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Abstract. Let g be an element of prime order p in an abelian group and
α ∈ Zp. We show that if g, gα, and gαd

are given for a positive divisor d
of p − 1, we can compute the secret α in O(log p · ( p/d +

√
d)) group

operations using O(max{ p/d,
√

d}) memory. If gαi

(i = 0, 1, 2, . . . , d)
are provided for a positive divisor d of p + 1, α can be computed in
O(log p · ( p/d + d)) group operations using O(max{ p/d,

√
d}) mem-

ory. This implies that the strong Diffie-Hellman problem and its related
problems have computational complexity reduced by O(

√
d) from that

of the discrete logarithm problem for such primes.
Further we apply this algorithm to the schemes based on the Diffie-

Hellman problem on an abelian group of prime order p. As a result, we re-
duce the complexity of recovering the secret key from O(

√
p) to O( p/d)

for Boldyreva’s blind signature and the original ElGamal scheme when
p − 1 (resp. p + 1) has a divisor d ≤ p1/2 (resp. d ≤ p1/3) and d signature
or decryption queries are allowed.

Keywords: Discrete logarithm, Diffie-Hellman, strong Diffie-Hellman,
ElGamal encryption, blind signature.

1 Introduction

Let g be an element of prime order p in an abelian group and α ∈ Zp. The
�-Strong Diffie-Hellman (�-SDH) problem asks to find gα�+1

given g, gα, . . . , gα�

.
Recently, many cryptographic schemes including encryption, signature, and key
management schemes are proposed on the basis of the Strong Diffie-Hellman
(SDH) problem [MSK02, BB04e, BB04s], or its variants such as the Bilinear
Diffie-Hellman problem [BBS04, DY05] and the Bilinear Diffie-Hellman Expo-
nent (BDHE) problem [BBG05, BGW05]. A lower bound on the computational
complexity of the SDH problem or its variants for generic groups are known in
the sense of Shoup [Sho97], but it does not guarantee the security for specific
parameters.

In this paper, we analyze the security of the SDH problem. More precisely,
we show that if g, gα and gαd

are given for a positive divisor d of p − 1, the
secret α ∈ Zp can be computed in O(log p · (√p/d+

√
d)) group operations using

O(max{√
p/d,

√
d}) memory. If gαi

(i = 0, 1, 2, . . . , d) are provided for a positive
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divisor d of p + 1, it can be computed in O(log p · (√p/d + d)) group operations
using the same size of memory. This implies that the strong Diffie-Hellman prob-
lem and its related problems have computational complexity reduced by O(

√
d)

from that of the discrete logarithm problem for such primes. Hence it is neces-
sary to increase by the size of d the key size of the cryptographic schemes based
on the �-SDH problem or its variants if the base group has such a prime as its
order.

We investigate some known elliptic curve parameters and find that either p−1
or p + 1 has many small divisors for the largest prime divisor p of its order for
each elliptic curve in [NIST, BLS01, KM05, MIRACL]. For example, if we use
the curve E+ over GF (3155) [BLS01] for the broadcast encryption [BGW05], the
secret key can be computed in O(259) exponentiations (resp. O(242) exponenti-
ations) when the number of users is 232 (resp. 264), rather than O(276) group
operations.

Moreover, we apply this algorithm to the schemes based on the Diffie-Hellman
problem on an abelian group of prime order p. As a result, we show the com-
plexity of recovering the secret key is reduced from O(

√
p) to O(

√
p/d) for

Boldyreva’s blind signatures [Bol03] when d signature or decryption queries are
allowed and p − 1 has a divisor d ≤ p1/2 or p + 1 has a divisor d ≤ p1/3. Similar
results hold for the original ElGamal scheme [ElG85] with decryption oracles and
the conference keying protocol by Burmester-Desmedt [BD94] with key issuing
oracles.

The rest of the paper is organized as follows: In Section 2, we introduce the
SDH related problems and some schemes based on them. In Section 3, we present
our algorithms. In Section 4, we exploit our algorithms to attack several protocols
based on the Diffie-Hellman problem. In Section 5, we investigate some known
elliptic curve parameters in order to check if our algorithms are applicable for
these parameters. We conclude in Section 6.

2 Strong Diffie-Hellman Problems and Their Variants

Let G be an abelian group of prime order p and g a generator of G. The Discrete
Logarithm (DL) Problem in G asks to find a ∈ Zp given g and ga in G. Many
cryptosystems are designed on the basis of the DL problem, but most of them
have the security equivalent to a weaker variant of the DL problem rather than
the DL problem itself. Two most important weaker variants are as follows:

The Computation Diffie-Hellman (CDH) Problem. Given (g, ga, gb),
compute gab.
The Decisional Diffie-Hellman (DDH) Problem. Given (g, ga, gb, gc),
decide whether c = ab in Zp.

Recently, some weakened variants of the CDH problem are introduced and
being used to construct cryptosystems for various functionalities or security
without random oracles. One characteristic of these problems is to disclose
g, gα, . . . , gα�

for the secret α and some integer �.
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The �-weak Diffie-Hellman (�-wDH) Problem. Given g and gαi

in G
for i = 1, 2, . . . , �, compute g1/α. This problem was introduced by Mitsunari,
Sakai, and Kasahara for a traitor tracing scheme [MSK02].
The �-Strong Diffie-Hellman (�-SDH) Problem. Given g and gαi

in
G for i = 1, 2, . . . , �, compute gα�+1

. This problem is considered as a weaker
version of �-wDH problem. It was first introduced by Boneh and Boyen to
construct a short signature scheme, that is provably secure in the standard
model (without random oracles) [BB04s], and later a short group signature
scheme [BBS04].

The SDH problem is generalized into a group with bilinear maps. We further
assume that e : G × G → G′ is an admissible bilinear map between two abelian
groups G and G′ with prime order p.

The �-Bilinear Diffie-Hellman Inversion (�-BDHI) Problem. Given
g and gαi

in G for i = 1, 2, . . . , �, compute e(g, g)1/α ∈ G′. This problem was
introduced by Boneh and Boyen to construct an identity-based encryption
that is secure in the standard model [BB04e]. It is also used to construct
verifiable random functions [DY05].
The �-Bilinear Diffie-Hellman Exponent (�-BDHE) Problem. Given
g, h, and gαi

(i = 1, 2, . . . , � − 1, � + 1, . . . , 2�) in G, compute e(g, h)α� ∈
G′. This problem was introduced by Boneh, Boyen, and Goh [BBG05] to
construct a hierarchical identity-based encryption scheme with constant size
ciphertext, and later used for a public key broadcast encryption scheme with
constant size transmission overhead [BGW05].

Given two problem instances A and B, we denote by A ≥ B if the problem B
can be solved in polynomial time with polynomially many queries to the oracle
to solve the problem A. Then we can easily deduce the following relations among
the DL related problems [BBG05]:

DL ≥ CDH ≥ DDH ≥ �-wDH ≥ �-SDH ≥ �-BDHI, (� + 1)-BDHE.

3 Main Results

Theorem 1. Let g be an element of prime order p in an abelian group. Sup-
pose that d is a positive divisor of p − 1. If g, g1 := gα and gd := gαd

are
given, α can be computed in O(log p · (

√
(p − 1)/d +

√
d)) group operations

using O(max{√
(p − 1)/d,

√
d}) memory.

Proof. Note that Z∗
p is a cyclic group with φ(p − 1) generators, where φ(·) is

the Euler totient function. Since a random element in Z∗
p is a generator with

probability
φ(p − 1)
(p − 1)

>
1

6 log log(p − 1)
,
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which is large enough [MOV, p.162], we can easily take a generator of Z∗
p. Let

ζ0 be a generator of Z∗
p. Then we compute ζ = ζd

0 that is an element of order
(p − 1)/d in Z∗

p.
Since (αd)(p−1)/d = 1 and ζ generates all (p − 1)/d-th roots of unity in Z∗

p,
there exists a non-negative integer i less than (p − 1)/d such that αd = ζi. If we
take d1 = �√(p − 1)/d�, we must have

(αd)ζ−u = ζd1v

for some 0 ≤ u, v < d1. It is equivalent to

gζ−u

d = gζd1v

. (1)

We compute and store the left-hand side terms and compare them with each of
right-hand side terms in Baby-Step Giant-Step style. Note that each of terms in
both sides can be computed by repeated exponentiations by either ζ−1 or ζd1 .
Thus we can find all non-negative integers u and v less than d1 satisfying (1) in
O(d1 · log p) group operations using O(d1) memory. For u and v which satisfies
(1) and u + d1v is smallest, we put k0 = u + d1v. Then k0 is a non-negative
integer less than (p − 1)/d.

Let α = ζk
0 for 0 ≤ k < p − 1. Then we have dk ≡ dk0 mod (p − 1) and so

k ≡ k0 mod (p − 1)/d. There exists a non-negative integer j less than d such
that k = k0 + j(p − 1)/d. If we take d2 = �√d�, we must have

αζ
−u′(p−1)/d
0 = ζ

k0+d2v′(p−1)/d
0

for some 0 ≤ u′, v′ < d2. It is equivalent to

g
ζ

−u′(p−1)/d
0

1 = gζ
k0+d2v′(p−1)/d
0 . (2)

By the same method as above, we can find non-negative integers u′ and v′ less
than d2 satisfying (2) in O(d2 · log p) group operations and O(d2) memory. This
completes the proof. 
�
We remark that the memory requirement of the above algorithm can be reduced
by using Pollard’s lambda techniques [Pol78]. We use the notation of Theorem 1
to sketch the idea: First we consider a function F : Zp → Zp with F (x) = xζf(gx)

for a pseudo-random function f : 〈g〉 → Z(p−1)/d. For β ∈ Zp and t ≥ 1, gF t(β)

can be computed from g and gβ in O(t log p) group operations by using

gF (β) =
(
gβ

)ζf(gβ )

and gF i(β) =
(
gF i−1(β)

)ζf(gF i−1(β))

if i ≥ 2.

If we find u, v such that gF u(αd) = gF v(1), we have Fu(αd) = F v(1) in Zp and so

αdζ
u
i=1 f(gF i−1(β)) = ζ

v
j=1 f(gF i−1(1)).
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Hence if we store only distinguished points [Tes98], αd can be computed in
O(

√
(p − 1)/d) exponentiations using small memory with some probability. The

second part to compute α from gα and αd can be done using similar technique.

If we know gα(p−1)/d

for many small d, we can do even better:

Corollary 1. Let g be an element of prime order p in an abelian group. Suppose
that p−1 = d1d2 · · ·dt for pairwise prime di’s. If g and g(p−1)/di

:= gα(p−1)/di for
1 ≤ i ≤ t are given, α can be computed in O(log p · ∑t

i=1

√
di) group operations

using O(max1≤i≤t

√
di) memory.

Proof. Let ζ be a generator of Z∗
p and α = ζk. Since (α(p−1)/di)di = 1, there

must be a non-negative integer ki less than di satisfying α(p−1)/di = (ζ(p−1)/di)ki .
Hence by checking

g(p−1)/di
= g(ζ(p−1)/di )ki for 0 ≤ ki < di

or (
g(p−1)/di

)(ζ(p−1)/di )−ui

= g(ζ(p−1)/di )�√di�vi for 0 ≤ ui, vi < �
√

di�.
we can compute ki in O(log p · √

di) group operations using O(
√

di) memory.
Since k satisfies k ≡ ki mod di, we can compute k by performing the above
step for 1 ≤ i ≤ t and using Chinese Remainder Theorem. The total complexity
is O(log p · ∑t

i=1

√
di) using O(max1≤i≤t

√
di) memory. 
�

Next, we use an imbedding of Zp into Fp2 to generalize Theorem 1.

Theorem 2. Let g be an element of prime order p in an abelian group. Suppose
that d is a positive divisor of p + 1 and gi := gαi

for i = 1, 2, . . . , 2d are given.
Then α can be computed in O(log p · (

√
(p + 1)/d + d)) group operations using

O(max{√
(p + 1)/d,

√
d}) memory.

Proof. Let a be a quadratic non-residue in Zp and θ be a root of x2 = a in an
algebraically closed field of Zp. Then Zp[θ] ∼= Fp2 . Let H be a subgroup of order
p + 1 of Fp2 . Since β ∈ H is equivalent to βp+1 = 1, we see that β0 + β1θ is an
element of H for β0 = (1+ aα2)/(1− aα2) and β1 = 2α/(1− aα2) from θp = −θ
and

βp+1 = (β0 + β1θ)(β0 + β1θ
p) = β2

0 − aβ2
1 . (3)

Let ζ0 be a generator of H (for example, the (p + 1)-th power of a generator
of F∗

p2). Then ζ := ζd
0 generates all the (p + 1)/d-th roots of unity and so there

must be some k ∈ Z such that βd = ζk and 0 ≤ k < (p + 1)/d. For convenience,
we denote ζi = si + tiθ for some si, ti ∈ Zp where the index i is defined modulo
(p + 1)/d. Also we denote

βd = (β0 + β1θ)d =
1

(1 − aα2)d
(f0(α) + f1(α)θ),
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where fi’s are polynomials of degree 2d. Then we must have

βdζ−u = ζd1v (4)

for some 0 ≤ u, v < d1 := �√(p + 1)/d�. It is equivalent to

(f0(α)s−u+af1(α)t−u)+(f0(α)t−u+f1(α)s−u)θ = (1−aα2)d(sd1v+td1vθ). (5)

Hence we compute (gf0(α)s−u+af1(α)t−u), gf0(α)t−u+f1(α)s−u) for all 0 ≤ u < d1

and store them. By comparing them with (g(1−aα2)dsd1v , g(1−aα2)dtd1v) for each
0 ≤ v < d1, we can find the (unique) non-negative integers u and v less than
d1 satisfying (4) and u + d1v < (p + 1)/d. We put k0 = u + d1v. Note that
gf0(α), gf1(α) and g(1−aα2)d

can be computed from g, g1, . . . , g2d in 6d exponenti-
ations. Hence k0 can be found in O(log p · (6d +

√
(p + 1)/d)) group operations

with O(
√

(p + 1)/d) memory.
Let β = ζk

0 for 0 ≤ k < p + 1. Then we have k ≡ k0 mod (p + 1)/d. There
exists a non-negative integer j less than d such that k = k0+j(p+1)/d. If we take
d2 = �√d�, there must exist non-negative integers u′, v′ less than d2 such that

βζ
−u′(p+1)/d
0 = ζ

k0+d2v′(p+1)/d
0 . (6)

We denote ζ
−i(p+1)/d
0 = s′i + t′iθ and ζ

k0+d2i(p+1)/d
0 = s′′i + t′′i for some s′i, t

′
i, s

′′
i , t′′i

∈ Zp where the index i is defined modulo (p + 1). Then (6) is equivalent to

((1 + aα2)su′ + 2aαtu′) + ((1 + aα2)tu′ + 2αsu′)θ = (1 − aα2)(sv′ + tv′θ). (7)

Hence we compute (g(1+aα2)su′+2aαtu′ , g(1+aα2)tu′+2αsu′ ) for all 0 ≤ u′ < d2

and store them. By comparing them with (g(1−aα2)sv′ , g(1−aα2)tv′ ) for each 0 ≤
v′ < d2, we can find non-negative integers u′ and v′ satisfying (6). That is,
β = ζ

k0+(u′+d2v′)(p+1)/d
0 can be found in O(log p · √

d) group operations and
O(

√
d) memory. This completes the proof. 
�

We remark that if d ≤ p1/3, then Theorem 2 says that the secret can be computed
in O(log p · √p/d)) group operations using O(

√
p/d) memory.

Remark 1. We may consider that our proof utilizes Diffie-Hellman oracles in a
very restricted way [Boe88, MW99]. That is, in our situations we can use the Diffie-
Hellman oracle DH(gx, gy) = gxy only when x is fixed and y = x� for some small
�. This restriction is an obstacle when we try to generalize the proposed algorithm
into other extension fields of Fp or elliptic or hyperelliptic curves over Fp.

4 Analysis of Cryptographic Schemes Based on the
Diffie-Hellman Problem

4.1 Blind Signature Based on the GDH Assumption

The Gap-Diffie-Hellman (GDH) group is an abelian group on which there is an
polynomial time algorithm to solve the decisional Diffie-Hellman problem and
there is no polynomial time algorithm to solve the computation Diffie-Hellman
problem.
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Boldyreva proposed a blind signature scheme on a Gap-Diffie-Hellman group
[Bol03]. The scheme is as follows: Let G be a GDH group of prime order p and g
a generator of G. Let H : {0, 1}∗ → G be a full domain hash function [BLS01]. A
signer has a private key x ∈ Zp and the corresponding public key y = gx. In order
to blindly sign a message m ∈ {0, 1}∗, a user picks a random k ∈ Z∗

p, computes
M ′ = H(m)gk, and sends it to the signer. The signer computes σ′ = (M ′)x and
sends it back to the user. Then the user computes the signature σ = σ′/yk(=
H(m)x) of the message m.

This scheme is shown to be secure against one-more forgery under chosen
message attacks in the random oracle model [Bol03], that is the standard security
notion for blind signature schemes. However, since the signer does not have any
information on the message to be signed, we may use this blind signing phase as
a Diffie-Hellman oracle and so reduce the security of this scheme under chosen
message attacks: A chosen-message attacker A takes a random γ1 ∈ Zp and
requests a signature on the message y · gγ1 . From the signature σ1 = (y · gγ1)x,
A obtains g2 := gx2

= σ1/yγ1. Second, A takes another random γ2 ∈ Zp and
requests a signature on the message g2 · gγ1 . From the signature σ2 = (g2 · gγ2)x,
A obtains g3 := gx3

= σ2/yγ2. If � signature queries are allowed, A repeats
this procedure � times to obtain g1, g2, . . . , g�+1 (gi := gxi

). By Theorem 1
and 2, if p − 1 has a divisor d ≤ min{� + 1, p1/2} or p + 1 has a divisor d ≤
min{(�+1)/2, p1/3}, the secret key x can be computed in O(

√
p/d). That is, the

security of the scheme is reduced by O(
√

d) from that of the GDH assumption.
We note that the attack does not imply that the security proof of the scheme

is wrong, but that more quantitative analysis on security reduction is required.
In fact, the security proof of BLS signatures on which the Boldyreva’s blind
signature scheme is based shows that the advantage of an adversary can be
increased by qS when qS signature queries are allowed [BLS01].

This method can be applied similarly to schemes which respond by its secret
key power for an unknown message. For example, the conference keying protocol
by Burmester-Desmedt has this property [BD94]. Thus, in this case, we need to
take the order carefully or raise the security parameter.

4.2 Original ElGamal Encryption Scheme

We briefly introduce the original ElGamal encryption scheme in a generalized
form: Let G be an abelian group of prime order p and g a generator of G.
Suppose the secret key and the public key of the recipient is x ∈ Zp and gx,
respectively. To encrypt a message m ∈ G, a sender takes a random k ∈ Zp and
sends a ciphertext (c1, c2) := (gk, mgx) to the recipient. The recipient recovers
the message m by computing c2/cx

1 .
The ElGamal encryption is known not to satisfy non-malleability under cho-

sen ciphertext attacks (Refer to the appendix in [ABR98]). That is, given a
decryption oracle any target ciphertext can be decrypted without feeding itself
to the decryption oracle. Here we show that the decryption oracle enables not
only a decryption of any target ciphertext without the secret key, but also a
reduction of the complexity to compute the secret key in some cases.
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As in the previous subsection, first a chosen ciphertext attacker A takes ran-
dom numbers k1, k2 ∈ Zp, requests a decryption of the ciphertext (c1, c2) :=
(yk, yk′

) to the decryption oracle, and obtains c2/cx
1 = gxk′ · gx2k. Since he

knows k, k′ and gx, A can compute g2 := gx2
. By taking different random pairs

(k, k′) and replacing y by g2, A can obtain g3 := gx3
similarly. By repeating

this procedure � times, A can obtain g1, g2, . . . , g� (gi := gxi

) when � decryption
queries are allowed. By Theorem 1 and 2, if p − 1 has a divisor d ≤ min{�, p1/2}
or p + 1 has a divisor d ≤ min{�/2, p1/3}, the secret key x can be computed in
O(

√
p/d).

We might imagine a situation that this attack is harmful: One uses the original
ElGamal encryption scheme, to encrypt not so important messages, with another
cryptosystem having the same secret key. Then the secret key may be revealed
from the original ElGamal encryption scheme and so the other system can be
insecure. This shows that the original ElGamal scheme must not share the same
secret key with another system.

5 Practicality of the Proposed Algorithm

In this section, we discuss the potential of the proposed algorithms. The algo-
rithm in Theorem 1 has complexity O(log p · (√(p − 1)/d +

√
d)) for a divisor d

of p − 1. The complexity achieves the minimum value O(log p · p1/4) when d =
O(p1/2). The algorithm in Theorem 2 has complexity O(log p · (√(p − 1)/d+d))
for a divisor d of p+1. The complexity achieves the minimum value O(log p·p1/3)
when d = O(p1/3). Hence the security of the �-SDH problem on an abelian group
of order p can be reduced up to O(log p · p1/4) (resp. O(log p · p1/3)) for large �
if p − 1 (resp. p + 1) has a divisor d = O(p1/2) (resp. d = O(p1/3)).

Now we give an example in which security reduction due to our algorithm
yields a serious security problem.

Example 1. We consider the situation that E+(F397) [BLS01] is used for the
broadcast encryption scheme [BGW05]. E+(F397) has a subgroup G of 151 bit
prime order p. Let g be a generator of G and α ∈ Zp be the system secret. The
scheme assuming n users publishes g and gi := gαi

for 0 ≤ i ≤ 2n, i �= n. Using
a non-degenerate bilinear map e on G, we can compute e(g, g)αi

for all non-
negative integers i ≤ 4n. Using Pollard ρ method [Pol78], the secret key can be
found in O(276) group operations. But if we apply the proposed algorithm, it is
reduced to about O(259) exponentiations or O(267) group operations for n = 232.
Furthermore, if we use n = 264 as in the file sharing application [BGW05], the
complexity is reduced to O(242) exponentiations or O(250) group operations.

We remark that in order to give 280 security for the system with 264 users, it
is recommended to take the group of about 220 bit prime order unless p is of a
special form.

Most cryptosystems based on SDH-related problems make use of bilinear maps.
For practice, we investigate some known elliptic curve parameters and show that
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either p − 1 or p + 1 has many small divisors for the largest prime divisor p of
the order for each elliptic curve in [NIST, BLS01, KM05, MIRACL].

NIST curves. NIST suggested several elliptic curves for federal government
use [NIST]. They consist of three categories: Pseudo-random curves over a prime
field, a pseudo-random curve over a binary field, and a Koblitz curve over a
binary field. For most of them, the largest prime divisor p has the property that
either p − 1 or p + 1 has enough small divisors. We present some of them:

– B-163: p−1 = 2 ·53 ·383 ·21179· (a 132 bit prime), which is a 163 bit integer.
– K-163: p − 1 = 24 · 43 · 73· (a 16 bit prime) · (an 18 bit prime) · (a 112 bit

prime), which is a 163 bit integer.
– P -192: p − 1 = 24 · 5 · 2389· (an 83 bit prime) · (a 92 bit prime), which is a

192 bit integer.

We note that P -192 gives the smallest security loss, that is 8 bits, if the
parameter � in the SDH problem is less than 83 bits. Otherwise, however, the
security loss for P -192 can be more than 40 bits.

Elliptic curves with embedding degree 6. Boneh, Lynn and Shacham sug-
gested two families of elliptic curves with embedding degree 6 for short signa-
tures [BLS01]: E+ : y2 = x3 + 2x + 1 and E− : y2 = x3 + 2x − 1 over F3.
We consider E+ or E− over F3λ . We denote by p the largest prime factor of
E±(F3λ).

– E+(F397): p − 1 = 2 · 349 · 24127552321 · 21523361 · 76801, which is a 151 bit
integer.

– E+(F3121): p − 1 = 2 · 3 · 112 · 683 · 6029· (a 123 bit prime), which is a 155
bit integer.

Koblitz-Menezes curves. Koblitz and Menezes [KM05] suggested seven su-
persingular elliptic curve parameters for pairing based cryptography. If we de-
note by p the order of the group to be used in cryptosystems, either p + 1 or
p − 1 has divisor 2i for i ≥ 60 in all cases except one. The exceptional case is
p = 2160 + 23 − 1. In this case, however, p − 1 = 2 · 29 · 227 · 27059· (a 37 bit
prime) · (a 94 bit prime).

Elliptic curves in MIRACL library. MIRACL library [MIRACL] provides
a sample parameter for pairing-friendly elliptic curves. The order of the group
is p = 2159 + 217 + 1. Then p − 1 has the following prime factorization: p − 1 =
217 · 5 · 569· (a 27 bit prime) · (a 32 bit prime) · (a 32 bit prime) · (a 39 bit
prime).

We can see that our algorithm can be applied for all the examples above.
We note that our algorithm is more plausible for pairing-friendly curves in-
cluding Koblitz-Menezes curves and MIRACL library curves because a curve
with an order of small Hamming weights in signed binary form admits efficient
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implementation of Weil or Tate pairing. In most cases, however, it is neces-
sary and seems hard to find a prime p such that both of p − 1 and p + 1
have no small divisor greater than (log p)2. We may consider Gordon’s algo-
rithm [Gor84] to generate strong primes which resist against the proposed al-
gorithms. Basically, the algorithm is to find a prime of the form p = 2(pp2−2

1
mod p2)p1−1+p1p2k where p1 and p2 are primes of equal size and k is an integer.
Then we have p1|p+1 and p2|p−1. But this algorithm usually yields a prime much
larger than p1 and p2. It would be an interesting problem to find elliptic curve
parameters for which the security loss of the SDH is minimized.

6 Conclusion and Further Studies

In this paper, we proposed a novel algorithm to solve the SDH-related problems.
More precisely, given an element g of prime order p in an abelian group and a
secret α ∈ Zp, if gαi

(0 ≤ i ≤ �) are published for the secret α, the complexity
to recover α can be reduced by a factor of

√
d from that of the DLP, where d

is the maximum of the largest divisor of p − 1 not exceeding min{�, p1/2} and
the largest divisor of p + 1 not exceeding min{�/2, p1/3}. This algorithm can be
used to attack cryptographic schemes that admit an oracle to return its secret
key power upon an arbitrary input.

Hence, if a cryptographic scheme or protocol is based on a variant of �-SDH
problems or allows such an oracle by � times, it is recommended to increase the
key size or use a prime p such that both of p+ 1 and p − 1 have no small divisor
greater than (log p)2. However, we have no idea about the distribution of such
primes.

We may try to generalize the proposed algorithms as in [MW99]. One problem
is to find an embedding of Fp to some other groups including extension fields of
Fp and elliptic or hyperelliptic curves over Fp.
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