

Book Chapter

Reference

Security and Communication in Mobile Object Systems

VITEK, Jan, SERRANO, Manuel, THANOS, Dimitri

Abstract

In this paper we discuss security in mobile object systems. Mobile object systems embody a
paradigm where computation may move across the network and carry out distributed
activities. This paradigm has been popularized by the JAVA programming language and the
work on mobile software agent. We study security problems of interaction mobile object
systems taking Java as an example, identify weaknesses and propose solutions.

VITEK, Jan, SERRANO, Manuel, THANOS, Dimitri. Security and Communication in Mobile
Object Systems. In: Tsichritzis, Dionysios. Objects at large = Objets en liberté. Genève :
Centre universitaire d'informatique, 1997. p. 19-41

Available at:
http://archive-ouverte.unige.ch/unige:155309

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:155309

Security and Communication in
Mobile Object Systems1

Jan Vitek
Manuel Serrano
Dimitris Thanos

Abstract
In this paper we discuss security in mobile object systems. Mobile objcc1 systems em-
body a paradigm where computation may move across the ne!work and carry out dist rib-
uted activities . This parasigm has been popularized by !lte JA VA programming language
and the work on mobile soflwure agent . We study security problems of interaction mo-
bile object systems taking Java as an example. idenrify weaknesses and propOse solu·
tions.

1 Introduction

The rapid growth of computer networks has created an opportunity for developing massively
distributed computer systems. Such systems will likely consist of loose communities of hetero-
geneous machines running different operating systems with different security policies. The chal-
lenge is to design a reliable, and yet efficient, infrastructure trustworthy enough for electronic
commerce and flexible enough to allow software upgrades as well as new functionality to prop-
agate in a decentralized, inherently insecure, wide area network. Mobile object systems embody
a paradigm where computations, i.e. running programs, may move across the network and carry
out truly distributed computations. The vision is that computations structured as autonomous
systems of objects will roam the network performing complex tasks on the behalf of their human
owner. These mobile systems of objects carry their data as well as their code with them during
their journey; thus allowing almost unlimited extendability. Such unfettered mobility raises jus-
tified security concerns. First from the host's stand point. Can an arbitrary code fragment be en-
trusted with local resources? To what degree is it possible to control the behaviour of download-
ed code? How can secrecy and integrity be preserved? Next, from the sender's stand point. Is it
possible to entrust the network with mobile computations that encode valuable knowledge and
are empowered to carry out commercial transactions? Even though it is technically feasible to
charge foreign computations for small service such as execution time or storage [39], the key
question whether there is a way to achieve a sufficient level of security for this approach to be
viable. Currently, we must answer by the negative. None of the existing mobile computation sys-
tems meet the security requirements of commercial applications. Lack of security fosters a just
say no attitude towards mobile computations in portions of the scientific and business commu-
nity [38]. The proverbial ball is now in the camp of mobile computations research. It is up to us

1. This work was supported by the Swiss National Science Foundation with the SPP-lCS 1996-1998
project ''ASAP" (project number 5003-045335).

19

20 Security and Communication in Mobile Ob;ect Systems

to demonstrate that mobile objects may meet the stringent security criteria of real worlc1 itppli-
cations.

The main contribution of this paper is the study of security threats inherent to communica-
tion in mobile object systems. We will study how mobile object systems communicate, describe
the dangers of traditional communication mechanisms and outline two research directions cur-
rently being investigated. The structure oftbe paper js the following. section 2 describes security
issues in mobile object systems. From this general overview we will focus on eommunication
between object systems. section 3 more precisely describes the threats tbat an object system may
be faced with. section 4 is the heart of !'be paper, it describes the shortcomings of existing com-
munication mechanisms. ln particular, we give examples that.show the inadequacy of the secu-
rity models of languages such as Java and Telescript (examples in Appendix). Finally. section 5
sketches our on going research.

2 Security and Mobile Object Systems

The tcnn security has been subjected to much abuse lately. A secure programming system is not
one that give the means to write secure application as is often argued [17) [40]. Instead a secure
system is a programming system that prohibits insecure programs. While it is unrealistic to ex-
pect to present a comprehensive solution to the multiple security issues of rea.J world applica-
tions, it is possible to study and solve subproblems. This is what we set out to do in this paper.
We provide examples that anest ro the weaknesses of commercial environments such as Java
and Telesc.ript. We wisb to emphasize that even though some, but not all. of the problems out-
lined in the examples may be avoided by carefull programming, it is not sufficient to rely on the
programmer. The point is that it is easy to breach securily in those environmenis.

A mobile object system architecture is composed of four components: (a) the host-a com-
puter and operating system, (b) the computational environment (C'E}-the run- time system, (c)
mobile object systems-the computations currently running. on the CE, and (d) a network or
communication subsystem that interconnects CEs located on different hosts. To draw a parallel
with Java1 the architecture maps as follows: (a) is the native operating system. for instance
UNIX, (b) is a web browser, perhaps Netscape, (c) applets, (d) the Internet. ln the long run the
distinction between OS and CE may well disappear.

In this architectuce, the computational environment is the key to overall system security.
The protection mechanisms incorporated in the implementation of the CE enforce the chosen se-
curity policy. These protection mechanisms must be flexible enough to accommodate the poli-
cies of different organizations as well as comprehensive enough to ensure that the policy can not
be breached [I 0)[20) [16] [21].

Protection mechanisms may be placed at all component boundaries with the goal to control
and regulate interaction between components. Figure I lists Lhe five boundaries that require se-

I. Java doc~ no1 suppon mobile computations. The language was designed for codc·on-demnnd (temote
dynamic linking) applications. Yet, it shnre.s many concerns with mobile objects environments nnd may
be extended to support flllt-Ocdged mobile computations [32).

.!. Vitek. M. Serrano and D Thanos

I MOS1 I 5 ·I MO~ I
t3 t 2 f 4

CClMPUTA TIONAL El'NlRONMENT . .
i j

I HOST I I Network

Figure 1 Security issues: (1) transfer security, (2) authentication
and authorization, (3) host system security, (4) computational environ-

ment security, (5) mobile object system security.

21

curity: (J) communication between hosts and CEs (i.e. computation mobility) must be secured,
this to prevem disclosure of the information contained in the data portion of computations and
corruption of either data or code, (2) incoming computations must be authenticated and granted
access rights, this to determine on which principal's behalf the computations will execute, who
should be charged and what they are allowed to do, (3) access to the host's local resources must
be controlled, this to protect the host, (4) the CE must be protected from potentially malicious
computations (and vice versa), this to prevent computation from by-passing the security buih in
the environment, (5) mobile object systems must be protected from each other, this to prevent a
computation from disrupting another or gaining privileged information.

Each of these boundaries raises security issues. We discuss these issues below.

Transfer, Authentication a11d Authorization

Issues (1) and (2) are typical problems for distributed systems. It is natural to tum towards solu-
tions developed in that field. Secure network communication and authentication require crypto-
graphic techniques. Possible solutions include the Secure Socket Layer [14] for secure network
communication, and Kerberos or some of its derivatives [31) for authentication.

Host protection

Issue (3) relates to access control mechanisms similar in purpose to those of operating systems.
Yet, as Lepreau et al. [23] noted, today's operating systems can not solve the problems raised
by mobile code. They only provide flat protection domains while one of the implicit needs of
mobile application are recursive protection domains. Recursion is needed to model the encapsu-
lation of mobile computation within the CE and their restricted rights which must be limited to
subset of the rights of the CE, i.e. the protection domain of the CE encapsulates the protection
domains of the computations. An aspect, unrelated to OSs, which is a weak point in current en-
vironments is the flexibility of access control. Most Java implementation adopt an all-or-nothing
approach that is not satisfactory [16)[21] or even secure [9][10][22). Flexible access control is
the subject of on-going research [16)[19)[21) [48). As an aside, we emphasize once more the
relationship between OSs and CEs: in most cases flexible access control requires the implemen-
tation of a superset of the OS access control mechanisms,outside of the OS. For instance, Gold-
berg et al. [16] propose to curtail all system calls using the ptrace functionality of Solaris.

22 Security and Communication in Mobile Object Systems

Computatfonal environm1mt protection

Issue (4) may be approached from different angles. The bottom line is always to prevent com-
putations to damage their CE. Operating systems face a similar problem as they have to protect
themselves from the processes they run. Unlike OSs, mobile computation architectures usually
are built as single address space environments. The associated reduction in space and improved
CB-computation communication speeds improves overall performance. The down side is that
the CEs can not rely on address space protection mechanisms1. The security policy of all exist-
ing computational environments is nevertheless to restrict computations to use a well-specified
interface to interact with the CE. A policy that rules out, or at least restricts, unchecked memory
accesses. These are common in unsafe language such as C. To enforce the policy, the code of
computation must be safe, code which may be either in source form , bytecode. or native obj ect
form. Code ca.n be guaranteed safe ifit is signed by a 1rus1ed party (as in the MMM Cami web
browser (34]), if it carries its own proof of correctness (e.g. PCC [30),), if the language is safe
and the bytecode can be verified to adhere ro the high level language semantics (e.g. Java), if the
code executes in a highly restricted environment and is not allowed to emit illegal instructions
(e.g. Agent Tel (18]), or if the code is rewritten into a safe version (e.g. Ornniware [47)). Malice
need not be confined to mobile computations.There may be even more reasons for the CE to try
to subvert its computations than the coo verse.For instance, CEs may extract payment for service
not rendered or steal the secrets of visiting computations. This raises the question w hether any-
thing can be done to provide execution and secrecy guarantees? Very little research has ad-
dressed the issue. Published results on detection of malicious CEs are so restricted that they have
little praccical use2.

Mobile object system protection

Issue (5)-security at the interface between mobile computations--implies control over com-
munication channels between computations. All communication must be regi1lated by procec-
tion mechanisms. The goal is tl13l the administrator of a computational environment should be
able to choose a security policy that fits the organization's security requirements and be able to
impose that policy on all computations running in the CE.

3 Protecting Mobile Object Systems

This work departs from the main research track in security of mobile programs by shifting the
attention from host security to security of mobile computations. In effect, our emphasis is on try-
ing to control interactions between mobile objects systems. Our thesis is that there can be no
ove ra ll security if computations are not secured. Such security places requirements on the design

I . Portions of an address space may be protected via software fault isolation (SF!) [4 7] . SF! introduces an
overhead as memory accesses need to be checked [47). This overhead could be reduced if the code gener-
ator was trusted as is the case of run-time code generation and just-in-time compilers.

2. ln (28J mal icious plaifonns arc dc1ec1cd by duplicating comp111ations and executing them on di fTereni
hosts. After each s1age rcsuhs ore tallied and a voting algorithm is used 10 pick 1hc correct result to use in
1hc next stage. Unfortunately. computa1io11s mus1 be dc1enninistic. a requirement not often met in practice.

J Vitek. M. Serrano and D. Thanos 23

of the language and environment. This section details threats related to communication chan-
nels.

Mobile object systems

Before discussing the threat model we present the relevant characteristics of mobile object sys-
tems. An object is a record with fields containing references to other objects, called instance
variables, and fields containing operations, called instance methods. An object has an interface
which describes which of its fields may be accessed by other objects. Every object is an instance
of a class. We model classes by objects. Each object has a special instance variable that refers
to its class object. The variables of the class object are thus shared variables for all of the instanc-
es. We shall assume that the language is run-time safe1. An object graph is the instantaneous
representation of the state of a group of objects. Very briefly, an object graph consists of a set
of vertices and a set of directed edges. There are two kinds of vertices: objects, classes. Edges
represent references between objects (e.g. values of instance variables). We say that an object o'
is reachable from o if there is a path from o too' in the object graph g. An object system obj is
the transitive closure of the object graph rooted at obj. This transitive closure represents the state
of the system. A computation is a sequence of method invocations and variable accesses per-
formed on the objects of a system obj. An object system is run in a computational environment
which associates an authorization to every object system and controls the system's execution
and its consumption ofresources. Mobile object systems are object systems that may move be-
tween computational environments.

Protection domains

Any meaningful discussion of security requires a notion of protection domain. Security is rela-
tive to the entities that are to be protected. Protection domains, group entities that must be pro-
tected together and are the level of granularity for protection mechanisms. In operating systems,
for instance, the basic protection domain is the process. The default securi1y policy is confine-
rmmt. The OS draws a protective boundary around the set of memory pages accessible to each
process. The protection mechanism is implemented in the address translation scheme that maps
virtual addresses imo physical ones. Most mobile environments presenL a single system image2

and it is more difficult (or costly) to define protection domains in terms of memory pages. In
object systems, it is natural to describe protection domains in terms of object graphs. Domains
may be populated implicitly or explicitly. Implicit protection domains are defined in terms of
reachability in object graphs, Java leans in this direction. Explicit protection domains are defined
by enumeration, Telescript falls in that category with its explicit 'owner' and 'sponsor' fields
(40).

t. Run time safety ensures 1ha1 arbilrnry memory accesses arc forbidden (e.g. no poimcr urithmctic), 1ype
CllSIS arc checked. access to nmy nnd other variable lcng1h data structures is checked for overflow. These
guarantees mny be obtained by a combination of run-time checks. lnnguagc restriction and type checking.
2. Single system image does not necessarily imp.ly single address space. Distributed systems such as Em-
erald [3] and Obliq [2] provide a global address space. Java, Telescript (40) and Agent Tel [18] have a
single address space.

24 Security and Communication in Mobile Object Systems

Threat model

We consider four kinds of threats in this paper:

attack description

Breach of direct access to the state of another computation either due to a failure to
secrecy enforce proper security or an insecure communication channel.

Breach of modification of the state of a computation by another computation by
integrity sending state-modifying messages to objects of the victim.

Masquerading usurping the authority/identity ofanoth~r computation for a series of
actions. e.g. tricking the victim into executing some code fragment.

Denial of service excessive consumption of a finite shared resource such as processing
time, memory, or the communication subsystem.

Table 1 Attacks

Assuming that communic.a1ion between protection domains is restricted to a set ofCE-pro-
vided communication channels, preventing breaches of secrecy or integrity requires that chan-
nels be secure and never open up the objects of a protection domain to inspection or modification
from another domain. Jn the following, we show that the strong typing and encapsulation of ob-
ject-oriented languages fail to protect against such attacks as they do not preserve disjointedness
of object graphs. Similarly for masquerading attac)<s, Lhey can be set up by using polymorphism
to inject code in other computations. Finally, denial of service attacks can be mounted by abus-
ing the communication system 1•

Covert co1111111111icatio11 cha1111els must be prohibited. This is necessary if the security policy
forbids information leaks between computations running at different levels of trust. For instance
consider a scenario in which a computation requests the right to read a private file (but not 10
communicate over the net) and another the right to communicate over the net (but not 10 read
private files) . Both requests are acceptable from the stand point of security, as the program that
has sensitive data is not able to communicate with remote machines and the program that can
communicate with the outside world has no private data. The security problem is that ifa covert
channel can be established, the information ga.ined by the first program may leak outside of the
environment. In the annex we give examples how 10 set up high-bandwidth covert channels in
Java (see also (51]). Note that discovery of low bandw.idth storage and especially timing chan-
nels is an active research topic (41].

Discussion

It has been argued that object-oriented principles can be used for security [I][40)(49)(17). The
cla.im hinges on the use of encapsulation and strong typing to restrict the way a client (the pro-
gram that uses an object) can interact with the object. Another claim that has been often repeated

I. Denial of service artneks can be mounted by using Inordinate 31TIOU11ts of any finite resource (52]. For
denial of service all that we wish to say is that use of tha comm1111ication system must be accounted for.
This is a failing ofTclescript where ii is possible to misuse the communication system [40).

J Vitek, M. Serrano and D Thanos 25

1s that objcms can be used as capabilities [17]. Capabilities are kinds ofµermits for manipulating
entities mostly used in operating systems [4J[6j[37]. It is also common to see arguments to the
effect that information hiding is a form of security mechanism [17]. Morrison et al. argued that
although objects may be. used to i111p/e111u111 capabilities, they are not in ll1emselves equivalent to
capabilities [29]. On a more general note the object-oriemed paradigm was conceived m foster
good software engineering principles. Trying to con ton its features into securi ty mechanisms is
bollnd to fail. Our claim is that object-oriented programs arc 1101 more secure rhnn programs writ-
ten in any other paradigm. Some language features. -such as su-ong lyping, may help. Bm others,
sucb as pervasive reference semantics. polymorphism and subtyping, are hindrances. Finally, we
will show that method invocinion is not a secure communication mechanism for cross domain
calls. The next section reviews existing communication mechanisms and discusses their advan-
tages and disadvantages for inter-computation communication. The last section introduces two
proposals for improving communication in mobile object systems.

4 Security and Communication

Inter-computation communication mechanisms may be classified into four categories: shared
memory, generative communication, datagrams, and procedure calls or, in object-oriented pro-
grams, method invocations. The important characteristic of communication is that it encapsu-
lates a crossing of protection domain boundaries. From the view point of security, values which
traverse such boundaries must be controlled, and sharing of values between protection domains
must either be forbidden or, at least, regulated.

4.1 Shared memory

Sharing memory between object systems can be done at the level of physical pages in memory,
or at a slightly higher level by shared variables. Sharing of memory pages requires operating sys-
tem support while the sharing of variables is implemented by the CE.

Physical sharing is a low level communication mechanism, in object systems the natural
granularity is that of objects not pages. Page sharing requires that all memory accesses be
checked; to be efficient this must be implemented in the operating system. This is at odds with
the basic portability requirement Of mobile object systems as it is unlikely that the same protec-
tion facilities will ever be present in all commercial operating systems.

Shared variables represent a more disciplined way to share memory as they are type safe
and can be implemented straightforwardly in a CE that provides a global address space for com-
putations. Sharing implies that the objects graphs of computations are not disjoint. As a commu-
nication mechanism, shared variables allow data to be exchanged between computations at no
cost. This advantage is mitigated as concurrent computations usually have to synchronize their
reading and writing of shared data. For security, shared variables present several problems. It is
necessary to decide which computations are allowed to share variables. Often sharing decisions
are static and remain in effect for the entire program execution, whereas security needs to be
more dynamic as permissions may be granted and revoked dependi.ng on ex.temal factors. But
the main problem associated with sharing is that it does not mix well with reference semantics

26 Security and Communication in Mobile O~ject Systems

of objects programs. Sharing a value that has references to other values in " pmti"ction domain
means that a large part of the object graph may be compromised. In fact, the object graphs of
different computations may become so thoroughly intertwined that it will not be possible to as-
certain if a given method invocation has a target that is within the current protection domain or
ifthe invocation is a cross domain call. Shared variables are thus more akin to a covert channel
than to a disciplined communication mechanism. This is not all. Shared variables can be used to
mount secrecy, integrity, masquerading and denial of service attacks as discussed below.

Shared variables are available in most Java implementations as the computational environ-
ment (the Classloader, to be exact) loads classes only once. Thus if two applets use the same
class, they will refer to the same class object and thus share all of the variables of the class (static
variables in Java terminology). Applets with common classes have intersecting object graphs.
The examples 1 and 2 in appendix demonstrate how easily a class variable can be hijacked and
turned into a security hole. Example 3 demonstrates the difficulty of discovering covert chan-
nels. The work on information flow analysis tries to address similar problems; this work is still
far from complete and its integration in a language like Java would require sever restrictions of
the language [l 1][41][43][44][45][46]. Examples 4 and 5 are attacks that can be mounted once
a protection domain has become accessible. Example 6 shows how to use shared variable to kill
all running user threads in a Java CE. Example 7 shows the Telescript approach to protection
based on explicit ownership checks.

4.2 Generative communication
Generative communication is a model of communication introduced by Gelernter with LINDA
[15]. The generative communication model was designed to coordinate cooperating parallel
computations. Computations communicate by generating new data objects, called tuples, and
writing them in a shared data structure, called the tuple space, which plays the role of an asso-
ciative memory. This model has been adapted for use in object-oriented programs [27][8] with-
out addressing security issues. Not only do all problems of shared variables apply to generative
communication, but there are issues related to accounting. Existing designs do not allow any
form of resource accounting over tuple space resource usage.

4.3 Datagrams
Datagrams are self-contained data packets. Communication by datagrams 1 involves the ex-
change of unformatted packets ofraw data, e.g. through a socket interface. Thus, to send objects
or other complex data structures it is necessary to serialize the data into a portable representation
and then unserialize it at the receiving end. Such serialization guarantees that the disjointedness
of object graphs is preserved by datagram communication. Recall that we assumed that the lan-
guage is run-time safe. One of the key requirements for run-time safety is that pointers can not
be forged. This has a desirable side effect: unserialized data can not contain pointers (only ref-
erences between objects serialized together are allowed). Thus there is no way to establish bridg-
es between object systems in the same address space via datagram communication. The only se-
curity risk is that of masquerading attacks, as shown in example 4. This kind of attack is made

l. We use the term 'datagram' to avoid 'message' which is confusing in an object-oriented context.

J. Vitek. M_ Serrano and D. Thanos 27

P'lssible by ~ublYJling which allows the caller to provide subtypes of requests objects. Thus da-
tagrams are no1 fully secllrc, a remark that applies to Javu remo1e method invocation [50). Bui
the main problem of datagram communication is efficiency. For simple built-in daia types the
..:osL of datagram is at leas1 1h111 of copying the data twice (once into a communication buffer, and
once from the bufTer), plus a system call. This is already much slowertban a procedure ca ll. The
cosl is even higher for objects which can contain recursive structures. Objects need to be flat-
tened at the cost ofpotent1ally multiple method invocations per object, in 11ddition the serializa-
tion process must take care of cyclic references. This cost is not acceptable for high frequency
communication.

4.4 Method invocation

Direct method invocation is the normal method of communication between objects in the same
protection domain, that is within the same object system. It does seem "natural" to extend it to
cross-domain communication. The argument in favour of method invocation is that with strong
typing and encapsulation it is possible to restrict what a client may be able to do with an object.
The weaknesses of method invocation are tied to reference semantics and subtyping. Example
5 shows that an attacker may gain access to a large portion of the victim's object graph without
breaking the interface. The problem is that the interface of an object says nothing about sharing
between objects. Thus strong typing is not a sufficient protection.

Once object graphs cease to be disjoint, security is basically a Jost battle. For instance, an
object o may belong to a protection domain a but executes in response from an invocation com-
ing from an object in protection domain J3. Who's authority is to be invoked? Where should
memory and time consumption be charged? Telescript tried to address these issues by advocat-
ing that each object must defend itself. Thus in Telescript objects have to check the origin of
messages before answering. If a message originates from a 'friend' it should be answered oth-
erwise it should be ignored. The predictable result is an inefficient mess as each software design-
er must try to code coherent and comprehensive security in the objects. Furthermore, (I) chang-
ing security or composing code originating from different organizations is near to impossible,
(2) validating security requires inspection of all classes, and (3) efficiency is degraded by the
massive access checks, most of which unnecessary. Telescript [40] also provides 'read only ' pa-
rameter. However, i1 is not clear from 11.va ilable documentation if this property is recursive and
applies to objects reachable from the ' read only' parameter. If it is not recursive, it is useless,
and if it is recursive it implies a large number of run-time checks.

There is another kind of attack that uses method invocation against which strong typing
fails to protect. This attack uses subtyping to pass arguments that conform to the expected types
but contain dangerous implementations as shown by example 4. These kinds of masquerading
attacks are not restricted to the type of the argumems. Each object obj given as argument to a
method .invocation is the root of an object graph defined by taking the transitive closure of all
objects reachable from its insta11ce variables. To prevent a masquerading attack it is necessary
to guarantee that none of the objects in the graph rooted at obj is dangerous. This is not easy in
polymorphic languages.

28 Security and Communication in Mobile Object Systems

We would Like LO stress that the semantic~ ofmMhorl i11vnr;iri0n in languagee euch nc Java
and Telescript are tit for local communication but not to enforce se.curity, strong typing and en-
capsulation notwithstanding. The problem is th.at method invocation knows nothing about pro-
tection domains.

4.5 Summary

We have discussed mechanisms for tater-computation communication among mobile object
systems. Shared memory is too low-level and does nor map well on high level abstractions.
Shared variables are too undisciplined and open up systems to all kinds of thre-ats. Generative
communication has the same security weaknesses as shared variables. Datagrams are secure but
inefficient as all data has to go through a costly serialization procedure. Method invocation fails
to enforce security boundaries due to reference semantics of object-oriented languages and sub-
typing.

As a conclusion we shall compare the weaknesses of three approaches to communication.
The first is the one of Java based on method invocation and shared variables. Java fails to pro-
vide any systematic security guarantees because there is no concept of program in the language.
Programs, computations, or applets, are known at the level of the run-time or the operating sys-
tem but not within the language. ff there is no concept of computalion in the language it is not
surprising chat 1here is no concept of protection domains either. Security is therefore pushed
back into libraries and the run-time. This is a recipe for disaster as inconsistent policies and pro-
gramming errors are bound to keep providing ways to break security (9][I O]. Telescript takes a
more explici t approach, there is a concept of computation and protection domain: the agent. But
all protection is dynamic and mostly in the hands of programmers. This is even worse than Ja-
va's approach to (in)security. The security code must be spread out over all classes and all ap-
plications. It is lhus virtually impossible to say anything about the security of the overall system
short of formally validating the code of nil applicalions. A daunting task. As a genem l pri11ciple:
security of a programming system is i11verseZv proporrio11al 10 the ease of wrili11g an insecure
program. Telescript, unlike Java, provides the means to check security but does not force these
checks to be performed. Thus, we contend that Telescript security is fundamentally low. A last
example is afforded by the Agent Tel system. Although not an object-oriented language it does
offor secure inter-computation communication messages based on datagrams. The basi.c data
format is that of strings of text. The problem of this approach is speed, the overhead of commu-
nicating through strings will prevent this approach to be used in large applications that involve
significant exchange of structured values.

5 Proposing Two Secure Communication Mechanisms

We now outline two communications mechanisms !hat are currently being implemented in the
framework of the SEAL project at the Un.iversity of Geneva. The goal of these mechanisms is
to provide a finer conirol over security while remaining efficient Jn particular, security should
not depend on the programmer not forgetting to put checkin~ code or on other good program-
ming practice. We want a certain level of security to be mandatory in the system.

J. Vitek. M. Serrano and D. Thanos 29

5.1 Sealed Method Invocation

As shown in section 4.4, method invocation between mobile object systems fails to ensure se-
curity. Breaches of the four categories described in section 2 may occur.

• Breach of secrecy and breach of integrity:

These two security failures may occur for the same reason: an object system obj 1 could
get a reference ref to data belonging to another object system obj 2 via method invoca-
tion (see appendix, example 5). If ref is used by obj 1 to read a value it could be a secrecy
violation; if ref is used by obj 1 to write a new value, it could be an integrity violation.

• Masquerading and denial of service:

Any unknown code fragment code executed by an object system obj may lead to security
failures because, when executed, code belongs to obj, forming a part of obj. Conse-
quently, code may access (read/write) any data of obj or may consume any system re-
sources of obj. Unknown code execution is incompatible with security enforcement but
unknown code execution is a paradigm advocated by object languages by the means of
method invocations and subtyping. When an object invokes a method meth it may ignore
the implementation ofmeth.

We propose an extension to the object programming paradigm that prevents attacks of the
four categories. The goal of this proposal if to give programming language extensions where un-
secure programs cannot be expressed. In that sense our approach is more ambitious than one
defining a system where secure programs can be expressed.

Sealed object

Our proposal is based on the introduction of a special kind of object: sealed objects. A sealed
object is an object that may use all the traditional features of the object-oriented paradigm. A
sealed object may belong to a class, it may have instance variables. It is not allowed to shared
static variables with other sealed objects. It may point to other objects or sealed objects. It may
allocate its own objects or sealed objects. Sealed objects differ from traditional objects only be-
cause they do not implement methods. Instead, they implement sealed-methods relying on
sealed method invocations. Sealed method invocations differ from traditional method invoca-
tions on the following points:

• Formal parameters and results of sealed invocations are passed by deep copy. This en-
sures that no breach of secrecy or integrity may occur because sealed method invocations
prevent any reference sharing between two communicating sealed objects. As soon as a
value is concerned by a sealed method invocation, a fresh deep copy is created and
passed.

• Sealed method argumencs are either monomorphic or use the sealed object hierarchy for
their formal parameters and for their resulis. This ensures that no masquerading or denial
of service may occur. Restricting sealed method arguments to be monomorphic means
that dynamic dispatch is not used on those arguments and thus, the executed code is as
known by the caller. The monomorphic restriction is recursi.ve on the type structure of

30 Security and Communication in Mobile Object Systems

the argument. Allowing polymorphiem for the sealed object hierarchy doe& not compro
mise security because sealed objects are secure. Let us suppose that each scaled object
is allocated, by its enclosing sealed object, some system resources (such as disk file re-
sources, memory resources or even cpu resources). Ifa sealed object obj 1 received an-
other sealed object obj 2, obj 1 does not need to know the code executed by obj 2 be-
cause obj 1 controls via its system resources allocation the consumption of obj 2. Fur-
thermore, whatever obj 2 implements, it can not violate the secrecy or the mtegrity of
obj 1 because their communications are restricted to sealed invocations.

Sealed method invocations are fast because the extra-cost of an inter mobile object system
communication is just the cost of the copies. Which is much 'less than the cost of serialization.
for example. Moreover, some of these copies can be avoided in any of the following situations:
a static analysis proves that the reference to a send object is never used in the sending sealed
object, a.static analysis determines that the receiving objecr will not attempl to modify the passed
object or, lastly, if the passed value is an immutable value.

Sealed objects and sealed method invocations succeed in enforcing a strict general security
policy but Lhey cannot be used to implement several specific policies. For instance. two sealed
object are not allowed to use specific, more flexible, sealed method invocations. The sealed
method invocation is the same for all the sealed objects. Otherwise the efficiency of the approach
would be compromised.

Capsules

The deep copies can sometimes be too large, up to the entire system, and may reveal sensitive
information. There is a need for sending arbitrary subgraphs which need not be entirely consis-
tenL For this we propose rhe mechanism of capsules, which is related Lo the Octopus model of
Farkas and Dearlc [12](13], to the substitutions of Mira da Silva [36], and to lbc work on adap-
tive parameter passing of Lopes [25]. A capsule captures a portion of the slllte of an object sys-
tem with the guarantee that no reference exists bel'\veen the capsule's contents and the rest of the
system. Thus a capsule contains an object graph that is disconnected from the rest of the system.
The role of capsules in communication is crucial, as they represent the only way to exchange
partial dacastructures between protection domains. To create a capsule, it is necessary to identify
a portion of the object graph of the application, and to unlink it from the application so that no
reference remains from inside the capsule to the outside and vice versa. A capsule is specified
by a root object o and a list of fencepost objects Fence. The capsule is a subgraph containing
only objecLS which can be reached from o without passing through any fencepost f e Fence. Ob-
ject in the ser offence posts Fence will be replaced by placeholders. Placeholders are abstract
specifications of the objecr they replace. They are tuples: the first field is a type specification,
the remaining are optional and encode additional information required to recreate the original
object. Once a capsule has been constructed it is not possible to send message to the objects it
contains as those objects are partially unlinked. lo that sense, the contents of the capsule are pas-
sive. To use a capsul.e's contents, it is necessary to open the capsule and provide replacement
objects for all placeholders. A capsule can be opened only once.

J. Vitek, M Serrano and D. Thanos 31

Capsule can capture as much state as needed, including the state of all threads of control and all
the attached code, or as little as a single object. The usefulness of capsules for communication
comes from the fact that they create disjoint subgraphs from the main object system. For the sake
of mobility it is crucial to control very tightly the amount of data transferred. Placeholders are
thus used to limit the size of the object graph to store in the capsule, and they also define the
point where to reconnect the contents of the capsule to the environment.

5.2 Sealed Object Spaces

Sealed method invocation still has one minor drawback, it is a directed communication mecha-
nism. Sometimes undirected communication or multicast communication may be desirable.
Sealed method invocation is also synchronous, that is, the receiver must answer all requests in
order. We propose to add generative communication as an alternative to method invocation
when communication must be undirected or asynchronous. The generative communication
model of LINDA was designed to coordinate cooperating parallel processes [15]. In LINDA, pro-
cesses communicate by generating new data objects, called tuples, and writing them in a shared
data structure, called the tuple space. This tuple space is an associative memory from which a
process can retrieve tuples by pattern matching. We propose a new mechanism called Sealed
Object Spaces which enhances the LINDA model with security and accounting features and shift
the emphasis from coordination to communication between potentially hostile computations.

Sealed object spaces (SOSs) are purely local structures to a computational environment, in
this respect they differ from the Jada proposal outlined in [8). Multiple SOSs can coexist within
a single environment. A computation may be connected to zero, one or more SOSs. It may re-
trieve values from an object space by pattern matching. Pattern matching relies on trying to
match tuples with anti-tuples. An anti-tuple is a tuple with some "holes". An element is either a
literal value or a formal. For an anti-tuple to match a tuple, all actuals of the anti-tuple must be
equal to corresponding elements of the tuple. All formals must have a type which is a supertype
of the corresponding element in the tuple. The process of querying a SOS proceeds as follows:
(0) create an anti-tuple, (!) try to match the anti-tuple with values stored in the SOS, (2) if a
match is found, bind the formals of the anti-tuple to the actuals of the tup!e, (3) otherwise block,
until a matching tuple is written to the object space. All SOS operations are atomic.

SOSs extend the LINDA model in two respects: keys and capsules. Keys are used to control
who can retrieve a tuple and allow computations to set up fine-grain access control policies on
portions of the shared space. Capsules are used to pass non-primitive objects safely.

Keys allow object spaces to be used for private communication. The principle is simple,
every tuple with a field which contains a PublicKey can only be matched by an anti-tuple con-
taining the corresponding PrivateKey. New public/private key pairs can be created and it is pos-
sible for agents to communicate private. keys. These keys are objects managed by the object
space. They can be viewed as capabilities in an operating system [37). Using keys it is possible
to have secret conversation, in fact a third party is not even able to determine that values were
exchanged between two computations.

As SOSs use sealed method invocation, all values passed into a SOS are guaranteed to be
reference free.

32 Security and Communication in Mobile Object Systems

Accounting is under tha cnro of tho object &pace, which keep& track of memory concump
Lion and time spent retrieving tuples on the behalf of a computation. Charging computations for
processing time is straightforward as tuples are "passive" while in the object space. This means
that unlike other proposals. matcbhig is kept simple, in particular we do not i.nvoke methods on
the tu pies or their components [27}. The memory used by each computation is i::qual to the size
of all of its tuples still in the object space. The ownership of a ruple changes when it is input by
another computation. Issues such as expiration policies for old tuples and ruple garbage co!Jec-
rion are currently being investigaced.

6 Conclusion
This paper has investigated security in mobile object systems aod focused on eommuniClltion security between mo-
bile object systems exei:utlng on the same compura1ion·a1 environment. The conclusions tha.t we have come to arc
that security measures based on strong typing ;md encapsulation fail 10 protect cffcctlvely mobile object systems
from breach of imegrity and secrecy, masquerading and denial of service attacks. In systems such a.• Tcle~crip1 and
Java . the choices for communicating between object systems arc either 10 use mechanisms which are highly incffi·
cicnt but secure (datagrams) or fast but insecure (shared variables.. method invocation).

As a solmion this chapter outlined two p.roposals to add security in mobile object systems. The first is 10 introduce
sealed objects, which are objcc1s tha1 enforce strong ~ccuriry boundaries around their subobjects. The second pro-
posal builds a secure generative communication paradigm based on scaled objects.

Acknowledgments

The authors wish to thank Christian Tschudin and Michael Zastre for their comments on a draft
of this papef. This research has been carried out within the ASAP project (Swiss SPP-ICS pro-
gram grant no 5003-45332).

References

[I] B. Bershad,S. Savogc.P. Pardyak,E. G. Sirer,D. Becker, M. Fiuczynskl, C. Chambcrs,Rnd S. F.ggers.
Extensibility. Safety and Pcrfonnancc in the SPIN Operating Sys1cm. !n Procl!e.di11gs of the J5tl1 ACM Sym-
posi11mo11 Opcrafing Sysrems P.-i11ciple.f (SOSP-15). pages 267-284, Copppcr Mountoin. CO, 1996.

[2] K. A. Bharat and L. Cardelli. Migratory applications. In Proceedings of ACM Symposium on User lntetface
Sofi1va~e 1111d Tech11ology '95, Pittsburgh, PA, Nov. 1995.

[3] A. Blaok, N. Hutchinson, E. Jui, H. Levy, and L. Carter. Distribution and abstract types in Emerald. IEEE
Tra11s. Sojiw. Eng., 13(1):65-76, Jan. 1987.

[4] A. C. Bomberger, A. P. Frantz, W. S. Frantz, A. C. Hnrdy, N. Hardy, C. R. Landau. and J. S. Shapiro. The
Key Kos nanokernel architecture. In Pro~ · eedlngs of rhe USENJX Workslrop on Micro-Kemels and Other
Kemel Arcl1irec111re:s, pages 95-112. USENIX Association, April 1992.

[5] L. Cardelli. Mobile computation. Position paper, Digital SRC, 1996.

[6] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing and protection in a single address space
operating system. ACM Transaction on Computer S)ts1e111s, Mny 1994.

[7] D. Chess, B. Grosof, and C. Harrison. Itinerant agents for mobile computing. IEEE Personal Communica-
tio11s, 2(4):34-49, Oct. 1995.

[8] P. Ciancarini and D. Rossi: Jada: coordination and corrununication for Java agents. In [42].

[9] D. Dean. The security of static typing with dynamic linking. In Fourth ACM Conference on Computer and
Co111m1111icatlons Security, Zurich, April 1997.

J. Vitek, M. Serrano and D. Thanos 33

(I OJ D. Dean. E. W Felten, and D. S. Wallnc:h. Java security: From Hotiava to Netscape and beyond. In 1996
IEEE Symposium un Sernrity and Pnw1cy . Oakland, CA. May 19%. IEEE. IE.EE

(11] D. Denning and P. Denning Certification of programs for secure information flow. Communications of the
ACM. 20(7):504--513. July 1977.

[12] A. Farkas and A. Dcmrlc.. Octopus: A reflective language mcchan.!sm for obJCOt mnnipulation. In Proceed-
ings oftlie Forl!'lfl lnrent(ltional Work.r/1op 011Databasu Pmgrammiflg Languages. Lecture Notes in Com-
puter Science. Springc.r-Verlag, 1993.

[13] A. Farkas and A. Dearle. The Octopus model and its implementation. Australian Computer Science Com-
m11nlc111ions. 16(1). 1994.

(14] A. O. Freier, P. K.arl1on. and P. C. Kocher. The SSL protocol (version 3.D.l. Technical report, Netscape Com-
r.nunic.atron Corporation. Mnr. l 996.

(15] D. Gelemter. Lmda in context . Commun. ACM, 32(4). Apr. 1989.

[16] I. Goldberg. D. Wagner. R. Thomas. and E. A. Brewer. A secure environment for untrusted helper applica-
tion$· Confining the wily hacker. In 77te Sl .~ tli USENTX Secudty Symposium Proceedings. pages 1- 13. San
Jose. California. July I 996. The Uscmx Association.

[17] T. Gold~tein. The gateway security model in the Java electronic commerce framework. White paper, Sun
Microsystems Laborotorie.(I Javasoft, Oeccmcbcr 1996.

[18) R. S. Gray. Agem tel: A flexible and secure mobile-agent system. In Proceedings of the Fourth Annual Tell
Tk Work.flwp. pages 9-23, 1996.

[19) D. Hagimont, S. Krakowiak. J. Mossicrc. and X. R. de Pina. A selective protection scheme for the java en-
vironment. Technical Report RT-Sirae-96-12, SIRAC, 1996.

[20] B. Hailpem and H. Ossher. Extending object to support mult1plc interface and access control. IEEE Trans-
ac1io11 on Sofiware £11gilleenng, 16(11): 1247-1257, November i 990.

[21] T. Jaeger, A. D. Rubin, and A. Prnkash.)3uilding systems that flexibly contcol downloaded executable con-
tent. In The Sixth USl:."N/X Sec.,rity Symposium Proceedings, pages 131 - 148. San Jose. California, July
1996. The Usenix Association.

(22] M. D. LaDue. Hostile applets on the horizon. 1996.

(23) J. Lepre<iu, B. Ford, and M. Hibler. TI1e persistent relevanceofthe local operating system to global applica-
tions. In Proceedings 0/1/te 1996 SIGOPS Europea11 Work.rhop. 1996.

(24] B. Liskov. A. Adya, M. Castro, M. Day, S. Ghemawat, R. Grube.r, U. Mabeshwari. A. Myers. and L. Shrirn.
Safe and efficient sharing of persistent objects in thor. In Procel!dings ofSIGMOD '96, Montreal, Canada,
June 1996.

[25] C. V. Lopes. Adaptive parameter passing. In Sympt>sium 011 Object Teclmologlesfor Adv1Jnced Software
(ISOTAS'96), volume 1049 of Lecture Notes in Computer Scle11ce. Kon&zawa, Japan, March 1996. Springer-
Verlag.

[26) D. Maier, J. Stein. A. Otis, and A. Purdy. Development of an object-oriented DBMS. In OOPSLA'86 Con-
ference Pnx:eedillgs, pngcs 472--482, Portland, OR, September 1986. ACNJ.

(27] S. Matsuoka and S. Kawai. Using tuple space communication in distributed object-oriented languages. In
OOPSLA '88 Procoedi11gs, pages 276-284, Sept. 1988.

(28] Y. Minsky, R. van Renes.~c. I'. B. Schneider, and S. D. Stoller. Cryptographic support for fault-tolerant dis-
tributed computing. In Proceedings oftlte 1996 S!GOPS European Work.shop, July 1996.

[29] R. Morrison, A. Brown, R. Coruior. Q. I. Cutts, G. Kirby, A. Dearlc, J. Rosenberg, and D. Stemple. Protec-
tion in Persistent Object Systems, In Security and Persistence, pages 4~6 . Springer-Verlag, 1990.

(30] George C. Necula. Proof-carrying code. In Utfl ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming language (POPL'97), pages 106-119, Paris, France, January 1997.

(31] B. C. Neuman. Proxy-based authorization and accounting for distributed systems. In Procceedings of the
I Jtlt J111ema1ional Co11ferm1ce 011 Distributed S)lsiems, Pinsburgb, PA, May 1993.

(32] M. Rangenathan, A. Acharya, S. Sharma, and J. Saltz. Network-aware mobile programs. Research report,
University of Maryland, 1996.

34 Security and Communication in Mobile Object Systems

[33 J .R. lllggs. A. Wolralh. J. Wuhlu, aw.l K. Dhnrnt Pickling &t31C in the j•v• In T/ir. Sn:rmd Co11ferem:e 011 Ob-
ject-Oriellle.d Tecilflologics and Systems (COOTS) Pro~edings . pages 241- 250. Toronto, Canada. June
1996. USENTX Press.

[34] F. Rouaix. A Web navigator with applets in Cami. In Fifth WWW Conference. Paris. France, May 1996.

(35] A. Rudloff. F. Matthes, and J. Schmidt Security an.n add-on quality in persistent ob;cc1 systems. In Se«o11d
/111emational East/Wes! Dotab11se Workshop. Workshops in Computing, pages 90-108. Klagcnfun, Au~
rria, 1995. Springer-Verlng.

(36] M. Mira da Silva: Mobility and Persistence. In [42].

(37] A. S. Tanenbaum. S. J. Mullender, and R. van Rcncsse. Using sparse cnbiHties in a disrributcd operating sys-
tem. lo Proceedings Sixth Intemotional Conference on Dls1r/buted Computer Syswm.f. IEEE, 1986.

[38] A.S. Tanenbaum, editor, Repon of the Seventh ACM SIGOPS European Workshop, Connemara, Ireland, 9-
11 Scpctcmbcr 1996.http :// www.cs.vu.nV-a~tl

[39] L. Tang and S. Low. Chrg-hnp: A tool for micropaymcnts on the World Wide Web. In The Sixth USENIX
Security Symposium Proceedings. pages 123 - 129. The Usenix Associauon. July 1996.

[40] J. Tardo and L. Valente. Mobile Agent Security. lnf>roceedings of the 4lth International Conference of the
IEEE Comp111erSocii!ly (CompCtm '96). February 1996.

[41] C.-R. Tsai V. D. Gligor and C. S. Cbllndcrsekaran. On the identification of coven storage channels in secure
systems. IEEE Tra11sac1io111 on Software E11glneuri11g, 16(6):569--580, June 1990.

(42] J. Vi tek, C. Tschudin, (eds): Mobile Object System: A first look at mobile object-oriented programs. Spring-
er-Vcrlag, 1997.

(43] D. Volpano. Provably-secure programming languages for remote evaluation. ACM Computing Surveys.
28A(2):electronic, December 1996.

[44] D. Volpnno and G. Smith. On the systematic design of web languages. ACM Computing Surveys,
28(2):315--317, June 1996.

(45] D. Volpano and G. Smith. A type-bucd approach co program security. In 7th lnt'/ Joint Conference on the
Theory n11d Practice of Software De1oe/op111enr. April 1997.

(46] D. Volpano, G. Smith. and C. Irvine . A sound type system for secure flow analysis. Journal of Computer
Security, 28(2): 1- 21, 1996.

[47] R. Wobbe, S. Lucco. T. E. Anderson, and S. L. Graham. Efficient software-based fault isolation. In Proceed-
i11gs·of 1/ie Symposium on Operating Systems Pri11ciples, 1993.

(48] K. M . Walker, D. F. Seem, L. Badger, K. A. Ooscndorp. M. J. Petkac, and D. L. Sherman. Confining root
programs with domain nnd type enforcement (dtc). In The Sixth USENIX Security Symposium Proceedi11gs,
pages 21 - 36. The Uscnix Association, July 1996.

[49] J.E. Whicc. Telcscript Technology: The foundation for the electronic marketplace. General Magic White Pa-
per, General Magic, lnc. 1994.

(50] A. Wolrath, R. Riggs, and J. Waldo. A discrlbutcd object model for lhc Java system. Jn The Second Co11fer·
ence 011 Objec1.()rle111ed Tech11ologies and Systems (COOTS) Procedi11gs, pages 219- 23 1. Toronto, Cana·
da, June 1996. USENIX Press.

[51] C. Yoshikawa, B. Chun, and D. Culler. Web graffiti & high bandwirth cove.n channels usingjava. January
1997.

[52] C. F. Yu and V. D . Oligor. A specification and verification method for preventing denial of service. IEEE
Tra11sacrions on Sojlwm·e l:."11gineerlng, 16(6):581- 595, June 1990.

J. Vitek. M. Serrano and D. Thanos 35

Appendix: Security Weakness in Object-Oriented Programs

Example 1: Shared variable communication

Most current implementations of Java do not create multiple class objects. So. when a class is
used in different computations, all computations use the same class and their object graphs are
not disjoint. This may bt: considered a security hole as it creates covert communication channels
between computntions and pennits to launch secrecy and integrity attacks. We give an example
in Java.

Victim

The victim is an applet that includes a class with a protected class variable last.

class Victim {

Attacker

protected static Victim last;
Victim createFromClone() (

last= last.clone();

II Victim is a subclass of object; class variable
// last that points to the last obj created

II a creation method that takes the last victim.
II clones 1t, and increases its idNum.

The attacker must be aware of class Victim. This is straightforward as Java does not have the
means to hide class definitions. An attack is mounted by subclassing the Victim class and adding
methods for reading and writing instance variables.

class Attacker extends Victim {
static Victim getlast() {

return last;

static void setlast(Victim I) {
last = I;

II Attacker extends Victim with a method that
II return the last Victim created.

//A method to set the last
/Nictim created.

The effect achieved by this attack is that the opponent may get at portions of the object graph of
the victim, either for reading, or writing. A possible defence involves changing the declaration
from protected to private. This is not always possible as the class Victim may originate from a li-
brary or other classes may require access to that attribute. In any case, such a solution distorts
the design of the class. The code for this fix is thus:

class Victim extends Object {
private static Victim last;

An alternative, is to forbid subclassing altogether. This may not always be appropriate.

36 Security and Communication in Mobile Object Systems

Example :J: Blocking synchronized methods attack

This example explores another breach of integrity arising from the use of synchronized class
methods. In Java, class methods may be declared synchronized to regulate concurrent execution.

Victim

The victim defines a synchronized class method.

class Victim {
protected synchronized void myMethod() {

Attacker

The attacker need only to acquire (and not release) the synchronized method to block the victim.

class Attacker extends Victim {

protected synchronized void myMethod() {
while(true);

When the attacker calls the synchronized method myMethod(), the method will block itself and
all other instances of the class Victim that try to call the method. A possible defence is to make
the method private or to forbid subclassing altogether. Note that in this example it is the syn-
chronization lock that is shared between different computations.

J. Vitek. M Serrano and D. Thanos 37

Example 3: Shared variable covert channel

This last example \Vilh shared variabl~ demonstrates the ease of selling up covert channels. To
estab.lish confinement it is needed 10 be able 10 preveni infomiation from flowing in unautho-
rized ways between applications. The point. here. is 1ha1 shared variables make it vinually im-
possib.le to de1ennine if a method invocation is a cross d.ornai 11 call . Consi.der the following in·
tentionally simple example:

myObj = WriteObject new();
Things[1] = myObj;

myObj. write(data);

Is the invocation of write a source ofinfonnation leakage? On the face of it. this code seems se-
cure. Yet, the call could be a covert channel if the array Things was a static variable:

Victim

class Victim {

Attacker

static ObjectO Things;
void someMethod{) {

myObj = WriteObject new();
Things[1] = myObj;

myObj.write(data};

The attacker (or accomplice) needs only define a subclass and try to catch the assignment to the
array.

class Attacker extends Victim {
void looping(} {

thisObj = Things[1];
thatObj = Things[1];
while (thisObj == thatObj}

thisObj = Things[1];
thisObj.read(} II covert channel

The method looping tries to read the object assigned to the first position of the Things array. Its
success depends on the scheduling, but the point of this example is that it is possible lo establish
covert channels so that communication needs not be restricted to the identified shared variables.
Furthermore, this example shows that in some cases it may be difficult to prove that a code frag-
ment is secure.

38 Security and Communication in Mobile Object Systems

Example 4: .Masquerading attacks

Masquerarung attacks may occur when the opponent is allowed to invoke methods of the target.
This kind of attack is also valid across address spaces if RMI is used [50].

Y@m

The victim contains an innocuous looking class that merely checks whether the date passed as
argument corresponds to 1be user's birthday.

class DateChecker (
private Date birthday;
public today(Date d) (

if (d.sameDay(birthday)) (

Attacker

The attacker needs to obtain a reference to the DateChecker object, and instead of passing it a
date it passes an instance of class Attacker. This class overrides method same Day to perform some
malicious action with the authority of the victim.

class Attacket extends Date {
public bool sameDay(Date d) (

while(true) {
... do something nasty

The Java defence would be to define class Dale as final. Final classes can no1 be subclassed, thus
can not be used for masquerading attacks. Furthermore, all ins1ance variables of Date must be
final as well, and so on recursively. In effect forfeiting polymorphism. Of course, if Date or any
of the classes it depends on is de.fined in a library this whole line of defence breaks down.

J. Vitek. M. Serrano and D. Thanos 39

Example 5: Breaching secrecy and integrity

Breach of secrecy/integrity. This attack uses reference semantics of object applications running
in the same address space to obtain a toehold in the object graph of the victim. The danger comes
from that victim uses a value that belongs to another object graph to store its objects.

Victim

The victim needs only have a method that accepts some kind of container.

class Getter {

Attacker

private List listOfThings;
public getList(List I) {

listOfThings = I;

The attacker must obtain a reforence to an object of type Genor for this kind of attack. Then by
passing it a list the attacker is able to break security. This, booause it is allowed 10 retain a ref-
erence on the object it gave.

class Attacker {
private List watchList = new List();
publicDolt(Getter g) {

g.getList(watchlist);

watchList.doSomething();

II The attacker passes in the watchlist
II then waits for the victim to fill it with
II values and send watchlist some message

Appropriate protection is to enforce strict disjointedness of object graphs.

40 Security and Communication in Mobile Object Systems

Example 6: Breaching integrity

Breach of integrity. Another breach of integrity can be easily set with the ThreadKiller class [22]
which kills user threads in the Java virtual machine. This attack works because Threads are ob-
jects which are not in protected domains and the ThreadKiller class is able to obtain references on
them.

Attacker

The attacker must code a class that does the following operation. Note the original class dis-
cussed in [22] is slightly more elaborate and does not run the risk of killing itself.

class ThreadKiller {
public static void killAllThreads() {

ThreadGroup current, top, parent;

top = current= Thread.currentThread().getThreadGroup();
parent= top.getParent;
while (parent!=nil) {

top = parent; parent= parent.getParent();

find(top);

private static void find(ThreadGroup g) {
if (g != null) {

int numThread = g.activeCount();
int numGroups = g.activeGroupCount();
ThreadO threads= new Thread[numThreads];
ThreadGroup[) groups= new ThreadGroup[numGroup];
g.enumerate(threads, false);
g.enumerate(groups,false);
for (int i = O; i <numThreads; i++) {

Thread I= threads[i];
if (t != null) I.stop();

for (int i = O; i <numGroups; i++) {
find(groups[i]);

Appropriate protection is to forbid access to objects that belong to the object graph of another
applet.

J. Vitek. M. Serrano and D. Thanos 41

Example 7: Explicit protection domains

The Telescript protection model is mo.re elaborate 1han that of Java. In short. each object and
method bas both an owner and a sponsor. The owner is the principal to whom lhe object belongs
and the sponsor is the principal on whose authority the object executes. Telescript provides a
way to access the owner and sponsor from outside of their environment.

The secure programming style advocated in [40) boils down to the followi11g style (ex-
pressed in Java for simplicity). The class Protectee is the class that should be protected. the class
Protector implements a security policy. All methods of Protec1ee are redefmed in Proteo1or to
check source of the call.

class Protectee {
public void method_1 () { ... }

}
class Protector ex1ends Pro1ectee {

public void safe_methoct.J () throws AccessVfolation {
Sponsor sponsor r sponsor.name.authority;
Class class = client.class;

if (friends.find(sponsor) II okClasses.find(class)) {

The problem with this is 1hat in general aliasing makes it quite difficult 10 be sure which objects
actually need to be protected. This means that if any serious degree of security is required, all
non-trivial objects will have to be protected. This implies a level of inefficiency that makes n
system built this way unusable and a burden on programmers 1ha1 is not acceptable. Finally, se-
curity is spread all over the application and can not be easily verified without validating the en-
tire code base.

