ⊕ fski(xi ⊕ Δxi).

When Δxi �= 0, we can conclude that fski(xi) ⊕ fski(xi ⊕ Δxi) �= 0 since the
function fski is a permutation. Therefore, we get the second property, namely if
Δxi �= 0, then Δyi+1 �= 0. ��
Lemma 2. For the inverse of the n-cell GF-NLFSR structure which is denoted
as the n-cell GF-NLFSR−1 structure, there exists the following (2n − 2) rounds
differential characteristic whose probability is equal to 1.

(β, β, 0, ..., 0) 2n−2 rounds−−−−−−−−→ (?, ..., ?, b2, b1, 0).

We denote this kind of differential characteristic as Δ−1
β , where the symbol ?

denotes an unknown difference and β, b2, b1 denote non-zero differences.

Proof. According to the structure of the n-cell GF-NLFSR−1, we can get the
following one round differential characteristic which holds with probability 1,
and this kind of differential is illustrated in Table 2.

(β, β, 0, ..., 0) 1 round−−−−−→ (0, β, β, 0, ..., 0).

Similarly, all the differential characteristics from the Round 2 to Round (n− 1)
in Table 2 all hold with probability 1. Then in the Round n, if we denote the

Table 2. The (2n − 2) rounds differential of the n-cell GF-NLFSR−1 structure

Round\Diff. β β 0 0 . . . 0

1 0 β β 0 . . . 0
...

...
...

...
...

...
...

n − 2 0 0 . . . 0 β β

n − 1 0 0 . . . 0 0 β

n b1 0 0 . . . 0 0

n + 1 b2 b1 0 . . . 0 0
...

...
...

...
...

...
...

2n − 2 ? . . . ? b2 b1 0
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round function as gn, then b1 = gn(z) ⊕ gn(z ⊕ β). Because the difference β is
non-zero and the function gn is a permutation, we can conclude that b1 �= 0.
Similarly, in the (n + 1)-th round we have b2 = gn+1(w) ⊕ gn+1(w ⊕ b1), and
thus we can conclude that b2 �= 0 since b1 �= 0.

Finally, according to the property of the n-cell GF-NLFSR−1 structure, the
differential characteristics from Round (n + 2) to Round (2n − 2) in Table 2 all
hold with probability 1. Therefore, for the n-cell GF-NLFSR−1 structure, there
exists the following differential characteristic whose probability is equal to 1.

(β, β, 0, ..., 0) 2n−2 rounds−−−−−−−−→ (?, ..., ?, b2, b1, 0). ��
Theorem 1. For the n-cell GF-NLFSR structure, there exists the following kind
of (n2 + n− 2) rounds impossible differential where α and β are non-zero differ-
ences.

(α, 0, ..., 0) n2+n−2 rounds−−−−−−−−−−→ (β, β, 0, ..., 0).

Proof. This kind of (n2 + n − 2) rounds impossible differential is constructed
using the miss-in-the-middle technique. First we construct an n(n − 1) rounds
differential characteristic of the encryption direction and an (2n − 2) rounds
differential characteristic of the decryption direction whose probabilities are both
equal to 1. Then if these two differential characteristics contradict each other in
the middle, we get the (n2 +n− 2) rounds impossible differential. In Table 3 we
illustrate this kind of impossible differential in detail.

When we choose the input difference as (α, 0, ..., 0), we can construct an n(n−
1) rounds differential with probability 1 as follows. First of all, based on Lemma
1, we can construct the following n rounds differential Δ1 whose probability is
equal to 1.

(α, 0, ..., 0) n rounds−−−−−−→ (Δx2
1, Δx2

2, 0, ..., 0).

Since the input difference α is non-zero, according to property 1 and 2 of Lemma
1, we know that Δx2

2 is also non-zero and Δx2
1 ⊕ Δx2

2 = 0.
Then, we start with the input difference of (Δx2

1, Δx2
2, 0, ..., 0), and according

to Lemma 1, we can construct again an n rounds differential Δ2 whose proba-
bility is 1 as follows.

(Δx2
1, Δx2

2, 0, ..., 0) n rounds−−−−−−→ (Δx3
1, Δx3

2, Δx3
3, 0, ..., 0).

Since Δx2
2 is non-zero, we know that Δx3

3 �= 0 and Δx3
1 ⊕ Δx3

2 ⊕ Δx3
3 = 0.

Similarly, we can construct the i-th (3 ≤ i ≤ n − 1) n rounds differential Δi in
turn. In the end, the (n− 1)-th n rounds differential Δn−1 is as follows, and we
can conclude that Δxn

n �= 0 and Δxn
1 ⊕ Δxn

2 ⊕ Δxn
3 ⊕ ... ⊕ Δxn

n = 0.

(Δxn−1
1 , Δxn−1

2 , ...., Δxn−1
n−1, 0) n rounds−−−−−−→ (Δxn

1 , Δxn
2 , Δxn

3 , ..., Δxn
n).

By concatenating the above differentials together, we can get the following n(n−
1) rounds differential whose probability is equal to 1 and Δxn

n is non-zero.

(α, 0, ..., 0)
n(n−1) rounds−−−−−−−−−→ (Δxn

1 , Δxn
2 , Δxn

3 , ..., Δxn
n).
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Table 3. The (n2 +n−2) rounds impossible differential of n-cell GF-NLFSR structure

Round\Diff. α 0 0 . . . 0 0

1 0 0 0 . . . 0 Δx2
1

2 0 0 . . . 0 Δx2
1 Δx2

2

3 0 . . . 0 Δx2
1 Δx2

2 0
...

...
...

...
...

...
...

n Δx2
1 Δx2

2 0 . . . 0 0

n + 1 Δx2
2 0 0 . . . 0 Δx3

1

n + 2 0 0 . . . 0 Δx3
1 Δx3

2

n + 3 0 . . . 0 Δx3
1 Δx3

2 Δx3
3

...
...

...
...

...
...

...

2n Δx3
1 Δx3

2 Δx3
3 0 . . . 0

...
...

...
...

...
...

...

n(n − 2) Δxn−1
1 Δxn−1

2 Δxn−1
3 . . . Δxn−1

n−1 0
...

...
...

...
...

...
...

n(n − 1) Δxn
1 Δxn

2 Δxn
3 . . . Δxn

n−1 Δxn
n

? . . . ? b2 b1 0

n(n − 1) + 1 ? . . . b2 b1 0 0
...

...
...

...
...

...
...

n2 − 3 b2 b1 0 0 . . . 0

n2 − 2 b1 0 0 . . . 0 0

n2 − 1 0 0 . . . 0 0 β

n2 0 0 . . . 0 β β
...

...
...

...
...

...
...

n2 + n − 3 0 β β 0 . . . 0

n2 + n − 2 β β 0 0 . . . 0

In the decryption direction, considering the inverse structure n-cell
GF-NLFSR−1, we get the following 2n−2 rounds differential characteristic with
probability 1 according to Lemma 2.

(β, β, 0, ..., 0) 2n−2 rounds−−−−−−−−→ (?, ..., ?, b2, b1, 0).

If we concatenate the above n(n − 1) rounds differential of the encryption di-
rection and the (2n− 2) rounds differential of the decryption direction together,
we can construct the following (n2 + n − 2) rounds impossible differential since
they contradict each other at Δxn

n.

(α, 0, 0, ..., 0)
(n2+n−2) rounds

�→ (β, β, 0, ..., 0). ��
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4 Security Analysis of Four-Cell Block Cipher

According to Theorem 1, for Four-Cell block cipher which employs the 4-cell GF-
NLFSR structure, there exists an 18 rounds impossible differential as follows.

(α, 0, 0, 0)
18 rounds

�→ (β, β, 0, 0)

By setting the 18-round impossible differential distinguisher in the middle rounds,
we can present an impossible differential attack on the full 25-round Four-Cell by
analyzing the first 4 rounds before and the last 3 rounds after the distinguisher.
Note the round functions of the first 5 rounds and the last 5 rounds are all defined
as fi(xi, ski) = MDS(S(xi ⊕ ski)).

Let the plaintext be X = (x1, x2, x3, x4) ∈ ({0, 1}32)4, then the intermediate
state after 3 rounds and 4 rounds encryption can be denoted as (x4, x5, x6, x7)
and (x5, x6, x7, x8) respectively. Furthermore, the intermediate state after 22
rounds encryption can be denoted as (x23, x24, x25, x26) and the 128-bit cipher-
text should be C = (c1, c2, c3, c4) = (x26 ⊕ k1

26, x27 ⊕ k2
26, x28 ⊕ k3

26, x29 ⊕ k4
26).

Suppose we choose another plaintext X∗ = (x∗
1, x

∗
2, x

∗
3, x

∗
4) ∈ ({0, 1}32)4, and the

plaintext difference can be denoted as Δxi = xi ⊕ x∗
i .

Then for the last three rounds of Four-Cell, we have the following equations.

x27 = MDS(S(x23 ⊕ sk23)) ⊕ x24 ⊕ x25 ⊕ x26,
x28 = MDS(S(x24 ⊕ sk24)) ⊕ x25 ⊕ x26 ⊕ x27,
x29 = MDS(S(x25 ⊕ sk25)) ⊕ x26 ⊕ x27 ⊕ x28.

If we denote rk25 = k1
26 ⊕ k2

26 ⊕ k3
26 ⊕ k4

26, then the input of the Sbox layer for
Round 25 can be computed as follows.

y25 = S−1(MDS−1(c1 ⊕ c2 ⊕ c3 ⊕ c4 ⊕ rk25)) = x25 ⊕ sk25.

Similarly, we can denote rk24 = sk25 ⊕ k1
26 ⊕ k2

26 ⊕ k3
26, and compute the input

of the Sbox layer for Round 24 as follows.

y24 = S−1(MDS−1(c1 ⊕ c2 ⊕ c3 ⊕ y25 ⊕ rk24)) = x24 ⊕ sk24.

Finally, for Round 23 the output of the round function is c1 ⊕ c2 ⊕ y24 ⊕ y25 ⊕
sk25 ⊕ sk24 ⊕ k1

26 ⊕ k2
26. If we denote rk23 = sk24 ⊕ sk25 ⊕ k1

26 ⊕ k2
26, then the

input of the round function can be computed in a similar way.

y23 = S−1(MDS−1(c1 ⊕ c2 ⊕ y24 ⊕ y25 ⊕ rk23)) = x23 ⊕ sk23.

Therefore, considering that Δx23 = Δy23, Δx24 = Δy24, Δx25 = Δy25 and
Δx26 = Δc1, we can obtain the values of (Δx23, Δx24, Δx25, Δx26) by just com-
puting the values of y25, y24 and y23 for a pair of ciphertexts C = (c1, c2, c3, c4)
and C∗ = (c∗1, c

∗
2, c

∗
3, c

∗
4).

For the first four rounds of Four-Cell, if we choose the plaintext difference as
(Δx1, Δx2, Δx3, Δx4) = (0, 0, 0, α), then we can get the following equations.

Δx5 = α,
Δx6 = 0,
Δx7 = 0,
Δx8 = MSD(S(x4 ⊕ sk4)) ⊕ MSD(S(x4 ⊕ α ⊕ sk4)) ⊕ α.
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Here, Δx8 = 0 holds if and only if S(x4 ⊕ sk4)⊕S(x4 ⊕α⊕ sk4) = MDS−1(α).
Because the branch number of MDS is 5, there is at most one passive byte of
α. For simplicity, we can assume the last byte of α is passive.

Let α = (α1, α2, α3, α4) ∈ ({0, 1}8)4 and β = (β1, β2, β3, β4) ∈ ({0, 1}8)4,
and then we will use the symbol α

S←→ β to express that there exists xi =
(xi,1, xi,2, xi,3, xi,4) ∈ ({0, 1}8)4 such that S(xi) ⊕ S(xi ⊕ α) = β.

Therefore, we can choose a set A which is defined as follows.

A = {α = (α1, α2, α3, 0) ∈ ({0, 1}8)4|α S←→ MDS−1(α)}.

Note here the necessary condition for α
S←→ MDS−1(α) is that α1, α2, and α3

should satisfy a linear relation (e.g. for the MDS used in AES, the linear relation
is 0b · α1 ⊕ 0d · α2 ⊕ 09 · α3 = 0). Furthermore, for the Sbox of Four-Cell, the
probability of αi

S←→ βi holds is about 2−1 for ∀βi ∈ {0, 1}8. Therefore, the set
A contains about |A| ≈ (28−1)×(28−1)×2−1×2−1×2−1 ≈ 213 possible values.
We also test this estimation using computer program, and with the same MDS
and the Sbox used in AES, our searching result shows that the set A contains
7965 ≈ 212.96 possible values of α which is very close to the theory estimation.

After analyzing the first four rounds and the last three rounds of Four-Cell,
we can set the 18-round impossible differential at Round 5 to Round 22 and
apply an impossible differential attack on the full 25-round Four-Cell. The attack
procedure consists of three steps, and we will utilize impossible differential attack
technique together with some properties of the structure.

The first step of the attack is data collection. We first choose appropriate
plaintext structures defined as follows.

SP = {(a1, a2, a3, x4)},
where a1, a2, a3 are 32-bit constants and the last byte of x4 is also an 8-bit con-
stants, namely x4 = (x4,1, x4,2, x4,3, a4,4) ∈ ({0, 1}8)4, x4,j ∈ {0, 1}8. Therefore,
each structure contains 224 plaintexts and they can construct about 224×213/2 ≈
236 useful pairs whose plaintext differences satisfy the conditions listed above.

The second step of the attack is data filtering, in which we will discard
all the useless pairs which do not satisfy the corresponding ciphertext differ-
ence. Note the output difference after the impossible differential distinguisher is
(Δx23, Δx24, Δx25, Δx26) = (β, β, 0, 0), and according to the structure of Four-
Cell, the ciphertext difference (Δc1, Δc2, Δc3, Δc4) = (Δx26, Δx27, Δx28, Δx29)
should satisfy the following two conditions.

Δc1 = 0,
Δc1 ⊕ Δc2 ⊕ Δc3 ⊕ Δc4 = 0.

Therefore, the probability of a pair remains after this filtering is about 2−64.
The third step of the attack is key recovery. First of all, for each guess of

(sk4,1, sk4,2, sk4,3) we can partially encrypt Round 4 to check if a pair satisfies
the distinguisher. Note for each plaintext pair X = (x1, x2, x3, x4) and X∗ =
(x∗

1, x
∗
2, x

∗
3, x

∗
4), a useful pair must satisfy that the output difference of the round
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function in Round 4 equals to the input difference x4 ⊕ x∗
4. Therefore, based on

this property we can discard some useless pairs to reduce the complexity in the
following steps, and the probability of a pair remains after this filtering is about
2−21. Then for all the remained pairs, we guess the values of rk25 and rk24 to
decrypt Round 25 and Round 24 respectively. At last we recover the value of
rk23 by differential techniques. Then we can discard all the wrong subkey guesses
using the impossible differential sieving techniques.

In the following, we will describe the attack procedure in detail.

1. Data Collection: Choose 2m structures and each structure is constructed as
follows:

x1 = a1,
x2 = a2,
x3 = a3,
x4 = (x4,1, x4,2, x4,3, a4,4),

where (a1, a2, a3) are 32-bit constants, a4,4 is an 8-bit constant and the 3
bytes (x4,1, x4,2, x4,3) take all the possible values of ({0, 1}8)3. Then each
structure contains 224 plaintexts, which can generate about 224 · 213/2 = 236

plaintext pairs. Therefore, 2m structures can generate about 2m+36 plaintext
pairs.

2. Data Filtering: According to the property of ciphertext difference, for a useful
pair the difference (Δc1, Δc2, Δc3, Δc4) should satisfy the following condi-
tions.

Δc1 = 0,
Δc1 ⊕ Δc2 ⊕ Δc3 ⊕ Δc4 = 0.

Therefore, after this test the expected number of remaining pairs is about
2m+36 · 2−64 = 2m−28.

3. For each guess of the 24-bit subkey (sk4,1, sk4,2, sk4,3), proceed as follows:
(a) List all the possible values of rk23 as a table L.
(b) For each of the remaining plaintext pair X = (x1, x2, x3, x4) and X∗ =

(x∗
1, x

∗
2, x

∗
3, x

∗
4), partially encrypt Round 4 to compute the following val-

ues respectively.

γ = (s(x4,1 ⊕ sk4,1) ⊕ s(x∗
4,1 ⊕ sk4,1), s(x4,2 ⊕ sk4,2) ⊕ s(x∗

4,2 ⊕ sk4,2),
s(x4,3 ⊕ sk4,3) ⊕ s(x∗

4,3 ⊕ sk4,3), 0),
λ = MDS−1(x4 ⊕ x∗

4).

Then check if γ = λ holds, and if this is not the case, discard the cor-
responding plaintext pair. After this test, there remains about 2m−28 ·
2−21 = 2m−49 plaintext pairs.

(c) Guess the value of rk25 = k1
26⊕k2

26⊕k3
26⊕k4

26, and for each of the remain-
ing pair, whose ciphertexts are denoted as (c1, c2, c3, c4) and (c∗1, c∗2, c∗3, c∗4)
respectively, do as follows.
i. Compute the value of y25 as follows.

y25 = S−1(MDS−1(c1 ⊕ c2 ⊕ c3 ⊕ c4 ⊕ rk25)).

Note for the remaining pairs we have Δy25 = 0,
and y∗

25 = S−1(MDS−1(c∗1 ⊕ c∗2 ⊕ c∗3 ⊕ c∗4 ⊕ rk25)) = y25.



28 W. Wu et al.

ii. For each guess of the value rk24 = sk25 ⊕ k1
26 ⊕ k2

26 ⊕ k3
26, continue

to compute the values of y24 and y∗
24 as follows.

y24 = S−1(MDS−1(c1 ⊕ c2 ⊕ c3 ⊕ y25 ⊕ rk24)),
y∗
24 = S−1(MDS−1(c∗1 ⊕ c∗2 ⊕ c∗3 ⊕ y∗

25 ⊕ rk24)).

iii. If we denote the decryption function of Round 23 as g(z, rk23) =
S−1(MDS−1(z ⊕ rk23)), then for each remaining pair the inputs of
g are c1 ⊕ c2 ⊕ y24 ⊕ y25 and c∗1 ⊕ c∗2 ⊕ y∗

24 ⊕ y∗
25 respectively, and

the output difference of g should be y24 ⊕ y∗
24. Therefore, by making

use of the difference distribution table of Sbox we can compute the
corresponding value of subkey rk23. Discard it from the table L.

iv. If the table L is not empty after analyzing all the remaining pairs,
we can output the value of rk23 remained in table L together with
the corresponding guess of (sk4,1, sk4,2, sk4,3), rk25 and rk24 as the
correct subkey.

If we choose m = 287.5, then the number of useful pairs remained after the
data filtering in Step 2 is about 259.5. Hence there remains about 238.5 pairs
after the test of Step 3.b). In Step 3.c), according to the difference distribution
table of Sbox, each pair can discard about one candidate of rk23. Since there
are 232 possible values of rk23 in table L, then after analyzing all the 238.5

remaining pairs, the probability of a subkey guess of rk23 still remains in L is
about (1 − 2−32)2

38.5 ≈ e−26.5
. Therefore, in Step 3.c.iv) the probability of a

wrong subkey guess still remains after all the tests is about 2120×e−26.5
< 2−11,

and this means that only the correct subkey will be output.
The data and time complexities of the attack can be estimated as follows. First

of all, we choose 287.5 structures which contains 224 plaintexts each, and thus
the data complexity of the attack is about 224 ×287.5 = 2111.5 chosen plaintexts.

The time complexity of each step can be estimated roughly as follows. In Step
1, we need about 2111.5 encryptions. In Step 2 we have to check if the pair satisfies
the ciphertext difference for all the 2123.5 pairs. Note the time needed for filtering
is rather small which can be estimated as 2−3-round encryption. Therefore, the
time complexity of Step 2 is about 2123.5 × 1

25 × 2−3 < 2115.9 encryptions. In
Step 3.b), we need to encrypt one round for each pair, which means that the
time complexity is about 224 × 259.5/25 > 278.9 encryptions. Similarly, the time
complexities of Step 3.c.i) and Step 3.c.ii) are 224 × 232 × 238.5 × 1/25 < 289.9

encryptions and 224×232×232×238.5×2/25 < 2122.9 encryptions respectively. In
Step 3.c.iii), the operation to recover subkey rk23 from the difference distribution
table of Sbox is rather simple and can be estimated as 1-round encryption. Then
the time complexity of this step is about 224 × 232 × 232 × 238.5 × 1/25 < 2121.9

encryptions. Therefore, the total time complexity of the attack is less than 2123.5

encryptions.
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5 Conclusion

In [29], Choy et al proposed a new structure called GF-NLFSR (Generalized
Feistel-NonLinear Feedback Shift Register), and also examined the security of the
structure against many attacks such as differential, linear, impossible differential
and integral cryptanalysis. Furthermore, they designed a new block cipher called
Four-Cell which is based on 4-cell GF-NLFSR structure. In this paper, we proved
that for n-cell GF-NLFSR structure there exists (n2 + n− 2) rounds impossible
differential. Then using this kind of 18-round impossible differential distinguisher
together with some novel differential and impossible differential cryptanalysis
techniques, we presented an impossible differential attack on the full 25-round
Four-Cell. The data complexity of our attack is 2111.5 and the time complexity
is less than 2123.5 encryptions. In addition, we expect the attack to be more
efficient when the relations between different round subkeys can be exploited by
taking the key scheduling algorithm into consideration.

Compared with the other kinds of generalized Feistel strucutres, the n-cell
GF-NLFSR structure has some obvious advantage such as the ability of being
parallel. However, if it is used to design a new block cipher, more work still need
to be done about the security of the structure against various cryptanalysis and
its pseudorandomness.
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