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Abstract

The transmission of voice communications as datagram

packets over IP networks, commonly known as Voice-over-

IP (VoIP) telephony, is rapidly gaining wide acceptance.

With private phone conversations being conducted on in-

secure public networks, security of VoIP communications

is increasingly important. We present a structured secu-

rity analysis of the VoIP protocol stack, which consists of

signaling (SIP), session description (SDP), key establish-

ment (SDES, MIKEY, and ZRTP) and secure media trans-

port (SRTP) protocols. Using a combination of manual and

tool-supported formal analysis, we uncover several design

flaws and attacks, most of which are caused by subtle incon-

sistencies between the assumptions that protocols at differ-

ent layers of the VoIP stack make about each other.

The most serious attack is a replay attack on SDES,

which causes SRTP to repeat the keystream used for media

encryption, thus completely breaking transport-layer secu-

rity. We also demonstrate a man-in-the-middle attack on

ZRTP, which allows the attacker to convince the commu-

nicating parties that they have lost their shared secret. If

they are using VoIP devices without displays and thus can-

not execute the “human authentication” procedure, they are

forced to communicate insecurely, or not communicate at

all, i.e., this becomes a denial of service attack. Finally, we

show that the key derivation process used in MIKEY cannot

be used to prove security of the derived key in the standard

cryptographic model for secure key exchange.

1 Introduction

Achieving end-to-end security in a voice-over-IP (VoIP)

session is a challenging task. VoIP session establishment

involves a jumble of different protocols, all of which must

inter-operate correctly and securely. Our objective in this

paper is to present a structured analysis of protocol inter-

operation in the VoIP stack, and to demonstrate how even

a subtle mismatch between the assumptions made by a pro-

tocol at one layer about the protocol at another layer can

lead to catastrophic security breaches, including complete

removal of transport-layer encryption.

The VoIP protocol stack is shown in figure 1. For the

purposes of our analysis, we will divide it into four layers:

signaling, session description, key exchange and secure me-

dia (data) transport. This division is quite natural, since

each layer is typically implemented by a separate protocol.

Signaling is an application-layer (from the viewpoint

of the underlying communication network) control mech-

anism used for creating, modifying and terminating VoIP

sessions with one or more participants. Signaling protocols

include Session Initiation Protocol (SIP) [27], H.323 and

MGCP. Session description protocols such as SDP [20] are

used for initiating multimedia and other sessions, and often

include key exchange as a sub-protocol.

Key exchange protocols are intended to provide a cryp-

tographically secure way of establishing secret session keys

between two or more participants in an untrusted envi-

ronment. This is the fundamental building block in se-

cure session establishment. Security of the media transport

layer—the layer in which the actual voice datagrams are

transmitted—depends on the secrecy of session keys and

authentication of session participants. Since the established

key is typically used in a symmetric encryption scheme, key

secrecy requires that nobody other than the legitimate ses-

sion participants be able to distinguish it from a random bit-

string. Authentication requires that, after the key exchange

protocol successfully completes, the participants’ respec-

tive views of sent and received messages must match (e.g.,

see the notion of “matching conversations” in [8]). Key ex-

change protocols for VoIP sessions include SDP’s Security

DEscriptions for Media Streams (SDES) [1], Multimedia

Internet KEYing (MIKEY) [2] and ZRTP [31]. We will an-

alyze all three in this paper.

Secure media transport aims to provide confidentiality,

message authentication and integrity, and replay protection

to the media (data) stream. In the case of VoIP, this stream

typically carries voice datagrams. Confidentiality means

that the data under encryption is indistinguishable from ran-

dom for anyone who does not have the key. Message au-

thentication implies that if Alice receives a datagram appar-

ently sent by Bob, then it was indeed sent by Bob. Data

integrity implies that any modification of the data in transit
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Figure 1. Voice-over-IP protocol stack

will be detected by the recipient. An example of a secure

media transport protocol used on VoIP communications is

Secure Real-time Transport Protocol (SRTP) [6], which is a

profile of Real-time Transport Protocol (RTP) [28].

Our contributions. We analyze security of VoIP protocols

at all layers of the VoIP stack. In particular, we focus on

the inter-operation between protocols at different layers. A

protocol may be secure when executed in isolation, but the

composition of protocols in different layers may be inse-

cure. Moreover, a protocol may make assumptions about

another protocol that the latter does not satisfy.

• We show how to cause the transport-layer SRTP pro-

tocol to repeat the keystream used for datagram en-

cryption. This enables the attacker to obtain the xor
of plaintext datagrams or even to completely decrypt

them. The SRTP keystream is generated by using AES

in a stream cipher-like mode. The AES key is gen-

erated by applying a pseudo-random function (PRF)

to the session key. SRTP, however, does not add any

session-specific randomness to the PRF seed. Instead,

SRTP assumes that the key exchange protocol, exe-

cuted as part of RTP session establishment, will en-

sure that session keys never repeat. Unfortunately,

S/MIME-protected SDES, which is one of the key ex-

change protocols that may be executed prior to SRTP,

does not provide any replay protection. As we show,

a network-based attacker can replay an old SDES key

establishment message, which will cause SRTP to re-

peat the keystream that it used before, with devastating

consequences. This attack is confirmed by our analysis

of the libsrtp implementation.

• We show an attack on the ZRTP key exchange proto-

col that allows the attacker to convince ZRTP session

participants that they have lost their shared secret. ZID

values, which are used by ZRTP participants to retrieve

previously established shared secrets, are not authenti-

cated as part of ZRTP. Therefore, an attacker can ini-

tiate a session with some party A under the guise of

another party B, with whom A previously established

a shared secret. As part of session establishment, A

is supposed to verify that B knows their shared secret.

If the attacker deliberately chooses values that cause

verification to fail, A will decide—following ZRTP

specification—that B has “forgotten” the shared se-

cret.

The ZRTP specification explicitly says that the proto-

col may proceed even if the set of shared secrets is

empty, in which case the attacker ends up sharing a key

with A who thinks she shares this key with B. Even

if the participants stop the protocol after losing their

shared secrets, but are using VoIP devices without dis-

plays, they cannot confirm the computed key by voice

and must stop communicating. In this case, the attack

becomes a simple and effective denial of service. Our

analysis of ZRTP is supported by the AVISPA formal

analysis tool [3].

• We show several minor weaknesses and potential vul-

nerabilities to denial of service in other protocols.

We also observe that the key derived as the result

of MIKEY key exchange cannot be used in a stan-

dard cryptographic proof of key exchange security

(e.g., [12]). Key secrecy requires that the key be in-

distinguishable from a random bitstring. In MIKEY,

however, the joint Diffie-Hellman value derived as

the result of the protocol is used directly as the key.

Membership in many Diffie-Hellman groups is easily

checkable, thus this value can be distinguished from a

random bitstring. Moreover, even hashing the Diffie-

Hellman value does not allow the formal proof of secu-

rity to go through in this case, since the hash function

does not take any random inputs apart from the Diffie-

Hellman value and cannot be viewed as a randomness

extractor in the proof. (This observation does not im-

mediately lead to any attacks.)

While we demonstrate several real, exploitable vulnera-

bilities in VoIP security protocols, our main contribution is

to highlight the importance of analyzing protocols in con-

text rather than in isolation. Specifications of VoIP proto-

cols tend to be a mixture of informal prose and pseudocode,

with some assumptions—especially those about the proto-

cols operating at the other layers of the VoIP stack—are

left implicit and vague. Therefore, our study has important
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lessons for the design and analysis of security protocols in

general.

The rest of the paper is organized as follows. In sec-

tion 2, we describe the protocols, focusing on SIP (signal-

ing), SDES, ZRTP and MIKEY (key exchange), and SRTP

(transport). In section 3, we describe the attacks and vulner-

abilities that we discovered. Related work is in section 4,

conclusions are in section 5.

2 Protocols

2.1 Signaling: SIP

Session Initiation Protocol (SIP) [27] is an application-

layer signaling protocol used for creating, modifying and

terminating sessions with one or more participants. A SIP

network consists of the following entities: end points, a

proxy and/or redirect server, location server, and a regis-

trar. End points or User Agents (UA) represent phone de-

vices or software modems. SIP users are not bound to spe-

cific devices; they register themselves with the registrar and

use a special form of address resolution to identify other

users. SIP user identification is based on a special type of

Uniform Resource Identifier (URI) called SIP URI, simi-

lar to email addresses. A location server stores the address

bindings of users when they register themselves with the

registrar.

SIP servers can operate in a proxy mode or redirect mode.

In the proxy mode, the server intercepts messages from the

end points, inspects their To: field, contacts the location

server to resolve the username into an address and forwards

the message to the appropriate end point or another server.

SIP also supports forking proxies, which receive a single re-

quest and forward it to multiple recipients (as we show in

section 3.1, this makes SIP potentially vulnerable to denial

of service attacks). In the redirect mode, the only differ-

ence is that instead of forwarding the packet along the ac-

tual route, the redirect server returns the address to the end

points and the onus of transmitting the packets is placed on

the end points.

SIP uses a HTTP-like request-response mechanism for

initiating a two-way communication session. The protocol

itself is modeled on the three-way TCP handshake. Figure 2

shows a SIP connection setup with an intermediate proxy

server between the end points. In order to set up a connec-

tion between Alice’s and Bob’s UAs, Alice’s SIP URI is first

resolved into the IP address of the UA under which Alice is

currently registered. SIP address resolution and routing is

usually not done by the UA itself, but rather delegated to the

proxy server for the UA’s domain. In our example, Bob’s

proxy will make a DNS lookup to determine the address of

Alice’s proxy server. During the setup process, communi-

Proxy Server(s) Alice

CONVERSATION

INVITE Alice

OK

OK

INVITE Alice@128.83.130.212

OK from Alice@128.83.130.212

OK from Alice@128.83.130.212

ACK Alice with route
Alice@128.83.130.212

ACK Alice@128.83.130.212

BYE Alice@128.83.130.212

BYE Alice@128.83.130.212

Bob

Figure 2. SIP protocol exchange

cation details are negotiated between UAs using the Session

Description Protocol (SDP), described in section 2.2.

To place a call to Alice, Bob’s UA sends an INVITE re-

quest to the proxy server containing SDP info, which is then

forwarded to Alice’s UA, possibly via her proxy server (af-

ter address resolution by Bob’s proxy). If Alice wants to

talk to Bob, she sends an OK message back to Bob contain-

ing her SDP preferences. Bob then responds with an ACK.

Media exchange takes place directly between Alice’s and

Bob’s respective UAs. From the network security point of

view, this implies that both hops must be secured on a hop-

by-hop basis, and the direct path must be secured as well.

SIP messages can be transported over a TCP stream, pro-

vided the packet size is smaller than the Maximum Trans-

mission Unit (MTU), or embedded into UDP datagram

packets. Therefore, security mechanisms used to encrypt

and authenticate multimedia streams must support UDP as

a transport layer protocol. This requirement excludes sev-

eral popular security mechanisms such as the TCP-based

Transport Layer Security (TLS) [15]. SIP also presents

challenges for firewalls and Network Address Translators

(NATs), but those are outside the scope of this paper.

2.2 Session description: SDP

Session Description Protocol (SDP) is a format for de-

scribing multimedia session parameters for the purpose of

session announcement, session invitation, and so on. We

omit the details, which can be found in [20]. A multimedia

session is a set of multimedia senders and receivers and the

data streams flowing between them; a single session may

3



consist of multiple media streams. A session announcement

consists of a session level description (details that apply to

all media streams) and, optionally, several media-level de-

scriptions. Because SDP is purely a format specification, it

is independent of the transport layer and may be carried, for

example, by SIP.

2.3 Key exchange: SDES, ZRTP, and
MIKEY

Unlike session initiation and description, key exchange

is a fundamental security mechanism. Therefore, we de-

scribe the key exchange protocols specific to VoIP in more

detail. It is essential to understand what security guaran-

tees they provide, because, as we show below, a mismatch

between the expectations of the transport-layer protocol and

the security properties actually ensured by the key exchange

protocol can be a source of serious vulnerabilities.

SDES. SDES [1] is the key transport extension of the

SDP protocol. It provides a way to signal and negotiate

cryptographic key(s) and other session parameters for me-

dia streams in general, and for SRTP in particular. The

crypto attribute for SRTP is defined as: a = crypto :
〈tag〉〈crypto − suite〉〈key − params〉[〈session −
params〉]. The most important component is key−params,

which specifies one or more cryptographic keys as 〈key −
method〉 : 〈key − info〉. The only method supported for

key exchange is inline :, which specifies that the key it-

self must be included in plaintext. In other words, the key is

embedded directly in the SDP attachment of a SIP message.

Therefore, protection of the key depends solely on SIP.

SIP security mechanisms are described in detail in ap-

pendix A. For our purposes, it is enough to observe that

transport-layer protection in SIP can be done using either

TLS [15] (if the transport layer is TCP), or S/MIME [25].

The use of TLS is deprecated because TLS does not provide

end-to-end protection over a chain of proxies. Moreover, it

assumes that the next hop in the SIP proxy chain is trusted.

S/MIME, by contrast, provides end-to-end confidentiality

and authentication for SDP payload encoded as MIME [18].

Note that S/MIME does not provide any replay protec-

tion. Hence, if S/MIME is used to protect SDP payload

(which includes the key in plaintext), then the application

must provide a separate defense against replay attacks. In

general, most applications have limited replay protection

because it requires state maintenance and/or loose clock

synchronization. In section 3.2, we will show how the at-

tacker can exploit the lack of replay protection in S/MIME-

protected SDES to completely break security of an SRTP

session.

ZRTP. ZRTP [31] describes an extension header for Real-

time Transport Protocol (RTP) to establish a session key

for SRTP sessions using authenticated Diffie-Hellman key

exchange. An implementation of ZRTP is available as

Zfone [30]. The main distinguishing feature of ZRTP is that

it does not require prior shared secrets or the existence of a

separate public-key infrastructure (PKI). This is an impor-

tant consideration since it eliminates the need for a trusted

certificate server.

Because Diffie-Hellman (DH) key exchange is malleable

and does not provide protection against man-in-the-middle

attacks, ZRTP uses a Short Authentication String (SAS),

which is essentially a cryptographic hash of two Diffie-

Hellman values, for key confirmation. The communicating

parties confirm the established key verbally over the phone,

by looking at their respective phone displays and reading

the displayed SAS values to each other. After that, they rely

on key chaining: the shared Diffie-Hellman secrets cached

from the previous sessions are used to authenticate the cur-

rent session.

Bob

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

HELLO(ver,cid,hash,cipher,pkt,sas,Alice’s ZID)

HELLOACK

HELLOACK

Bob acts as the initiator

COMMIT(Bob’s ZID,hash,cipher,pkt,hvi)

DHPART1(pvr,rs1IDr,rs2IDr,sigsIDr,srtpsIDr,other_IDr)

DHPART2(pvi,rs1IDi,rs2IDi,sigsIDi,srtpsIDi,other_IDi)

Alice and Bob generate SRTP session keys and salt

SRTP begins

CONFIRM1(plaintext,sasflag,hmac)

CONFIRM2(plaintext,sasflag,hmac)

HELLO(ver,cid,hash,cipher,pkt,sas,Bob’s ZID)

RTP session

CONFIRM2ACK

Alice

Figure 3. Establishment of SRTP session key

using ZRTP

Figure 3 shows a ZRTP key exchange between users Al-

ice and Bob. The HELLO message contains SRTP config-

uration options and a unique ZID, which is generated once

at installation time. This ZID will be used by the recipient

to retrieve cached shared secrets. The HELLO and HEL-
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LOACK messages are optional and an end point can directly

initiate a ZRTP session by sending a COMMIT message.

The sender of the COMMIT message (Bob in our example)

is called the initiator, Alice is the responder.

We describe the Diffie-Hellman exchange in some de-

tail, focusing only on the relevant message fields and omit-

ting the rest. In the COMMIT message, hash, cipher

and pkt describe the hash, encryption and public key al-

gorithms, respectively, chosen by Bob from the intersec-

tion of algorithms in the sent and received HELLO mes-

sages. Bob chooses a random exponent svi and computes

the value pvi = gsvi mod p, where g (generator of the

Diffie-Hellman group G) and p are determined by the pkt

value. hvi, called the hash commitment, is the hash of the

Diffie-Hellman value generated by Bob, concatenated with

hash, cipher, pkt and sas from Alice’s HELLO message.

Upon receipt of the COMMIT message, responder Alice

generates her own Diffie-Hellman secret svr and computes

the corresponding public value pvr. Each secret already

shared between Alice and Bob has an ID, which is the HMAC

of the string “Responder” computed using this secret as

the key. Alice uses Bob’s ZID to retrieve their shared se-

crets rs1 and rs2. Bob’s behavior in response to Alice’s

DHPART1 message is similar.

Upon receipt of the DHPART2 message, Alice checks

that Bob’s public DH value is not equal to 1 or p− 1. (RFC

states that this check thwarts man-in-the-middle attacks. In

section 3, however, we will describe how an attacker can

successfully launch a man-in-the-middle attack against the

protocol without the participants ever detecting it.) If the

check succeeds, Alice computes the hash of the received

value and checks whether it matches hvi received in the

COMMIT message. If not, Alice terminates the protocol.

Otherwise, she stores the shared secret IDs received from

the DHPART2 message as set A.

Alice then computes the set of shared secret IDs that she

expects to receive from Bob. For each secret, its ID is com-

puted as HMAC of the string “Initiator”, keyed with the

secret itself. Let B be the set of these expected IDs. Alice

then computes the intersection of sets A and B. Secrets cor-

responding to the IDs in the intersection are stored as set D,

sorted in the ascending order. The specification explicitly

allows this set of shared secrets to be empty [31, p.12].

The final session key is computed as the hash of the

joint Diffie-Hellman secret concatenated with the set D

of shared secrets. Finally, cached shared secrets rs1

and rs2 are updated as rs2 = rs1 and rs1 =
HMAC(session key, “known plaintext”) on both sides. The

master key and the salt for the SRTP session are computed

as HMAC of known plaintexts using the new session key.

Multimedia Internet KEYing. MIKEY [2] is another key

exchange protocol for SRTP. It can operate in three different

modes: pre-shared key with key transport, public key with

key transport, public key with authenticated Diffie-Hellman

(DH) key exchange. A later extension provides for a DH

exchange in the pre-shared key mode [16]. These modes

are described in detail in appendix B.

An advantage of MIKEY is that it allows the key to be

negotiated as part of the SDP payload during the session

setup phase in SIP. Thus, it requires no extra communica-

tion overhead. An obvious disadvantage of MIKEY is that

it requires either prior shared secrets, or a separate PKI, with

all attendant problems such as certificate dispersal, revoca-

tion, and so on.

For the purposes of our analysis, we focus on the

Diffie-Hellman mode of MIKEY, described in detail in ap-

pendix B. In this mode, the initiator and the responder ex-

change their respective Diffie-Hellman values gxi and gxr .

Both values are signed to ensure authentication. The de-

rived key is gxi.xr .

2.4 Secure transport layer: SRTP

VoIP datagrams are usually transported using the Real-

time Transport Protocol (RTP). SRTP [6] is a profile of RTP

which aims to provide confidentiality, message authentica-

tion, and replay protection to RTP data and control traffic.

SRTP uses a single master key to derive keying material via

a cryptographically secure hash function.

In SRTP, a cryptographic context refers to the crypto-

graphic state information maintained by the sender and re-

ceiver for the media stream. This includes the master key,

session keys, identifiers for encryption and message authen-

tication algorithms, lifetime of session keys, and a rollover

counter (ROC).

Each RTP packet consists of a 16-bit sequence num-

ber (SEQ) which is monotonically increasing. The rollover

counter is maintained by the receiver and is incremented

by 1 every time the sequence number wraps around. For a

multicast stream with multiple senders, a synchronization

source identifier (SSRC) uniquely identifies a sender within

a session. A cryptographic context for SRTP is identified

by the triple (SSRC, destination network address, destina-

tion port).

For data encryption, SRTP uses a single cipher, Ad-

vanced Encryption Standard (AES), in one of the follow-

ing two modes: (i) Segmented Integer Counter mode, or (ii)

f-8 mode. The input to AES is the triple (key,SSRC,SEQ),

where “key” is the encryption key (explained below), SSRC

is the synchronization source identifier and SEQ is the se-

quence number of the packet. Instead of using AES as a

block cipher, SRTP uses it as if it were a stream cipher

and encrypts datagrams by xor’ing them with the output

of AES applied to (key,SSRC,SEQ).

SRTP key derivation. SRTP uses a cryptographically se-

cure pseudo-random function (PRF) to generate encryption
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and authentication session keys from the master key, master

salt and the packet sequence number. The sequence num-

ber of the packet is chosen by the sender. Both master key

and master salt are derived deterministically by applying

HMAC, keyed with the material received during the key ex-

change protocol, to a known plaintext (as defined by the key

exchange protocol). As we show in section 3.2, the deter-

minism of key derivation is a fatal flaw since it makes an

unwarranted assumption about the key exchange protocol

used to create the master key.

Session key derivation involves an 8-bit label, master

salt ms, the key derivation rate, as determined by the cryp-

tographic context, and the index (48-bit ROC||SEQ). Let ||
denote string concatenation. Let x = (〈label〉||r) xor ms,

where r is the integer quotient obtained by dividing the in-

dex by the key derivation rate. Let mk denote the master key

and PRF(k, x) denote a pseudorandom function family such

that for the secret random key k, given m-bit x, the output

is an n-bit string computationally indistinguishable from a

truly random n-bit string. The session keys are generated

as PRF(mk, x), using different labels for encryption, authen-

tication and salting keys, respectively.

An important point to note is that there is no receiver-

generated randomness in the session key derivation pro-

cess. This will allow us to break the protocol because se-

curity of the stream cipher-like encryption used in SRTP

depends critically on the keystream never repeating. This

is emphasized several times in the SRTP specification [6],

which warns about the dangers of “two-time pad” (a collo-

quial term for keystream reuse).

For the keystream never to repeat, the PRF output (used

as input into AES) must never repeat, because the other

inputs into AES—SSRC and SEQ—are not required to

be globally unique and can repeat from session to session

(SSRC must be unique within a session, but may and will

repeat from session to session if the same sender is in-

volved). Moreover, both values are public and can be eaves-

dropped by the attacker. This means that the PRF input must

be unique for every session.

Therefore, the master key and master salt must be unique

in each session. Indeed, according to the SRTP specifica-

tion, “a master key MUST NOT be shared among different

RTP sessions.” Recall that both the master key and mas-

ter salt are derived deterministically from the key material

received during the key exchange protocol. If the attacker

ever succeeds in tricking an SRTP session into re-using pre-

viously used key material, the master key will repeat. In

section 3.2, we will describe how the attacker can force a

VoIP server implementing SRTP in conjunction with SDES

key exchange to repeat the master key, completely breaking

the transport-layer encryption of the data stream.

3 Attacks and Vulnerabilities

3.1 Attacks on SIP

Denial of service. A denial of service attack focuses on

rendering a network of service unavailable, usually by di-

recting a high volume of traffic towards the service thereby

denying it to legitimate clients. A distributed denial of ser-

vice allows a single network user to cause multiple network

hosts to flood the target host.

SIP architecture makes it particularly easy to launch a

distributed denial of service attack. An attacker can put the

victim’s IP address into a spoofed Router header re-

quest, and send it to forking proxies, who will greatly am-

plify the number of messages returned to the victim.

Reflection is an another way to stage a denial of service

attack. An attacker can send spoofed requests to a large

number of SIP elements and proxies, putting the victim’s

IP address into the source field. Each of the recipients will

generate a response, overwhelming the victim.

A limited protection against spoofed SIP requests can be

provided by IPsec, but end-to-end IPsec is challenging to

deploy in a typical VoIP environment where end points are

dynamic, and it is not clear from the specification how SIP

inter-operates with IPsec (see appendix A).

Another important vulnerability in SIP is that BYE re-

quests to terminate sessions are not authenticated since they

are not acknowledged. Instead, a BYE request is implic-

itly authenticated if it is received from the same network

element (on the same path) as a previous INVITE. A third-

party attacker can thus observe the parameters of an eaves-

dropped INVITE message, and then insert a BYE request

into the session. Once the BYE request is received by the

target, the session would be torn down permanently. Simi-

lar attacks can be launched on re-INVITE messages used to

change session parameters.

A wide variety of denial of service attacks also become

possible if registration requests are not properly authenti-

cated and authorized by registrars. If a malicious user is

able to de-register some or all other users in the network

and register his own device on their behalf, he can easily

deny access to any of those users/services. Attackers can

also try to deplete storage resources of the registrar by cre-

ating a huge number of bindings.

Authentication. Authentication is particularly difficult to

achieve in SIP, since there are a number of intermediate el-

ements such as proxies which possibly modify the contents

of a message before it reaches the desired destination. All

such intermediate elements must be trusted.

SIP registration does not require the From field of a mes-

sage to be the same as the To header field of the request,

allowing third parties to change address-of-record bindings

on behalf of another user. If the attacker can successfully
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impersonate a party authorized to change contacts on behalf

of a user, he can arbitrarily modify the address-of-record

bindings for the associated To address. Since SIP authenti-

cation relies implicitly on the authenticity of the server and

intermediate proxies, the attacker who is able to success-

fully impersonate a server or a proxy can do arbitrary dam-

age including denying service to the client or launching a

(distributed) denial of service attack. This requires the exis-

tence of some methodology for the client to authenticate the

server and/or the proxy. Unfortunately, no such mechanism

is specified in the SIP RFC.

3.2 Attack on SDES/SRTP

Figure 4 shows an attack on SRTP when used in com-

bination with SDES key exchange. Suppose two legiti-

mate users, Alice and Bob, previously carried out a success-

ful VoIP session, which the attacker was able to passively

eavesdrop, without learning the session key and thus not

being able to decrypt the data streams. Suppose Bob was

the initiator in this session, and SDES was used to trans-

port SRTP key material. To provide confidentiality for the

SDES message, S/MIME was used to encrypt the payload.

S/MIME, in general, is preferred over TLS for protecting

SDP messages because (i) S/MIME provides end-to-end in-

tegrity and confidentiality protection, and (ii) S/MIME does

not require the intermediate proxies to be trusted.

S/MIME does not provide any anti-replay protection.

After the original session has been torn down, the attacker

can replay Bob’s original INVITE message to Alice, con-

taining an S/MIME-encrypted SDP attachment with the

SDES key transfer message. (Fig. 4 shows the sessions

running concurrently, but the attack need not be adaptive;

one session can be executed after the other.) Since Alice

does not maintain any state for SDP, she will not be able

to detect the replay. Using the old session’s key material

as her HMAC key, she will derive exactly the same mas-

ter key and master salt as in the original session. Since

SSRC and sequence number are the same, the resulting ses-

sion encryption key will be the same as in the previous ses-

sion, and the keystream generated by applying AES to the

(key,SSRC,SEQ) triple will be the same as in the original

session.

Encryption in SRTP is simply the xor of the data stream

with the keystream. If Alice now sends a datagram in the

new session that she thinks she is establishing with Bob,

the attacker can xor the encrypted data stream with the

data stream he eavesdropped in the original session. The

keystream will cancel out, and the result will be the xor of

two data streams.

If the data streams contain enough redundancy or the at-

tacker can guess parts of either stream, he will be able to

completely or partially reconstruct the data of both streams.

keystream repeats

OK from Alice

OK from Alice

ACK Alice
SRTP stream

SRTP stream
BYE

INVITE Alice@domain1.com

(with key)with SDP attachment

Copy of INVITE from Bob

ACK Alice

BYE

AliceBob

(SDES with S/MIME protection)

(impersonating Bob)
Attacker

Figure 4. Attack on SRTP using SDES key ex-

change

In any case, encryption has been completely removed, and

the attacker obtains a bitwise xor of two payloads. Since

VoIP datagrams are highly redundant, and the payloads of

at least the initial datagrams are very predictable (e.g., most

phone conversations start with a “Hello”, whose digital en-

coding can be predicted, even accounting for variations in

accent and pronunciation), this should be considered a com-

plete security breach. Detailed analysis of redundancy in

network packets and the implications for stream cipher se-

curity can be found in [23].

Our attack is similar in spirit to the famous attack on

802.11b WEP [11], which also allowed the attacker to ob-

tain an xor of wireless packets. In the case of WEP, the

keystream was re-used due to exhaustion of initialization

vectors for the stream cipher.

We emphasize that our attack on SDES/SRTP is not a

theoretical exercise. We tested libsrtp, an open-source

implementation of SRTP, and confirmed that it generates the

same master key if the same key material is supplied by

the key exchange protocol, and the replay of an S/MIME-

protected message will result in exactly the same key mate-

rial being supplied to the SRTP implementation.

The most important observation underlying our attack is

that SRTP does not use any randomness on the responder

side when the responder derives session keys, even though

the designers of SRTP were clearly aware of the dangers of

master key re-use [6]. The SRTP specification emphasizes

the need to use automatic key management mechanisms,

since manual key management is more prone to result in key
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re-use. Among the automatic key management protocols

compatible with SRTP are MIKEY, SDES, and ZRTP.

Even though MIKEY was specifically designed as the

key exchange protocol for SRTP, many VoIP implementa-

tions use SDES instead. As of April 2007, products that

rely on the SDES/SRTP combination include software PBX

(Private Branch Exchange) from pbxnsip, VoIP session

border controllers and SIP firewalls from Covergence and

Ingate Systems, and the eyeBeam software phone from

CounterPath.

While MIKEY contains built-in anti-replay protection

and thus appears suitable for establishing SRTP keys, our

analysis demonstrates that SDES is not. Some SRTP im-

plementations may take additional measures to prevent key

re-use, but the libsrtp implementation relies completely

(and disastrously) on the key exchange protocol to ensure

freshness of the key material.

To prevent keystream re-use, SRTP responder should use

its own fresh randomness as part of the key derivation pro-

cess, e.g., as input to HMAC used in session key deriva-

tion. This randomness need not be secret. It can be publicly

communicated to the sender as part of SRTP session estab-

lishment to ensure that the sender derives the same set of

session keys.

Overall, SRTP is a well-designed protocol, and there are

good practical reasons why AES in counter mode has been

chosen as the keystream generator in SRTP [7]. Neverthe-

less, we believe that our analysis contains an important les-

son for the designers of other protocols that use stream-like

ciphers in counter modes. As the authors of SRTP re-iterate

several times in the protocol specification, it is critical that

the counter never repeat. For the protocol to be secure,

however, AES key/salt combinations must be unique even

across multiple sessions. In SRTP, this responsibility is im-

plicitly delegated to the key exchange protocol. Even the

SRTP FAQ says only that keys “can be provided via sig-

naling, and can be expressed using the SDP Security De-

scriptions (if the signaling is cryptographically protected)

or MIKEY [. . . ]” [7]. Unfortunately, cryptographic protec-

tion in the absence of replay protection is not enough to

guarantee uniqueness of the keys across multiple sessions,

resulting in a potentially vulnerable combination of key ex-

change and stream cipher.

3.3 Attacks on ZRTP

Denial of service. ZRTP is potentially vulnerable to denial

of service attacks caused by attackers simply sending spu-

rious HELLO messages to end points. In response to each

HELLO, a ZRTP endpoint creates a half-open connection,

and keeps its parameters in memory. Eventually, it will run

out of storage or memory, and subsequent requests from le-

gitimate clients will be refused.

Authentication. The main advantage of ZRTP is that it

avoids the need for global trust associated with a public-

key infrastructure. ZRTP aims to achieve this with the help

of Short Authentication String (SAS), which is essentially a

(keyed) cryptographic hash of Diffie-Hellman values along

with other pre-shared secrets. After shared secrets have

been used for authentication in one session, they are up-

dated as described in section 2.3 and kept by the participants

for authentication in the next session.

To authenticate the party on the other end of a VoIP ses-

sion, the SAS value is read aloud over the voice connection.

However, authentication based on SAS requires that some

sort of GUI or display be available to the user. This is a

serious problem for many secure VoIP devices, e.g., those

that implement VoIP via a local network proxy and lack a

display. Therefore, we will focus upon security of ZRTP

in the situation where the user cannot explicitly verify SAS

over the voice connection.

Authentication in ZRTP is based on the assumption that,

in order to launch a successful man-in-the-middle attack on

a pair of participants who already conducted several ses-

sions, the attacker must be present on every session start-

ing from the very first one. The reasoning goes as follows.

Each ZRTP user retains shared secrets rs1 and rs2 (see

section 2.3) for users with whom he previously communi-

cated. When initiating a new session, the user sends his

ZID, which is used by the recipient to retrieve the set of

shared secrets associated with this ZID. The session key is

computed by hashing the joint Diffie-Hellman value con-

catenated with the shared secrets. Therefore, even if the DH

exchange is compromised, the attacker still cannot compute

the session key because he does not know the shared secrets.

Because the shared secrets are re-computed after each ses-

sion, the attacker must be present in every session starting

from the very first one, in which there was no shared secret.

Unfortunately, this reasoning is fallacious. The main

problem with the protocol is that ZIDs, which are used by

recipients to look up shared secrets, are not authenticated

early enough in the protocol exchange. Consider a passive

attacker who eavesdrops on a session between Alice and

Bob and learns Bob’s ZID. He then stages a man-in-the-

middle attack as shown in figure 5.

The attacker chooses random exponents x′, y′ and com-

putes x = gx
′

mod p and y = gy
′

mod p, respectively. z is

the hash of x concatenated with the set of algorithms chosen

by Bob for the ZRTP session. The attacker also replaces all

shared-secret IDs with random numbers. When Alice re-

ceives the DHPART2 message from Bob, she retrieves the

set of secrets that she shares with Bob and computes the set

of expected IDs. Since the attacker has replaced all IDs with

random numbers, they will not match.

The protocol specification explicitly allows the set of

shared secrets to be empty: “the final shared secret, s0,
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DHPART1(pvr,rs1IDr,rs2IDr,...)

COMMIT(Bobs ZID,hash,cipher,pkt,z)
COMMIT(Bob’s ZID,hash,cipher,pkt,hvi)

Alice Attacker Bob

DHPART2(pvi,rs1IDi,rs2IDi,...)
DHPART2(y,r1’,r2’, ...)

DHPART1(x,r1,r2,...)

Figure 5. A man in the middle attack on the

ZRTP protocol

is calculated by hashing the concatenation of the Diffie-

Hellman shared secret (DHSS) followed by the (possibly

empty) set of shared secrets that are actually shared be-

tween the initiator and responder” [31, p.12]. The specifica-

tion does not require Alice to stop the protocol, and instead

instructs her to compute the joint Diffie-Hellman value as

ysvr mod p (= gy
′
.svr mod p). The session key is now com-

puted as the hash of the joint Diffie-Hellman value alone be-

cause Alice believes that she doesn’t have any shared secrets

with Bob anymore. Similarly, Bob computes the session

key as the hash of the Diffie-Hellman value gx
′
.svi mod p.

The attacker knows both values. Therefore, he can com-

pute SRTP master key and salt, and completely break SRTP

encryption.

An informal discussion in the preamble to the proto-

col specification does say that “If we ever lose this cached

shared secret, it is no longer available for authentication of

DH exchanges, so we would have to do a new SAS proce-

dure and start over with a new cached shared secret” [31,

p.3]. First, this is inconsistent with the actual specification,

which permits the set of shared secrets to be empty during

key derivation (see above). Second, it is not at all clear how

to implement this, since the preamble goes on to say that

“SAS is easiest to implement when a GUI or some sort of

display is available, which raises the question of what to

do when no display is available. We envision some prod-

ucts that implement secure VoIP via a local network proxy,

which lacks a display in many cases.”

Even if Alice stops communicating with Bob when the

set of shared secrets is empty (and we emphasize once again

that this is not what the specification prescribes), this attack

turns into a very effective denial of service, which allows

the attacker to break off any session conducted between

VoIP devices without displays. In general, the claim in

the specification that the attacker is forced to solve multi-

ple problems, such as “stealing a shared secret from one of

the parties, being present on the very first session and ev-

ery subsequent session to carry out an active MitM attack,

and solving the discrete log problem,” does not appear to be

borne out.

It is not clear whether the problem can be solved at all.

In the absence of either PKI, or pre-shared secrets, or de-

vice support for “out-of-band” key confirmation by reading

key hashes to each other, it is hard to see how the parties

can carry out an authenticated key exchange. At the very

least, the specification of ZRTP should not allow the key

exchange to go forward when the set of shared secrets is

empty.

Formal analysis of ZRTP in AVISPA. To support our

analysis of ZRTP, we constructed a formal model of the

protocol in the High Level Protocol Specification Lan-

guage HLPSL [13] and used the automated AVISPA model

checker [3] to carry out formal analysis.

Formal verification of ZRTP with AVISPA presents an

interesting challenge because the model must capture the

“multi-session” nature of authentication in ZRTP. Authen-

tication in a ZRTP session depends on information ex-

changed in previous sessions. HLPSL, however, does not

allow state to be retained across sessions.

To get our model to work, we had to assume that, for a

given session, initiator and responder agree on the value of

their shared secrets at the start of the session. This allows us

to model the protocol by passing the shared secrets as argu-

ments to the role specification of the initiator and responder

roles. Also, we assume that there are no other shared se-

crets between the participants. The protocol specification in

HLPSL is given in appendix C. We only model the relevant

fields in message bodies. To simplify presentation, we show

the specification in the “Alice-Bob” notation:

Init → Resp : H(gx)

Init ← Resp : gy, rs1IDr, rs2IDr | Diffie-Hellman exchange

Init → Resp : gx, rs1IDi, rs2IDi

Init ← Resp : MAC(K, c1) | K is shared key

Init → Resp : MAC(K, c2) | Authentication part

Here K is the shared session key calculated as de-

scribed in section 2.3, H() is a cryptographic hash func-

tion and MAC(k, text) is a keyed message authentica-

tion code computed over text using authentication key k.

rs1IDi, rs2IDi (rs1IDr, rs2IDr) are the keyed HMACs

of the strings “Initiator” and “Responder” computed using

the shared secrets rs1, rs2, respectively. c1, c2 are public

constants.

Our specification of the authentication property is based

on [8]. Intuitively, authentication holds for a particular

session between Alice and Bob if the following condition

holds: at the end of a successfully completed session, if Al-

ice believes that she is talking to Bob, then she is indeed

talking to Bob and their respective records of messages sent

and received during the protocol execution “match.” The

condition for Bob is similar.
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The attack on authentication described above was suc-

cessfully discovered by the AVISPA tool. The attack is

shown in appendix D.

3.4 Analysis of MIKEY

Secrecy. The goal of a cryptographically secure key ex-

change protocol is to establish a session key which is indis-

tinguishable from a random bitstring by anyone other than

the participants [12]. It is easy to see that MIKEY does

not satisfy this requirement when executed in the Diffie-

Hellman mode. The shared key is derived as gxi.xr , i.e.,

the joint Diffie-Hellman value is used directly as the key. In

many Diffie-Hellman groups, e.g., in the group of squares

modulo a large prime, testing group membership is not a

computationally hard problem: it is sufficient to compute

the Jacobi symbol. Therefore, it is easy to tell the differ-

ence between a random bitstring and the key.

This does not necessarily lead to any exploitable weak-

nesses, although it does preclude a rigorous proof of secu-

rity from going through. Moreover, encryption schemes in

which the derived key is intended to be used typically re-

quire that the key be indistinguishable from a random value.

This is yet another example of how assumptions made by

one layer of the VoIP protocol stack (transport layer in this

case) are not met by another layer (key exchange layer in

this case).

But wouldn’t the joint Diffie-Hellman derived in MIKEY

have to be hashed anyway before it can actually be used

as a key? Yes, but this is not enough. A simple appli-

cation of a deterministic hash function to the joint Diffie-

Hellman value does not provably produce an output which

is indistinguishable from random. By contrast, in protocols

like TLS [15] and IKE [21], the key is derived by hash-

ing the Diffie-Hellman value together with some (authen-

ticated) random values generated by one or both partici-

pants. This use of randomness in key derivation, absent in

MIKEY, is essential for the cryptographic proof of security

to go through.

There is a simple, standard solution. To derive a key

from the joint Diffie-Hellman value, MIKEY participants

should follow the approach used in TLS and IKE, and use

a randomness extractor, e.g., a universal hash function [24]

with public randomness generated by one or both partici-

pants.

Finally, we observe that MIKEY in the pre-shared key

mode (see appendix B) obviously doesn’t satisfy perfect

forward secrecy because the compromise of the pre-shared

secret leads to the compromise of all previous sessions.

Denial of service. MIKEY offers very limited protection

against denial of service attacks. In the public-key DH

mode, the responder only performs CPU-intensive modu-

lar exponentiation after verifying the message digest of the

initiator’s message. The attacker can still flood the respon-

der with multiple copies of the same message or messages

containing an incorrect digest. This will cause the respon-

der to perform a large number digest verifications and may

exhaust memory resources.

4 Related work

The two VoIP protocols that have attracted most atten-

tion in the research literature are SIP and Skype. SIP, in

particular, has been the subject of several comprehensive

studies [22, 26, 19, 29]. All of them focused solely on the

signaling layer. Skype, which is a closed-end system based

on a proprietary peer-to-peer protocol, has been the sub-

ject of several analyses [9, 5] and reverse engineering at-

tempts [10].

To the best of our knowledge, the VoIP protocol stack,

including key exchange and transport layer security proto-

cols, has not been analyzed before in its entirety. We’d like

to emphasize the need to analyze not only the individual

layers in isolation, but also the assumptions and guarantees

made by the layers when interacting with each other. As our

study shows, “misunderstandings” between protocols at dif-

ferent layers is a common source of security vulnerabilities.

We hope that this work will serve as the first step towards

developing a comprehensive security assessment of the en-

tire VoIP protocol stack.

5 Conclusions

We have presented a structured security analysis of

the entire Voice-over-IP protocol stack, including signal-

ing protocols such as SIP, key exchange protocols such as

SDES, ZRTP and MIKEY, and transport-layer security pro-

tocols such as SRTP. Our analysis uncovered several serious

vulnerabilities. The first is a replay attack on SDES key ex-

change which causes SRTP to use the same keystream in

multiple sessions, thus allowing the attacker to remove en-

cryption from SRTP-protected data streams. The second

is an attack on ZRTP caused by unauthenticated user IDs,

which allows the attacker to disable authentication mecha-

nisms and either trick a ZRTP participant into establishing

a shared key with the attacker, or cause the protocol to ter-

minate prematurely. The third is a “certificational” issue:

due to the lack of proper randomness extraction in MIKEY

key derivation, MIKEY cannot be proved cryptographically

secure.

Our study illustrates the importance of thorough analysis

of protocol specifications. This is especially critical in ap-

plications such as Voice-over-IP, where multiple protocols,

operating at different layers in the protocol stack, have to

make assumptions about each other to achieve end-to-end
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security. When these assumptions are not justified—such as

the assumption made by SRTP that the key exchange proto-

col always ensures freshness of the key material—the result

is a security vulnerability.

Much attention has been devoted to the development

of formal protocol analysis methods that provide composi-

tional security guarantees (e.g., see [4, 14]). An interesting

topic of future research is whether attacks that exploit “mis-

understandings” between protocol layers can be discovered

automatically by analyzing protocol specifications. This re-

quires formal tools that are capable of inferring and model-

ing inter-protocol assumptions such as “protocol A assumes

that the key provided by protocol B will be fresh in every

session.”
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A SIP security mechanisms

SIP security mechanisms can be broadly divided into

those devoted to authentication, data integrity, and confi-

dentiality.

Authentication. SIP supports HTTP basic authentication

and HTTP digest authentication [17]. HTTP basic authenti-

cation requires username and matching password to be sent

in plaintext as part of the HTTP header request. This has

serious security risks, and HTTP basic authentication has

been deprecated in SIP version 2 (SIPv2) [27].

HTTP digest authentication is based on a simple

challenge-response paradigm. The digest authentication

scheme challenges the remote user with a random nonce.

A valid response consists of an MD5 or SHA-1 digest of

the secret password, the nonce value and some other pa-

rameters including the requested URI. Although HTTP di-

gest authentication improves upon the basic authentication

by not sending the password in the clear, it is still prone to

offline dictionary attacks based on intercepted hash values if

short or weak passwords are used. The digest authentication

scheme is also prone to computational denial-of-service at-

tacks since it requires the challenger to compute the digest

for any received hash value.

Confidentiality. SIP itself does not provide confidential-

ity for media data. SIP messages include MIME bodies

and the MTME standard provides mechanisms for ensuring

data integrity and confidentiality [18]. SIP may use Secure

MIME (S/MIME) [25] for distribution of certificates, au-

thentication, confidentiality and data integrity. Distribution

of S/MIME certificates, however, requires the existence of

a trusted server. Authenticating MIME payloads is not a

problem since each end point has its own private signing

key and certificates may be forwarded along with the sig-

nature. Confidentiality, on the other hand, poses a serious

problem since it requires prior knowledge of the recipient’s

public key. This key must be fetched from a central author-

ity or obtained from a peer via special SIP messages. To be

able to protect SIP headers as well, tunneling of SIP mes-

sages inside MIME bodies is supported. Tunnelled packets

may be large, and it is suggested to use TCP as the transport

layer protocol to avoid problems with UDP fragmentation.

Another option is to use secure SIP (SIPS) URI, which

is very similar to secure http (https) and employs Transport

Layer Security (SSL/TLS). Since we wish to protect SIP

headers and each hop may add routing information to the

SIP message header, protection is on a hop-by-hop basis

along each segment of the path. The use of TLS also re-

quires the use of TCP as a transport protocol and depends

on the existence of a PKI infrastructure.

The third option is IPsec. IPsec provides two mecha-

nisms for authentication and, in the case of ESP, confiden-

tiality: Authentication Header (AH) and Encapsulating Se-

curity Payload (ESP). Since each proxy server on the path

may add or change information in the SIP header, both ESP

and AH must be applied on a hop-by-hop basis. IPsec secu-

rity mechanisms can also be established on a permanent ba-

sis between the end points without active involvement of the

UAs themselves. SIP RFC does not specify which IPsec ser-

vice may be used or how key management is realized. One

commonly accepted key establishment protocol for IPsec

Internet Key Exchange (IKE) [21]. IKE may be used with

pre-shared secrets or PKI infrastructure. Since the UAs are

mostly dynamic, IKE Main Mode will not work with pre-

shared secrets and IKE Aggressive Mode is fraught with

problems such as man in the middle attacks, offline dictio-

nary attacks, etc..

Data integrity. For data integrity, either S/MIME or SIPS

URI or IPsec may be used.

B Modes of MIKEY

Before describing the three modes of MIKEY, we need

some notation. Data security protocol is the security proto-

col, such as SRTP, used to protect the media session. Data

security association (Data SA) comprises the session key

(TEK) and a set of parameters. Crypto session (CS) is a

uni- or bi-directional media stream. A crypto session is

protected by a unique instance of a data security protocol.

Each crypto session has a unique identifier known as the

CS ID. Crypto session bundle (CSB) is a set of crypto ses-

sions which derive their session keys (TEKs) from a com-

mon TGK and a set of security parameters. CSB ID is a

unique identifier for the crypto session bundle. Traffic Gen-

erating Key (TGK) is a bitstring agreed upon by two or more

parties associated with a CSB. One or more TEKs can be

derived from the TGK and the unique crypto session ID.

- Pre-Shared Key Transfer. In this mode, the key is

generated by the initiator and transferred to the re-

sponder. The message is integrity-protected using a

keyed MAC and encrypted. The respective keys are

derived from the shared secret s and a random value

using a cryptographically secure hash function. Let

IDi and IDr be the identities of the initiator and re-

sponder, respectively. Message m is defined as m :=
HDR, T, RAND, [IDi], [IDr], {SP}, KEMAC, where T is the

timestamp (used for replay protection), RAND is a ran-

dom number used for generating encryption key (Encrk)
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and authentication key (Authk) from the shared se-

cret s, SP is a set of security policies and KEMAC =
E(Encrk, {TGK})||MAC. E(key, text) denotes the encryp-

tion of text with the encryption key key and || denotes

string concatenation. MAC is a keyed message authenti-

cation code computed over the entire message m using

the authentication key Authk. It is assumed that TGK is

a chosen uniformly at random by the initiator. For mutual

authentication, the initiator may request the responder to

send a verification message which includes the message

header HDR, timestamp T, the initiator and responder iden-

tities IDi, IDr, respectively, and a MAC.

- Public Key Transfer. As in the pre-shared key mode, the

initiator’s message transfers or more TGKs and set of me-

dia session security parameters the responder. The initia-

tor’s message is

m := HDR, T, RAND, [IDi|CERTi], [IDr], {SP}, KEMAC, PKE, SIGNi

Here CERTi stands for the initiator’s certificate. In this

mode, the encryption and authentication keys are derived

from an envelope key (Envk) chosen by the initiator at ran-

dom. PKE is the encryption of Envk under the respon-

der’s public key. Note that this requires prior knowledge

of the responder’s (properly certified) public key. SIGNi
is a signature over the entire message m using the initia-

tor’s private signing key. As in the pre-shared key mode,

the initiator may request a verification message from the

responder.

- Public Key with Diffie-Hellman Exchange. Let G denote

a large cyclic multiplicative group with generator g. Au-

thenticated Diffie-Hellman key exchange is shown below:

Init → Resp : HDR, T, RAND, [IDi|CERTi], SP, DHi, SIGNi
Init ← Resp : HDR, T, [IDr|CERTr], IDi, DHr, DHi, SIGNr

Here DHi, DHr stand for gxi and gxr , where xi, xr are ran-

domly chosen by the initiator and responder, respectively.

The derived key is gxi.xr . DH group parameters are cho-

sen by the initiator and signaled to the responder.

C Formalization of ZRTP in HLPSL

role zrtp_Init (A,B: agent,
G: nat,
Hash: hash_func,
RS1,RS2: nat,
Snd,Rcv: channel(dy))

played_by A
def=
local State : nat,

X : text,
DH, T : nat,
K : symmetric_key,
ID : nat,
Confirm1 : nat,
Confirm2 : nat,
EY : nat,
RS1IDr,RS2IDr : nat,

C,Init,Resp : nat

const sec_k1 : protocol_id

init State := 0
/\ ID := 1
/\ Confirm1 := 2
/\ Confirm2 := 3
/\ Init := 4
/\ Resp := 5

transition
1. State = 0

/\ Rcv(start)
=|>
State’ := 1
/\ X’ := new()
/\ Snd(Init.Hash(exp(G,X’)))

2. State = 1
/\ Rcv(EY’.RS1IDr’.RS2IDr’)
/\ not(RS1IDr’ = Hash(RS1.Resp))
/\ not(RS2IDr’ = Hash(RS2.Resp))
=|>
State’ := 2
/\ Snd(exp(G,X).Hash(RS1.Init).Hash(RS2.Init))
/\ DH’ := exp(EY’,X)
/\ K’ := Hash(Hash(DH’))

3. State = 1
/\ Rcv(EY’.RS1IDr’.RS2IDr’)
/\ RS1IDr’ = Hash(RS1.Resp)
/\ not(RS2IDr’ = Hash(RS2.Resp))
=|>
State’ := 2
/\ Snd(exp(G,X).Hash(RS1.Init).Hash(RS2.Init))
/\ DH’ := exp(EY’,X)
/\ K’ := Hash(Hash(DH’).RS1)

4. State = 1
/\ Rcv(EY’.RS1IDr’.RS2IDr’)
/\ not(RS1IDr’ = Hash(RS1.Resp))
/\ RS2IDr’ = Hash(RS2.Resp)

=|>
State’ := 2
/\ Snd(exp(G,X).Hash(RS1.Init).Hash(RS2.Init))
/\ DH’ := exp(EY’,X)
/\ K’ := Hash(Hash(DH’).RS2)

5. State = 1
/\ Rcv(EY’.RS1IDr’.RS2IDr’)
/\ RS1IDr’ = Hash(RS1.Resp)
/\ RS2IDr’ = Hash(RS2.Resp)
=|>
State’ := 2
/\ Snd(exp(G,X).Hash(RS1.Init).Hash(RS2.Init))
/\ DH’ := exp(EY’,X)
/\ K’ := Hash(Hash(DH’).RS1.RS2)

6. State = 2
/\ Rcv(C’)
/\ C’ = Hash(K.Confirm2)
=|>
State’ := 3
/\ RS2’ := RS1
/\ RS1’ := Hash(K.ID)
/\ Snd(Hash(K.Confirm1))
/\ secret(K,sec_k1,{A,B})
/\ witness(A,B,na,Hash(K.Confirm1))
/\ request(A,B,nb,C’)

end role
——————————————————————————————-

role zrtp_Resp (A,B: agent,
G: nat,
Hash: hash_func,
RS1,RS2: nat,
Snd,Rcv: channel(dy))

played_by B
def=

local State : nat,
Y : text,
DH, T : nat,
K : symmetric_key,
HVI : nat,
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ID : nat,
Confirm1 : nat,
Confirm2 : nat,
EX : nat,
RS1IDi,RS2IDi : nat,
C,Init,Resp : nat

const sec_k2 : protocol_id

init State := 0
/\ ID := 1
/\ Confirm1 := 2
/\ Confirm2 := 3
/\ Init := 4
/\ Resp := 5

transition
1. State = 0

/\ Rcv(Init.HVI’)
=|>
State’ := 1
/\ Y’ := new()
/\ Snd(exp(G,Y’).Hash(RS1.Resp).Hash(RS2.Resp))

2. State = 1
/\ Rcv(EX’,RS1IDi’,RS2IDi’)
/\ not(RS1IDi’ = Hash(RS1.Init))
/\ not(RS2IDi’ = Hash(RS2.Init))
/\ HVI = Hash(EX’)
=|>
State’ := 2
/\ DH’ := exp(EX’,Y)
/\ K’ := Hash(Hash(DH’))
/\ Snd(Hash(K’.Confirm2))
/\ witness(B,A,nb,Hash(K’.Confirm2))

3. State = 1
/\ Rcv(EX’,RS1IDi’,RS2IDi’)
/\ RS1IDi’ = Hash(RS1.Init)
/\ not(RS2IDi’ = Hash(RS2.Init))
/\ HVI = Hash(EX’)
=|>
State’ := 2
/\ DH’ := exp(EX’,Y)
/\ K’ := Hash(Hash(DH’).RS1)
/\ Snd(Hash(K’.Confirm2))
/\ witness(B,A,nb,Hash(K’.Confirm2))

4. State = 1
/\ Rcv(EX’,RS1IDi’,RS2IDi’)
/\ not(RS1IDi’ = Hash(RS1.Init))
/\ RS2IDi’ = Hash(RS2.Init)
/\ HVI = Hash(EX’)
=|>
State’ := 2
/\ DH’ := exp(EX’,Y)
/\ K’ := Hash(Hash(DH’).RS2)
/\ Snd(Hash(K’.Confirm2))
/\ witness(B,A,nb,Hash(K’.Confirm2))

5. State = 1
/\ Rcv(EX’,RS1IDi’,RS2IDi’)
/\ RS1IDi’ = Hash(RS1.Init)
/\ RS2IDi’ = Hash(RS2.Init)
/\ HVI = Hash(EX’)
=|>
State’ := 2
/\ DH’ := exp(EX’,Y)
/\ K’ := Hash(Hash(DH’).RS1.RS2)
/\ Snd(Hash(K’.Confirm2))
/\ witness(B,A,nb,Hash(K’.Confirm2))

6. State = 2
/\ Rcv(C’)
/\ C’ = Hash(K.Confirm1)
=|>
State’ := 3
/\ RS2’ := RS1
/\ RS1’ := Hash(K.ID)
/\ secret(K,sec_k2,{A,B})
/\ request(B,A,na,C’)

end role
——————————————————————————————-

role session(A,B: agent,

G: nat,
H: hash_func,
RS1, RS2: nat)

def=
local SA, RA, SB, RB: channel (dy)

composition
zrtp_Init(A,B,G,H,RS1,RS2,SA,RA)

/\ zrtp_Resp(A,B,G,H,RS1,RS2,SB,RB)

end role
——————————————————————————————-

role environment()
def=

const a, b : agent,
rs1,rs2 : nat,
na, nb : protocol_id,
g : nat,
h : hash_func

intruder_knowledge={a,b,g,h}

composition
session(a,b,g,h,rs1,rs2)

/\ session(b,a,g,h,rs1,rs2)

end role
——————————————————————————————-

goal

% Confidentiality
secrecy_of sec_k1, sec_k2

% Message authentication
authentication_on na

% Message authentication
authentication_on nb

end goal
——————————————————————————————-

environment()

NOTE: We use Hash instead of HMAC since AVISPA does not support keyed

MAC’s.

D AVISPA trace of ZRTP attack

SUMMARY
UNSAFE

DETAILS
ATTACK_FOUND
UNTYPED_MODEL

PROTOCOL
./ZRTP.if

GOAL
Authentication attack on (b,a,nb,

{{{exp(g,n19(Y)*n37(X))}_h.rs1.rs2}_h.3}_h)

BACKEND
CL-AtSe

STATISTICS

Analysed : 451 states
Reachable : 115 states
Translation: 0.21 seconds
Computation: 0.25 seconds

ATTACK TRACE
i -> (a,3): start
(a,3) -> i: 4.{exp(g,n1(X))}_h
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i -> (a,3): EY(2).RS1IDr(2).RS2IDr(2)
& RS2IDr(2)<>{rs2.5}_Hash(2);
RS1IDr(2)<>{rs1.5}_Hash(2);

(a,3) -> i: exp(g,n1(X)).{rs1.4}_h.{rs2.4}_h

i -> (a,7): 4.{EX(68)}_h
(a,7) -> i: exp(g,n55(Y)).{rs1.5}_h.{rs2.5}_h

i -> (a,7): EX(68)
(a,7) -> i: {{{exp(EX(68),n55(Y))}_h.rs1.rs2}_h.3}_h

& Witness(a,b,nb,
{{{exp(EX(68),n55(Y))}_h.rs1.rs2}_h.3}_h);

i -> (b,6): start
(b,6) -> i: 4.{exp(g,n37(X))}_h

i -> (b,4): 4.{exp(g,n37(X))}_h
(b,4) -> i: exp(g,n19(Y)).{rs1.5}_h.{rs2.5}_h

i -> (b,6): exp(g,n19(Y)).{rs1.5}_h.{rs2.5}_h
(b,6) -> i: exp(g,n37(X)).{rs1.4}_h.{rs2.4}_h

i -> (b,4): exp(g,n37(X))
(b,4) -> i: {{{exp(g,n19(Y)*n37(X))}_h.rs1.rs2}_h.3}_h

& Witness(b,a,nb,
{{{exp(g,n19(Y)*n37(X))}_h.rs1.rs2}_h.3}_h);

i -> (b,6): {{{exp(g,n37(X)*n19(Y))}_h.rs1.rs2}_h.3}_h
(b,6) -> i: {{{exp(g,n37(X)*n19(Y))}_h.rs1.rs2}_h.2}_h

& Secret({{exp(g,n37(X)*n19(Y))}_h.rs1.rs2}_h,set_119);
& Witness(b,a,na,

{{{exp(g,n37(X)*n19(Y))}_h.rs1.rs2}_h.2}_h);
& Request(b,a,nb,

{{{exp(g,n37(X)*n19(Y))}_h.rs1.rs2}_h.3}_h);
& Add b to set_119; Add a to set_119;
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