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Abstract: Biometric systems are increasingly replacing traditional password- and token-based

authentication systems. Security and recognition accuracy are the two most important aspects

to consider in designing a biometric system. In this paper, a comprehensive review is presented to

shed light on the latest developments in the study of fingerprint-based biometrics covering these two

aspects with a view to improving system security and recognition accuracy. Based on a thorough

analysis and discussion, limitations of existing research work are outlined and suggestions for future

work are provided. It is shown in the paper that researchers continue to face challenges in tackling

the two most critical attacks to biometric systems, namely, attacks to the user interface and template

databases. How to design proper countermeasures to thwart these attacks, thereby providing strong

security and yet at the same time maintaining high recognition accuracy, is a hot research topic

currently, as well as in the foreseeable future. Moreover, recognition accuracy under non-ideal

conditions is more likely to be unsatisfactory and thus needs particular attention in biometric system

design. Related challenges and current research trends are also outlined in this paper.

Keywords: biometrics; security; template protection; recognition accuracy; latent fingerprint

1. Introduction

Biometrics is a technology that uses the unique patterns of physical or behavioral traits of users for

authentication or identification. With biometric scanners on smartphones and other devices becoming

more prevalent, as well as a growing number of services calling for high security and good customer

experience, traditional methods of authentication (e.g., passwords and PINs) are increasingly being

replaced by biometric technology [1]. Passwords have some obvious drawbacks—they could be

stolen, lost, or forgotten. In contrast, biometrics offer an alternative solution to the task of personal

authentication or identification based on biometric traits. To be forgotten or lost is impossible,

and unlike passwords, they are hard to forge. There are some biometric traits that can be defined for

an individual; for example, fingerprint, finger-vein, iris, voice, face, and so on [2].

Generally, a typical biometric system comprises four modules, namely, sensor module, feature

extraction module, template database, and matching module. Specifically, the sensor module acquires

the biometric image. A set of global or local features are extracted from the acquired biometric image by

the feature extraction module. Structured feature representations are stored in the template database

as template data. The matching module is responsible for comparing the query and template data

to reach a match or non-match verdict. A typical biometric system carries out authentication in two

stages [3,4]—the enrollment stage and verification stage—as shown in Figure 1. Take fingerprint
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recognition as an example. In the stage of enrollment, a user presents their finger to the fingerprint

sensor and a fingerprint image is acquired by the sensor module. Certain features of the acquired

fingerprint image are extracted, and further adapted or transformed to generate template data for the

purpose of comparison in the verification stage. In the verification stage, the fingerprint image of a

query is collected by the sensor module. The feature representations of the query fingerprint image go

through the same process as in the enrollment stage, so as to obtain query data. The query data are

then compared with the template data so that a matching outcome is attained.

 

Figure 1. An example of two stages—enrollment and verification—in a biometric authentication system.

Due to some specific properties possessed by biometrics, biometric systems have been adopted in

many civilian and military applications [5–8] in the areas of law enforcement, border control, consumer

or residential biometrics, and financial services.

(1) Law enforcement: Biometric technology has been embraced with open arms by law enforcement

agencies across the world for its efficiency in security-oriented scenarios. In fact, biometrics is

not a new tool in law enforcement. Fingerprint biometrics have been adopted by Argentinian

criminologists for more than a century. Nowadays, with rapid technological development,

biometrics have launched a worldwide revolution in law enforcement. Biometric recognition

systems have now been utilized by law enforcement agencies of many countries, including the

United States, United Kingdom, Australia, and China. For example, in 2011, the Department

of Defense and the FBI started working on the United States’ next generation biometric system,

named Next Generation Identification (NGI), which is designed to include fingerprint, face, iris,

and palm data, and their facial recognition program became fully operational in late 2014 [9].

(2) Border control: In order to prevent identity fraud and strengthen border and national security,

many countries employ biometric systems to track and manage the flow of passengers across

borders. For instance, since 2008, all non-Americans who travel to the United States are requested

to scan their fingerprint by US border security officials [10]. In order to eliminate the need for

paper passports, Australia is planning to boost its “Seamless Traveler” program. The proposal
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of this program is to have 90 percent of the 35 million annual travelers to enter Australia via a

paperless biometric recognition system by 2020 [11].

(3) Consumer biometrics: Consumer devices equipped with biometric systems are standalone

products for the consumer market, such as door locks, surveillance systems, automotive, and

especially mobile devices (smartphones, tablets, etc.). In the past, passwords were the only

secure way of authentication, and fingerprint scanners were most likely used by law enforcement

agencies and the military. However, times have changed. In the last decade, biometric technology

has developed in leaps and bounds and spread to every corner of our lives as a more secure

method of authentication. With the popularity of smart phones, mobile phones utilizing

biometrics is a winning combination in the consumer market, allowing biometric technology to

become much more widely accepted [12].

(4) Financial services: Finance is the most mature biometrics market outside the domain of law

enforcement for the logic that protecting money is the first priority for most people. Financial

companies have been early adopters of biometrics. For example, cash machines with fingerprint

readers are currently deployed at an increasing pace [13]. Moreover, a new MasterCard, which

includes an embedded fingerprint reader, attempts to introduce a biometric authentication

layer for card payment [14], so as to enhance customers’ comfort level in terms of security

and convenience.

Compared with other biometric traits (e.g., face, iris, and voice), fingerprint-based recognition

systems are studied most extensively and deployed most widely. For a fingerprint, the pattern of

valleys and ridges is determined after birth, and different fingerprint patterns are owned by even

identical twins [1]. It has been reported that the recognition accuracy of fingerprint-based recognition

systems is very high [15], with the general public showing medium acceptability to fingerprint

acquisition [16]. This is why fingerprint biometric systems occupy a large market share and have been

adopted in various applications. Although fingerprint recognition shows substantial strength and a

prosperous future, it has some unsolved issues, such as insufficient accuracy and security concerns.

In this paper, a comprehensive review is presented to shed light on the latest development in the

study of fingerprint-based biometrics concerning two important aspects—security and recognition

accuracy. The main contributions of this paper are highlighted as follows:

i. Security and recognition accuracy, despite being two most important aspects in biometric

system design, have not been adequately studied simultaneously. Prior to this review paper,

no research work has delivered a comprehensive review considering both of them. In this

paper, up-to-date research and insights into security and recognition accuracy are thoroughly

analyzed and discussed.

ii. Based on a thorough analysis, limitations of existing research are discussed and suggestions for

future work to overcome those limitations are provided.

iii. The two most critical attacks to biometric systems are discussed in this paper. How to resolve

the challenges, so as to defend biometric systems, is the focus of current and future biometric

security research.

iv. Most existing methods, either with or without template protection, were set forth in ideal

situations. In this paper, we emphasize the importance of considering recognition accuracy

under non-ideal conditions. Our analysis is backed by solid evidence and detailed comparison.

The rest of this paper is organized as follows. In Section 2, the security of biometrics is thoroughly

analyzed from the perspective of attack points and countermeasures. In Section 3, system recognition

accuracy under different conditions is discussed. The conclusion and future work is given in Section 4.

2. Security Analysis: Attacks and Countermeasures

Compared with password-based authentication systems, there are two major concerns over

biometric systems. First, biometric traits cannot be revoked and reissued in the cases where they are
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compromised. For example, if a person’s fingerprint image is stolen, it is not possible to replace it like

replacing a stolen password. Moreover, different applications might use the same biometric trait; if an

adversary acquires an individual’s biometric trait in one application, they could also use it to gain

access to other applications. Second, biometric traits are not secret. An individual could leave their

fingerprint on any surface they touch [17]. Ratha et al. [18] identified eight different points of attacks

in a biometric system, which is shown in Figure 2. Attacks can be in various forms (e.g., phishing and

farming attacks, front- or back-end attacks), but they can generally be classified into four categories:

(a) Attacks at the interface, e.g., attacks at point 1;

(b) Attacks at the modules, e.g., attacks at points 3 and 5;

(c) Attacks to the channels between modules, e.g., attacks at points 2, 4, 7, and 8;

(d) Attacks to the template database, e.g., attacks at point 6.

 

 
Figure 2. Eight possible attack points to a typical biometric authentication system (adapted from [18]).

Here, threats and security issues related to those attack points in different stages of a generic

biometric system are listed in Table 1. In light of the two major concerns mentioned above, in this

paper we focus on the investigation of Attacks 1 and 11 (in Table 1) from attack categories a and d

(labeled by the red circles in Figure 2), since they represent the most serious and critical threats to users’

security and privacy [19].
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Table 1. Threats and security issues related to attack points of a generic biometric system (adapted

from [20]).

Number Attacks Attack Points

1 Spoofing—present fake biometric data to sensor 1

2 Exploit similarity, e.g., using face from identical twins 1

3
Zero-effort attempt—attacker uses own biometric sample to impersonate an

authorized user
1

4 Physically destroy the biometric sensor so as to make it out of service 1

5
Replay attack—the attacker intercepts a biometric signal and replay it into

the system
2 and 4

6 Cut the communication channel to make the system unavailable 2 and 4

7
Denial of Service attack—alters the information from the channel in order to

deny a genuine user from being authenticated
2 and 4

8
Hill-climbing attack—conveniently modify the query image until a desired

matching score is obtained.
2 and 4

9 Continuously inject samples in order to deny genuine users to access the system 2 and 4

10 Inject Trojan horse programs 3 and 5

11 Attacker illegally obtains original biometric templates 6

12 Attacker modifies the template such as adding or replacing info 6

13 Read biometric templates from a communication channel and replay 7

14
Alter the information transmitted through a communication channel in order to

deny genuine users to access the system
7

15 Cut the communication channel in order to make the system unavailable 7

16
Alter the transported matching or non-matching information in order to deny

access of a genuine user or allow an impostor access.
8

17 Cut the communication channel in order to make the system unavailable 8

2.1. Attacks to User Interface and Countermeasures

Spoofing attacks to the user interface (the sensor module) are mostly because of the presentation

of a fake biometric trait. Since biometric traits are not secret, an adversary can intrude into the system

with a fake trait (e.g., artificial fingerprint, face mask) to spoof the biometric system if the system is

unable to differentiate between a fake and a genuine biometric trait. A number of fingerprint sensors

are tested to see if they can reject a fake fingerprint film. The test results show that the fake finger

films are accepted by most of the tested sensors [21]. Also, a total of 11 different fingerprint-based

authentication systems are attacked with fake fingerprint films [22], with results showing that fake

fingerprint films can be enrolled in the systems and fake fingerprints are accepted with more than

67% probability. With the ever-increasing popularity of iPhones, great attention has been drawn to the

fingerprint spoofing attack to Touch ID. For example, a latent fingerprint was lifted from the iPhone

screen. From the lifted latent fingerprint, a mold was created by using a printed circuit board (PCB) by

a researcher from Chaos Computer Club (CCC). By filling the art glue into the mold on the PCB [23],

he subsequently generated a rubber fingerprint film, by which Touch ID of the iPhone can be fooled.

Liveness detection is an effective countermeasure to fake biometric attacks. In recent years,

strenuous work has been done in the research of liveness detection, which is used to detect whether

the presented feature is from a live human being or not. Two major schemes are available to implement

liveness detection. One scheme constitutes software-based solutions, which utilize the information

already captured by biometric sensors, while the other scheme includes hardware-based solutions [22].

However, hardware-based solutions are usually more expensive.
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Tan and Schuckers [24] presented a wavelet transform based method to detect the perspiration

phenomenon, so as to tell difference between live and non-live fingers. The perspiration phenomenon

can be quantified by using the statistical features, which represent the gray level values along the ridge

mask in an image. Experimental results demonstrate that with the proposed method, optical scanners

are able to detect live fingers. To prevent spoof attacks from gelatin or silicon fake-fingerprints from

deceiving some commonly used fingerprint sensors, Coli et al. [25] utilized static features together

with dynamic features for fingerprint vitality detection. Before this method was proposed, the static

and dynamic features of a fingerprint had been studied separately. Relevant benefits of using both

features and performance improvement were achieved and reported in the paper.

Galbally et al. [26] proposed an approach using fingerprint parameterization based on quality

related features for liveness detection. The liveness detection process can be considered as a two-class,

real or fake, classification problem. The key point of this problem is to find and use a set of unique

patterns to generate a classifier that outputs the probability of a fingerprint image. The proposed

approach is able to perform classification based on the single acquired sample rather than multiple

different samples of the fingerprint, which makes the acquisition process of a sample faster and more

expedient than existing methods. The proposed approach was tested on several publicly available

databases and good accuracy was reported (e.g., almost 9 out of 10 of the fingerprint images were

classified correctly). Kim [27] designed an image descriptor to handle fingerprint liveness detection.

It is observed [27] that fake fingerprints tend to generate non-uniformity in the captured image

for the replica fabrication process, so the difference of the dispersion in the image gradient field is

exploited to distinguish live and fake fingerprints. In the proposed method, a new feature called

local coherence pattern is defined, which is a local pattern of coherence along the dominant direction.

After the proposed feature set is fed into the support vector machine (SVM), a decision on a real or

fake fingerprint can be made.

Jung and Heo [28] introduced a convolutional neural network (CNN) architecture to deal with the

liveness detection issue. The proposed architecture is a robust framework for training and detection.

Squared regression error for each receptive field is employed in this architecture and the training

can be performed directly from each fingerprint. System performance is controlled by a threshold

value in the squared error layer. Kundargi and Karandikar [29] proposed using a texture descriptor,

called completed local binary pattern (CLBP), together with the wavelet transform (WT) for fingerprint

liveness detection. By considering the local sign and magnitude difference with the average gray level

of a fingerprint image, the CLBP possesses high discriminatory power. Experimental results verified

that the CLBP in the WT domain can offer satisfactory classification performance.

Xia et al. [30] developed a local descriptor, namely, Weber local binary, for fingerprint liveness

detection. The proposed method is composed of two modules, namely local binary differential

excitation module and local binary gradient orientation module. The outputs of these two modules

form a discriminative feature vector that is input into the SVM classifiers. Yuan et al. [31] introduced a

BP neural network based fingerprint liveness detection method. In this method, image gradient values

are obtained by the Laplacian operator and different parameters for the BP neural network are tested

to achieve better detection accuracy.

In this section, as the countermeasure to spoofing attacks, several liveness detection methods

are reviewed. Non-machine learning based algorithms [24–27,29] and machine learning based

algorithms [28,30,31] were proposed to extract unique features to ascertain whether an input fingerprint

is fake or real. The three machine learning based algorithms [28,30,31] were all recently published

(in 2018), which shows that machine learning is playing an active role in liveness detection design.

A comparison of all the above approaches to fingerprint liveness detection is reported in Table 2.
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Table 2. The comparison of approaches for fingerprint liveness detection.

Approaches
Year of

Publication
Category or
Technique

Databases Sensors
Best Performance (Correct

Classification Rate)

Tan and
Schuckers [24]

2006 Wavelet transform
Michigan State

University (MSU)
gummy finger database

Capacitive DC, optical,
and electro-optical

80%–100%

Coli et al. [25] 2008
Both static and

dynamic features
Private database Optical 75.35%

Galbally et al. [26] 2012

Fingerprint
parameterization
based on 1uality
related features

ATVS Optical 90%

Kim [27] 2017
Difference of the
dispersion in the

image gradient field
LivDet 2009 and ATVS Optical

95.63% (ATVS)
86.83% (LivDet 2009)

Jung and Heo [28] 2018
Convolutional neural

network (CNN)
2015 competition set Optical 98.60%

Kundargi and
Karandikar [29]

2018

Completed local
binary pattern (CLBP)
and wavelet transform

(WT)

LivDet 2011 Optical 91.7%

Xia et al. [30] 2018
Weber local binary and

Support Vector
Machine (SVM)

LivDet 2011, 2013, 2015 Optical 94.04%

Yuan et al. [31] 2018 BP neural network LivDet 2013 Optical 93.22%

2.2. Attacks to Template Databases and Countermeasures

Attacks to biometric template databases are some of the most critical and damaging attacks, which

can cause serious consequences to users’ biometric data. In a biometric system, biometric template data

are usually placed in a database in the enrollment stage and they are compared with query data in the

verification stage. Because biometric traits cannot be revoked or reset, serious security concerns could

arise if raw, unprotected template data are stored in a database. For instance, an adversary can hack

the template data in the database, thus gaining unauthorized access to a biometric system. Moreover,

artificial biometric traits can be created from the template data if original (raw) biometric information

is stored in the database. To protect raw template data, a range of techniques have been proposed in

literature, which can be generally classified into two categories, namely, cancelable biometrics and

biometric cryptosystems, according to [19].

2.2.1. Cancelable Biometrics

The concept of cancelable biometrics is that the original template data is transformed into a

different version by using a non-invertible transformation function in the enrollment stage. Query data

in the verification stage are applied the same non-invertible transformation. Matching is conducted in

the transformed domain using the transformed template and query data [32].

Ratha et al. [33] initiated three different transformation functions, known as Cartesian, polar,

and functional transformations. The proposed transformation functions intentionally distort the

original features, so that it is infeasible or computationally difficult to retrieve raw template data.

However, one drawback is that the proposed method is registration-based, and hence, accurate

detection of singular points is required. Usually, accurate registration is hard because of biometric

uncertainty (e.g., image displacement, non-linear distortion, and acquisition condition). Jin et al. [34]

proposed a two factor authentication method called bio-hashing. Bio-hashing combines token-based

data with fingerprint features by the iterative inner product to create a new feature set. Then each

value in the feature set is converted to a binary number based on a predefined threshold. Lee et

al. [35] generated cancelable fingerprint templates by extracting a rotation- and translation-invariant

feature for each minutiae, which is deemed to be the first alignment-free cancelable fingerprint

template design. Ahn et al. [36] used triplets of minutiae as a feature set, and transformation is

performed on geometrical properties derived from the triplets. Yang et al. [37] created cancelable
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templates by using both local and global features. Local features include distances and relative angles

between minutiae pairs, while global features include orientation and ridge frequency. In this research,

the distance of a pair of minutiae is transformed using a perpendicular projection, so as to derive the

non-invertible transformation.

Ahmad and Hu [38] proposed an alignment-free structure based on a pair-polar coordinate.

In this structure, the relative position of each minutia to all other minutiae among a polar coordinate

range is utilized. From any two minutiae, three local features are extracted and transformed by

a functional transformation to generate the cancelable template. Based on the minutia structure

in [38], Wang et al. [39–42] further improved system security and accuracy by proposing some new

transformation functions, such as infinite-to-one mapping, curtailed circular convolution, and partial

Hadamard transform. Zhang et al. [43] designed a combo plate and a functional transformation

to produce cancelable templates based on the Minutia Cylinder-Code (MCC) [44]. MCC is a

well-known local minutia descriptor, which is based on 3D local structures associated with each

minutia. The authors of the MCC later proposed a template protection method named P-MCC [45],

which performs a KL transformation on the MCC feature representation. However, P-MCC does not

have the property of revocability. Then, 2P-MCC was proposed to add cancelability to P-MCC using a

partial permutation based scheme [46]. Later, Arjona et al. [47] presented a secure fingerprint matching

approach, named P-MCC-PUFs, which contains two factors based on P-MCC and PUFs (Physically

Unclonable Functions). The proposed scheme achieves the best performance when the length of the

feature vector is set to 1024 bits and provides strong data privacy and security. Yang et al. [48] designed

a cancelable fingerprint template based on random projection. The designed template can defend

attacks via record multiplicity (ARM) owing to the feature decorrelation algorithm. In the meantime,

a Delaunay triangulation-based local structure proposed in the scheme can reduce the negative effect

of nonlinear distortion on matching performance. Sandhya and Prasad [49] fused two structures, local

structure and distant structure, at the feature level to generate binary-valued features, which are then

protected by a random projection based cancelable protection method.

To further enhance security and recognition performance, some researchers proposed use of

multimodal cancelable biometrics. For example, Yang et al. [50] proposed a multimodal cancelable

biometric system that fuses fingerprint features and finger-vein features to achieve better recognition

accuracy and higher security. In the proposed system, an enhanced partial discrete Fourier transform

is utilized to provide non-invertibility and revocability. Also, Dwivedi and Dey [51] proposed a

hybrid fusion (score level and decision level fusion) scheme to integrate cancelable fingerprint and

iris modalities to reduce limitations in each individual modality. Experimental results of multimodal

cancelable biometric systems exhibit performance improvement over their unimodal counterpart.

In this section, the evolution of cancelable biometrics, from the introduction of the idea of

cancelable biometrics and some early transformation function designs [33], to the recent multiple

cancelable biometrics [50], is presented. There are two categories in the design of cancelable biometrics.

One category centers around the extraction and representation of stable biometric features [36–38,48]

so as to achieve better recognition accuracy, and the other category focuses on designing secure

transformation functions, which are expected to be mathematically non-invertible [39–42,46]. It is

anticipated that future research work in cancelable biometrics will attempt to achieve both better

recognition accuracy and stronger security by using multiple cancelable biometrics.

2.2.2. Biometric Cryptosystems

A biometric cryptosystem combines biometrics with a cryptographic key and merges the

advantages of both biometrics and cryptosystems. Different to a cancelable biometric system, which

can only provide a match or non-match report, a biometric cryptosystem can output a key by either

binding it with the biometric features, such as fuzzy commitment (FC) [52] and fuzzy vault (FV) [53,54],

or directly generating the key from the biometric features, for example, fuzzy extractor (FE) [55].
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Teoh and Kim [56] utilized the fuzzy commitment scheme to protect fingerprint features. Since it

is convenient to have biometric features in the binary format, the authors processed the features with a

randomized dynamic quantization transformation. However, in most cases of fingerprint minutiae

matching, the extracted minutia set is a point set and is unordered. To protect the fingerprint minutia

data in the point set, Uludag et al. [57] applied the original concept of fuzzy vault to the fingerprint

minutia data. In this method, a 128-bit cryptographic key is feasibly bound with the fingerprint minutia

data, but this method requires image alignment. Later, Nandakumar et al. [58] introduced a fingerprint

minutiae based fuzzy vault scheme and utilized the high curvature points to assist image alignment,

thus making alignment more accurate without leaking any orientation information or minutia position

within the template data.

All the above-mentioned approaches require pre-alignment (i.e., registration) to rotate and

translate the query image with respect to the template image. However, the pre-alignment process may

cause non-negligible noise (e.g., generating fake minutiae and altering the singular point position),

as investigated by Zhang et al. [59]. Alignment-free approaches that require no image pre-alignment

can avoid the above shortcomings. Li et al. [60] proposed a fuzzy vault scheme, which combines two

local structures, the minutiae descriptor and minutia local structure. By using three fusion approaches,

the two transformation-invariant local structures are integrated in the proposed scheme. Unlike the

schemes of fuzzy commitment and fuzzy vault discussed earlier, which are key binding schemes,

fuzzy extractors are key generation schemes based on the concept introduced in [55]. Arakala et al. [61]

implemented the fuzzy extractor in minutiae-based fingerprint authentication. Given a fingerprint

minutia set, all the minutiae are quantized and represented by a set of binary strings, which are

subsequently input into an existing secure sketch, named PinSketch. Xi et al. [62] proposed a fuzzy

extractor using a dual-layer local structure. In this system, rotation- and transformation-free dual-layer

structures are developed to guard biometric templates against attacks. Later, some other fuzzy

extractor systems [63,64] were also proposed with enhanced performance. Liu and Zhao [65] utilized

l1-minimization to secure the fingerprint templates and store them in cyphertext form. Fingerprint

matching is carried out in the encrypted domain and authentication is successful only when the

query fingerprint is close enough to the template fingerprint. As the template is generated from the

Minutia Cylinder-Code (MCC) [44] with the proper design of the secure algorithm, the proposed

system achieves high security and recognition accuracy.

Given the fact that conventional biometric cryptosystems are not equipped with revocability,

recently, the cancelable technique is employed to enhance the security of biometric cryptosystem.

Yang et al. [66] proposed a cancelable fuzzy vault system to encrypt the Delaunay triangle group

based fingerprint features. The cancelable transformation is derived from the polar transformation.

The transformation unit in this work is a triangle instead of a single minutia, which enables the system

to be less sensitive to biometric uncertainty. Alam et al. [67] put forward a biometric cryptosystem,

which incorporates the discrete Fourier transform (DFT) and random projection based cancelable

technique to heighten security. In the proposed system, polar grid based fingerprint features are

transformed by using the DFT and random projection, creating a non-invertible template. Also,

a bit-toggling strategy is utilized to inject noise into the generated template, so as to further strengthen

template security. Sarkar and Singh [68] proposed generation of cryptographic keys from cancelable

fingerprint templates. Different keys with a length of 128 bits can be generated by cancelling and

reissuing different fingerprint templates. This reduces the potential risk that the same secret key that

existed with the receiver and sender could be leaked after negotiation.

In this section, detailed analysis and discussion about biometric cryptosystems are given,

from the initial concepts, e.g., fuzzy commitment [52], fuzzy vault [53], and fuzzy extractor [55],

to various complex algorithms derived afterwards [60–64]. One of the advantages of biometric

cryptosystems is that they can bind or directly generate a cryptographic key, which can be used for

both authentication and data encryption. However, most biometric cryptosystems are not equipped

with cancelability. Some researchers realized this problem and thus developed biometric cryptosystems
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with revocability [67,68], so as to enhance system security. It is worth noting that nowadays deep

learning techniques [69] have been involved in more and more biometric applications, e.g., face

and voice recognition, but there is almost no research regarding the security of deep learning based

biometrics. Therefore, more research effort should be devoted to this direction.

A comparison of all the above fingerprint template protection approaches, whether it be cancelable

biometrics or biometric cryptosystems, are reported in Tables 3 and 4, respectively.

Table 3. The comparison of cancelable biometrics for fingerprint template protection.

Cancelable Biometrics

Approaches
Year of

Publication
Category or Technique Databases Best Performance

Ratha et al. [32] 2001
Introduction of the “cancelable

biometrics” concept
- -

Jin et al. [34] 2004 Bio-hashing FVC2002 DB1-DB4 EER = 0

Ratha et al. [33] 2007
Cartesian, polar, and surface folding

transformations
- -

Lee et al. [35] 2007
The first alignment-free cancelable

fingerprint system
FVC2002 DB1 EER = 3.4%

Ahn et al. [36] 2008 Using triplets of minutia points FVC2002 DB2 EER = 3.61%

Yang et al. [37] 2009 Using local and global features FVC2002 DB2 EER = 13%

Ahmad and Hu [38] 2010 Using a projection line FVC2002 DB2 EER ≈ 20%

Wang and Hu [40] 2012
A densely infinite-to-one mapping

(DITOM) approach

FVC2002 DB1
FVC2002 DB2
FVC2002 DB3

EER = 3.5%
EER = 5% EER = 7.5%

Zhang et al. [43] 2013
A registration-free cancelable

fingerprint template based on Minutia
Cylinder Code (MCC)

- -

Wang and Hu [41] 2014 Curtailed circular convolution
FVC2002 DB1
FVC2002 DB2
FVC2002 DB3

EER = 2% EER = 3%
EER = 6.12%

Ferrara et al. [46] 2014
A two-factor protection scheme using

non-invertible transformation and
user-specific key

FVC2002 DB1
FVC2002 DB2
FVC2002 DB3
FVC2002 DB4
FVC2004 DB1
FVC2006 DB2

EER = 2%
EER = 1.1%
EER = 4.4%
EER = 3.1%
EER = 3.0%
EER = 0.1%

Wang and Hu [42] 2016 A blind system identification approach
FVC2002 DB1
FVC2002 DB2
FVC2002 DB3

EER=4%
EER=3%

EER=8.5%

Wang et al. [39] 2017
A partial Hadamard transform

approach

FVC2002 DB1
FVC2002 DB2
FVC2002 DB3
FVC2004 DB2

EER = 1%
EER = 2%

EER = 5.2%
EER = 13.3%

Sandhya and
Prasad [49]

2017
Using fused structures (both local and
distant structures) at the feature level

FVC2004 DB1
FVC2004 DB2
FVC2004 DB3

EER = 11.89%
EER = 12.71%
EER = 17.60%

Arjona et al. [47] 2018
Physically Unclonable Functions based

on minutia cylinder codes
FVC2002 DB2
FVC2002 DB3

EER = 0.39%
EER = 0.81%

Yang et al. [48] 2018
Defeat the attacks via record

multiplicity (ARM) through the feature
decorrelation algorithm

FVC2002 DB1
FVC2002 DB2
FVC2002 DB3
FVC2004 DB2

EER = 5.75%
EER = 4.71%
EER = 10.22%

EER = 12%

Yang et al. [50] 2018
Cancelable multi-biometric system

based on fingerprint and finger-vein
MD-A
MD-B

EER = 0.55%
EER = 0.69%

Dwivedi and Dey [51] 2018
Fusion at the score level and the

decision level

Virtual_A
Virtual_B
Virtual_C

EER = 0.55%
EER = 0.13%
EER = 0.5%
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Table 4. The comparison of biometric cryptosystems for fingerprint template protection.

Biometric Cryptosystems

Approaches
Year of

Publication
Category or Technique Databases Best Performance

Juels and
Watternberg [52]

1999
Introduction of the cryptographic primitive,

fuzzy commitment scheme
- -

Uludag and Jain [53] 2004
Utilization of a fingerprint minutiae line

based representation scheme in fuzzy vault
- -

Dodis et al. [55] 2004
Proposes two primitives: fuzzy extractor

and secure sketch
- -

Uludag et al. [57] 2005
Realization of fuzzy vault with the

fingerprint minutiae data
IBM-GTDB FAR = 0

Arakala et al. [61] 2007
The first fingerprint biometric

application—protected Fuzzy Extractor
FVC2000 EER ≈ 10%

Teoh and Kim [56] 2007
Randomized dynamic quantization,

transformation to binarized biometric data,
and protection by using fuzzy commitment

FVC2002 DB1 FAR = 0, FRR = 0.9%

Nandakumar et al. [58] 2007

An automatic implementation of the fuzzy
vault scheme based on fingerprint minutiae.
High curvature points are derived from the
fingerprint orientation field as helper data
to align the template and query minutiae

FVC2002 DB2 FAR = 0, FRR = 10%

Li et al. [60] 2010

An alignment-free fingerprint cryptosystem
based on the fuzzy vault scheme, fusing the
local features, known minutia descriptor,

and minutia local structure

FVC2002 DB1, DB2
FAR = 0.35, FRR = 17.5%

FAR = 0, FRR = 10%

Xi et al. [62] 2011
Use the minutia local structure called Dual
Layer Structure Check (DLSC) to eliminate

the alignment process
FVC2002 DB2 EER = 4.5%

Yang et al. [64] 2012
A registration-free Delaunay triangle-based

fuzzy extractor.
FVC2002 DB2 EER = 13%

Karthi and
Azhilarasan [63]

2013
Use both the key generating cryptosystem

and feature transformation method
FVC2004 FAR = 1%, FRR = 1%

Yang et al. [66] 2013

A minutiae-based fuzzy vault with
cancellability by applying a polar
transformation to each Delaunay

triangle group

FVC2002 DB1, DB2
FAR = 0.38%, FRR = 19%
FAR = 2.25%, FRR = 8%

Liu and Zhao [65] 2017
A secured fingerprint MCC matching

scheme utilizing l1-minimization
FVC2002 DB1, DB2

FVC2004 DB1

FAR = 0, FRR = 8.6%
FAR = 0, FRR = 16%

FAR = 0, FRR = 34.4%

Alam et al. [67] 2018
Bit-toggling strategy to inject noise into the

proposed fingerprint template

FVC2002 DB1, DB2,
DB3

FVC2004 DB1, DB2,
DB3

EER = 1%
EER = 2.07%
EER = 6.11%
EER = 15.44%
EER = 9.15%
EER = 9.28%

Sarkar and Singh [68] 2018
A symmetric cryptographic key is spawned

using cancelable fingerprint template
FVC2002 DB1 -

3. Recognition Accuracy

Although biometric technology renders considerable benefits and is being used in many

applications, it faces challenges, such as insufficient accuracy under non-ideal conditions or in the

encrypted domain when template protection is implemented.

3.1. Accuracy under Ideal vs. Non-Ideal Conditions

Biometric systems sometimes confront unrealistic expectations of achieving the matching accuracy

of traditional password-based authentication systems. A password-based system always offers a

crisp result—it grants access if the input password is a match, and vice versa. However, biometric

matching cannot be 100% accurate. The accuracy of a biometric system can be evaluated by using

well-known performance indicators, e.g., False Accept Rate (FAR), False Reject Rate (FRR), and Equal

Error Rate (EER). Recognition accuracy generally depends on factors such as input image quality and

matching algorithms. With decades of efforts from researchers, remarkable matching accuracy has been
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achieved and reported. For instance, there is an online evaluation platform, named FVC-ongoing [15],

where researchers can upload their recognition algorithms and compete with other algorithms on

matching accuracy. FVC-ongoing sets up a benchmark to evaluate those algorithms using a set of

sequestered databases and the results are evaluated by indicators—FAR, FRR, and EER—which is

the rate at which both acceptance and rejection errors are equal [70]. According to the latest results

shown on the FVC-ongoing platform [15], the best matching accuracy out of the fingerprint verification

competition reached the EER = 0.022%, achieved by the algorithm, named HXKJ, contributed by

Beijing Hisign Bio-info Institute. The best three matching results of fingerprint (with and without

template protection) verification competitions are listed in Table 5, extracted from [15], from which

we can see that all of them were contributed by companies. Some algorithms designed by academic

researchers also achieve gratifying accuracy. The state-of-the-art MCC (Minutia Cylinder Code) [44]

based fingerprint matching algorithm achieved the EER = 0.49% on database FVC2002 DB2, and the

EER = 0.12% on database FVC2006 DB2 [45].

Table 5. The best three results of fingerprint verification competitions on the Fingerprint Verification

Competition (FVC)-ongoing platform.

Published on Benchmark Participant Type Algorithm EER

Without template
protection

27/07/2017 FV-STD-1.0 Beijing Hisign Bio-info Institute Company HXKJ 0.022%
09/02/2016 FV-STD-1.0 Neurotechnology Company Company MM_FV 0.042%
29/08/2011 FV-STD-1.0 Tiger IT Bangladesh Company TigerAFIS 0.108%

With template
protection

28/12/2013 STFV-STD-1.0 Securics, Inc Company Biotope 1.541%

25/03/2013 STFV-STD-1.0 Biometric System Laboratory
Academic Research

Group
P-MCC64 2.207%

25/02/2013 STFV-STD-1.0
Institute of Automation,

Chinese Academy of Sciences
Academic Research

Group
SCT 4.082%

However, all the above matching results are based on databases (e.g., FV-STD-1.0) containing

images with better quality than images acquired under non-ideal conditions, such as fingerprint images

from crime scenes. In Figure 3, we show a comparison of sample fingerprint images from FV-STD-1.0

used in the FVC-ongoing Competition and sample images obtained from non-ideal conditions.

The images acquired from the surfaces of objects at crime scenes are usually referred to as latent

fingerprints, as shown in Figure 3. Although state-of-the-art algorithms have achieved impressively

high matching accuracy using rolled and plain images acquired in an attended mode, as shown in

Table 5, matching accuracy with latent fingerprints is still far from satisfactory due to factors like

poor ridge structure, complex background noise, and non-linear distortion on the latent images [71].

Significant progress has been made in improving the matching accuracy of latent fingerprints.

Cao et al. [72] proposed a latent segmentation and enhancement algorithm to refine a poor fingerprint

image. By using a total variation decomposition model, the piecewise-smooth background noise can

be removed and several overlapping patches are defined and used for latent enhancement, leading

to better matching performance. Also, Araro et al. [73] incorporated feedback information from an

exemplar to refine the extracted features from a latent fingerprint image with the eventual goal of

increasing the matching accuracy.
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Figure 3. Comparison of sample fingerprint images used in FVC-ongoing Competition and those

acquired under non-ideal conditions (adapted from [72]).

3.2. Accuracy Without vs. With Template Protection

Template protection techniques provide safeguards to biometric templates and the protected

template should leak as little information of the original template as possible [74]. In biometric

cryptosystems, information of reference points can help to enhance the recognition accuracy but

will leak important information about the original template, and thus it should not be made public.

In cancelable biometrics, random projection based transformation is a typical many-to-one mapping,

in which the dimension of the original template is reduced. Because less information of the original

template is kept, a lower-dimensional transformed template is more secure. However, with less

information of the original template preserved, it might result in accuracy degradation [50,75].

Therefore, there is a balance between recognition accuracy and security.

The best three fingerprint matching results with and without template protection in the

FVC-ongoing Competition, listed in Table 5, show that matching accuracy with template protection

is much worse than that without template protection. Also, recognition accuracy of some existing

systems in literature with low/no level of security versus others with high level of security is reported

in Table 6 for comparison. From Table 6, we can see that with the same or similar FAR, when the

security level is high, the FRR becomes worse. For example, for database FVC2002DB1, results in [45]

show that when FAR is 0, FRR is 3.18% with the original feature, whereas FRR increases to 51.29%

when the highest security level is set to protect the original feature. Some recently published methods

do not give recognition results on low/no level of security. Therefore, their recognition performance in

the “Low/No security” column is indicated by “-”.
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Table 6. Recognition accuracy (FRR/FAR) of some systems in literature with low/no and high security.

Approaches Low/No Security High Security Databases

Li et al. [60] (17.5/0.35) (35.8/0) FVC2002 DB1
Liu et al. [76] (14.33/0) (20.40/0) FVC2002 DB1

Ferrara et al. [45] (3.18/0) (51.29/0) FVC2002 DB1
Yang et al. [77] - (3.38/3.38) FVC2002 DB1

Sandhya and Prasad [49] - 2.19/2.19 FVC2002 DB1
Wang et al. [39] - (1.0/1.0) FVC2002 DB1

Liu and Zhao [65] - (8.6/0) FVC2002 DB1
Arjona et al. [47] - (15.14/0) FVC2002 DB3
Yang et al. [48] (4/4) (4.57/4.57) FVC2002 DB3
Alam et al. [67] - (5.95/5.95) FVC2002 DB1

In this section, recognition accuracy, as the other important measure in biometric system design,

is discussed and analyzed. From our thorough analysis, it can be seen that recognition accuracy

of most existing biometric systems, either with or without template protection, are tested in ideal

conditions, which are far from real-life scenarios, where the obtained images (e.g., latent fingerprint)

are of extremely low quality. Also, the recognition accuracy of the systems with template protection is

lower than that without template protection. The main reason is the information loss in the process

of feature adaptation, which converts original features into another format to satisfy the matching

metrics for transformed templates, e.g., hamming distance for fuzzy commitment and set difference

for fuzzy vault. Therefore, more study needs to be put into the design of stable features and suitable

feature adaptation methods, so as to minimize information loss.

4. Conclusions

This paper gives a comprehensive review of two significant (and competing) measures for

fingerprint-based biometric systems; that is, security and recognition accuracy. In regards to security,

we have analyzed two categories of attacks: attacks to user interface and attacks to template databases.

Countermeasures to defend against these attacks are also discussed. A total of 42 research articles in

the area of biometric security (8 in liveness detection, 18 in cancelable biometrics, and 16 in biometric

cryptography) are reviewed and discussed. In regards to recognition accuracy, in our opinion, although

remarkable recognition accuracy has been attained, matching performance can still be unsatisfactory

under some non-ideal conditions (e.g., latent fingerprint matching) or when the system security level

is high. Since the requirements of system security impact recognition accuracy, it calls for the biometric

system designers to carefully consider how to strike a good balance between recognition accuracy

and security.

In view of the above issues, some latest research outcomes are analyzed and summarized in

this paper. Despite the improvement in recognition accuracy under non-ideal conditions and recent

advances in biometric template protection, a number of open issues still exist, which call upon

biometric researchers to resolve them. We highlight some research challenges and future directions in

the following:

i. New developments in deep learning techniques have enhanced the performance of

biometric systems across a wide range of biometric modalities, such as face recognition

modality. We envisage that deep learning techniques [78–80] will also be potential tools

for latent fingerprint matching. However, the use of deep learning algorithms may bring

potential threats to biometric systems because of the vulnerabilities of those deep learning

algorithms themselves.

ii. The security issues (e.g., spoofing attacks, attacks to biometric templates) analyzed for a general

biometric system are also valid to any biometric system on different platforms, for example,

a mobile platform. Nowadays, smartphones are becoming more and more popular, thus
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forming a promising platform for the use of biometrics [81]. However, mobile biometrics face

more challenges, since smartphones usually have less computing capability and limited energy.

Therefore, light-weight secure algorithm design for mobile biometrics is an emerging research

topic [82–84].

iii. Trade-off between security and recognition accuracy in fingerprint template protection remains

a challenge. As shown in Table 5, the best matching performance of fingerprint competition

with template protection is the EER = 1.542%, which is much worse than that (EER = 0.022%)

without template protection. Besides exploring more robust and distinctive features and

designing better transformation functions, the use of multi-biometrics in template protection

design is likely to be the way forward and deserves further research.
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