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Abstract This paper proposes a new quantum key distribution(QKD) protocol, namely the pseudo-random bases entangled

photon based QKD (PRB-EPQKD) protocol. The latest mainly focuses on three properties, including the security of the protocol,

the secure key size and the maximum communication distance between legitimate communication users (Alice and Bob). To

achieve this, we first consider a spontaneous-parametric-down (SPDC) photon source located in a low-earth-orbit (LEO) type

satellite capable of producing and distributing entangled photons pairs to Alice and Bob. Secondly, we assume that Alice’s

and Bob’s photons state measurement bases are identically generated via a pseudo-random number generator (PRNG), namely

the quantum logistic map (QLM). Finally, we also assume that in addition to their photons states, Alice and Bob intentionally

share a set of decoy states at each pulse with randomly selected intensity, and with the goal to detect the presence of the

eavesdropper (Eve). Under these considerations, the secure key rate upper bound is evaluated applying the Gottesman-Lo-

Lutkenhaus-Preskill’s (GLLP) formula, for two different implementations, namely the non-decoy states and the infinite active

decoy states based QKD. It is observed a significant improvement in the secure key size and the communication distance as well,

compared to existing protocols, since we realize that under daylight, downlinks satellite conditions, a kindly selected light source,

and good crystal’s properties, the maximum communication distance can reach up to 70000 km. In addition, using the combined

type-I and type-II SPDC photons source as our entangled photons pairs generator, significantly improved the photon mean

number and render our protocol more robust against photon number division attack and against attenuation-induced atmospheric

propagation. Furthermore, the protocol is more secure as compared to existing ones, given that any eavesdropper must crack

simultaneously the chaotic system used as PRNG and the QKD system, before getting any useful information as regards to the

measurement bases used by Alice and Bob, and thus the secure key.

Keywords Quantum key distribution · entangled photons · decoy states · secure key size · secure key rate

PACS 03. 67. Dd, 03. 67. Hk

1 Introduction

The last few decades have known true evolution in quantum information processing theory, and several methods have been

developed to protect sensitive information. Among them, one denotes quantum cryptography, very well known as quantum key

distribution (QKD), which is the process of sharing a secret key for cryptography purpose between two distant partners using

quantum mechanics laws [1–9]. Originated from Bennett and Brassard [1], QKD offers an unconditional security to a secure

key, guaranteed by quantum physics laws, and has been already implemented in real-life experiments [1,10–12]. However, as

regards to its imperfections, a real gap between its theory and practice remains a major problem and thus, all the investigations

in the field include fulfilling this gap. Hence, an eavesdropper can use this imperfection to perform an attack against the QKD

module, since imperfect single photon source and detectors are commercially available to anyone, making the secrete key

vulnerable. To overcome this weakness, several QKD schemes based on multiple photons source were developed [10,13–17].

In addition, entangled photon source based QKD protocols were proved to be more secure, as compared to simple multi-photon

source based QKD protocols, since the latest are vulnerable to photon splitting attack, which can be directly detected from the

legitimate communication users in the entanglement based QKD protocol [18].

Indeed, in the entanglement based QKD protocol, photon pairs are produced and shared between the sender (Alice) and

the receiver (Bob), usually via a spontaneous parametric down conversion (SPDC) [19–21], whose polarization orientation

measurement are used for secrete key generation. Moreover, to provide unconditional security of this protocol, a decoy states

source can be associated to reduce indiscreet losses and detect the presence of an eavesdropper (Eve). First introduced by

Hwang [22], the decoy states based QKD enhances the performance in terms of security of a QKD protocol. Its usefulness was
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demonstrated in the contest of local and classical communication [23,24], for an imperfect photon source. Since usual QKD

protocols use multi-photon source, which make them sensitive to photon number division attack as we previously mentioned,

this weakness is addressed in decoy states based QKD protocol by using multiple intensity levels at the transmission source.

Here, we mean that Alice transmits photons using randomly chosen intensity level, one signal state and multiple decoy states,

inducing the variation of photon number statistic in the channel.

In fact, the key point of this protocol is that Alice prepares a set of states, namely decoy states in addition to photon states.

The purpose of decoy states being to detect the presence of Eve intending to intercept the communication between her and Bob,

while the photons states are used for the purpose of key generation. Although this protocol provides unconditional security, it

does not allow long-distance communication. This is the reason why, we propose in this research paper to locate both the SPDC

entangled photon source and the decoy states source into a satellite, which has the role to producing and distributing entangled

photon pairs and decoy states to Alice and Bob to enhance the communication distance and used pseudo-random bases for

photon polarization states measurement to enhance the key size. This process is referred to as satellite based decoy states QKD

with pseudo-random bases choice for photon polarization state measurement protocol.

Indeed, this protocol is based on sharing a secret key over free-space with very lower loss rate using either a low-earth-orbit

(LEO) satellite, a medium-earth-orbit (MEO) satellite or a geostationary orbit (GEO) satellite as an intermediate relay between

Alice and Bob [25]. However, LEO and GEO are the most suitable candidates because of their altitude (160 to 3000 km or usually

below 900 km for LEO and 35786 km precisely for GEO). Due to the proximity of LEO to the earth’s surface, it is the most

used to locate the photon and the decoy states source in order to reduce losses due to beam diffraction. The satellite based QKD

protocol offers the possibility of achieving very long-distance communication as well as the possibility of generating highly

secure key. The satellite based QKD has attracted significant interests of researchers, and has been successfully implemented

in real physical experiments [21,26–33]. Although significant results have been achieved, the security of the protocol still

requires deep studies. Thus, Jian-Yu et al. [34] demonstrated that free-space links could provide the most appealing solution

to long-distance and secure communication. The experiment was conducted using a floating platform hot-air balloon fulfilling

the conditions of a LEO-type satellite. In similar conditions, Wang et al. [34] will later investigate long-distance QKD with

the floating hot-air balloon platform under rapid motion, altitude change and they found a quantum bit error rate (QBER) of

4.04%. Moreover, Pan [35] established the space platform with long-distance satellite-to-ground quantum channel and he was

able to achieve the BB84 QKD up to 1200 km with a QBER of about 1%. In the same idea, using retro-reflectors in LEO

satellite, space-to-ground transmission of quasi-single photon has been investigated by Yin et al. [36]. They realized a signal-

to-noise ratio of 16:1, sufficient for unconditionally secure QKD links. In addition, Nauerth et al. [37] found that, the BB84

QKD between ground station and airplane moving at regular angular velocity similar to LEO-type satellite is feasible, and the

experiment demonstrated a QBER of 4.8% at 20 km range. However, the first downlink microsatellite QKD experiment was just

realized very recently in 2017 with a QBER less than 3% and 99.4±4.4% degree polarization by Takenaka et al. [38]. Several

authors investigated the protocol using single photons and demonstrated the feasibility of free-space satellite-to-ground QKD

with significant improvements regarding the QBER, the communication distance and the sifted key rate in the night-time as well

as under noisy-like sunlight daytime [26,29,39–42].

Nevertheless, the above protocols mostly use true random number generators (TRNGs) for photon bases selection, which

cost sifting procedure in the key rate as the legitimate users (Alice and Bob) must perform their measurement with incompatible

bases choices. To overcome this weakness we, in this research paper propose to use pseudo-random number generators (PRNGs)

for photon bases selection which has already been successfully demonstrated in the case of optical link QKD by Trushechkin et

al. [43], with the randomness guaranteed by the Legendre symbols. We thus, suggest a new protocol that uses quantum chaotic

systems as the PRNG which can be easily implemented and strongly improve the efficiency of the QKD protocol security. If this

protocol namely, pseudo-random bases entangled photon based QKD (PRB-EPQKD) is successfully implemented in photonics,

it will significantly enhance the efficiency of the quantum key sharing process due to random-like behavior and high sensitivity

to initial conditions of chaotic systems [44,45]. We therefore, assume our random bases choice to be guaranteed by the quantum

logistic map (QLM) [46], the SPDC-photon source to be our entangled photons generator and a decoy states source located in

a LEO-type satellite to ensure downlink communication with lower loss. This is realized following the structure below: Sec.2

presents in detail the model formalism, where the SPDC entangled photon Hamiltonian is presented and the wave function

including the probability distribution are deduced. In Sec.3, the procedure of generating pseudo-random bases for photons

polarization state measurement using QLM as the PRNG is developed. It follows in Sec.4 with the decoy states based satellite-

to-earth link QKD protocol. We present in Sec.5 the main results and discussion, and we end the work with some concluding

remarks presented in Sec.6.

2 Model formalism: photon wave function and probability distribution

2.1 SPDC entangled photons source Hamiltonian

Entanglement based QKD usually uses entangled photons, due to the fact that their polarization state may be assimilated to

quantum bits. As previously mentioned, SPDC has widely been investigated in the literature as a key resource for QKD [47–49].

Its Hamiltonian may be derived from classical electromagnetic energy in nonlinear media as follows [48,49]:

H =
1

8π

∫

B2(r, t)d3r+
1

8π

∫

d3r

∫ D(r,t)

0
E(r, t)dD, (1)
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where B and E are the magnetic and the electrical fields, respectively. The parameters r and t are respectively the temporal and

spatial variables. D the charge displacement defined by D= εE+4πPNL, ε being the permittivity, PNL the nonlinear polarization

given by [48,49]:

PNL
k = η

(1)
kp (ω1,ω2)Ep(ω1)+η

(2)
kpq(ω1,ω1 −ω2)Ep(ω1)Eq(ω2)+ · · · , (2)

where η
(1)
kp (ω1,ω2) and η

(2)
kpq(ω1,ω1 −ω2) are respectively a two and three dimensional tensors depending on the frequencies

ω1, ω2. The indices p and q denote the output photon pairs mode, and k that of the incident photon. Considering Eq. (2), the

Hamiltonian (1) becomes:

H =
1

8π

∫

B2(r, t)d3r+
1

8π

∫

E2(r, t)d3r+
∫

d3rX1(r)+
∫

d3rX2(r)+ · · · , (3)

with X1(r) = 2π
∫ ∫

dω1dω2η
(1)
kp Ek(r,ω1)Ep(r,ω2) and X2(r) =

4π
3

∫ ∫ ∫

dω1dωdω2η
(2)
kpqEk(r,ω1)Ep(r,ω −ω2)Eq(r,ω2).

The first two terms of Eq. (3) introduces the total energy of the system, the remaining terms being the linear term. But due

to the fact that we are interested on entangled photon pairs, we will only focus on the nonlinear term to define the interaction

energy of the light source with the crystal. In the interaction picture, the type-I or type-II SPDC effective Hamiltonian can be

written in the rotative-wave approximation and neglecting the reflection from the crystal surface as follows [48]:

HI =
∫

v
ηkpqE+

k E−
p E−

q +H.c. (4)

Using the following transformation,

E−
p (ω) = ∑

k

Epka+pkei(kr−wpkt), E−
q (ω) = ∑

k

Eqkb+qke−i(kr−wqkt), (5)

with Epk = i
√

ωpk

2npkV
, Eqk = i

√

ωqk

2nqkV
, a+pk and b+qk being the creation operators in p and q modes satisfying the following com-

mutation relation: [apk,a
+
mn] = [bpk,b

+
mn] = δpmδkn. The three dimensional tensor ηkpq defines the dielectric susceptibility and V

the crystal volume. Assuming the pump field to be a classical plane wave, we have E+
k = E0 exp(kr−ωt). Considering the latest

relation and Eq. (5), the Hamiltonian (4) becomes:

HI = iκa+p b+q +H.c., (6)

with the indices p and q denoting respectively the photons mode as previously mentioned which also define their polarization

orientation that may be horizontal or vertical. Thus, the degenerated Hamiltonian can be rewritten taking into consideration the

above assumptions as [50]:

HI = iκ(a+h b+h +a+v b+v +a+h b+v −a+v b+h )+H.c., (7)

where κ is a parameter containing the field pump amplitude and the crystal’s properties, h and v denote the polarization direction

standing for horizontal and vertical, respectively. H.c. stands for the Hermitian conjugate. The Hamiltonian (7) is written in the

limit h̄→ 1, with the operators a and b satisfying [ai,a j] = [a+i ,a
+
j ] = [bi,b j] = [b+i ,b

+
j ] = [ai,b j] = 0 and [ai,a

+
j ] = [bi,b

+
j ] = δi j,

i ∈ {h,v}. It denotes the combined type-I and type-II SPDC Hamiltonian. The next subsection evaluates the corresponding wave

function and the density probability.

2.2 Wave function and probability density

Following the procedure described by Truax [51], one can easily derive the wave function and the probability distribution,

associated to Eq. (7) giving the Hamiltonian of entangled photon pairs in two different modes. For this reason, let U(t) be the

evolution operator, thus in the time independent Shrödinger picture, one has:

U(t) = exp(−iHIt) = exp{κt(a+h b+h +a+v b+v +a+h b+v −a+v b+h )+H.c.}, (8)

with U(t0) =U(0) = I (identity operator). The photon state is found by acting the operator U(t) to the vacuum as follows:

|Ψ(t)〉=U(t)|0〉ab =U(t)(α|0h0h〉ahbh
+β |0h0v〉ahbv

+ γ|0v0h〉avbh
+ϑ |0v0v〉avbv

), (9)

with

|0〉ab = α|0h0h〉ahbh
+β |0h0v〉ahbv

+ γ|0v0h〉avbh
+ϑ |0v0v〉avbv

, the vacuum in the most general form, α , β , γ and ϑ the proba-

bilities to find the states |0h0h〉ahbh
, |0h0v〉ahbv

, |0v0h〉avbh
and |0v0v〉avbv

respectively, so that |α|2 + |β |2 + |γ|2 + |ϑ |2 = 1. Let us

introduce two operators T+ and T− defined by,

{

T+ = a+h b+h +a+v b+v +a+h b+v −a+v b+h = T
†
−,

T− = ahbh +avbv +ahbv −avbh = T
†
+,

(10)
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and satisfying the following commutation relations,

[T−,T+] = 4T0, [T0,T±] =±T±, with T0 =
1
2
(a+h ah +a+v av +b+h bh +b+v bv +2) = T

†
0 . Thus, Eq. (8) becomes:

U(t) = exp{χT+−χ∗T−}, (11)

with χ = κt, implying that,

|Ψ〉= exp{χT+−χ∗T−}|0〉. (12)

In order to explicitly determine the wave function of Eq. (12), let us introduce two unitary operators U1(λ ) and U2(λ ) defined

by:

{

U1(λ ) = exp{λ (χT+−χ∗T−+ iθT0)},
U2(λ ) = exp{Λ+(λ )T+}exp{Λ0(λ )T0}exp{Λ−(λ )T−},

(13)

and require U1(λ ) to be equal to U2(λ ) and subject to initial conditions Λi(0) = 0. It is easy to verify that U1(λ ) and U2(λ ) are

unitary, given that λ is always real. The main goal here is to evaluate the functions Λ+(λ ), Λ0(λ ) and Λ−(λ ), subject to the

initial conditions Λi(0) = 0 and U1(0) = U2(0) = I. That is, let us differentiate U1(λ ) and U2(λ ) with respect to λ and equal

their results, thus we obtain:

(χT+−χ∗T−+ iθT0)U1(λ ) = (χT+−χ∗T−+ iθT0)U2(λ )

= Λ ′
+T+eΛ+T+eΛ0T0 eΛ−T− +Λ ′

0eΛ+T+T0eΛ0T0 eΛ−T− +Λ ′
−eΛ+T+eΛ0T0 T−eΛ−T− . (14)

Given that U−1
2 (λ ) = exp{−Λ−(λ )T−}exp{−Λ0(λ )T0}exp{Λ+(λ )T+}, multiplying Eq. (14) from the right by the latest rela-

tion, we obtain:

χT+−χ∗T−+ iθT0 = Λ ′
+T++Λ ′

0eΛ+T+T0e−Λ+T+ ++Λ ′
−eΛ+T+eΛ0T0 T−e−Λ0T0 e−Λ+T+

= Λ ′
+T++(T0 −Λ+T+)Λ

′
0 +Λ ′

−e−Λ0 T−−4Λ ′
−e−Λ0 T0 +2Λ ′

−Λ 2
+e−Λ0 T+, (15)

where we have used the Baker-Campbell-Hausdorff (BCH) commutation relations [51]. Identifying the coefficients of the re-

spective basis elements (T−,T0,T+) of the Lie algebra leads to the following set of first order differential equations.











Λ ′
− =−χ∗eΛ0 ,

Λ ′
0 = iθ −4χ∗Λ+,

Λ ′
+ = χ + iθΛ+−2χ∗Λ 2

+,

(16)

where the solution for θ = 0 is given by,















Λ− = χ√
2|χ| tanh(

√
2 | χ | λ ),

Λ0 =−2log(cosh(
√

2 | χ | λ )),

Λ+ =− χ∗
√

2|χ| tanh(
√

2 | χ | λ ).

(17)

Based on the latest relation, with λ = 1, the wave function (12) can be easily written as:

|Ψ〉= exp{ χ√
2 | χ |

tanh(
√

2 | χ |)T+}exp{−2log(cosh(
√

2 | χ |))T0}exp{− χ∗
√

2 | χ |
tanh(

√
2 | χ |)T−}|0〉

=
1

cosh2(
√

2 | χ |)

∞

∑
n=0

χ∗

| χ |

√

(n+1)(α2n +β 2n + γ2n +ϑ 2n)
(

tanh(
√

2 | χ |)
)n

|Φn〉, (18)

where

|Φn〉=
1

(n+1)
√

α2n +β 2n + γ2n +ϑ 2n

n

∑
k=0

[αn|kh,kh〉a|(n− k)v,(n− k)v〉b

+β n(−1)n−k|kh,(n− k)v〉a|(n− k)v,kh〉b

+ γn(−1)k|(n− k)v,kh〉a|kh,(n− k)v〉b

+ϑ n|(n− k)v,(n− k)v〉a|kh,kh〉b]. (19)

One can easily verify that, for α = ϑ = 0, β = γ = 1√
2

and n = 1, we get the Bell state [52] |Φ1〉= 1√
2
[|10〉a|01〉b −|01〉a|10〉b]

or if α = ϑ = 1√
2
, β = γ = 0 and n = 1, we get |Φ1〉 = 1√

2
[|00〉a|11〉b + |11〉a|00〉b], which are maximally entangled states.

Thus, we are sure that the produced photon pairs are always entangled. Relations (18) and (19) have been derived considering

that exp(qT−)|0〉 ≡ |0〉, exp(pT0)|0〉 ≡ exp(p) and exp(qT+)|0〉 ≡ ∑
∞
k=0

qk

k!
(T+)

k|0〉, with the vacuum |0〉 defined in Eq. (9).
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Let Pj be the probability density to generate j entangled photon pairs, therefore

Pj =| 〈Φ j|Ψ〉 |2= 1

cosh4(
√

2 | χ |)
( j+1) tanh2 j(

√
2 | χ |). (20)

Setting λ = sinh2(
√

2 | χ |), the photon mean number, depending only on the crystal’s properties and the light pulse amplitude,

we get

Pj = ( j+1)
λ j

(1+λ ) j+2
. (21)

It follows that, photons probability distribution coincides with Poisson distribution showing that the produced photon pairs are

independent each other. Similar equation has already been obtained by Ma et al [47], but with different photon mean number.

3 Pseudo-random bases generation for photon state polarization measurement via quantum logistic map

Usual QKD protocols mostly provide the condition of randomly choice of the bases in which quantum states are encoded, requir-

ing the legitimate parties (Alice and Bob) to use true random number generator (TRNG). However, this cost sifting procedure

and leads to loss of almost a half of the key raw. In order to avoid this drawback, new protocols that use PRNs instead of TRNs

have been introduced [53–55]. QKD associated with PRNs for quantum state preparation and post-processing procedures might

provide high secure encryption key. Limited number of PRNGs exist, among them chaotic systems have been found to be an ef-

ficient tool for the purpose. For this reason, the present subsection briefly describes the procedure of generating pseudo-random

bit sequence (PRBS) associated to photon state polarization based on quantum logistic map (QLM) for QKD purpose. First

introduced by Goggin et al. [46], QLM is a system where a quantum kick rotator is coupled to a bath of harmonic oscillator. It

was demonstrated that, under quantum error corrections, the system may be treated as classical system, where its dynamics is

described by [43]:











xk+1 = r(xk −|xk|2)− ryk,

yk+1 =−yke−2s + re−s[(2− xk − x∗k)yk − xkz∗k − x∗kzk],

zk+1 =−zke−2s + re−s[2(1− xk)zk −2xkyk − xk],

(22)

with x = a, y = δa†δa, z = δaδa, x∗, z∗ the complex conjugate of x and z, respectively. a(a†) are the annihilation (creation)

bosonic operators, δa(δa†) the quantum fluctuation associated to the operators a and a†, respectively. The parameters r and s

are the bifurcation parameters. Fig.1 depicts the bifurcation diagram of the QLM with respect to r (Fig.1a) and s (Fig.1b). It is

(a) (b)

Fig. 1: Bifurcation diagrams and Lyapunov exponents of the variable x, with respect to r (Fig.1a) and s (Fig.1b).

observed that, all the values of x always fall in the interval [0,1] and display period doubling showing that our system depicts

chaotic behavior, with r and s kindly selected i.e. 4 ≥ r > 3.85 and s ≥ 3.5. It is important to mention that, xk belong to a set

of real number given real initial conditions of system (22). Similar figures can be obtained for variables y and z, which also

exhibit chaotic behavior and always fall in the interval [0,1]. We notice that, the variables x, y and z which help to define the set

of Eq. (23) are function of the bifurcation parameters r and s, which are shared between the communication users before they

start running the QKD protocol to provide more security. Whereas, any eavesdropper intending to guess these values will not
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be able to get the set of Eq. (23), and thus cannot quietly perform the polarization state measurement. Therefore, system (22)

provide an efficient and secure PRNG for quantum state encoded bases in the QKD protocols. The procedure to generate these

pseudo-random bases is described below:

Let S be a sequence defined by S = {sk}k=1,··· ,N , with sk = ⌈1000 ∗ (xk + yk + zk)⌉mod(2), which are either 0 or 1 each

appearing at random. For example, if N = 3000 then, using system (22), the following sequence is obtained,

S = {1111111 · · ·01000110001110111110111011}. Based on the NIST STP randomness test [56], we found a P-value of 0.5347

which is far greater than 0.01 showing that our sequence S is random with 99.99% confidence. Thus, under the same initial

conditions x0, y0, z0 and the same parameters r and s, truly random and identical sequences SA and SB are generated on Alice’s

and Bob’s sides, respectively in order to prepare their random-basis for photon polarization state measurement. For this reason,

let |Φ〉 = cos(φ)|0〉+ sin(φ)|1〉, where {|0〉, |1〉} is the standard basis. Using the sequences SA and SB, Alice and Bob can

generate the following random sequence bases:

Bi =
{

|φsi
k
〉, |φsi

k
+

π

2
〉
}

, with φsi
k
=

si
kπ

2
2−si

k , i = A,B, (23)

where si
k = {0,1}k=1,2,··· ,N . It can be observed that, if si

k = 0, then φsi
k
= 0 and one get the basis

{

|0〉, | π
2
〉
}

(rectilinear basis),

while for si
k = 1, then φsi

k
= π

4
and one get the basis

{

| π
4
〉, | 3π

4
〉
}

(diagonal basis). Therefore, following the sequences SA and SB

obtained respectively by Alice and Bob, the photon state polarization measurement bases are either
{

|0〉, | π
2
〉
}

or
{

| π
4
〉, | 3π

4
〉
}

each appearing in a random manner and always coincide for the two legitimate users. Fig.2 illustrates the above described bases

rotation:

Fig. 2: Polarization state measurement pseudo-random rotation bases.

4 Decoy states based satellite-to-earth link QKD protocol

As previously mentioned, decoy states QKD is one of the most implementation quantum key sharing scheme, since it provides

more security as compared to the protocol without decoy states. This is due to the fact that, additionally to the usual BB84 states

that are used in standard QKD protocol, decoy states are also produced and shared between the QKD legitimate users (Alice and

Bob), with an exclusive role of detecting the presence of any eavesdropper (Eve). However, in the existing QKD protocols with

decoy states [22–24,57], authors usually use single photon source at the transmitter’s side, which is not easily implementable. In

addition, both the transmitter and the receiver perform their photon polarization state measurement with true randomly selected

bases, and by the way their outcome measurement are identical with 1
2

probability. But in the new protocol that we wish to

implement, one of the main objectives is to solve this issue by using PRNG for photon polarization measurement bases choice.

Here, the steps that Alice(transmitter) and Bob (receiver) need to perform in order to generate a full private encryption key via

satellite based QKD are presented in detail. The strength of the protocol lies on two main fundamental laws of quantum physics

namely “the no-cloning theorem” and “the measurement principle”. Based on this idea and assuming that an eavesdropper (Eve)

does not have any useful information regarding the chaotic system’s properties (initial conditions and bifurcation parameters)

pre-shared between Alice and Bob used for pseudo-random basis selection, the following steps are therefore used to generate

the private key:

– Step 1: Alice and Bob first agree on the bifurcation parameters range (r and s), the initial conditions x0, y0 and z0 describing

the PRNG given by system (22). Also, they agree on the number of iterations N needed to run their PRNG.

– Step 2: Via a SPDC-photon source located in a LEO-type satellite with an automate commend on Alice’s possession, Alice

runs the SPDC module and produces a pair of entangled photons at each pulse, while at the same time she produces decoy

sates using a multi-intensity laser source also located in the same satellite. Thus, those entangled photons pairs are shared

through atmospheric propagation between her and Bob, additionally to the random-like selected decoy states intensity. The
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latest will help them in detecting whether the entangled photon sent has been intercepted or not. Having done that, the

following steps have to be performed:

(i) Upon receiving, both Alice and Bob measure the intensity level of the received decoy states, and thus they notify each

to other the reception of the half entangled photon pair sent, using classical communication (telephone, fax, etc.) and

the intensity of decoy states into their possession. Ubiquitously, if the signal has not been intercepted during the sending

process by an untrusted parties (Eve), Alice and Bob should detect the decoy states sent with identical intensity level. In

case those conditions are not simultaneously satisfied, Alice repeat Step 2 until these conditions are fulfilled.

(ii) Under the condition that (i) is satisfied, Both Alice and Bob run their QLM systems N times to generate pseudo-random

bases for photon polarization measurement, following the procedure fully described in Sec.3.

(iii) Alice and Bob perform a polarization state measurement on the half of entangled photon pair in their possession, in the

bases they generated from (ii), and note the result somewhere.

(iv) Following the output of the state polarization measurement, Alice and Bob assign a bit “1” for horizontal polarization

and the bit “0” for vertical polarization, if the selected basis is Z (i.e. BA/B =
{

|0〉, | π
2
〉
}

), while they assign a bit “1” for

450-polarization and the bit “0” for 1350-polarization, if the selected basis is X (i.e. BA/B =
{

| π
4
〉, | 3π

4
〉
}

), as shown on

Fig.2

(v) Alice and Bob keep the results of (iv) in two initially empty sequences SA for Alice and SB for Bob. In addition, Bob

measures the bit error rate (BER) and notifies the result to Alice, if it is not significant, they abort the process and repeat

again Step 2.

Step 3: They thus, increment the value of r by step of ε = rmax−rmin
N

, if r is selected as the control parameter, or that of s by

ε = smax−smin
N

, if s is selected as the control parameter, and repeat Step 2.

Step 4: Alice and Bob repeat Step 2 and Step 3 N times, and at each times pair of entangled photons and decoy states should

be produced and shared between them.

Step 5: Alice and Bob end up with two sequences SA for Alice and SB for Bob, which should be identical and extremely

secret, that they can now use to encrypt a message. The procedure is summarized on Fig.3.

Fig. 3: LEO-type satellite based QKD scheme, with each station containing a photon detector device, a photon polarization state

measurement device and a photon beam splitter as the procedure require single photon measurement.

In Fig. 3, an entangled photons source on a satellite emits a stream of entangled photon pairs, directed to the ground by a moving

Cassegrain-type telescope. Two other Cassegrain-type telescopes on the ground receive the photons and whatever direction they

come from, and send them to the detection apparatus. Due to the relative motion between the satellite and the ground station,

there is a relative rotation of the polarization axes between satellite and ground. The Cassegrain-type telescopes are made of

pointing mirrors, with the role to ensure lower change in the photon state polarization. The quantities z1 and z2 are respectively

the distance between Alice’s station and the satellite, and the distance between Bob’s station and the satellite, while L denotes

the distance between Alice’s and Bob’s stations, which will later be considered as the communication distance between both

parties.

5 Free-space key rate estimation results and discussion

Fiber link based QKD systems offer limited communication distance, and thus cannot be applied for long-distance communi-

cation, due to attenuation along the fiber. To overcome this drawback, free-space links QKD systems were proposed [58–61],
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which uses GEO, MEO or LEO type satellite as relay between the sender (Alice) and the receiver (Bob). Based on this idea,

we propose in this section a QKD protocol that uses a LEO-type satellite in which a SPDC entangled photons source is located

with the role of producing and distributing entangled photons pairs to Alice and Bob through free-space as presented on Fig. 3.

It is important to mention that, the almost non-birefringent character of the atmosphere guarantees the preservation of photon

pairs polarization state [58,59,61]. However, attenuation of photon’s signal is non-negligible due to three main effects, which

are: (i) atmospheric propagation, (ii) diffraction and (iii) detector efficiency. As regard to the attenuation due to atmospheric

propagation, absorption, scattering and turbulence are the main effects. Thus, atmospheric attenuation can be evaluated taking

into consideration the latest effects with the relation:

ηatm = ηabsηscattηturb, (24)

with ηabs, the attenuation rate due to absorption, ηscatt the attenuation rate due to scattering and finally, ηturb the attenuation

rate due to turbulence. The light is absorbed and scattered by gas molecules and aerosols present in the atmosphere [58,59,

?]. But, the most relevant contribution to atmospheric propagation attenuation is caused by turbulence, which is due to thermal

fluctuations that produce refractive index variations. It mostly depends on the atmospheric condition and the position of the

ground station [59,62–64]. It causes divergence rate of the light beam, and is evaluated following the work of Moli-Sanchez et

al. [59] by:

ηturb =
1

1+
θ 2

turb
R2

t

λ 2

, (25)

with θturb =
λ

πω0
the additional divergence angle in radian due to atmospheric turbulence, λ the signal wavelength, Rt the radius

of the transmitting primary pointing mirror and ω0 the divergence half-angle for Gaussian beams. In most of satellite based

QKD protocols, ηturb is chosen as constant, since it does not depend on the distance satellite-to-ground, but only on atmospheric

conditions.

As regard to signal attenuation due to diffraction, the effect is very important and strongly depend on the satellite-to-ground

distance in additional to other telescope’s parameters. Fig.4a depicts the Cassegrain-type telescope’s principle to be used in the

sender’s and receiver’s stations as well as in the satellite to ensure satellite-to-ground downlink transmission. In the present

work, we assume such telescope to be used for entangled photons pairs exchange, and also the produced photon beam to be of

Gaussian-type [27,65]. Under these assumptions, the attenuation rate due to diffraction can be calculated following refs. [27,65,

66] as:

ηdi f f =

[

exp

(

−2
r2

t

w2
t

)

− exp

(

−2
R2

t

w2
t

)][

exp

(

−2
r2

r

w2
r

)

− exp

(

−2
R2

r

w2
r

)]

(26)

where the subscript t refers to the transmit telescope and r to the receive one; R and r are the radii of the primary and secondary

mirrors, respectively; λ is the light wavelength; ωt,r is the beam radius at the transmit or receive side, with ωt = Rt , ωr = ω(z) =

ω0

√

1+ z2

z2
R

. The quantity zR =
πω2

0

λ
denotes the so called Rayleigh length or Rayleigh range [67], which is the distance along the

propagation direction of the beam from waist to the place where the area of the cross section is doubled as presented on Fig.4b.

z is the distance between the telescopes (i.e. the link distance). In satellite based QKD protocols, one has z ≫ zR, and ωr in this

case becomes ωr =
ω0z
zR

= λ z
πω0

, where ω0 denotes the minimum value of ω . The telescopes can be also designed as refractors,

(a)

(b)

Fig. 4: Cassegrain-type telescope (Fig.4a) and Gaussian beam width ω(z) = ωr in terms of the axial distance z, the Rayleigh

length zR and ω0 the beam waist (Fig.4b).

which is realistic in particular for the transmitter. Eq. (26) is still valid after setting the corresponding value of r to zero. The

effect of Pointing errors or misalignment of the optics can be readily taken into account by including an additional attenuation

term ηerr, which is constant. Given that the SPDC photon source distributes entangled photons pairs to Alice and Bob situated
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each to distant stations on the ground, one must define two quantities, namely, TA and TB representing the overall transmission

efficiency on Alice’s and Bob’s sides respectively as follows:

{

TA = ηerrηatmεAηA
di f f ,

TB = ηerrηatmεBηB
di f f ,

(27)

where εA and εB define respectively the detector efficiencies of Alice’s and Bob’s detectors. From Fig.3 describing the protocol,

we have assumed a straight line separating Alice’s and Bob’s stations by a distance of L, which can be expressed as a function of

z1, the distance between Alice’s station telescope and the satellite telescope and z2, the distance between Bob’s station telescope

and the satellite telescope as:

L =
√

z2
1 + z2

2 +2z1z2 cos(θ). (28)

Inversely, the distances z1 and z2 can be expressed as function of L by:

{

z1 =
1

cos(θ1)
L

tan(θ1)+tan(θ2)
,

z2 =
1

cos(θ2)
L

tan(θ1)+tan(θ2)
,

(29)

In the approximation case (i.e. we assume Alice’s and Bob’s stations at sea level such that one can have z1 ≈ z2), we also have

θ1 ≈ θ2 = θ
2

, and in this case, we get z1 = z2 = L

sin( θ
2 )

. Taking into account the above assumptions, we get the photons trans-

mission efficiencies on Alice’s and Bob’s sides with respect to the distance L separating their stations, known as communication

distance between legitimate users. Due to the above described phenomena, some photons may thus be lost during the exchanging

process and should not be taken into consideration during the secure key extraction process. Below are therefore described in

detail the procedure Alice and Bob must perform for the purpose of secure key extraction.

Considering the above assumptions, the overall transmittance of i-photon pairs between Alice and Bob can be defined as

follows:

Ti =
[

1− (1−TA)
i
][

1− (1−TB)
i
]

. (30)

Given that, dark count may occur (i.e. detection occurring on Alice’s and Bob’s sides given zero photon), the probability that a

quantum state is transmitted given a quantum state is a conditional probability also known as the yield, and given by:

ϒn = [Tn +ϒ0A −ϒ0ATn][Tn +ϒ0B −ϒ0BTn]

= [1− (1−ϒ0A)(1−TA)
n][1− (1−ϒ0B)(1−TB)

n], (31)

where, ϒ0A and ϒ0B introduces the dark count probability on Alice’s and Bob’s side, respectively. Moreover, we must recall that

for each photon pulse, a set of decoy states should be also produced and exchange between Alice and Bob. Thus, the probability

that Alice’s and Bob’s detectors indicate a detection of j-photons coming out of the SPDC photon source can be derived as:

Pj =
∞

∑
i=1

(i+1)
λ i

(1+λ )i+2
p j/i, (32)

where p j/i represents the conditional probability for Alice’s and Bob’s detector to indicate simultaneously j-photon states

given an incoming i-photon states. In this case, only two options are to be considered: (i) the case of triggered (i.e. j = 1)

and (ii) that of non-triggered events (i.e. j = 0). For non-triggered event, p0/i = (1− TA)
i(1− TB)

i and for triggered events,

p1/i = 1− (1−TA)
i(1−TB)

i. Considering these assumptions we have two different situations to be considered during the key

rate estimation: the case of non-decoy states with threshold detector and that of infinite number decoy states with threshold

detector.

5.1 Key rate estimation in case of non-decoy states with threshold detector

Let Qλ
j and Eλ

j be the overall photon gain and the quantum bit error rate (QBER), respectively. Then, one has:











Qλ
j =

∞

∑
i=0

Qλ
i, j =

∞

∑
i=0

Pi(λ )p j/iϒi

Eλ
j Qλ

i, j = Qi, jei

(33)

where Pi(λ ) is given by Eq. (21), ϒi by Eq. (31), and ei defining the error rate given by [68]:

ei = q0 −2
q0 −qd

(i+1)ϒi

[

1− (1−TA)
i+1(1−TB)

i+1

1− (1−TA)(1−TB)
− (1−TA)

i+1 − (1−TB)
i+1

TB −TA

]

, (34)
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with q0 the background count error rate, and qd the intrinsic detector error rate. After some computations, we get:

Qλ
0 =

1

[1+λTA +λTB −λTATB]
2
− 1−ϒ0A

[1+λTB +λTA(2−TA)(1−TB)]
2

− 1−ϒ0B

[1+λTA +λTB(2−TB)(1−TA)]
2
+

(1−ϒ0A)(1−ϒ0B)

[1+λ +λ (1−TA)2(1−TB)2]2
, (35)

and

Qλ
1 = 1− 1−ϒ0A

[1+λTA]
2
− 1−ϒ0B

[1+λTB]
2
+

(1−ϒ0A)(1−ϒ0B)

[1+λTA +λTB −λTATB]
2
−Qλ

0 , (36)

{

Eλ
0 Qλ

0 = Q1,0e1,

Eλ
1 Qλ

1 = Q1,1e1,
(37)

where

{

Q1,0 = P1(λ )p0/1ϒ1 = 2 λ
(1+λ )3 (1−TA)(1−TB)ϒ1,

Q1,1 = P1(λ )p1/1ϒ1 = 2 λ
(1+λ )3 ϒ1 −Q1,0.

(38)

By applying the Gottesman-Lo-Lutkenhaus-Preskill’s (GLLP) relationship giving the upper bound of the secure key rate, one

has [18,68,69]:

R ≥ Rlim =
1

∑
j=0

[

− f (Eλ
j )Q

λ
j H2(E

λ
j )+Q1, j (1−H2(e1))

]

, (39)

where H2(x) =−x log2(x)− (1− x) log2(1− x) introduces the usual Shanon binary entropy function, f (Eλ
j ), j = 0,1, the error

correction cost function, which is lower in our protocol as compared to that of the usual BB84 protocols, provided that this

protocol avoids public discussion for bases reconciliation, source of errors in the existing protocols. Fig.5 depicts the secure key

rate with respect to the communication distance.
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Fig. 5: Non decoy states based PRB-EPQKD protocol secure key rate simulation as function of λ , the maximum photon mean

number (Fig.5a) and the error correction function, f (Eλ ) (Fig.5b), both with respect to the communication distance (L) sep-

arating Alice’s and Bob’s stations, considering the background error q0 = 0.5, the detectors’ error qd = 1.5%, and the dark

count error rate ϒ0A =ϒ0B = 1.5×10−3. The light used for entangled photons pairs production being the orange color light with

wavelength µ = 650nm, with the telescopes’ radii, rt = 10mm, Rt = 20mm, rr = 0.01mm, Rr = 2m, and ω0 = 2mm.

From Fig.5a representing the secure key rate with respect to the communication distance, it can be observed an increasing

in the secure key size when the photon mean number λ increases. This observation is due to the fact that, when the number of

exchanged entangled photons pairs between Alice and Bob is high enough, the protocol becomes more robust against photon

number splitting attack. Moreover, the secure key rate of the protocol goes to 1 as the photon mean number increases, which

implies that, when the number of exchanged photon during the process is very large, the effects of noise due turbulence-induced

atmospheric propagation become negligible such that the entire photons pairs produced by the SPDC reach the recipients (Alice

and Bob). Ma et al. [70,71] demonstrated that in the entanglement based QKD protocols, the optimal photon mean number is

0.24, and that is the reason we choose this value and its neighborhood in our simulations, with its maximum set to 0.24. In

addition, Fig.5b plots the secure key rate as function of different error correction functions. As discussed in several existing
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Fig. 6: Non decoy states based PRB-EPQKD protocol secure key rate simulation for different wavelengths (i.e. type of light

used for entangled photons pairs production), with respect to the communication distance (L) between Alice’s and Bob’s stations

(Fig.6a) and the three dimensional simulation of the secure key rate with respect to both the pulse time scale (χ = κt, κ = 0.5
for blue/bottom panel, κ = 0.6 for black/middle panel and κ = 0.7 for green/top panel), and the communication distance (L)

separation Alice’s and Bob’s stations (Fig.6b), considering the error correction function, f (Eλ ) = 1.1, the background error

q0 = 0.5, the detectors’ error qd = 1.5%, and the dark count error rate ϒ0A = ϒ0B = 1.5× 10−3, with the telescopes’ radii,

rt = 10mm, Rt = 20mm, rr = 0.01mm, Rr = 2m, and ω0 = 2mm.

QKD protocols [26,28,58,60,62], upon receiving half of entangled photons pairs, and measuring their polarization, Alice and

Bob must communicate each to other the measurement bases selected through untrusted classical channel and cancel the bits

that photons measurement bases do not coincide. This procedure leads to sifting and may cost up to half of the key raw. Thus, an

efficient algorithm was proposed to minimize the error occurring during this procedure. That is, it was then proved that this error

is function of the QBER and may be constant despite the QKD protocol used, with an optimal value of 1.22 [70,71]. However,

in our protocol (PRB-EPQKD protocol), as we already mentioned, public discussion between Alice and Bob as regard to the

measurement bases reconciliation is avoided, since they are certain to perform their measurement in identical bases provided the

bases generation process developed in Sec.3. The only public discussions that do not even reveal any useful information to Eve

concern the photon reception. Given the above considerations, it comes that the error-induced bases reconciliation is negligible,

and thus the error correction function should be less than that of the existing protocols. For this reason, we have simulated our

secure key rate under this consideration, and the results proved that this protocol is far better as regard to both the maximum

communication distance between legitimate users and the secure key size. Furthermore, we have looked forward to observe

the effects of different color light that can be used for entangled photons pairs production on the secure key, by simulating the

secure key rate with respect to different wavelength selected in the ultraviolet light, visible light or infrared light wavelength

range. It turns out that, entangled photons pairs produced via an ultraviolet light source will be more robust against noise-induced

atmospheric attenuation, and thus cover more distance as compared to others. This observation is corroborated by Fig. 6a. From

Fig.6b plotting the secure key rate simultaneously with respect to the communication distance and the pulse time scale, we realize

that the secure key rate strongly depends on the nature of crystal that is being used for entangled photons pairs production during

the process, since it can be observed that as the value of κ , which reveals the crystal’s properties increases, the secure key rate

increases significantly. However, although this protocol, namely non-decoy states based PRB-EPQKD significantly improves

the communication distance, as it reaches up to a maximum of 70000 km, providing the quality of light used (UV), the error

correction function, the nature of the crystal kindly selected, it provides less security as compared to the case with infinite active

decoy states, developed in the following subsection.

5.2 Key rate estimation in the case of infinite decoy states with threshold detector

Analogically to the case of non-decoy states with threshold detector based QKD, the secure key rate in the present case can still

be evaluated using Eq. (39). However the overall QBER Eλ
j , j=0,1 are evaluated as follows:

Eλ
0 Qλ

0 =
∞

∑
i=0

Pi(λ )p0/iϒiei

= q0Qλ
0 −2

q0 −qd

1+λ

[

1
1−(1−TA)(1−TB)

1+λTA +λTB −λTATB

−
1−TA

TB−TA

1+λTB +λTA(2−TA)(1−TB)

]

−2
q0 −qd

1+λ





1−TB
TB−TA

1+λTA +λTB(2−TB)(1−TA)
−

(1−TA)(1−TB)
1−(1−TA)(1−TB)

1+λ −λ (1−TA)2(1−TB)2



 , (40)
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and

Eλ
1 Qλ

1 =
∞

∑
i=0

Pi(λ )p1/iϒiei

= q0(Q
λ
0 +Qλ

1 )−Eλ
0 Qλ

0 −2
q0 −qd

1+λ

[

1

1− (1−TA)(1−TB)
−

1−TA
TB−TA

1+λTA

+

1−TB
TB−TA

1+λTB

]

−2
q0 −qd

1+λ

[

− (1−TA)(1−TB)

1− (1−TA)(1−TB)

1

1+λTA +λTB −λTATB

]

, (41)

The quantum gain of non-triggered and that of triggered events Qλ
0 and Qλ

1 , respectively are evaluated analogically to those of

eqs.(35) and (36). The parameters of these equations are defined in the previous section, but the main difference resides in the

evaluation of the QBER, which takes into consideration, the infinite number of decoy states exchanged between Alice and Bob.

Fig. 7 depicts the secure key rate with respect to the communication distance.
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Fig. 7: Infinite active decoy states based PRB-EPQKD protocol secure key rate simulation as function of λ , the maximum photon

mean number (Fig.7a) and the error correction function, f (Eλ ) (Fig.7b), both with respect to the communication distance (L)

separating Alice’s and Bob’s stations, considering the background error q0 = 0.5, the detectors’ error qd = 1.5%, and the dark

count error rate ϒ0A =ϒ0B = 1.5×10−3. The light used for entangled photons pairs production being the orange color light with

wavelength µ = 650nm, with the telescopes’ radii, rt = 10mm, Rt = 20mm, rr = 0.01mm, Rr = 2m, and ω0 = 2mm.

In Fig.7 plotting the secure key rate with respect to the communication distance for different values of the photon mean

number (Fig.7a) and for different values of the error correction function (Fig.7b), for the case of infinite active decoy states,

similar observations as in the case of non-decoy states can be made, as regard to the maximum communication distance as well

as the secure key size, since these quantities are improved significantly compared to those of existing protocols. Although the

communication distance does not reach that of non-decoy states protocol as shown on Fig. 5, the security is quietly enhanced here

due to the use of decoy states, since as we previously mentioned, Alice and Bob share additionally to their photon states some set

of decoy states with random intensity, the goal being to detect the presence of Eve intending to intercept their communication.

However, it can be observed that the maximum communication distance is significantly improved in the case of infinite active

decoy states as compared to that of one or two decoy states as developed by several authors (see for example refs. [58,59]).

It is worth noticing that these results may not always coincide with security analyses found in the literature, for example refs.

[72–74], since these works present their security analyses under the assumption of some Eve’s generic capabilities. But here, we

consider Eve being able to listen to all the communication taking place between Alice and Bob during the process, and can even

be able to intercept their entangled photons pairs. Under this consideration, she is not able to extract any useful information as

regard to the secret key, since the legitimate users do not communicate their measurement bases. This point is one of the most

important results of this protocol and contributes to its strong security. We recall that this fact is due to the use of PRNG instead

of TRGN for photon state polarization measurement bases choice. In addition, when attenuation due to atmospheric turbulence

increases, Eve’s action becomes very difficult to detect. In this situation, Alice and Bob must modulate the photon mean number

as presented on Figs. 5a and 7a, so to make the photons, travelling throughout atmosphere more robust against noises. Thus, the

robustness of the protocol includes large value of photon mean number too, which remains constant in the case of non-decoy

states protocol as well as in the case of infinite active decoy states protocol. This result is in agreement with that of ref.[59]. From

Fig. 8 depicting the secure key rate in terms of the transmission distance between Alice and Bob for different nature of the light

source used for photon pairs creation (Fig. 8a), and in terms of simultaneously the time scale and the transmission distance for

different type of crystal used for photon pairs creation (Fig.8b), similar conclusion as in the case of non-decoy state can be drawn

(shown on Fig.6). It is also important to mention that these results are achieved under daylight and downlink satellite conditions,

and the main effects that influence the communication distance are due to turbulence-induced attenuation. Nevertheless, the
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Fig. 8: Infinite active decoy states based PRB-EPQKD protocol secure key rate simulation for different wavelengths (i.e. nature

of light used for entangled photons pairs production), with respect to the communication distance (L) between Alice’s and Bob’s

stations (Fig.8a) and the three dimensional simulation of the secure key rate with respect to both the pulse time scale (χ = κt,

κ = 0.5 for blue/bottom panel, κ = 0.6 for black/middle panel and κ = 0.7 for green/top panel), and the communication distance

(L) separation Alice’s and Bob’s stations (Fig.8b), considering the error correction function, f (Eλ ) = 1.1, the background error

q0 = 0.5, the detectors’ error qd = 1.5%, and the dark count error rate ϒ0A = ϒ0B = 1.5× 10−3, with the telescopes’ radii,

rt = 10mm, Rt = 20mm, rr = 0.01mm, Rr = 2m, and ω0 = 2mm.

attenuation due to absorption and scattering is evaluated considering the model of standard atmosphere [27,75], which results

in ηscatt = 1dB and ηabs = 8dB. Furthermore, we have considered the background noise caused by daylight, and which present

significant impact on the QBER and consequently on the secure key. Similar observations were made by Er-long et al. in [76].

6 Concluding remarks

This paper’s purpose was to theoretically develop a new QKD protocol, namely the pseudo-random bases entangled photon based

quantum key distribution (PRB-EPQKD) protocol. The main goal of the latest being to improve not only the security as regards

to the key sharing process, but also to improve the communication distance between legitimate users and the secure key size

as well. For this reason, we first assumed a SPDC photon source capable of producing and distributing entangled photons pairs

to Alice and Bob, and located in a LEO-type satellite. Secondly, we ensured that Alice’s and Bob’s photons state measurement

bases are identically generated via a PRNG, namely the QLM. Thirdly, we have also assumed that in addition to their photons

state, Alice and Bob intentionally share a set of decoy states at each pulse with randomly selected intensity, and with the goal to

detect the presence of the eavesdropper (Eve), intending to listen to their communication. Under the above considerations, the

secure key rate upper bound has been evaluated applying the GLLP relationship, for two different implementations, namely the

non-decoy states and the infinite active decoy states based QKD. Four (04) main points was observed from simulations:

(i) The secure key size was strongly improved with the increasing of the photon mean number, which traduces the robustness of

the protocol against photon number splitting attack, and additionally its robustness against attenuation-induced atmospheric

propagation of photons.

(ii) The communication distance between legitimate users significantly improved, with decreasing in the error correction func-

tion, which shows the efficiency of the protocol, as it minimize the errors due to absence of public discussion between Alice

and Bob usually performed in existing QKD protocols.

(iii) The secure key rate was found to decrease very weakly with the communication distance, and strongly impacted by the

nature of light used for entangled photons pairs production, since for ultraviolet light source, we observed that the maximum

communication distance achieved can reach up to 70 000 km, against a maximum of 40 000 km for visible light source,

while for infrared light source it can reach only a maximum of 25000 km.

(iv) The crystal’s properties that is used for entangled photons pairs production strongly impact the secure key size and the

communication distance as well.

Therefore, as recommendation for any practical implementation, one should make sure to kindly select the light source nature

and an appropriate crystal that will be used in the SPDC for entangled photons pairs production. These aspects, even important

as we realized in this work, are neglected to best of our knowledge in existing protocols. In addition, daylight and downlink

satellite conditions were found to minimize the attenuation-induced atmospheric turbulence effects, which are the most cause of

errors in the protocol, and thus can be recommended.
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45. Alain Giresse Tene and Timoleon Crépin Kofane. Novel cryptography technique via chaos synchronization of fractional-order derivative systems.

In Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems, pages 404–437. IGI Global, 2018.

46. ME Goggin, B Sundaram, and PW Milonni. Quantum logistic map. Phys. Rev. A, 41(10):5705, 1990.



Title Suppressed Due to Excessive Length 15

47. Xiongfeng Ma, Chi-Hang Fred Fung, and Hoi-Kwong Lo. Quantum key distribution with entangled photon sources. Phys. Rev. A, 76(1):012307,

2007.

48. Ruo Peng Wang and Hui Rong Zhang. Theory for quantum state of photon pairs generated from spontaneous parametric down-conversion nonlinear

process. Opt. Spectrosc., 103(1):148–152, 2007.

49. Yong-Chun Liu, Yun-Feng Xiao, You-Ling Chen, et al. Parametric down-conversion and polariton pair generation in optomechanical systems.

Phys. Rev. Lett., 111(8):083601, 2013.

50. Martin Tchoffo and Alain Giresse Tene. Privacy amplification of entanglement parametric-down conversion based quantum key distribution via

quantum logistic map for photon bases choice. Chaos Soliton Fract., 140:110110, 2020.

51. D Rodney Truax. Baker-Campbell-Hausdorff relations and unitarity of SU(2) and SU(1, 1) squeeze operators. Phys. Rev. D, 31(8):1988, 1985.

52. Sha-Sha Wang, Dong-Huan Jiang, Guang-Bao Xu, Yong-Hua Zhang, and Xiang-Qian Liang. Quantum key agreement with Bell states and Cluster

states under collective noise channels. Quantum Inf. Process., 18(6):190, 2019.

53. AS Trushechkin, PA Tregubov, EO Kiktenko, et al. Quantum-key-distribution protocol with pseudorandom bases. Phys. Rev. A, 97(1):012311,

2018.

54. Hoi-Kwong Lo, Hoi Fung Chau, and Mohammed Ardehali. Efficient quantum key distribution scheme and a proof of its unconditional security. J.

Cryptol., 18(2):133–165, 2005.

55. Valerio Scarani, Antonio Acin, Grégoire Ribordy, and Nicolas Gisin. Quantum cryptography protocols robust against photon number splitting

attacks for weak laser pulse implementations. Phys. Rev. Lett., 92(5):057901, 2004.

56. Andrew Rukhin, Juan Soto, James Nechvatal, et al. A statistical test suite for random and pseudorandom number generators for cryptographic

applications. Technical report, Booz-Allen and Hamilton Inc Mclean Va, 2001.

57. Chun-Hui Zhang, Chun-Mei Zhang, and Qin Wang. Improving the performance of practical decoy-state measurement-device-independent quantum

key distribution with biased basis choice. Commun. Theor. Phys., 70(3):331, 2018.

58. S Ali and MRB Wahiddin. Fiber and free-space practical decoy state QKD for both BB84 and SARG04 protocols. Eur. Phys. J. D, 60(2):405–410,

2010.

59. L Moli-Sanchez, A Rodriguez-Alonso, and Gonzalo Seco-Granados. Performance analysis of quantum cryptography protocols in optical earth-

satellite and intersatellite links. IEEE Journal on Selected Areas in Communications, 27(9):1582–1590, 2009.

60. Markus Aspelmeyer, Thomas Jennewein, Martin Pfennigbauer, Walter R Leeb, and Anton Zeilinger. Long-distance quantum communication with

entangled photons using satellites. IEEE J. Sel. Top. Quantum Electron, 9(6):1541–1551, 2003.

61. Ahmed Ismael Khaleel and Shelan Khasro Tawfeeq. Key rate estimation of measurement-device-independent quantum key distribution protocol in

satellite-earth and intersatellite links. Int. J. Quantum Inf., 16(03):1850027, 2018.

62. John G Rarity, PR Tapster, PM Gorman, and Peter Knight. Ground to satellite secure key exchange using quantum cryptography. New J. Phys.,

4(1):82, 2002.

63. Scott Bloom, Eric Korevaar, John Schuster, and Heinz Willebrand. Understanding the performance of free-space optics. Journal of Optical

Networking, 2(6):178–200, 2003.

64. Shlomi Arnon. Effects of atmospheric turbulence and building sway on optical wireless-communication systems. Optics Letters, 28(2):129–131,

2003.

65. Bernard J Klein and John J Degnan. Optical antenna gain. 1: Transmitting antennas. Applied Optics, 13(9):2134–2141, 1974.

66. Saikat Guha, Hari Krovi, Christopher A Fuchs, Zachary Dutton, Joshua A Slater, Christoph Simon, and Wolfgang Tittel. Rate-loss analysis of an

efficient quantum repeater architecture. Phys. Rev. A, 92(2):022357, 2015.

67. Pavel Penchev, Stefan Dimov, and Debajyoti Bhaduri. Experimental investigation of 3D scanheads for laser micro-processing. Optics & Laser

Technology, 81:55–59, 2016.

68. Hoi-Kwong Lo and Norbert Lütkenhaus. Quantum cryptography: from theory to practice. arXiv preprint quant-ph/0702202, 2007.

69. Daniel Gottesman, H-K Lo, Norbert Lutkenhaus, and John Preskill. Security of quantum key distribution with imperfect devices. In International

Symposium on Information Theory, 2004. ISIT 2004. Proceedings., page 136. IEEE, 2004.

70. Xiongfeng Ma, Bing Qi, Yi Zhao, and Hoi-Kwong Lo. Practical decoy state for quantum key distribution. Phys. Rev. A, 72(1):012326, 2005.

71. Xiongfeng Ma, Chi-Hang Fred Fung, Frédéric Dupuis, Kai Chen, Kiyoshi Tamaki, and Hoi-Kwong Lo. Decoy-state quantum key distribution with

two-way classical postprocessing. Phys. Rev. A, 74(3):032330, 2006.

72. Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas J Cerf, Miloslav Dušek, Norbert Lütkenhaus, and Momtchil Peev. The security of practical
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