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Abstract. We present general definitions of security for multiparty cryptographic pro-
tocols, with focus on the task of evaluating a probabilistic function of the parties’ inputs.
We show that, with respect to these definitions, security is preserved under a natural
composition operation.

The definitions follow the general paradigm of known definitions; yet some substan-
tial modifications and simplifications are introduced. The composition operation is the
natural “subroutine substitution” operation, formalized by Micali and Rogaway.

We consider several standard settings for multiparty protocols, including the cases
of eavesdropping, Byzantine, nonadaptiveand adaptiveadversaries, as well as the
information-theoreticand thecomputationalmodels. In particular, in the computa-
tional model we provide the first definition of security of protocols that is shown to be
preserved under composition.

Key words. Multiparty cryptographic protocols, Security of protocols, Secure func-
tion evaluation, Composition of protocols.

1. Introduction

Designingsecure protocolsis one of the central tasks of cryptography. Here security is
generally understood as guaranteeing, in the presence of adversarial behavior of some
parts of the system, a set of correctness properties of the output values of the parties
together with a set of secrecy requirements regarding the local data of the parties.

A general study of secure protocols started with the pioneering works of Yao [Y3]
and Goldreich et al. [GMW2]. On top of introducing this fundamental notion, these
works suggest a general methodology for solving “any cryptographic protocol problem”
in a secure way. They were followed by a large body of work that describe general
constructions for solving protocol problems in various settings (most notably, [BGW],
[CCD], [RB], [GL], and [OY]), as well as protocols for more specific tasks (e.g., [DF],
[GJKR], and [R]).
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In contrast to the great advances in constructing secure protocols, our understanding
of the notion of security of protocols progresses more slowly. The first works in this field
(and in particular [Y1], [Y3], and [GMW2]) contain only an intuitive exposition of this
notion. Several general definitions of security of protocols were subsequently formulated,
most notably by Goldwasser and Levin [GL], Micali and Rogaway [MR], and Beaver
[B1], where the work of Micali and Rogaway is considerably more comprehensive than
others. More recently, a definition based on [GL], [MR], and [B1] was presented in [C].
(The definition of [C] is closest in its approach to [B1].) While the general approach of
these definitions is roughly the same, the definitions differ from each other in several
substantial ways. See more details below.

Indeed, while the notion of secure protocols seems intuitively obvious, capturing the
security requirements of a “cryptographic protocol problem” in a way that is both precise
and workable is not an easy task. In particular, a large number of constructions of secure
protocols that appear in the literature, including most of the constructions mentioned
above, have never been rigorously proven secure. (An exception is the detailed exposition
and analysis of [GMW2] that was recently made available in [G3].)

This paper aims at improving our understanding of the nature of secure computation
and our ability to prove cryptographic security of protocols. As a first step, we present
definitions of security for protocols, with emphasis onsimplicityandminimality. (Here
minimality means that the definition is aimed at making minimal requirements from
secure protocols, while not losing in rigor and in relevance to our intuitive notion of
security.) We build on the formalization of [C] that seems convenient and flexible. In
particular, the approach underlying that formalization has been used in a number of quite
varied settings, e.g., [BCG], [CFGN], [CG1], [HM], [BCK], [CHH], and [CKOR].

Next, we considercompositionof protocols. An important (almost obligatory) prop-
erty of a definition of secure protocols is a guarantee that a protocol obtained by “prop-
erly” composing together secure protocols is secure. This is needed both for designing
cryptographic protocols in a modular way, and for proving their security in a clear and
understandable manner. In particular, such a property would greatly simplify the proofs
of security of known constructions.

We show that our definition of security provides this guarantee, in several standard
settings and with respect to a natural composition operation suggested in [MR]. (Previ-
ously only the definition of [MR] was known to preserve security under this composition
operation, in some of these settings.) We hope that the results and techniques presented
here will contribute to the writing of easy to follow proofs of security of known protocols,
such as [GMW2], [BGW], [CFGN], and others.

As in [GL], [MR], [B1], and [C], this work concentrates on the very general task of
evaluating a probabilistic function of the parties’ inputs. (This task is often known as
secure function evaluation.) In addition, the definitional approach presented here can be
readily applied to capturing the security requirements of a variety of other tasks.

1.1. Previous Definitional Efforts

A common paradigm underlying all efforts to define secure protocols is to guarantee that
running a secure protocol is “just as good” as carrying out an idealized computational
process where security is guaranteed. In the context of secure function evaluation this
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ideal process consists of having all parties hand their inputs to atrusted party, who locally
evaluates the function and hands the appropriate portion of the function value to each
party. The definitional efforts differ in the method by which this basic paradigm is fleshed
out. We sketch the approaches of [GL], [MR], and [B1]. See further elaboration in the
Appendix.

The definition of Goldwasser and Levin [GL] does not make explicit comparison with
the ideal process. Yet, this definition can be viewed as making a comparison with the
ideal process as follows. They start with defininglegal behaviorof an adversary; this
behavior captures the adversary’s limited capabilities in the ideal process. Next they
define a notion ofrobustnessof protocols that essentially means that any adversary can
be “emulated” by a legal one. A protocol securely evaluates some function if it is robust
and in addition it correctly evaluates the function whenever the adversary is limited to
legal behavior.

The comparison with the ideal process serves as strong motivation behind the formula-
tion of the Micali and Rogaway definition [MR]. Yet also there it is not explicitly used in
the actual definition, which contains some additional technicalities. These technicalities
make the definition of [MR] more restrictive. Micali and Rogaway also define a general
and natural composition operation of protocols and state that their definition is preserved
under this composition operation. The composition operation discussed in this work is
essentially taken from there. It was previously believed that the extra restrictiveness of
their definition isnecessaryfor proving that composition preserves security. Here we
show that this is not the case. (They consider only protocols that evaluatedeterministic
functions, inthe secure channels setting. The secure channels setting is defined below.)
Micali and Rogaway’s manuscript is quite comprehensive and contains many enlight-
ening observations, discussions, and examples regarding secure multiparty protocols.
We have benefited a lot from reading this work, as well as from attending the class at
MIT [M].

Beaver makes the comparison of a protocol with the ideal process more explicit [B1].
That is, first a general notion of comparing security of protocols is formulated. Next, a
protocol for evaluating a given function is considered secure if it is at least as secure as the
ideal process for evaluating that function. This approach is very similar to the one taken
here, with some technical differences that are explained below. In addition, it is stated
that security according to this definition is preserved under “sequential composition.”
That is, if secure protocols are invoked one after the other, the inputs for each are
the local outputs from the previous one, then the resulting protocol securely evaluates
the composed function, as long as all intermediate results are part of the output. This
composition operation is a special case of the one considered here.

1.2. The Definitional Approach Taken Here

We first formalize the “ideal process” mentioned above. This process is aimed at capturing
the desiredfunctionalityof the task at hand, and in particular rules out any unwanted
behavior. For the task of secure function evaluation, the ideal process is formulated as
follows. There is no communication among the parties; instead, all parties hand their
inputs to an incorruptible “trusted party,” who locally computes the desired outputs and
hands them back to the parties. Thus in the ideal process the adversary, controlling a set
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of corruptedparties, is very limited: essentially, it only learns and perhaps modifies the
inputs and outputs of the corrupted parties.

Next, we say that a protocol securely performs the task at hand if executing the
protocol (in a given model of distributed computation) amounts to “emulating” the
ideal process for that task. Emulating the ideal process is interpreted as follows. First
we formalize the “output of running a protocol with a given adversary,” in the given
distributed model, as well as the “output of running the ideal process with a given
adversary.” This formalization is a key ingredient of the definition. Now, running the
protocol emulates the ideal process if, forany adversary attacking the protocol in the
given distributed model, thereexistsan “ideal process adversary” that manages to induce
essentially the same output distribution in the ideal process. This way, we are assured
that the only adversarial effects that can occur when running the protocol in the given
distributed model are those that are explicitly allowed in the ideal process.

In a way, this approach is a generalization of the “simulation approach” used in [G1]
(rephrasing [GM]) to define security of encryption functions and in [GMR] to define
zero-knowledge protocols. Yet, the formulation here is more complex, as it applies to
the more complex domain of many parties.

This approach can, of course, be applied to a large variety of “adversary models.”
We concentrate on several salient models, characterized via the following parameters.
Throughout, the network is assumed to be synchronous, and the communication channels
are ideally authenticated. Next, we make the following distinctions.

A first distinction is betweenpassive andactive adversaries. Passive adversaries (often
called “eavesdropping” adversaries) only gather information and do not modify the
behavior of the parties. Such adversaries often model attacks that take place only after the
execution of the protocol has completed. Active adversaries (often called “Byzantine”)
cause the corrupted parties to execute some arbitrary, malicious code.

Another distinction is betweennonadaptive andadaptive adversaries. A nonadaptive
(or “static”) adversary controls an arbitrary but fixed set of corrupted parties. An adaptive
(or “dynamic”) adversary chooses the identities of the parties to be corrupted during the
computation, based on the information gathered so far. Nonadaptive adversaries allow
for simpler formalization and protocols. Yet, considering adaptive adversaries forces
protocols to address security concerns that are important in many real-world situations
and not addressed in the nonadaptive formalization. (See more discussion at the preamble
to Section 5.)

Yet another distinction is between thecomputational setting where the adversary learns
all the communication among the parties and is restricted to probabilistic polynomial
time, and thesecure channels setting where channels are absolutely secure and the
adversary has unlimited computational power. Obtaining protocols that are secure in the
secure channels setting is often regarded as a “stepping stone” on the way to obtaining
secure protocols in the (more realistic) computational setting.

Other variations of these settings may of course be interesting. For instance, many
works assume anauthenticated broadcast channel, where it is guaranteed that any mes-
sage that is received by one party is received by all parties. Also, the setting where the
adversary is probabilistic polynomial timeand learns only messages sent to corrupted
parties is often convenient for designing protocols (e.g., [F], [CH], [GJKR], [G3], and
[R]). The definitions can be easily adapted to these settings.
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In all the above models, we concentrate on the case ofhonest majority, where strictly
less than half of the parties are corrupted at any time. When half or more of the parties
are corrupted the definition has to be weakened somewhat. (Essentially, now an active
adversary cannot be prevented from interrupting the computation at any time. Yet, the
general definitional approach will remain largely unchanged.) See [Y3], [GMW2], [BG],
[GL], and [G3] for definitions and protocols for the case ofdishonest majority.

Differences from previous definitions. While being inspired by Micali and Rogaway
[MR], and following the approach of [B1] and [C] quite closely, the formalization here
differs in several aspects. We highlight two points of difference from [B1] and [C]. One
is the (no longer necessary) requirement that the “ideal process adversary” operates via
one-pass, black-boxsimulation of the “real-life” adversary. That is, the “ideal process
adversary” was restricted to having only oracle access to the “real-life” adversary. More
importantly, it was required that the simulated adversary is run only once and is not
“rewound.” This requirement is quite restrictive; in particular, in the case of computa-
tionally bounded adversaries it essentially prohibits the use of zero-knowledge proofs
within secure protocols. Removing this requirement seems essential for good treatment
of the computational model. (The definition of [MR] uses a similar notion of simulation
as [B1] and [C]. In fact, it is a bit more restrictive.)

Another modification, relevant to the case of adaptive adversaries, is the treatment of
the “information flow” between a single protocol execution and the external environment.
Good modeling of this “information flow” is essential for successful treatment of secure
protocol composition. In the definition here this is modeled by introducing an additional
algorithmic entity, representing the external environment, to the model. This seems to
represent the effect of the external environment on a single execution better; in particular,
it allows us to deal with composition of protocols even for the case of computationally
bounded adversaries. See more details in Sections 2.1 and 5.

1.3. Modular Composition

When designing a protocol for some task, we want to be able to break the task into several
partial (presumably simpler) subtasks, design secure protocols for these subtasks, and
then use the already designed protocols as subroutines in the solution for the given task.
In other words, we want to support the following design methodology for secure
protocols:

(1) Design a “high-level” protocol for the given task assuming that other, simpler,
subtasks can be carried out securely.

(2) Design protocols that securely carry out these simpler subtasks.
(3) Construct a full-fledged protocol for the given task by plugging the simpler pro-

tocols as subroutines in the “high-level” protocol.

We call this technique of combining protocolsmodular composition. (Modular composi-
tion was first formalized in this context by Micali and Rogaway [MR]. There it is called
reducibility of protocols.) We want the security of protocols to be preserved under modu-
lar composition. That is, the security of the full-fledged protocol should follow from the
security of the high-level design and the security of the subroutine protocols for their
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specified subtasks. In other words, we would like to have:

General Goal. Suppose that protocolsρ1 · · · ρm securely evaluate functions f1 · · · fm,
respectively, and that a protocolπ securely evaluates a function g while using subroutine
calls for ideal evaluation of f1 · · · fm. Then the protocolπρ1···ρm, derived from protocol
π by replacing every subroutine call for ideal evaluation of fi with an invocation of
protocolρi , securely evaluates g.

Several other composition operations on protocols are considered in the literature.
For instance, “sequential composition” usually means simply running several (secure)
protocols one after the other, and “parallel composition” means running them in parallel
at the same time. We note that these composition operations can be regarded as special
cases of modular composition with the appropriate “high-level” protocol. Consequently
we consider modular composition as the main general tool for modular protocol design.

We achieve this goal, with respect to the definitions in this paper, in thenonconcurrent
case where only a single subroutine invocation is in execution at any given time. We con-
sider the settings described above (i.e., nonadaptive, adaptive, passive, active adversaries
in the secure channels and computational settings). In particular, in the computational
setting this is the first time a composition theorem is stated with respect toanydefinition.
(In fact, we demonstrate a slightly more general result:anyprotocolπ that uses ideal
evaluation calls tof1 · · · fm maintains its “functionality” when the ideal evaluation calls
are replaced by invocations ofρ1 · · · ρm, respectively.)

1.4. Other Related Work

Goldreich [G3] presents a detailed exposition and proof of the general construction of
[GMW2], for both the two-party and the multiparty cases. He treats the computational
setting, but only with nonadaptive adversaries. The definitions used there are essentially
the same as the ones here for the nonadaptive case. Also, that work does not present
general purpose composition theorems, but rather composes the constructed protocols
in an ad hoc manner.

A notion of security for the case of deterministic functions, nonadaptive, passive
adversaries in the secure channels setting is studied by Chor and Kushilevitz [CK], [K].
(This notion of security is somewhat weaker than the one here, as argued in Remark 1 of
Section 4.2.) Reducibility of protocols with respect to the notion of security of [CK] and
[K] is discussed in [KKMO]. The notion of reducibility of [KKMO] is different than the
one here in that there no communication is allowed in the high-level protocol except for
invocations of the specified subroutines.

Finally, our proofs of the composition theorem in the various settings follow and
adopt the general structure of the sequential composition theorems for zero-knowledge
as proven by Goldreich and Oren [GO], adapting their techniques to our setting.

Organization. In Section 2 we motivate and informally present the general approach
taken by our definitions. Section 3 reviews some basic notions used to formalize the
definitions. Section 4 concentrates on the case ofnonadaptive adversaries in the secure
channels setting. This includes a definition of security, statement of the composition
theorem, and a full proof.
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Section 5 generalizes the treatment of Section 4 to the case ofadaptive adversaries (still
in the secure channels setting). An attempt is made to keep this section as self-contained
as possible, at the expense of some repetition.

Section 6 deals with adaptive adversaries in thecomputationalsetting. Since the
treatment is very similar to that of Section 5, this section isnot self-contained, and
should be read in conjunction with Section 5. The case ofnonadaptiveadversaries in the
computational setting can be inferred quite easily.

Throughout Sections 4–6, we develop the cases of passive and active adversaries
“side by side” (with emphasis on the more involved case of active adversaries). Although
constructions for the two cases are quite different in nature, the corresponding definitions
are similar and are best considered together.

In the Appendix we briefly discuss the definitional efforts of [MR], [GL], [B1], [C],
and [CFGN].

We remark that the text contains a number of long footnotes. These are used to discuss
issues that are not vital to the main thrust of the paper and would make the main text less
fluent. In particular, the footnotes can be skipped at first reading.

2. Defining Secure Protocols: The General Paradigm

This section motivates and sketches the general definitional approach pursued in this
work. The approach is common to the various adversary models (passive, active, non-
adaptive, adaptive adversaries, in the secure-channels and computational settings). Also,
while this paper concentrates on the task of secure function evaluation, the approach
carries to other tasks as well. Section 2.1 presents the approach for the task of secure
function evaluation. This case captures much of the essence of the problem. Other tasks
are briefly mentioned in Section 2.2.

2.1. Secure Function Evaluation

Secure function evaluation is a general task where the parties are given inputs and should
produce outputs according to a given specification, cast as a function of their inputs.
(This function can be probabilistic; that is, for each input it specifies adistributionon the
corresponding outputs.) We focus on the case where only a minority of the parties are
corrupted. Still, the general approach presented here can be used to capture the security
requirements for the case ofdishonest majority(and in particular the two-party case).

First attempts. Two basic requirements come to mind when trying to capture the notion
of secure function evaluation. The first iscorrectness: the “good” parties (i.e., the parties
that are not corrupted by the adversary) should output “a correct” value of the function
evaluated at the inputs of all parties. This requirement is somewhat complicated by the
fact that the function may be probabilistic (thus the output should obey some predefined
distribution), and more importantly by the fact that if the adversary is active, then the
corrupted parties cannot, in general, be prevented from arbitrarily changing their inputs
to the computation.

The second requirement issecrecy, meaning that the adversary should not learn (from
interacting with the parties) anything other than the (original) inputs of the corrupted
parties, and the “correct” function values that the corrupted parties are to obtain. This
requirement seems to call for a definition based on some notion of “simulation” of the
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adversary’s view (as in the case of probabilistic encryption or zero-knowledge [GM],
[G1], and [GMR]), but it is not clear at this point in what setting the “simulator” should
operate and what should be required of it.

A naive approach toward defining security may proceed by separately requiring cor-
rectness and secrecy. Yet, as observed in [MR], this decomposition is problematic since
the two requirements are “intertwined”: On the one hand, the secrecy requirement de-
pends on our definition of a “correct” function value. On the other hand, the correctness
requirement must make sure that the input values that the corrupted parties “contribute”
to the computation be chosen without knowledge of the inputs of the uncorrupted parties.

We sketch a simple example that demonstrates this issue. Assume that two parties
wish to compute the exclusive-or of their one-bit inputs, and use the following protocol:
first party A sends its input to partyB; then B announces the result. Intuitively, this
protocol is insecure since a corruptedB can influence the output ofA by choosing the
value it contributes to the computation based onA’s input. Yet, this protocol maintains
secrecy (which holds vacuously for this problem since each party can infer the input of
the other party from its own input and the function value), and is certainly “correct” in
the sense that the output fits the input thatB “contributes” to the computation.

This example highlights the problems associated withactiveadversaries. Other, more
subtle, examples for definitions that allow an active adversary to influence the outputs
of the uncorrupted parties “illegally” are described in [MR]. Additional problems arise
when dealing withprobabilisticfunctions. Interestingly, these problems arise even when
the adversary ispassive. Remark 2 in Section 4.2 contains an example that highlights
these problems.

One may be tempted to try to augment the “correctness” and “secrecy” requirements
so as to handle the problems exposed above. However, following this approach may
be difficult and error-prone (if at all possible). Consequently, our definition follows
a different approach, that blends together “correctness” and “secrecy” into a single
security requirement. We first envision an “ideal process” for secure multiparty function
evaluation. This process captures all that we want from a secure computation (and,
in particular, the above requirements). Then we say that a computation is secure if it
“emulates” the ideal process, in some well-defined manner.

Our approach. The definition proceeds in three steps. First we formalize the “real-
life” computation, in a straightforward way. Here the parties interact according to their
protocol, in some specific model of distributed computation (e.g., either synchronous or
asynchronous), and in the presence of areal-life adversary that controls a set of corrupted
parties and behaves according to some adversarial model (e.g., either passive or active,
nonadaptive or adaptive, etc.). At the end of the computation the uncorrupted parties
output whatever is specified in their protocol. The corrupted parties output a special
symbol specifying that they are corrupted. The adversary, controlling the corrupted
parties, outputs some arbitrary value; this value may include any information gathered
by the adversary during the computation.1

1 In an equivalent and somewhat more natural formalization the corrupted parties output whatever is in-
structed by the adversary, and the adversary has no output. The formalization here will be more convenient in
what follows.
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Next the following ideal process for multiparty function evaluation is formulated,
in order to capture our requirements from a secure function evaluation. (The specifics
of the ideal process correspond to the type of adversary in consideration, e.g., passive
or active.) First anideal-process adversary gets to control a set of corrupted parties
(which is either fixed beforehand or chosen adaptively), and learns the inputs of the
corrupted parties. If active adversaries are modeled, then the ideal-process adversary
can alsomodifythese inputs based on the information gathered so far. Next, all parties
hand their (possibly modified) inputs to an incorruptibletrusted party. The trusted party
evaluates the given function at the given inputs and hands each party its designated
output. The evaluated function can be probabilistic, in which case the trusted party
tosses the necessary coins and uses the outcome to determine the function value. Finally,
the uncorrupted parties output whatever they receive from the trusted party, the corrupted
parties output some special symbol, and the adversary outputs some arbitrary value. (Also
here, the adversary’s output may contain any information gathered by the adversary in
the ideal process. However, here this information is very limited: it consists only of the
adversary’s random input, the identities of the corrupted parties, their inputs, and the
values they received from the trusted party.)

We say that a protocolπ for evaluating a function is secure if itemulatesthe ideal
evaluation process of the function, in the sense that any effect on the real-life computation
achieved by a real-life adversary (from some class of real-life adversaries) can also be
achieved in the ideal process bysomeideal-process adversary (from the corresponding
class of ideal-process adversaries). This requirement is formulated as follows. We first
define, in both the ideal and real-life models, theglobal outputof a computation on a
given input. This is a random variable that consists of the concatenation of the outputs
of all the parties and the adversary. Next we require that forany real-life adversaryA
(from some class) attacking a secure protocolπ thereexistsan ideal-process adversaryS
(from the corresponding class) such that,on any input, the global output of the real-life
computation in the presence ofA is distributed similarly to the global output of the ideal
process computation in the presence ofS. (By defining similarity to be either “equal
distribution” or “statistical closeness” or “computational indistinguishability” we obtain
different notions of security.)

Requiring that the outputs of thecorruptedparties be distributed similarly in the ideal
process and in the real-life computation forces the ideal-process adversary to generate
an output that “looks like” the output of the real-life adversary, in spite of the fact that
it only sees the information available in the ideal process. This guaranteessecrecy, in
the sense that the information gathered by the real-life adversary is computable even
in the ideal process. Requiring that the output of theuncorruptedparties be similarly
distributed in the ideal process and in the real-life computation guaranteescorrectness,
in the sense that the real-life adversary cannot influence the outputs of the corrupted
parties more than is possible in the ideal process. Furthermore, combining the outputs
of the corrupted and the uncorrupted parties into a single random variable guarantees
that the “intertwined” secrecy and correctness requirement, discussed above, is satisfied.
(See also Remark 2 in Section 4.2.)

We remark that the above notion of a protocol in some adversary modelemulat-
ing an ideal process can be naturally extended to having the protocol emulatean-
other protocolin some other adversary model. This extended notion of emulation is
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quite useful. In particular, it plays a key role in our presentation of the composition
theorems.

Enabling secure composition. The definitional approach sketched above is aimed at
capturing the security requirements from a protocol, in a simplified setting where a single
protocol execution is considered in vitro. In order to guarantee security in a setting where
several protocol executions may coexist, and in particular in order to be closed under
composition of protocols, a definition of security must guarantee the following property:
even adversaries that have already gathered some information on the current execution
(say, via other protocol executions) will be unable to gatheradditional information on
the current execution, or otherwise gain some unwanted advantage.

In the case of nonadaptive adversaries this property is guaranteed by letting the adver-
sary have some arbitraryauxiliary input at the onset of the interaction. The auxiliary input
represents the information gathered by the adversary during other protocol executions
occurring before the current execution. The notion of emulation, sketched above, is ex-
tended to hold foranyauxiliary input. See more details in Section 4. (Auxiliary inputs
were first introduced in [GO], in the context of sequential composition of zero-knowledge
proofs. Further discussion appears there, as well as in [G2].)

In the case of adaptive adversaries the “information flow” between a single protocol
execution and other executions cannot be fully captured by a piece of information given
at the onset of the execution. In a nutshell, the problem is that whenever a party gets
corrupted by the adversary, either during the protocol execution or after the execution
is completed, the adversary sees internal data of this party both from that execution
and from other protocol executions run by the party. We model this information flow
by introducing an additional algorithmic entity, representing the external environment,
both to the real-life and to the ideal models. This entity interacts with the adversary and
the parties at several points throughout the execution. At these points, theenvironment
provides the adversary with additional information, and receives information from the
adversary. The notion of emulation is adapted as follows: a protocolπ emulates the ideal
process for evaluatingf (namely,π securely evaluatesf ) if for any real-life adversary
A (from some class of real-life adversaries),and for any environmentZ, there exist
an ideal-model adversaryS (from the corresponding class of ideal-process adversaries)
such that the effect ofA with environmentZ on parties runningπ can be emulated by
S in the ideal model for evaluatingf with the same environmentZ. See more details in
Section 5.

2.2. Beyond Secure Function Evaluation

Although secure function evaluation is a very general task, it does not capture all the
interesting functionalities of cryptographic protocols. We elaborate a bit. First, some
cryptographic tasks arereactive, in the sense that they have several phases, where the
output of one phase may be part of the input of the next phase, and where the security of the
task imposes requirements on the outputs of all phases taken together. (Examples include
commitment, secret-sharing, and more complex tasks such as encryption or signature
schemes where the same key is used for processing many messages.) In addition, the
requirement that a secure protocol evaluates a predefined function of the inputs may be
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too restrictive: many cryptographic tasks can be securely carried out by protocols that do
not evaluateanypredefined function of the inputs. (Such protocols would still guarantee
that some input–output relation is satisfied.)

Nonetheless, the definitional approach described in Section 2.1 can be adapted to cap-
ture the security requirements of other tasks. In fact, some definitions used in the literature
to capture the security requirements of other tasks can be regarded as examples of such
an adaptation. Examples include the tasks of distributed proactive signature schemes
[CHH], key-exchange and authentication [BCK], and distributed public-key encryption
[CG2]. This subsection sketches the general paradigm that underlies these definitions
and can possibly be used to capture the security requirements of other cryptographic
tasks. The idea is to proceed in three steps, as follows:

1. Formulate an ideal model for executing the task at hand. Typically, this ideal model
involves a trusted party whose functionality captures the security requirements
from the task. This functionality will typically involverepeated interactionwith
the parties. An important ingredient in this step is defining the global output of an
execution in the ideal model.

2. Formalize the global output of an execution of a protocol in the “real-life” model
under consideration.

3. Say that a protocolπ securely performs the task at hand if it “emulates” an execution
in the ideal model, in the usual way: For any real-life adversaryA there should
exist an ideal-model adversaryS such that the global output of runningπ with
A in the real-life model is distributed similarly to the global output of runningS
in the ideal model. In the case of adaptive adversaries the notion of emulation is
extended to include the environment machine, as sketched above.

3. Preliminaries

In this section we review some basic notions that underlie our formalization of the
definitions. Adistribution ensemble X = {X(k,a)}k∈N,a∈D is an infinite sequence of
probability distributions, where a distributionX(k,a) is associated with each value of
k ∈ N anda ∈ D for some domainD. (Typically, D = {0,1}∗.)

The distribution ensembles we consider are outputs of computations (either in an ideal
or in a “real-life” model), where the parametera corresponds to various types of inputs,
and the parameterk is taken to be thesecurity parameter. All complexity characteristics
of our constructs are measured in terms of the security parameter. In particular, we
are interested in the behavior of our constructs when the security parameter tends to
infinity.

Definition 1 (Equal Distribution). We say that two distribution ensemblesX andY are
equally distributed (and writeX

d= Y) if for all k and alla we have that distributions
X(k,a) andY(k,a) are identical.

Slightly abusing notations, we also useX(k,a)
d= Y(k,a) to denote that distributions

X(k,a) andY(k,a) are identical.
Say that a functionδ: N→ [0,1] is negligible if for all c > 0 and for all large enough

k ∈ N we haveδ(k) < k−c.
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Definition 2 (Statistical Indistinguishability). Letδ: N → [0,1]. Two distribution
ensemblesX and Y havestatistical distance δ if for all sufficiently largek and alla
we have that

SD(X(k,a),Y(k,a)) < δ(k),

where SD denotes statistical distance, or total variation distance (that is, SD(Z1, Z2) =
1
2

∑
a |Prob(Z1 = a)− Prob(Z2 = a)|).

If δ is a negligible function, then we say thatX andY arestatistically indistinguishable

(and writeX
s≈ Y).

Definition 3 (Computational Indistinguishability [GM], [Y2]). Letδ: N→ [0,1]. We
say that two distribution ensemblesX andY havecomputational distance at most δ if
for every algorithmD that is probabilistic polynomial-time in its first input, for all
sufficiently largek, all a, and all auxiliary informationw ∈ {0,1}∗ we have

|Prob(D(1k,a, w, x) = 1)− Prob(D(1k,a, w, y) = 1)| < δ(k),

wherex is chosen from distributionX(k,a), y is chosen from distributionY(k,a), and
the probabilities are taken over the choices ofx, y, and the random choices ofD.

If ensemblesX andY have computational distance at mostk−c for all c > 0 then we

say thatX andY arecomputationally indistinguishable and writeX
c≈ Y.

Note that Definition 3 gives the distinguisherD access to an arbitrary auxiliary infor-
mation stringw (thus making the definition a nonuniform complexity one). It is stressed
thatw is fixed before the random choices ofX andY are made.

Multiparty functions. The functions to be evaluated by the parties are formalized as fol-
lows. Ann-party function (for somen ∈ N) is a probabilistic functionf : N×({0,1}∗)n×
{0,1}∗ → ({0,1}∗)n, where the first input is the security parameter and the last input
is taken to be the random input. We are interested in functions that are computable in
time that is polynomial in the security parameter. In particular, the lengths of the inputs
and outputs are assumed to be bounded by a polynomial in the security parameter. See
[G3] for a more complete discussion of conventions regarding such functions. (Extend-
ing the treatment to a more complex multiparty function requires some small technical
modifications.)

Intuitively, n-party functions are interpreted as follows. Lete
R← D mean that element

e is drawn uniformly at random from domainD, and let f (k, Ex, r f )i denote thei th
component off (k, Ex, r f ). Each partyPi (out of P1, . . . , Pn) has inputxi ∈ {0,1}∗, and

wishes to evaluatef (k, Ex, r f )i wherer f
R← {0,1}t andt is a value determined by the

security parameter. For concreteness we concentrate on inputs and random inputs in
{0,1}∗. Other domains (either finite or infinite) can be encoded in{0,1}∗ in standard
ways.
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4. Nonadaptive Adversaries

As discussed in the preamble of Section 5, nonadaptive security (i.e., security against
nonadaptive adversaries) is considerably weaker than adaptive security. Still, we first
present the nonadaptive case in full. This is done for two reasons. First, the definition
and (especially) the proof of the composition theorem are considerably simpler in the
nonadaptive case. Thus, it is a good “warm-up” for the adaptive case. Second, some
important protocols in the literature (e.g., [GMW2] and [F]) are known to be secure only
against nonadaptive adversaries (see [G3]). Thus, treatment of this case is of independent
interest.

Throughout this section we restrict ourselves to thesecure channels setting, where
the adversary may be computationally unbounded and learns only messages sent to
corrupted parties. In Section 6 we show how the treatment is adapted to settings where
no secure channels exist, and security is provided only against probabilistic polynomial-
time adversaries.

Section 4.1 contains the definition of secure protocols. Further discussion on the
definition is presented in Section 4.2. Section 4.3 presents the composition theorem, to
be proven in Section 4.4.

4.1. Definition of Security: The Nonadaptive Case

We define secure protocols in the nonadaptive case. The definitions forpassive and
active adversaries are developed side by side, noting the differences throughout the
presentation.

Following the outline presented in Section 2, we first formalize the real-life model;
next we describe the ideal process; finally the notion of emulation of the ideal process
by a computation in the real-life model is presented.

The real-life model. An n-party protocol π is a collection ofn interactive, probabilistic
algorithms. Formally, each algorithm is an interactive Turing machine, as defined in
[GMR]. We use the termparty Pi to refer to thei th algorithm. (Figuratively, partyPi is
a computer that executes thei th algorithm.) Each partyPi starts with inputxi ∈ {0,1}∗,
random inputri ∈ {0,1}∗, and the security parameterk. Informally, we envision each two
parties as connected via aprivate communication channel. A more complete description
of the communication among parties is presented below.2

A (nonadaptive) real-life adversary, A, is another interactive (computationally un-
bounded) Turing machine describing the behavior of the corrupted parties. AdversaryA
starts off with input that contains the identities of the corrupted parties and their inputs.
In addition,A receives additionalauxiliary input and a valuek for the security parameter.
We let z denote the input ofA. (The auxiliary input is a standard tool that allows us

2 We viewn, the number of parties, as independent from the security parameter,k. This allows us to discuss
cases wheren is small with respect to the security parameter (e.g., a constant), as well as cases wheren tends
to infinity and has some some fixed relation withk. Furthermore, note that the parties do not necessarily know
n in advance.
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to prove the composition theorem. See Section 2.1 for discussion.) In addition,A has
random input.3

Say that an adversary ist -limited if it controls at mostt parties. (Formally, at-limited ad-
versary halts whenever its input contains the identities of more thant corrupted parties.)4

In what follows we often use a slightly less formal language for describing the partici-
pating entities and the computation. A formal description (in terms of interactive Turing
machines) can be easily extracted from the one here.

The computation proceeds in rounds, where each round proceeds as follows. (The de-
scription below captures a fully connected, ideally authenticated, synchronous network
with rushing. The termrushingrefers to allowing the corrupted parties to learn the mes-
sages sent by the uncorrupted parties in each round, before sending their own messages
for this round.) First the uncorrupted parties generate their messages of this round, as
described in the protocol. (That is, these messages appear on the outgoing communica-
tion tapes of the uncorrupted parties.) The messages addressed to the corrupted parties
become known to the adversary (i.e., they appear on the adversary’s incoming commu-
nication tape). Next the adversary generates the messages to be sent by the corrupted
parties in this round. If the adversary is passive, then these messages are determined
by the protocol. An active adversary determines the messages sent by the corrupted
parties in an arbitrary way. Finally each uncorrupted party receives all the messages
addressed to it in this round (i.e., the messages addressed toPi appear onPi ’s incoming
communication tape).5

At the end of the computation all parties locally generate their outputs. The uncor-
rupted parties output whatever is specified in the protocol. The corrupted parties output a
special symbol,⊥, specifying that they are corrupted. (Figuratively, these parties did not
participate in the computation at all.) In addition, the adversary outputs some arbitrary
function of itsview of the computation. The adversary view consists of its auxiliary input
and random input, followed by the corrupted parties’ inputs, random inputs, and all the
messages sent and received by the corrupted parties during the computation. Without
loss of generality, we can imagine that the adversary’s output consists of its entire view.
Figure 1 summarizes the real-life computational process.

We use the following notation. LetADVRπ,A(k, Ex, z, Er ) denote the output of real-life
adversaryA with auxiliary inputz and when interacting with parties running protocol
π on inputEx = x1 · · · xn and random inputEr = r0 · · · rn and with security parameterk,

3 We remark that the adversary, being computationally unbounded, need not be probabilistic. In fact, our
formalization of the security requirement will be a nonuniform complexity one. In such a setting deterministic
adversaries are as powerful as probabilistic adversarieswith comparable complexity. Yet, we find it conceptually
appealing to formulate the definition in terms of probabilistic adversaries.

4 This paper concentrates ont-limited adversaries, wheret is some threshold value. That is, it is assumed
that the adversary can corrupt any subset of up tot parties. This type of corruption structure was chosen
for simplicity of exposition. The same definitional methodology holds with respect to other, more general
corruption structures (e.g., [HM] and [CDM]), both in the nonadaptive and the adaptive cases.

5 Different models, representing different real-life communication settings and network topologies, are of
course possible. In particular, if one is concerned only with feasibility results and is not concerned with
efficiency, then it may be simpler to let the parties talk in a “round robin,” where in each communication round
only a single party sends messages. For the sake of generality we do not restrict ourselves to this simpler
model.
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Execution of ann-party protocol by parties P1 · · · Pn with adversary A

1. (a) Each partyPi starts with the security parameterk, input xi , and random
input ri .

(b) The adversaryA starts withk, random inputr0, input z that includes a set
C ⊂ [n] of corrupted parties and their inputs{xi |i ∈ C}, and additional
auxiliary input.

2. Initialize the round number tol ← 0.

3. As long as there exists an uncorrupted party that did not halt, repeat:

(a) Each uncorrupted partyPi , i /∈ C, generates{mi, j,l | j ∈ [n]}, where each
mi, j,l ∈ {0,1}∗ is a (possibly empty) message intended for partyPj at this
round.

(b) The adversaryA learns{mi, j,l |i ∈ [n], j ∈ C}, and generates{mi, j,l |i ∈
C, j /∈ C}.

(c) Each uncorrupted partyPi , i /∈ C, receives the messages{mj,i,l | j ∈ [n]}.
(d) l ← l + 1.

4. Each uncorrupted partyPi , i /∈ C, as well asA, generates an output. The
output of the corrupted parties is set to⊥.

Fig. 1. A summary of the nonadaptive real-life computation.

as described above (r0 forA, xi andri for party Pi ). Let EXECπ,A(k, Ex, z, Er )i denote the
output of partyPi from this execution. Recall that ifPi is uncorrupted, then this is the
output specified by the protocol; ifPi is corrupted, thenEXECπ,A(k, Ex, z, Er )i =⊥. Let

EXECπ,A(k, Ex, z, Er ) = ADVRπ,A(k, Ex, z, Er ), EXECπ,A(k, Ex, z, Er )1,
. . . , EXECπ,A(k, Ex, z, Er )n.

Let EXECπ,A(k, Ex, z) denote the probability distribution ofEXECπ,A(k, Ex, z, Er ) where
Er is uniformly chosen. LetEXECπ,A denote the distribution ensemble{EXECπ,A(k, Ex,
z)}k∈N,〈Ex,z〉∈{0,1}∗ . (Here〈Ex, z〉 denotes some natural encoding ofEx, z as a single string.)

The ideal process. The ideal process is parameterized by the function to be evaluated.
This is ann-party function f : N × ({0,1}∗)n × {0,1}∗ → ({0,1}∗)n, as defined in
Section 3. Each partyPi has inputxi ∈ {0,1}∗ and the security parameterk; no random
input is needed. Recall that the parties wish to evaluatef (k, Ex, r f )1, . . . , f (k, Ex, r f )n,

wherer f
R← {0,1}s ands is a value determined by the security parameter, andPi learns

f (k, Ex, r f )i . A (nonadaptive) ideal-process adversaryS is an interactive (computationally
unbounded) Turing machine describing the behavior of the corrupted parties. Adversary
S starts off with input that includes the identities and inputs of the corrupted parties,
random input, auxiliary input, and the security parameterk.6 In addition, there is an

6 In contrast with the real-life adversary, it is essential that the ideal-process adversary be probabilistic.
This holds even in our nonuniform complexity setting. Also, there is no need to limit explicitly the number of
corrupted parties in the ideal process. The definition will guarantee that the identities of the corrupted parties
in the ideal process are identical to the identities of the corrupted parties in the real-life model.
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(incorruptible)trusted party, T , that knowsk. The ideal process proceeds as follows:

Input substitution: The ideal-process adversaryS sees the inputs of the corrupted
parties. IfS is active, then it may also alter these inputs based on the information
known to it so far. LetEb be the|C|-vector of the altered inputs of the corrupted
parties, and letEy be then-vector constructed from the inputEx by substituting the
entries of the corrupted parties by the corresponding entries inEb. If S is passive,
then no substitution is made andEy = Ex.

Computation: Each partyPi hands its (possibly modified) input value,yi , to the
trusted partyT . Next,T choosesr f

R←R f , and hands eachPi the valuef (k, Ey, r f )i .7

Output: Each uncorrupted partyPi outputs f (k, Ey, r f )i , and the corrupted parties
output⊥. In addition, the adversary outputs some arbitrary function of the in-
formation gathered during the computation in the ideal process. This information
consists of the adversary’s random input, the corrupted parties’ inputs, and the
resulting function values{ f (k, Ey, r f )i : Pi is corrupted}.

Let ADVR f,S(k, Ex, z, Er ), whereEr = (r f , r ), denote the output of ideal-process adver-
saryS on security parameterk, random inputr , and auxiliary inputz, when interacting
with parties having inputEx = x1 · · · xn, and with a trusted party for evaluatingf with
random inputr f . Let the(n+ 1)-vector

IDEAL f,S(k, Ex, z, Er )=ADVR f,S(k, Ex, z, Er ), IDEAL f,S(k, Ex, z, Er )1· · ·IDEAL f,S(k, Ex, z, Er )n
denote the outputs of the parties on inputsEx, adversaryS, and random inputsEr as
described above (Pi outputsIDEAL f,S(k, Ex, z, Er )i ). Let IDEAL f,S(k, Ex, z) denote the dis-
tribution ofIDEAL f,S(k, Ex, z, Er )whenEr is uniformly distributed. LetIDEAL f,S denote the
distribution ensemble{IDEAL f,S(k, Ex, z)}k∈N,〈Ex,z〉∈{0,1}∗ .

Comparing computations in the two models. Finally we require that protocolπ emu-
lates the ideal process for evaluatingf , in the following sense. For any (t-limited) real-
life adversaryA there should exist an ideal-process adversaryS, such thatIDEAL f,S

d=
EXECπ,A. Spelled out, this requirement means that for any value of the security parameter
k, for any input vectorEx, and any auxiliary inputz, the global outputsIDEAL f,S(k, Ex, z)
andEXECπ,A(k, Ex, z) should be identically distributed.8

We require that the complexity of the ideal-process adversaryS be comparable with
(i.e., polynomial in) the computational complexity of the real-life adversaryA. Intro-
ducing complexity issues in this seemingly “information-theoretic” model may appear
awkward and out of place at a first glance. However, a second inspection will verify that
this requirement is very desirable. See Remark 1 in Section 4.2.9

7 This formalization means thatr f , the “internal random choices off ,” remains unknown to the parties
except for the information provided by the value off .

8 In the case where the inputs are taken from a finite domain and equal distribution is required, a simpler
formalization that does not introduce ensembles is sufficient. (Basically, the simpler formalization fixes the
security parameter to an arbitrary value.) We use the current formalization in order to accommodate infinite
input domains, indistinguishability of ensembles, and computationally bounded adversaries.

9 Here we implicitly assume that the complexity of the protocolπ run by the uncorrupted parties is bounded
by a polynomial in the complexity of the adversary. If this is not the case, thenS is allowed to be polynomial
in the complexity ofπ .
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Definition 4 (Nonadaptive Security in the Secure Channels Setting). Letf be ann-
party function and letπ be a protocol forn parties. We say thatπ nonadaptively t -
securely evaluates f if for any (nonadaptive)t-limited real-life adversaryA there exists
a (nonadaptive) ideal-process adversaryS whose running time is polynomial in the
running time ofA, and such that

IDEAL f,S
d= EXECπ,A. (1)

If AandS are passive adversaries, then we say thatπ nonadaptively t -privately evaluates g.

Relaxed variants of Definition 4 are obtained by requiring that the two sides of (1) be
only statistically indistinguishable, or even only computationally indistinguishable. (The
last relaxation is aimed at the case where the adversary is assumed to be probabilistic
polynomial time.) Furthermore, if Definition 4 is satisfied with the exception that the
two sides of (1) have statistical (resp.,computational) distance at mostδ, then we say that
protocolπ achieves statistical (resp.,computational) distance δ.

4.2. Discussion

This section contains further discussion on Definition 4.

Remark1: On the complexity of the ideal-process adversary. We motivate our require-
ment that the running time of the ideal-process adversary be polynomial in that of the
real-life adversary, even in this seemingly “information-theoretic” setting. The ideal-
process adversary is an imaginary concept whose purpose is to formalize the following
requirement: “Whatever gain the adversary obtains from interacting with parties run-
ningπ , could have also been obtained in an ideal setting where a trusted party is used.”
Arguably, this requirement also means that interacting withπ should not allow the ad-
versary to obtain some gain “for free,” where obtaining the same gain in the ideal process
requires considerable computational resources. This aspect of the security requirement
is captured by appropriately limiting the computational power of the ideal process adver-
sary. As seen below, failing to do so results in a considerably weaker notion of security.
(We remark that this weaker notion may still be of some interest for studying purely
information-theoretic aspects of secure computation.)

We illustrate this distinction via an example. Letf (x, y) = g(x⊕ y)whereg is a one-
way permutation and⊕ denotes bitwise exclusive-or. Assume that partiesA andB have
inputsx andy respectively, and consider the following protocol for evaluatingf : partyA
announcesx, partyB announcesy, and both parties evaluatef (x, y). Our intuition is that
this protocol is insecure against adversaries that may corrupt one party (say,B): it “gives
away for free” bothx andy, whereas computingx given onlyy and f (x, y)may take the
adversary a large amount of time. Indeed, if the real-life and ideal-process adversaries
are limited to probabilistic polynomial time (and one-way permutations exist), then this
protocol isnotsecure against adversaries that corrupt one party. However, ifS is allowed
unlimited computational power regardless ofA’s complexity, this protocol is considered
secure sinceS can invertg.

Another distinction between the two notions has to do with constructing protocols
in thecomputationalsetting. A convenient design paradigm for secure protocols in this
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setting proceeds as follows: First design a secure protocolπ in the secure channels
setting. Then construct a protocolπ ′ from π by encrypting each message. Indeed, it
can be readily seen that ifπ is secure in the secure channels setting according to the
definition here (and an appropriate encryption scheme is used), thenπ ′ is secure in the
computational setting.10 However, if the above, weaker notion of security is used, then
this transformation does not necessarily work.

Finally, we remark that other definitions of secure protocols do not make this distinc-
tion. (Examples include the [B1] definition, as well as the definition of private protocols
in [CK], [K], and [KKMO].) Nonetheless, the protocols described in these works seem
to be secure even according to the definition here. (In fact, we are not aware of protocols
in the literature that were proven secure according to the above weaker definition, but
are insecure according to the definition here.)

Remark2:Combining correctness and secrecy. The requirement, made in Definition 4,
that the global outputs of the two computations be equally distributed imposes several
requirements on the ideal-process adversary. In particular, it implies:

(a) Secrecy. The output of the real-life adversary is distributed equally to the output
of the ideal-process adversary.

(b) Correctness. The outputs of the uncorrupted parties are equally distributed in the
two models.

Can the definition be weakened to require only that the global output of the ideal process
satisfies (a) and (b)?

It was argued in Section 2 that separately requiring secrecy and correctness does not
restrict the “influence” of the adversary on the outputs of the uncorrupted parties, thereby
resulting in unsatisfactory definitions. Yet, the weakened definition proposed here does
combine correctness and secrecy to some extent (since the same ideal-process adversary
has to satisfy both requirements). Indeed, the example protocol given in Section 2 (and
also the examples in [MR]) is insecure even under this weakened definition.

Nonetheless, we argue that the twoentire(n+1)-vectors describing the global outputs
of the two computations must be identically distributed, and it does not suffice to require
(a) and (b) separately (i.e., that the two relevant projections of the global outputs are
identically distributed). This point is demonstrated via an example: Consider two parties
A andB that wish to evaluate the following two-party function. Both parties have empty
input; A should output a random bit, andB should have empty output. Of course,A can
simply output a random bit without any interaction; yet, consider the protocol whereA
also sendsB the value of its output.B is instructed to ignoreA’s message and output
nothing. This protocol is clearly insecure; yet it satisfies the above weakened definition.11

10 For instance, semantically secure encryption (as in [GM]) is sufficient in the nonadaptive model, provided
that a different pair of public and private keys are used for each pair of parties. We omit further details.

11 We sketch a proof. The case whereA is corrupted is straightforward. IfB is corrupted, then, for each
real-life adversaryB (that controlsB), construct the following ideal-process adversaryS: run a copy ofB,
giving it a random bitb′ for the output ofA, and output whateverB outputs. The bitb′ will be different (with
probability one-half) from the output ofA in this execution, thus (1) will not be satisfied. Yet, as long as the
outputs of partiesA andB are considered separately the simulation is valid.
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Put in other words, the above example highlights an additional weakness of separating
the correctness and secrecy requirements, on top of the weakness discussed in Section 2.
While the discussion in Section 2 concentrates on problems related to active adversaries,
the example here highlights problems related to probabilistic functions. In particular,
the insecure protocol suggested here satisfies the weakened definition even if the adver-
sary is passive. This means that, when dealing with probabilistic functions, secrecy and
correctness cannot be separately requiredeven for passive adversaries.

Remark3: On one pass black-box simulation. In [MR], [B1], and [C] the notion of
emulation is more restrictive in two respects. First, it is required that the ideal-process
adversary be restricted to having only black-box access to the real-life adversary. More
substantially, the adversary can be run only once and is never “rewound.” We call this type
of simulationone pass black-box. The second restriction is quite limiting. In particular, in
the computational setting it prohibits usage of zero-knowledge protocols within secure
protocols. (This is so since demonstrating the zero-knowledge property via black-box
simulation requires rewinding the adversary.)

It was speculated in [C] and [CFGN] (and, implicitly, also in [MR] and [B1]) that
restricting the ideal-process adversary to one pass black-box simulation is needed in
order to prove a general composition theorem. In this work we show that the modular
composition theorem holds in the nonconcurrent case even if the ideal-process adversary
is not restricted to black-box simulation.

Recall that in the context of zero-knowledge, existence of a black-box simulator
implies existence of a simulator even for adversaries that have arbitrary auxiliary input
[GO]. Using the same technique, it can be seen that a similar result holds with respect
to Definition 4.

Remark4: On universal adversaries. The introduction of the auxiliary input (and the
quantification over all auxiliary inputs) makes the quantification over all real-life ad-
versaries unnecessary: It suffices to consider asingle real-life adversary, namely, the
“universal adversary”U . AdversaryU will receive in its auxiliary input a description
of an arbitrary adversary machineA and will runA. (Note that the complexity ofU
runningA is only slightly more than the complexity ofA.) Consequently, in order to
show security of a protocol it suffices to show a single ideal-process adversary: the one
that satisfies Definition 4 with respect toU .

Another consequence of this observation follows. One may wish to strengthen Defi-
nition 4 to require that there exists anefficient transformationfrom real-life adversaries
to the corresponding ideal-process adversaries. The above argument shows that such
strengthening is unnecessary.

Remark5: On “initially adaptive” adversaries. Consider the following variant of Def-
inition 4. Instead of having the set of corrupted parties given to the adversary as part of
its input, let the adversary (both in the real-life and ideal models) choose the identities
of the corrupted parties, one by one in an adaptive way, but under the restriction that
all corruptions must be made before any communication takes place among the parties.
Call this modelinitially adaptive.

We observe that security in the initially adaptive model is equivalent to security in
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the nonadaptive model (as in Definition 4). Intuitively, this follows from the fact that,
until the point where the first message is sent, the real-life and ideal models are identical.
Therefore, any advantage (over nonadaptive adversaries) gained in the real-life model by
the ability to corrupt parties adaptively before the interaction starts, can also be gained
in the initially adaptive ideal model.

A sketch of the proof follows. Clearly initially adaptive security implies nonadaptive
security. (The argument is similar to that of Remark 1 in Section 5.2.) Assume that a
protocolπ is secure according to Definition 4, and letA be an initially adaptive real-life
adversary. We construct an initially adaptive ideal-model adversaryS that emulatesA.

LetA′ be the adversary in the (standard) nonadaptive real-life model that gets in its
auxiliary input an internal state ofA at the point whereA is done corrupting parties, and
runsA from that state on. LetS ′ be the ideal-model adversary, guaranteed by Definition
4, that emulatesA′. Construct the ideal-model adversaryS as follows. FirstS follows,
in the ideal model, the corruption instructions ofA. Let σ be the state ofA once it is
ready to start interacting with the parties. Next,S runsS ′ with stateσ given as auxiliary
input. It can be seen thatS is a valid initially adaptive ideal-model adversary, and thatS
emulatesA.

Remark6: On related inputs. Definition 4 requires the protocol to “behave properly”
onanyset of inputs to the parties. However, in many real-world situations the participants
expect to have inputs that are correlated in some way (say, the parties have some common
input, or inputs that are taken from a certain distribution), and no requirements are
made from the protocol in the case that the inputs are not of the expected form. The
definition can be relaxed to accommodate such weakened security properties by placing
appropriate restrictions on the domain of the inputs of the parties. (Alternatively, the
evaluated function could be redefined to return some error value in cases where the
inputs are not in the appropriate domain.)

4.3. Modular Composition: The Nonadaptive Case

Recall that we want to break a given task (i.e., a protocol problem) into several partial
subtasks, design protocols for these partial subtasks, and then use these protocols as
subroutines in a solution for the given task. For this purpose, we want to formalize and
prove the informal goal stated in the Introduction. We do this for thenonconcurrent case,
where at most one subroutine call is made at any communication round. This section
concentrates on nonadaptive adversaries in the secure channels setting.

Formalization and derivation of the composition theorem is done in two steps. We
first state a more general theorem, that holds foranyprotocolπ (not only protocols that
securely evaluate functions): replacing ideal evaluation calls made byπ , with subpro-
tocols that securely evaluate the corresponding functions, results in a protocol that has
essentially the same input–output functionality asπ . The composition theorem from the
Introduction follows as an easy corollary.

The hybrid model. We start by specifying the model for evaluating ann-party functiong
with the assistance of a trusted party for evaluatingn-party functionsf1, . . . , fm, and
define secure protocols in that model. The model, called thehybrid model with ideal access
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to f1, . . . , fm (or in short the( f1, . . . , fm)-hybrid model), is obtained as follows. We start
with the real-life model of Section 4.1. This model is augmented with an incorruptible
trusted partyT for evaluatingf1, . . . , fm. The trusted party is invoked at special rounds,
determined by the protocol. (For simplicity of exposition we assume that the number of
ideal evaluation calls, the rounds in which the ideal calls take place, and the functions to
be evaluated depend only on the security parameter. In addition we assume thatm, the
number of different ideally evaluated functions, is fixed.12) In each such round a function
f (out of f1, . . . , fm) is specified. The computation at each special round mimics the ideal
process. That is, all parties hand theirf -inputs toT (party Pi handsx f

i ). As in the ideal
process, an active adversary decides on the input values that the corrupted parties hand
the trusted party. If the adversary is passive, then even corrupted parties handT values
according to the protocol. Next the parties are handed back their respective outputs:Pi

gets f (k, x f
1 · · · x f

n , r f )i , wherer f is the random input tof . Fresh randomness is used
in each ideal evaluation call.

Let EXEC
f1,..., fm
π,A (k, Ex, z) denote the random variable describing the output of the com-

putation in the( f1, . . . , fm)-hybrid model with protocolπ , adversaryA, security pa-
rameterk, inputsEx and auxiliary inputz for the adversary, analogously to the definition
of EXECπ,A(k, Ex, z) in Section 4.1. (We stress that hereπ is a hybrid of a real-life pro-
tocol with ideal evaluation calls toT .) Let EXEC

f1,..., fm
π,A denote the distribution ensemble

{EXEC
f1,..., fm
π,A (k, Ex, z)}k∈N,〈Ex,z〉∈{0,1}∗ .

Replacing an ideal evaluation call with a subroutine call. Next we describe the “me-
chanics” of replacing an ideal evaluation call of protocolπ at roundl with an invocation
of ann-party protocolρ. This is done in a straightforward way. That is, the description
of π for roundl is modified as follows. (Other rounds remain unaffected.)

1. At the onset of roundl each partyPi saves its internal state (relevant to protocol
π ) on a special tape. Letσi denote this state.

2. The call to the trusted partyT is replaced with an invocation ofPi ’s code for protocol
ρ. PartyPi ’s input and random input forρ are determined as follows. The inputxρi
is set to the value thatPi was to hand the trusted partyT at roundl , according to
protocolπ . The random inputr ρi is uniformly chosen in the appropriate domain.

3. OncePi completes the execution of protocolρ with local outputvρi , it resumes the
execution of protocolπ for roundl , starting from stateσi , with the exception that
the value to be received fromT is set tovρi .

Let πρ1···ρm denote protocolπ (originally designed for the( f1 · · · fm)-hybrid model)
where each ideal evaluation call tofi is replaced by a subroutine call to protocolρi .

12 We remark that these restrictions can be “circumvented” in a number of ways. For instance, we can
imagine that at each other round the parties make an ideal evaluation call to a “universal function,”U , defined
as follows. Each partyPi hands the trusted party a description of ann-party function f and an inputxi . If a
majority of the parties agree onf , thenPi is handedf (Ex)i ; otherwise a null value is returned. This convention
allows us to apply the composition theorems to protocols where the parties decide in an adaptive way (say,
using some agreement protocol) on the number of ideal evaluation calls and on the function to be evaluated at
different calls.
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It is stressed that no uncorrupted party resumes execution of protocolπ before the
current execution of protocolρi is completed. Furthermore, we assume that all the
uncorrupted parties terminate each execution ofρi at the same round. Otherwise, some
parties may resume executing the calling protocol while others still execute the subroutine
protocol, and the nonconcurrency condition is violated.13

Theorem 5, stated below, takes a somewhat different approach to the composition
operation than the informal theorem made in the Introduction. It does not require any
security properties from protocolπ . Instead, it essentially states that the “input–output
functionality” of any protocolπ in the hybrid model is successfully “emulated” by
πρ1,...,ρm in the real-life model. On top of being somewhat more straightforward, this
more general statement is relevant even in cases whereπ performs a task other than
secure function evaluation.

Theorem 5(Nonadaptive Modular Composition: General Statement).Let t < n, let
m ∈ N, and let f1, . . . , fm be n-party functions. Let π be an n-party protocol in the
( f1, . . . , fm)-hybrid model where no more than one ideal evaluation call is made at each
round, let ρ1, . . . , ρm be n-party protocols whereρi nonadaptively t-securely(resp., t-
privately) evaluates fi , and letπρ1,...,ρm be the composed protocol described above. Then,
for any nonadaptive t-limited active(resp., passive) real-life adversaryA, there exists
a nonadaptive active(resp., passive) adversaryAπ in the ( f1, . . . , fm)-hybrid model,
whose running time is polynomial in the running time ofA, and such that

EXEC
f1,..., fm
π,Aπ

d= EXECπρ1,...,ρm ,A. (2)

For completeness, we also rigorously state the informal goal stated in the Introduction.
For that, we first define protocols for securely evaluating a functiong in the( f1, . . . , fm)-
hybrid model. This is done via the usual comparison to the ideal process forg:

Definition 6. Let f1, . . . , fm, gben-party functions and letπ be a protocol forn parties
in the ( f1, . . . , fm)-hybrid model. We say thatπ nonadaptively t -securely evaluates g
in the ( f1, . . . , fm)-hybrid model if for any nonadaptivet-limited adversaryA (in the
( f1, . . . , fm)-hybrid model) there exists a nonadaptive ideal-process adversaryS whose
running time is polynomial in the running time ofA, and such that

IDEALg,S
d= EXEC

f1,..., fm
π,A . (3)

13 Consider, for instance, the following example. PartiesA, B, C wish to evaluate the following function,
g: C should output the input ofB; B should output the input ofA; A should have empty output. Assume a
hybrid model with ideal access to a functionf whereC outputs the input ofB. A protocolπ for evaluatingg
in this hybrid model instructs partiesA, B, andC ideally to evaluatef first. Next partyA is instructed to send
B its input. It is easy to see thatπ securely evaluatesg in the f -hybrid model. Letρ be a protocol that securely
evaluatesf . Protocolρ takes several rounds to complete, but partyA completesρ after the first round.

Now, assume thatA sends its input toB as soon as it is done with the execution ofρ (and, in particular,
beforeB andC have completed the execution ofρ). In this case, a corruptedB may be able to influence the
output ofC in ways that depend onA’s input. This would make protocolπρ insecure, although bothπ andρ
are secure.
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If A andS are passive adversaries, then we say thatπ nonadaptively t -privately evaluates
g in the ( f1, . . . , fm)-hybrid model.

Corollary 7 (Nonadaptive Modular Composition: Secure Function Evaluation).Let
t < n, let m ∈ N, and let f1, . . . , fm, g be n-party functions. Letπ be an n-party pro-
tocol that nonadaptively t-securely(resp., t-privately) evaluates g in the( f1, . . . , fm)-
hybrid model where no more than one ideal evaluation call is made at each round,
and letρ1, . . . , ρm be n-party protocols such thatρi nonadaptively t-securely(resp.,
t-privately) evaluates fi . Then the protocolπρ1,...,ρm nonadaptively t-securely(resp.,
t-privately) evaluates g.

Proof. Let A be a (nonadaptive)t-limited real-life adversary that interacts with par-
ties runningπρ1,...,ρm. Theorem 5 guarantees that there exists an adversaryAπ in the
( f1, . . . , fm)-hybrid model such thatEXEC

f1,..., fm
π,Aπ

d= EXECπρ1,...,ρm ,A. The security ofπ in
the( f1, . . . , fm)-hybrid model guarantees that there exists an ideal-model adversary (a
“simulator”) S such thatIDEALg,S

d= EXEC
f1,..., fm
π,Aπ

. The corollary follows by combining
the two equalities.

4.4. Proof of Theorem5

We prove the theorem only for the case of active adversaries (i.e.,t-security). The case
of passive adversaries (i.e.,t-privacy) can be obtained by appropriately degenerating the
current proof.

In addition, we first treat only the case wherem= 1 and the trusted partyT is called
only once. The case of multiple functions and multiple (but nonconcurrent) calls toT is
a straightforward extension, and is treated at the end of the proof.

Section 4.4.1 contains an outline of the proof. The body of the proof is in Section 4.4.2.
Section 4.4.3 contains some extensions of the proof (and of the theorem).

4.4.1. Proof Outline

Let f be ann-party function, letπ be ann-party protocol in thef -hybrid model, letρ
be a protocol thatt-securely evaluatesf , and letπρ be the composed protocol. LetA
be a (nonadaptive) real-life adversary that interacts with parties runningπρ . We wish to
construct an adversaryAπ in the f -hybrid model that “simulates” the behavior ofA.
That is,Aπ should satisfy

EXECπρ,A
d= EXEC

f
π,Aπ

. (4)

Our plan for carrying out this proof proceeds as follows:

1. We construct out ofA a real-life adversary, denotedAρ , that operates against
protocolρ as a stand-alone protocol. The security ofρ guarantees thatAρ has a

simulator (i.e., an ideal-process adversary),Sρ , such thatEXECρ,Aρ

d= IDEAL f,Sρ .
2. Out ofA andSρ we construct an adversary,Aπ , that operates against protocolπ as

a stand-alone protocol in thef -hybrid model. We then show thatAπ satisfies (4).
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We sketch the above steps. In a way,Aρ represents the “segment” ofA that interacts
with protocolρ. That is,Aρ starts with a setC of corrupted parties, the inputs of the
parties inC, and an auxiliary input. It expects its auxiliary input to describe an internal
state ofA, controlling the parties inC, and after interacting with parties running protocol
πρ up to the round,lρ , whereρ is invoked. (If the auxiliary input is improper, thenAρ
halts.) Next,Aρ interacts with its network by simulating a run ofA from the given
state, and followingA’s instructions. At the end of its interaction with parties running
ρ, adversaryAρ outputs the current state of the simulatedA.

AdversaryAπ represents the “segment” ofA that interacts with protocolπ , where
the interaction ofA with ρ is replaced with an interaction withSρ . That is,Aπ starts
by invoking a copy ofA and followingA’s instructions, up to roundlρ . At this point,A
expects to interact with parties runningρ, whereasAπ interacts with parties that invoke
a trusted party for ideal evaluation off . To continue the execution ofA, adversaryAπ
runsSρ . For this purpose,Sρ is given auxiliary input that describes thecurrentstate ofA
at roundlρ . The information fromSρ ’s trusted party is emulated byAπ , usingAπ ’s own
trusted party forf . Recall that the output ofSρ is a (simulated) internal state ofA at the
completion of protocolρ. Once protocolρ completes its execution and the parties return
to runningπ , adversaryAπ returns to runningA (starting from the state inSρ ’s output)
and follows the instructions ofA. WhenA terminates,Aπ outputs whateverA outputs.

We address one detail regarding the construction (among the many details that were
left out in this sketch). When adversaryAπ runsSρ , the latter expects to see the inputs
of the corrupted parties to protocolρ; however,Aπ does not know these values. In fact,
these values may not even be defined in the execution ofA with πρ . The answer to
this apparent difficulty is simple: it does not matter which valuesAπ handsSρ as the
inputs of the corrupted parties. The simulation is valid even if these inputs are set to
some arbitrary values (say, the value 0). Intuitively, the reason is that we constructAρ
in such a way that it does not “look at” these input values at all. Thus the output ofAρ
(and consequently also the output ofSρ) is independent of these arbitrary input values.

4.4.2. A Detailed Proof

LetA be an adversary (interacting with parties runningπρ). First we present the con-
structions of adversariesAρ andAπ . Next we analyzeAπ , showing (4).

Some inevitable terminology. An execution of a protocol (either in the real-life or in
the f -hybrid model) is the process of running the protocol with a given adversary on
given inputs, random inputs, and auxiliary input for the adversary. (In thef -hybrid
model an execution is determined also by the random choices of the trusted party for
f .) The internal state (or, configuration) of an uncorrupted party at some round of an
execution consists of the contents of all tapes of this party, the head position and the
control state, taken at the end of this round. In particular, the internal state includes all
the messages sent to this party at this round. We assume that the internal state includes
theentirerandom input of the party for the computation, including the yet-unused parts.
The internal state of the adversary is defined similarly. Theglobal state of the system at
some round of an execution is the concatenation of the internal states of the parties and
the adversary at this round.
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LetISπ,A(l , k, Ex, z, Er )0 denote the internal state at roundl of adversaryAwith auxiliary
input z and when interacting with parties running protocolπ on input Ex = x1 · · · xn,
random inputEr = r0 · · · rn, and with security parameterk, as described above (r0 for
A, xi andri for party Pi ). Let ISπ,A(l , k, Ex, z, Er )i denote the internal state of partyPi at
roundl of this execution. (IfPi is corrupted, thenISπ,A(l , k, Ex, z, Er )i =⊥.) Let

GSπ,A(l , k, Ex, z, Er ) = ISπ,A(l , k, Ex, z, Er )0, ISπ,A(l , k, Ex, z, Er )1, . . . , ISπ,A(l , k, Ex, z, Er )n.
Let GSπ,A(l , k, Ex, z) denote the probability distribution ofGSπ,A(l , k, Ex, z, Er ) whereEr is
uniformly chosen.

Note that the global state of the system at some round of an execution uniquely
determines the continuation of the execution from this round until the completion of the
protocol. In particular, the global output of the system is uniquely determined given the
global state (at any round).

We assume an encoding convention of internal states into strings. A stringz ∈ {0,1}∗
is said to be aninternal state of party P at roundl if z encodes some internal state of
P at roundl . (Without loss of generality we can assume that any stringz encodessome
internal state.) In what follows we often do not distinguish between internal states and
their encodings.

“Running adversary A from internal state z” means simulating a run ofA starting at
the internal state described inz. Recall thatz contains all the information needed for the
simulation; in particular, it contains all the necessary randomness.

Construction ofAρ . The construction follows the outline described above. More specif-
ically, adversaryAρ proceeds as described in Fig. 2, given adversaryA.

It now follows from the security of protocolρ that there exists an ideal-process

Adversary Aρ
AdversaryAρ , interacting with partiesP1, . . . , Pn running protocolρ, starts with a
valuek for the security parameter, a setC of corrupted parties, inputs and random
inputs for the parties inC, and auxiliary inputzρ . Next, do:

1. Ignore the input values of the corrupted parties.

2. Let lρ be the round where protocolπρ starts running protocolρ (i.e., this is
the round whereπ calls the trusted party). Verify that the auxiliary input,zρ ,
is a valid internal state ofA, controlling the parties inC, at roundlρ − 1. If zρ

is not valid, then halt with no output. Else:

(a) RunA from internal statezρ . Let P′1 · · · P′n denote the (imaginary) set of
parties with whichA interacts.

(b) Whenever some uncorrupted partyPi (runningρ) sends a messagem to
a corrupted partyPj , Aρ lets the simulatedA see messagem sent from
party P′i (runningπρ) to partyP′j .

(c) WheneverA instructs some corrupted partyP′j to send a messagem to an
uncorrupted partyP′i , adversaryAρ instructs partyPj to send messagem
to partyPi .

3. OnceA halts,Aρ outputs the current internal state ofA and halts.

Fig. 2. Description of adversaryAρ in the nonadaptive model.
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adversarySρ such thatIDEAL f,Sρ
d= EXECρ,Aρ

. Note thatAρ is deterministic, since
all of the randomness used byA is provided in the auxiliary inputzρ . Yet, the simulator
Sρ is (inherently) probabilistic, since it should generate a distribution ensemble that is
equal toEXECρ,Aρ

. In particular, it should mimic the randomness used by the uncorrupted
parties runningρ.

We observe that the special structure ofAρ implies thatSρ has an additional property,
described as follows. Recall thatAρ ignores the inputs of the corrupted parties, in the
sense that its actions and output do not not depend on these input values. In particular,
the copy ofA run byAρ is not affected by these values. Therefore, the distribution of
the output ofAρ , as well as the global output of the system after runningρ with Aρ ,
remains unchanged if we set the input values of the corrupted parties to 0. Consequently,
the distribution of the global output of the ideal process for evaluatingf with Sρ has
the same property. We formalize this discussion as follows. Given an input vectorExρ , let
Exρ |0 denote the vector obtained by replacing all the inputs of the corrupted parties with
0. Then we have:

Claim 8. For any value of the security parameter k, any input vectorExρ , and auxiliary
input zρ we have

IDEAL f,Sρ (k, Exρ, zρ) d= IDEAL f,Sρ (k, Exρ |0, zρ).

Proof. We have argued above thatEXECρ,Aρ
(k, Exρ, zρ) d= EXECρ,Aρ

(k, Exρ |0, zρ).How-

ever, IDEAL f,Sρ (k, Exρ, zρ) d= EXECρ,Aρ
(k, Exρ, zρ), and IDEAL f,Sρ (k, Exρ |0, zρ) d=

EXECρ,Aρ
(k, Exρ |0, zρ). The claim follows.

Construction ofAπ . AdversaryAπ follows the outline described in Section 4.4.1.
More specifically, it proceeds as described in Fig. 3.

Analysis ofAπ . It is evident that the running time ofAπ is linear in the running time
of A, plus the running time ofSρ , plus the running time ofπρ . Fix an input vectorEx,
and auxiliary inputz for the parties and adversary, as well as some value of the security
parameterk. (In particular, the setC of corrupted parties is now fixed.) Steps I–III below
demonstrate that

EXECπρ,A(k, Ex, z) d= EXEC
f
π,Aπ

(k, Ex, z), (5)

which establishes the theorem for the case of a single ideal evaluation call. (In (5) and
for the rest of the proof the symbol

d= is used to denote equality ofdistributions, not
ensembles.)

We first set some additional notation. Recall thatlρ is the round where protocolπmakes
the ideal evaluation call, and protocolπρ invokesρ. Given vectorsEr π = r π0 , . . . , r

π
n and

Er ρ = r ρ0 , . . . , r
ρ
n (whereEr π is interpreted as the random input for the execution ofπρ

except for the execution ofρ, andEr ρ is interpreted as the random input for the execution
of ρ), let Er π,ρ = r π,ρ0 , . . . , r π,ρn denote the combination ofEr π andEr ρ to a full random-
input vector for the execution ofπρ . (That is, partyPi usesr ρi for the execution ofρ and
r πi for the execution ofπ , and the adversary usesr ρ0 during the execution ofρ andr π0 at
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Adversary Aπ
AdversaryAπ , interacting with partiesP1, . . . , Pn running protocolπ and given
access to a trusted partyT for evaluating f , starts with a valuek for the security
parameter, a setC of corrupted parties, inputsExC and random inputsErC for the parties
in C, and auxiliary inputz. Next, do:

1. InvokeA onC, ExC, ErC, z and follow the instructions ofA up to roundlρ − 1.
(Recall that, so farπ andπρ are identical.) In addition, keep another piece of
the random input “on the side.” This piece, denotedr ρ , is used below.

2. At the onset of roundlρ , A expects to start interacting with parties running
protocol ρ (as subroutine), whereas partiesP1, . . . , Pn call a trusted party
for ideal evaluation of functionf . In order to continue the run ofA, invoke
simulatorSρ as follows:

(a) Sρ is given the setC of corrupted parties. The inputs of these parties are
set to 0, and their random input are set tor ρ . (Recall that the inputs of
the corrupted parties do not affect the distribution of the global output of
evaluating f with Sρ .) The auxiliary inputzρ for Sρ is set to the current
internal state ofA.

(b) WhenSρ hands its trusted party the inputs of the corrupted parties and
asks for the evaluated values off , invoke the trusted party,T , with the
same input values for the corrupted parties, and hand the value provided
by the trusted party back toSρ .

3. Recall that the output ofSρ is an internal state ofA at the end of the execution
of ρ. Once this output, denotedv, is generated, runA from internal statev,
and return to followingA’s instructions until the completion of protocolπ .

4. Once protocolπ is completed, output whateverA outputs and halt.

Fig. 3. Description of adversaryAπ in the nonadaptive model.

other rounds.) Similarly, givenr π = r π0 , . . . , r
π
n andEr f , whereEr π is as above andEr f is

interpreted as a random vector for roundlρ in the f -hybrid model (that is,Er f = r f
0 , r

f
1

wherer f
0 is the random input for the adversary for this round andr f

1 is the random
input for the trusted party forf ), let Er π, f denote the combination ofEr π andEr f to a full
random-input vector for the execution ofπ in the f -hybrid model.

StepI. Until round lρ − 1, protocolsπ andπρ “behave the same.” That is, fix some
valueEr π as the random input for the system. We have

GSπρ,A(lρ − 1, k, Ex, z, Er π ) = GSπ,Aπ
(lρ − 1, k, Ex, z, Er π ). (6)

StepII. We show that the global state in the hybrid model at the end of roundlρ is
distributed identically to the global state in the real-life model at the round where protocol
ρ returns. This is done in three substeps, as follows. (Recall that a valueEr π was fixed in
Step I.)

1. We first assert that the parameters set in the hybrid model for the ideal evaluation
of f are identical to the parameters set in the real-life model for the invocation
of ρ. That is, letExρ = xρ1 , . . . , xρn , wherexρi is determined as follows. IfPi is
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uncorrupted, thenxρ1 is the input value ofPi for protocolρ, as determined in
GSπρ,A(lρ − 1, k, Ex, z, Er π ). If Pi is corrupted, thenxρi = 0. Let Letzρ denote the
internal state ofA at roundlρ − 1 in this execution. Similarly, letx f

i denote the
value that partyPi hands the trusted party forf , as determined inGSπ,Aπ

(lρ −
1, k, Ex, z, Er π ), let Ex f = x f

1 , . . . , x f
n , and letzf denote the internal state ofA

(within Aπ ’s code) at roundlρ − 1 of this execution. Then it follows from (6) that
Exρ = Ex f |0 andzρ = zf .

2. Next we assert that the global output of the execution ofρ, that is implicit in the
run of πρ with adversaryA, is distributed identically to the global output of the
ideal evaluation off that is implicit in roundlρ of a run ofπ in the hybrid model.
That is, from the security ofρ, from Step II.1, and from Claim 8, we have that

EXECρ,Aρ
(k, Exρ, zρ) d= IDEAL f,Sρ (k, Exρ, zρ)

= IDEAL f,Sρ (k, Ex f |0, zf )
d= IDEAL f,Sρ (k, Ex f , zf ). (7)

3. Finally we show that the global state in the hybrid model at the end of roundlρ
is distributed identically to the global state in the real-life model when protocolρ

returns. That is, letlπ denote the round where the call to protocolρ returns (within
protocolπρ). Then it follows from the definition ofπρ and the constructions of
Aρ andAπ that:
(a) Let Er ρ be some random-input vector for protocolρ. ThenGSπρ,A(lπ , k, Ex, z,
Er π,ρ) is obtained fromGSπρ,A(lρ − 1, k, Ex, z, Er π ) and EXECρ,Aρ

(k, Exρ, zρ,
Er ρ) via a (simple, deterministic) process, denotedC. (Essentially, processC
combines and updates the internal states of the adversary and the parties.
More precisely, this process first modifies each internal stateISπρ,A(lρ − 1,
k, Ex, z, Er π )i by adding EXECρ,Aρ

(k, Exρ, zρ, Er ρ)i in the appropriate place.
Next it outputs the internal state ofA as it appears inAρ ’s output in
EXECρ,Aρ

(k, Exρ, zρ, Er ρ), and appends to it the modified internal states of the
uncorrupted parties.)

(b) Given some random input vectorEr f for the ideal process for evaluating
f , the global stateGSπ,Aπ

(lρ, k, Ex, z, Er π, f ) is obtained fromGSπ,Aπ
(lρ − 1,

k, Ex, z, Er π ) and IDEAL f,Sρ (k, Ex f , zf , Er f ) via the same process, C, as in the
real-life model.

It follows that for any value ofEr π , and for vectorsEr ρ and Er f that are uni-
formly chosen in their respective domains, we haveGSπρ,A(lπ , k, Ex, z, Er π,Er ρ ) d=
GSπ,Aπ

(l ρEr , k, Ex, z, Er π, f ). Now, letEr π be randomly chosen in its domain. It follows
that:

GSπρ,A(lπ , k, Ex, z) d= GSπ,Aπ
(lρ, k, Ex, z). (8)

StepIII. We assert (5). From the resumption of protocolπ until its conclusion, ad-
versaryAπ returns to following the instructions ofA. Consequently, the distributions
EXECπρ,A(k, Ex, z) andEXEC

f
π,Aπ

(k, Ex, z) are obtained by applying the same process to
the corresponding sides of (8).

This completes the proof for the case of a single ideal evaluation call.
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On multiple ideal evaluation calls. The case of multiple ideal evaluation calls is a
straightforward generalization of the case of a single call. We sketch the main points of
difference:

1. An adversaryAρi is constructed for each protocolρi . All theAρi ’s are identical to
adversaryAρ described above, with the exception that protocolρ is replaced by
ρi . (If ρi = ρj for somei, j , thenAρi = Aρj .)

2. Construct an adversarỹAπ that is identical toAπ described above, with the ex-
ception that at each round whereπ instructs the parties to evaluatefi ideally,
adversaryÃπ runs a copy ofSρi in the same way asAπ runsSρ . The auxiliary
input ofSρi is set to the current internal state of the simulatedA withinAπ . (Note
that there may be several invocations of the same simulatorSρi , where each invo-
cation corresponds to a different ideal evaluation call tofi . These invocations will
have different auxiliary inputs. Also, a separate piece ofÃπ ’s random input is used
for each invocation of someSρi .)

3. As in the case of a single ideal evaluation call, it is evident that the running time
of Ãπ is linear in the running time ofA, plus the sum of the running times of all
the invocations ofSρ1, . . . , Sρm, plus the running time ofπρ1,...,ρm. Showing that

EXECπρ1,...,ρm ,A(k, Ex, z) d= EXEC
f1,..., fm
π,Ãπ

(k, Ex, z) is done in several steps, as follows.

Let l ( j ) denote the round in which protocolπ makes thej th ideal evaluation call
in the hybrid model. The argument of Step I above demonstrates that the global
states at roundl ( j ) − 1 are identical in the two executions. Now, for eachj ≥ 1,
proceed in two steps:
(a) Apply the argument of Step II to establish that the global state in the hybrid

model at the end of roundl ( j ) is distributed identically to the global state in
the real-life model at the round where thej th subroutine call (to someρi )
returns.

(b) Apply the argument of Step III to establish that the global state in the hybrid
model at roundl ( j+1) − 1 is distributed identically to the global state in the
real-life model at the round where the( j + 1)th subroutine call is made.
If the execution is completed without making the( j + 1)th subroutine call,
then we have established thatEXECπρ1,...,ρm ,A(k, Ex, z) d= EXEC

f1,..., fm
π,Ãπ

(k, Ex, z),
as required.

4.4.3. Extensions

On the propagation of statistical distance. Somewhat relaxed versions of Definitions 4
and 6 allows the two sides of (1) and (3) to be statistically indistinguishable, rather than
equally distributed. We note that the composition theorem holds in this case as well.
That is:

1. Theorem 5 holds with the exception that the two sides of (2) are statistically in-
distinguishable. More specifically, in the case of a single ideal evaluation call, if
protocolρ achieves statistical distanceδ1, then the statistical distance between the
two sides of (2) is at mostδ1. (The construction and analysis ofAπ remain un-
changed, with the exception that the two leftmost distributions in (7) have statistical
distanceδ1.)
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In the case of multiple ideal evaluation calls the total statistical distance between
the two sides of (2) is at most the sum of the statistical distances achieved by all
the individual protocol invocations made by the composed protocol. That is, if
protocolρi achieves statistical distanceδi , and is invokedvi times, then the total
statistical distance between the two sides of (2) is at most

∑m
i=1 vi · δi .

2. Corollary 7 holds with the exception that the two sides of (1) are statistically
indistinguishable. More specifically, in the case of a single ideal evaluation call,
if protocol ρ achieves statistical distanceδ1 and protocolπ achieves statistical
distanceδ2, then protocolπρ achieves statistical distanceδ1+ δ2.

In the case of multiple ideal evaluation calls the statistical distance achieved
by πρ1,...,ρm is at most the sum of the statistical distances achieved by all the
individual protocol invocations, plus the statistical distances achieved byπ in the
( f1, . . . , fm)-hybrid model. That is, assume that protocolπ achieves statistical
distanceδ in the hybrid model, and that protocolρi achieves statistical distance
δi , and is invokedvi times. Then protocolπρ1,...,ρm achieves statistical distance at
mostδ +∑m

i=1 vi · δi .

On computational indistinguishability. The composition theorem holds also for the
case where the two sides of (1), and also of (2), are only computationally indistinguish-
able. We defer the treatment of this case to Section 6.

On black-box simulation. A straightforward extension of the proof of Corollary 7
shows the following additional result. Assume that the security of protocolπ in the
hybrid model is proven viablack-box simulation (see Remark 3 in Section 4.2). Then the
security of protocolπρ can also be proven via black-box simulation. Furthermore, if the
simulator associated withπ does not rewind the adversary, then the simulator associated
with πρ does not rewind as well. Note that no additional requirements are made from
protocolρ. In particular, the security of protocolρ need not be proven via black-box
simulation.

Remark. The reader may notice that the fact that the communication links are ideally
secure does not play a central role in the proof of Theorem 5. Indeed, the same proof
technique (with trivial modifications) is valid in a setting where the adversary sees all
the communication among the parties. See more details in Section 6.

5. Adaptive Adversaries

This section defines secure protocols, and presents and proves the composition theorem
for the case of adaptive adversaries. Both the definition of adaptive security of protocols
and the proof of the composition theorem in this case are considerably more complex
than for the nonadaptive case. Furthermore, proving adaptive security of protocols is
typically harder. We thus start with some motivation for this more complex model.

While adaptive security looks like a natural extension of nonadaptive security, a sec-
ond look reveals some important differences between the two models and the security
concerns they capture. Informally, the nonadaptive model captures scenarios where the
parties do not trust each other, but believe that parties that are “good” remain so through-



Security and Composition of Multiparty Cryptographic Protocols 173

out. There the adversary is animaginary conceptthat represents a collection of “bad
parties.” In contrast, the adaptive model captures scenarios where parties may become
corrupted during the course of the computation—either on their own accord, or, more
realistically, via an external “break-in.” Here the adversary models anactual entitythat
takes an active part in the computation. Indeed, external attackers who have the ability
to “break-into” parties in an adaptive manner impose a viable security threat on existing
systems and networks.

Nonadaptive security is implied by adaptive security (see Remark 1 in Section 5.2).
However, the converse does not hold. In particular, while the nonadaptive model cap-
tures many security concerns regarding cryptographic protocols, it fails to capture some
important concerns that are addressed in the adaptive model. One such concern is the
need to deal with the fact that an adversary may use the communication to decide which
parties are worth corrupting. (See Remark 2 there.) Another such concern relates to the
fact that the adversary may gain considerable advantage from seeing the internal data
of parties upon corruption (or a “break-in”), after some computational steps have taken
place. This means that data kept by the uncorrupted parties should never be regarded
as safe, and the threat of this data being exposed should play an important part in the
security analysis of a protocol. See Remark 3 in Section 5.2.14

This section attempts to be as self-contained as possible, at the price of some repetition.
Still, in cases where the text is very similar to the nonadaptive case with immediate
modifications we only note the changes from the corresponding parts of Section 4.

Throughout this section we restrict the presentation to the secure channels setting.
The computational setting is dealt with in Section 6. Section 5.1 contains the definition
of secure protocols. All the remarks made in Section 4.2 and in footnotes throughout
Section 4 are relevant here as well, but are not repeated. In addition, Section 5.2 holds
remarks specific to the adaptive case. Section 5.3 presents the composition theorem, to
be proven in Section 5.4.

5.1. Definition of Security: The Adaptive Case

As in the nonadaptive case, we develop the definitions for the cases ofactive andpassive
adversaries side by side, noting the differences throughout the presentation. We first
describe the real-life model; next we describe the ideal process; finally the definition is
presented, using essentially the same notion of emulation as in the nonadaptive case.

One obvious difference from the definition of nonadaptive security is that here the
adversary chooses the identities of the corrupted parties in an adaptive way; upon cor-
ruption, it sees the internal data of the corrupted party. (See more discussion on this point
below.)

An additional, more “technical” difference is the way in which the interaction between
the outside environment and a single protocol execution is captured. In the nonadaptive
case this interaction is captured by the parties’ inputs and outputs, plus an auxiliary input

14 Limiting the advantage gained by the adversary from exposing the secret data of parties is sometimes
calledforward secrecy in the literature. In the context of key exchange, for instance, forward secrecy refers to
preventing an adversary from learning, upon corrupting a party, keys that are no longer in use [DOW]. Indeed,
the adaptive setting provides a framework for analyzing forward secrecy of protocols.
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z given to the adversary before the computation starts. There this representation sufficed
for proving the composition theorem. In the adaptive case there is an additional way in
which the external environment interacts with a given protocol execution: whenever the
adversary corrupts a party it sees the party’s entire internal state, including the state for
all the protocol executions which involve this party. This fact has two manifestations.
Consider a protocol executionE that is part of a larger protocol, involving other protocol
executions. First, when a party is corrupted during executionE the adversary sees the
party’s internal state also from other protocol executions, both completed and uncom-
pleted ones. (Here information flowsinto executionE from the outside environment.)
Second, when a party is corrupted in another protocol execution, the adversary sees the
party’s internal state relevant to executionE . (Here information flowsfrom executionE
to the outside environment.) A particularly problematic case is that of corruptions that
occurafter executionE is completed.

To model this information flow, we introduce an additional entity, representing the
external environment, to both the real-life model and the ideal process. This entity, called
theenvironment and denotedZ, is an interactive Turing machine that interacts with the
adversary and the parties in a way described below. The notion of emulation is extended
to include the environment.

The real-life model. Multiparty protocols are defined as in the nonadaptive case. That
is, ann-party protocol π is a collection ofn interactive, probabilistic algorithms, where
the i th algorithm is run by thei th party, Pi . (Formally, each algorithm is an interactive
Turing machine, as defined in [GMR].) EachPi has inputxi ∈ {0,1}∗, random input
ri ∈ {0,1}∗, and the security parameterk. Informally, we envision each two parties
as connected via aprivate communication channel. A more complete description of the
communication among parties is presented below.

An adaptive real-life adversary A is a computationally unbounded interactive Turing
machine that starts off with some random input. Theenvironment is another computa-
tionally unbounded interactive Turing machine, denotedZ, that starts off with inputz
and random input. At certain points during the computation the environment interacts
with the parties and the adversary. These points and the type of interaction are specified
below. An adversary ist -limited if it never corrupts more thant parties.

At the onset of the computationA receives some initial information fromZ. (This
information corresponds to the auxiliary information seen byA in the nonadaptive case.)
Next, the computation proceeds according to some given computational model. For con-
creteness, we specify the following (synchronous, with rushing) model of computation.
The computation proceeds in rounds; each round proceeds inmini-rounds, as follows.
Each mini-round starts by allowingA to corrupt parties one by one in an adaptive way,
as long as at mostt parties are corrupted altogether. (The behavior of the system upon
corruption of a party is described below.) NextA chooses an uncorrupted party,Pi ,
that was not yet activated in this round andactivates it. Upon activation,Pi receives the
messages sent to it in the previous round, generates its messages for this round, and the
next mini-round begins.A learns the messages sent byPi to already corrupted parties.
Once all the uncorrupted parties are activated,A generates the messages to be sent by
the corrupted parties that were not yet activated in this round, and the next round begins.

Once a party is corrupted the party’s input, random input, and the entire history of
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the messages sent and received by the party become known toA. (The amount of
information seen by the adversary upon corrupting a party is an important parameter
of the definition. See discussion in Remark 4 in Section 5.2.) In addition,Z learns the
identity of the corrupted party, and hands some additional auxiliary information toA.
(Intuitively, this information represents the party’s internal data from other protocols run
by the newly corrupted party.15) From this point onA learns all the messages received
by the party. IfA is passive, then the corrupted parties continue running protocolπ . If
A is active (Byzantine), then once a party becomes corrupted it follows the instructions
of A, regardless of protocolπ .

At the end of the computation (say, at some predetermined round) all parties locally
generate their outputs. The uncorrupted parties output whatever is specified in the pro-
tocol. The corrupted parties output⊥. In addition, adversaryA outputs some arbitrary
function of its internal state. (Without loss of generality, we can imagine that the ad-
versary’s output consists of all the information seen in the execution. This includes the
random input, the information received from the environment, the corrupted parties’
internal data, and all the messages sent and received by the corrupted parties during the
computation.)

Next, a “postexecution corruption process” begins. (This process models the informa-
tion on the current execution, gathered by the environment by corrupting parties after the
execution is completed.) First,Z learns the outputs of all the parties and of the adversary.
Next,Z andA interact in rounds, where in each roundZ first generates a “corrupt
Pi ” request (for somePi ), and hands this request toA. Upon receipt of this request,A
handsZ some arbitrary information. (Intuitively, this information is interpreted asPi ’s
internal data.) It is stressed that at mostt parties are corrupted throughout, even ifZ
requests to corrupt more parties; in this caseA ignores the requests ofZ. The interaction
continues untilZ halts, with some output. Without loss of generality, this output can be
Z ’s entire view of its interaction withA and the parties. Finally, the global output is
defined to be the output ofZ (which, as said above, may include the outputs of all parties
as well as of the adversary). See further discussion on the role of the environmentZ in
Remark 5 of Section 5.2. The computational process in the real-life model is summarized
in Fig. 4.

We use the following notation. Let theglobal output EXECπ,A,Z(k, Ex, z, Er ) denote
Z ’s output on inputz, random inputr Z , and security parameterk, and after interact-
ing with adversaryA and parties running protocolπ on inputs Ex = x1 · · · xn, ran-
dom inputEr = r Z, r0 · · · rn, and security parameterk as described above (r0 for A;
xi andri for party Pi ). Let EXECπ,A,Z(k, Ex, z) denote the random variable describing
EXECπ,A,Z(k, Ex, z, Er ) whereEr is uniformly chosen. LetEXECπ,A,Z denote the distribu-
tion ensemble{EXECπ,A,Z(k, Ex, z)}k∈N,〈Ex,z〉∈{0,1}∗ . (The formalization of the global output
EXECπ,A,Z is different than in the nonadaptive case, in that here the global output contains
only the output of the environment. We remark that the more complex formalization,
where the global output contains the concatenation of the outputs of all parties and

15 For the sake of simplicity, we do not restrict the way in whichZ computes the data provided to the
adversary upon corruption of a party. However, we note that a somewhat weaker definition where this data
is fixed before the computation starts (but remains unknown to the adversary until the party is corrupted) is
sufficient, both for capturing security and for the proof of the composition theorems.
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Execution of ann-party protocol by parties P1 . . . Pn

with adversary A and environmentZ

1. (a) Each partyPi starts with the security parameterk, input xi , and random
input ri .

(b) The adversaryA starts withk and random inputr0. The environmentZ
starts with inputz and random inputr Z .

2. Initialize the round number tol ← 0.A receives an initial message fromZ.

3. As long as there exists an uncorrupted party that did not halt, do:

(a) As long as there exists an uncorrupted party that was not activated in this
round, do:

i. As long asA decides to corrupt more parties, do:
A. A chooses a partyPi to corrupt.Z learns the identity of

Pi .
B. A receivesPi ’s input, random input, and all the messages

thatPi received in this interaction. In addition,A receives
a message fromZ.

ii. A activates an uncorrupted partyPi . If l > 1, thenPi receives
the messages{mj,i,l−1| j ∈ [n]} sent to it in the previous round.
Next, Pi generates{mi, j,l | j ∈ [n]}, where eachmi, j,l ∈ {0,1}∗ is
a (possibly empty) message intended for partyPj at this round.
The adversaryA learns{mi, j,l |Pj is corrupted}.

(b) A generates the messages{mi, j,l |Pi is corrupted andj ∈ [n]}.
(c) l ← l + 1

4. Each uncorrupted partyPi , as well asA, generates an output.Z learns all
outputs.

5. As long asZ did not halt, do:

(a) Z sendsA a message, interpreted as “corruptPi ” for some uncorrupted
party Pi .

(b) A may corrupt more parties, as in Step 3(a)i above.
(c) A sendsZ a message, interpreted asPi ’s internal data.

6. Z halts with some output.

Fig. 4. A summary of the adaptive real-life computation.

adversary, would yield an equivalent definition; this is so since the environmentZ sees
the outputs of all the parties and the adversary. We choose the current formalization for
its simplicity.)

The ideal process. The ideal process is parameterized by the function to be evaluated.
This is ann-party function f : N × ({0,1}∗)n × {0,1}∗ → ({0,1}∗)n, as defined in
Section 3. Each partyPi has inputxi ∈ {0,1}∗; no random input is needed. Recall that
the parties wish to evaluatef (k, Ex, r f )1, . . . , f (k, Ex, r f )n, wherer f

R← {0,1}s ands is
a value determined by the security parameter, andPi learns f (k, Ex, r f )i . The model also
involves anadaptive ideal-process adversary S, which is an interactive Turing machine
that has random inputr0 and security parameterk, and an environmentZ which is a
computationally unbounded interactive Turing machine that starts with inputz, random
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inputr Z and the security parameter.16 In addition, there is an (incorruptible)trusted party,
T . The ideal process proceeds as follows:

First corruption stage: First, as in the real-life model,S receives auxiliary informa-
tion fromZ. Next,S proceeds in iterations, where in each iterationS may decide
to corrupt some party, based onS ’s random input and the information gathered so
far. Once a party is corrupted its input becomes known toS. In addition,Z learns
the identity of the corrupted party and hands some extra auxiliary information to
S. Let B denote the set of corrupted parties at the end of this stage.

Computation stage:OnceS completes the previous stage, the parties hand the fol-
lowing values to the trusted partyT . The uncorrupted parties hand their inputs
to the computation. The corrupted parties hand values chosen byS, based on the
information gathered so far. (IfS is passive, then even the corrupted parties hand
their inputs toT .)

Let Eb be the|B|-vector of the inputs contributed by the corrupted parties, and
let Ey = y1, . . . , yn be then-vector constructed from the input vectorEx by substi-
tuting the entries of the corrupted parties by the corresponding entries inEb. Then
T receivesyi from Pi . (If S is passive, thenEy = Ex). Next,T choosesr f

R← R f ,
and hands eachPi the valuef (k, Ey, r f )i .

Second corruption stage:Upon learning the corrupted parties’ outputs of the compu-
tation,S proceeds in another sequence of iterations, where in each iterationS may
decide to corrupt some additional party, and based on the information gathered so
far. Upon corruption,Z learns the identity of the corrupted party, andS sees the
corrupted party’s inputand output, plus some additional information fromZ as
before.

Output: Each uncorrupted partyPi outputs f (k, Ey, r f )i , and the corrupted parties
output⊥. In addition, the adversary outputs some arbitrary function of the infor-
mation gathered during the computation in the ideal process. All outputs become
known toZ.

Postexecution corruption:Once the outputs are generated,S engages in an interac-
tion withZ, similar to the interaction ofA with Z in the real-life model. That is,
Z andS proceed in rounds where in each roundZ generates some “corrupt
Pi ” request, andS generates some arbitrary answer based on its view of the com-
putation so far. For this purpose,S may corrupt more parties as described in the
second corruption stage. The interaction continues untilZ halts with an arbitrary
output.

Let IDEAL f,S,Z(k, Ex, z, Er ), whereEr = r Z, r0, r f , denote the output of environmentZ
on input z, random inputr Z , and security parameterk, after interacting as described
above with an ideal-process adversaryS and with parties having inputEx = x1 · · · xn

and with a trusted party for evaluatingf with random inputr f . Let IDEAL f,S,Z(k, Ex, z)

16 There is no need explicitly to restrict the number of parties corrupted byS. The definition of security (in
particular, the fact that the identities of the corrupted parties appear in the global output) will guarantee that
an ideal-model adversaryS (emulating some real-life adversaryA) corrupts no more parties thanA does.
Moreover, it will be guaranteed that the distribution ensembles describing the parties corrupted byA and by
S are identical.



178 R. Canetti

denote the distribution ofIDEAL f,S,Z(k, Ex, z, Er ) when Er is uniformly distributed. Let
IDEAL f,S,Z denote the distribution ensemble{IDEAL f,S,Z(k, Ex, z)}k∈N,〈Ex,z〉∈{0,1}∗ .

Comparing computations in the two models. As in the nonadaptive case, we require that
protocolπ emulates the ideal process for evaluatingf . Yet here the notion of emulation
is slightly different. We require that for any real-life adversaryA and any environment
Z there should exist an ideal-process adversaryS, such thatIDEAL f,S,Z

d= EXECπ,A,Z .
Note that the environment is the same in the real-life model and the ideal process. This
may be interpreted as saying that “for any environment and real-life adversaryA, there
should exist an ideal-process adversary that successfully simulatesA in the presence of
this specific environment.” Furthermore, we requireS to be polynomial in the complexity
of A, regardless of the complexity ofZ (see Remark 1 in Section 4.2).

Definition 9 (Adaptive Security in the Secure Channels Setting). Letf be ann-party
function and letπ be a protocol forn parties. We say thatπ adaptively t -securely evaluates
f if for any adaptivet-limited real-life adversaryA, and any environmentZ, there exists
an adaptive ideal-process adversaryS whose running time is polynomial in the running
time ofA, such that

IDEAL f,S,Z
d= EXECπ,A,Z . (9)

If A andS are passive adversaries, then we say thatπ adaptively t -privately evaluates g.

Spelled out, (9) means that for any value of the security parameterk, for any input vectorEx,
and any auxiliary inputz, the global outputsIDEAL f,S,Z(k, Ex, z) andEXECπ,A,Z(k, Ex, z)
should be identically distributed.

5.2. Discussion

Remark1: Adaptive security implies nonadaptive security. Intuitively, nonadaptive
security appears as a restricted version of adaptive security. We affirm this intuition
by observing that Definition 9 (adaptive security) implies Definition 4 (nonadaptive
security).

We sketch a proof: Letπ be a protocol that adaptivelyt-securely evaluates some
function, and letA be a nonadaptivet-limited adversary. We construct a nonadaptive
ideal-model adversaryS that emulatesA.

Let A′ be the following adaptivet-limited real-life adversary.A′ receives from its
environment a valuez that is interpreted as a setC of parties to corrupt, and a valueζ .
Next,A′ corrupts the parties inC and runsA on the setC of corrupted parties, and with
auxiliary inputζ . LetZ be the environment that, on inputz, provides the adversary (at
the beginning of the interaction) with the valuez and remains inactive from this point
on. LetS ′ be the (adaptive) ideal-model adversary that emulatesA′ in the presence of
Z. Note thatS ′ must eventually corrupt exactly the parties in the set provided byZ.

The nonadaptive ideal-model adversaryS proceeds as follows. Given a setC of
corrupted parties together with their inputs, plus auxiliary inputζ , ideal-model adversary
S will proceed by runningS ′; in addition,S plays the environment forS ′ and provides
it with a valuez that consists of the setC of parties to be corrupted plus the valueζ .
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WheneverS ′ corrupts a party inC, S providesS ′ with the input of that party. Finally,S
outputs whateverS ′ outputs. It is evident thatS emulatesA.

Remark2: Additional concerns captured by adaptive security(I). We highlight one
aspect of the additional security offered by the adaptive-adversary model, namely, the
need to account for the fact that the adversary may learn from the communication which
parties are worth corrupting more than others. This is demonstrated via an example,
taken from [CFGN]. Consider the following secret sharing protocol, run in the presence
of an adversary that may corruptt = O(n) out of then parties:A dealer D chooses at
random a small set S of, say, m = √t parties. (In fact, any valueω(logn) < m < t
will do.) Next, D shares its secret among the parties in S using an m-out-of-m sharing
scheme. In addition D publicizes the set S. (For concreteness, assume that the protocol
evaluates the null function.) Intuitively, this scheme lacks in security sinceS is public
and|S| < t . Indeed, an adaptive adversary can easily findD’s secret, without corrupting
D, by corrupting the parties inS. However, any nonadaptive adversary that does not
corrupt D learnsD’s secret only ifS happens to be identical to the predefined set of
corrupted parties. This happens only with probability that is exponentially small (in
m). Consequently, this protocol is secure in the presence of nonadaptive adversaries, if a
small error probability is allowed. (In particular, ifn is polynomial ink, then Definition 4
is satisfied with the exception that the two sides of (1) are statistically indistinguishable.)

Remark3: Additional concerns captured by adaptive security(II). Another security
concern that is addressed in the adaptive model, and remains unaddressed in the non-
adaptive model, is the need to limit the information gathered by the adversary when it
corrupts (or breaks into) parties and sees their internal data. This means that even the
internal memory contents of “honest” parties cannot be regarded as “safe” and could
compromise the security.

The definition of adaptive security addresses this concern by requiring, essentially,
that the internal state seen by the adversary upon corrupting a party is generatable (by
the ideal-process adversary) given only the input of this party and the adversary’s view
so far. We demonstrate how this requirement affects the definition, via the following
example. Consider a protocol where each party is instructed to publicize acommitment
to its input, and then halt with null output. For concreteness, assume that each party has
binary input and the commitment is realized via a claw-free permutation pairf0, f1 that
is known in advance. That is, each party chooses a random elementr in the common
domain of f0, f1 and broadcastsfb(r ), whereb is the party’s input. It is easy to see that
in the nonadaptive model this protocol securely evaluates the null function. However, we
do not know how to prove adaptive security of this protocol. In fact, ifn, the number of
parties, is polynomial in the security parameter and claw-free permutations exist, then
this protocol doesnot t-securely evaluate the null function in the adaptive model, for
t > ω(logn). (A proof appears in a slightly different form in [CO].)

The above discussion may bring the reader to wonder whether it is justifiable to assert
that the above protocol is insecure. Indeed, at first glance this protocol appears to be
“harmless,” in the sense that it has no apparent security weakness. This appearance may
be strengthened by the fact that the commitment is perfectly secure, i.e., the messages sent
by the parties are statistically independent from the inputs. Nonetheless, we argue that this
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appearance is false, and the above protocol has a serious security flaw. Indeed, the protocol
provides the adversary with a (computationally binding) commitment to the inputs of
the parties; this commitment may be useful in conjunction with additional information
that may become available to the adversary (say, via other protocol executions). Such a
commitment could not have been obtained without interacting with the parties.

Remark4: Erasing local data. A natural method for limiting the information seen by
the adversary upon corrupting a party is to include specialerasureinstructions in the
protocol, thereby enabling the parties to remove sensitive data from their local state when
this data is no longer necessary.

Indeed, timely erasures of sensitive data can greatly simplify the design and analysis
of protocols. (The case of encryption is an instructive example [BH], [CFGN].) However,
basing the security of a protocol on such erasures is often problematic. One reason is
that in real-world systems erasures do not always work: system backups are often hard to
prevent (they are even made without a protocol’s knowledge), and retrieving data that was
stored on magnetic media and later erased is often feasible. An even more severe reason
not to trust erasure instructions is that they cannot be verified by an outside observer.
Thus, in settings where the parties are mutually distrustful it is inadvisable to base the
security of one party on the “good will” and competence ofother parties to erase data
as instructed effectively. Consequently, a protocol that offers security without using data
erasures is in general preferable to one that bases its security on data erasures.

We highlight an important scenario where putting trust in internal erasures is more
reasonable. This is the case ofthreshold cryptography (see, e.g., [DF]) where the parties
are typically special-purpose servers controlled by a single administrative authority,
and use erasures to maintain the overall security of the system in the face of break-
ins by outsiders. In particular, in the case ofproactive security [OY], [CGHN] trust in
erasures is unavoidable since there the attacker may break intoall parties at one time or
another.

The distinction between trusting or distrusting data erasures is manifested in the
definition via the amount of information seen by the real-life adversary upon corrupting
a party. Trusting erasure instructions to be fulfilled and successful is modeled by letting
the adversary see only thecurrent internal state of the party. Distrusting the success of
such instructions is modeled by allowing the adversary to see the entire past internal states
of the party. (This amounts to allowing the adversary to see the party’s input, random
input, and all the messages ever received by the party.) In this work we concentrate on
the case where erasures are not trusted. Nonetheless, the composition theorem holds in
both cases.

Finally, we remark that there exist additional, potentially harmful, ways for parties to
deviate from the specified protocol in a manner that is undetectable by an outside observer.
For instance, a party can use its random input in a different way than specified in the
protocol. Proving security of protocols in a model where all parties, even uncorrupted
ones, may carry out such deviations is much harder (in fact, it is impossible in some
settings). Consequently, we do not consider such models; they are mentioned in [CFGN]
and studied in more depth in [CO]. (The motivation there is to deal with situations where
all partiesmay deviate from the protocol, as long as the deviation remains undetected
by other parties.)
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Remark5: On the modeling of the environment. Recall that the environment machine
is a generalization of the notion of auxiliary input. Indeed, the environment can be used
to provide the adversary with auxiliary input at the onset of the interaction. In addition,
it can disclose more information to the adversary in an adaptive way throughout the
computation. Furthermore, the environment obtains information from the adversary,
again in an adaptive way, even after the execution of the protocol is completed.

Informally, in the adaptive model the auxiliary information can be thought of as
consisting of two components: a “nonuniform” component, represented by the input
z of the environment machine; and an “algorithmic” component, represented by the
environment machine itself, that adaptively decides on the way in which information is
“released” to the adversary and obtained from it throughout the computation.

We address two additional points regarding the modeling of the environment:

ON THE NEED FOR THE ENVIRONMENT AS A SEPARATE ENTITY. A natural question
is whether it is possible to simplify the definition of adaptive security by merging the
adversaryA and the environmentZ into a single adversarial entity. We argue that the
separation is essential. In particular, the roles played by the two entities in the definition
are quite different. We stress two main technical differences. Firstly, the environment
remains the same in the real-life computation and in the ideal process, whereas the
adversary does not. Secondly, the environment sees much more information than the
adversariesA andS. In particular, the input ofZ may contain the inputs ofall parties at
the onset of the computation. (Indeed, the proof of the composition theorem below uses
an environment machine that sees all this information.) Furthermore,Z sees the outputs
of all parties from the computation.

Nonetheless, one can do without the environment machine in some simplified cases.
More specifically, the definition of security can be simplified as follows, in the case
where local data erasures by parties are allowed. (This is the case discussed in Remark 4,
where the adversary sees only the current internal state of a newly corrupted party.) First
adopt the convention that whenever a party completes executing a protocol, iterasesall
the internal data relevant to this protocol execution, except for the local output. Next, the
definition is simplified in two steps:

First, note that the postexecution corruption phase is no longer necessary. This is so,
since corrupting a party after the execution of the protocol is completed reveals only the
party’s local output. However, the environment anyhow learns the local outputs of all
parties as soon as these are generated. Consequently, the postexecution corruption phase
does not provide the environment with any new information.

Second, notice that now the role of the environment is restricted to providing the
adversary with initial auxiliary input and with an additional auxiliary input whenever a
party is corrupted. However, these auxiliary inputs represent information that was fixed
before the current protocol began. (These are the internal states of the corrupted parties
from other protocol executions.) Thus, the environment machine can be replaced by a
setz1, . . . , zn of auxiliary inputs, where the adversary obtainszi upon the corruption of
party Pi .

ON THE ORDER OF QUANTIFIERS. An alternative formulation to Definition 9 requires
that a single ideal-process adversaryS will satisfy (9) with respect to any environment
Z. We note that this seemingly stronger formulation is in fact implied by (and thus
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equivalent to) Definition 9.17 We choose the current formulation because it appears a bit
more natural. It also makes the proof of the composition theorem somewhat clearer.

5.3. Modular Composition: The Adaptive Case

We formalize the composition theorem for the nonconcurrent case, with adaptive ad-
versaries, in the secure channels setting. As in the nonadaptive case, we first define the
hybrid model and describe how an ideal evaluation call is replaced by a subroutine pro-
tocol. Next we state the composition theorem in its more general form. The theorem
from the Introduction follows as an easy corollary.

The hybrid model. The (adaptive) hybrid model with ideal access tof1, . . . , fm (or in
short the( f1, . . . , fm)-hybrid model) is defined analogously to the nonadaptive case. We
start with thereal-life model of Section 5.1. This model is augmented with an incorruptible
trusted partyT for evaluatingf1, . . . , fm. The trusted party is invoked at special rounds,
determined by the protocol run by the uncorrupted parties. In each such round a function
f (out of f1, . . . , fm) is specified. The computation at each special round mimics the ideal
process. That is, first the adversary adaptively corrupts parties, and learns the internal
data of corrupted parties. In addition, for each corrupted party the adversary receives
information from the environmentZ. Next the parties hand theirf -inputs toT . The
values handed by the uncorrupted parties are determined by the protocol. The values
handed by the corrupted parties are determined by the adversary. (If the adversary is
passive, then even corrupted parties handT values according to the protocol.) OnceT
receives the values from the parties (valuex f

i from party Pi ), it hands the respective
outputs back to the parties (Pi receivesf (k, x f

1 · · · x f
n , r f )i ). Finally the adversary can

again adaptively corrupt parties as before.18

Let EXEC
f1,..., fm
π,A,Z (k, Ex, z) denote the random variable describing the global output of

the computation (i.e., the output of the environmentZ) in the( f1, . . . , fm)-hybrid model
with protocolπ , adversaryA, security parameterk, inputs Ex for the parties andz for
Z, analogously to the definition ofEXECπ,A,Z(k, Ex, z) in Section 5.1. (We stress that
hereπ is not a real-life protocol and uses ideal calls toT .) Let EXEC

f1,..., fm
π,A,Z denote the

distribution ensemble{EXEC
f1,..., fm
π,A,Z (k, Ex, z)}k∈N,〈Ex,z〉∈{0,1}∗ .

Replacing an ideal evaluation call with a subroutine call. The “mechanics” of replacing
an ideal-evaluation call of protocolπ with a call to a subroutine real-life protocol,ρ, are
identical to the nonadaptive case (Section 4.3). Recall thatπρ1···ρm denotes protocolπ
where each ideal evaluation offi is replaced by a call toρi .

17 The argument is similar to that of Remark 4 in Section 4.2: Assume that a protocol is secure according
to Definition 9 and letA be a real-life adversary. LetZU be the “universal environment” that takes as input a
description of an environmentZ and a valuez and runsZ on inputz. Definition 9 guarantees that there exists
an ideal-model adversarySU that emulatesA in the presence ofZU . It follows thatSU emulatesA in the
presence ofanyenvironment. That is,SU satisfies the above stronger formulation.

18 As in the nonadaptive case, we assume that the rounds in which ideal evaluations take place, as well as
the functions to be evaluated, are fixed and known beforehand. This restriction can be circumvented as there.
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Theorem 10(Adaptive Modular Composition: General Statement).Let t < n, let m∈
N,and let f1, . . . , fm be n-party functions.Letπ be an n-party protocol in the( f1, . . . , fm)-
hybrid model where no more than one ideal evaluation call is made at each round, and
let ρ1, . . . , ρm be n-party protocols whereρi adaptively t-securely(resp., t-privately)
evaluates fi . Then, for any adaptive t-limited active(resp., passive) real-life adversary
A and for any environment machineZ there exists an adaptive active(resp., passive)
adversaryS in the( f1, . . . , fm)-hybrid model whose running time is polynomial in the
running time ofA, and such that

EXEC
f1,..., fm
π,S,Z

d= EXECπρ1,...,ρm ,A,Z . (10)

As in the nonadaptive case, Theorem 10 does not assume any security properties from
protocolπ . Instead, it essentially states that the “input–output functionality” ofany
protocolπ in the hybrid model is successfully “emulated” byπρ1,...,ρm in the real-life
model. Before rigorously stating the informal composition theorem from the Introduction
in the adaptive setting, we define protocols for securely evaluating a functiong in the
( f1, . . . , fm)-hybrid model:

Definition 11. Let f1, . . . , fm, g be n-party functions and letπ be a protocol forn
parties in the( f1, . . . , fm)-hybrid model. We say thatπ adaptively t -securely evaluates
g in the ( f1, . . . , fm)-hybrid model if for any adaptivet-limited adversaryA (in the
( f1, . . . , fm)-hybrid model) and any environment machineZ there exists an adaptive
ideal-process adversaryS, whose running time is polynomial in the running time ofA,
and such that

IDEALg,S,Z
d= EXEC

f1,..., fm
π,A,Z . (11)

If A andS are passive adversaries, then we say thatπ adaptively t -privately evaluates g
in the ( f1, . . . , fm)-hybrid model.

Corollary 12 (Adaptive Modular Composition: Secure Function Evaluation).Let t <
n, let m∈ N, and let f1, . . . , fm be n-party functions. Letπ be an n-party protocol that
adaptively t-securely(resp., t-privately) evaluates g in the( f1, . . . , fm)-hybrid model,
and assume that no more than one ideal evaluation call is made at each round. Let
ρ1, . . . , ρm be n-party protocols that adaptively t-securely(resp., t-privately) evalu-
ate f1, . . . , fm, respectively. Then the protocolπρ1,...,ρm adaptively t-securely(resp.,
t-privately) evaluates g.

Proof. Let A be an adaptivet-limited real-life adversary that interacts with parties
runningπρ1,...,ρm, and letZ be an environment machine. Theorem 10 guarantees that
there exists an adversaryAπ in the( f1, . . . , fm)-hybrid model such thatEXEC

f1,..., fm
π,Aπ ,Z

d=
EXECπρ1,...,ρm ,A,Z . The security ofπ in the ( f1, . . . , fm)-hybrid model guarantees that
there exists an ideal model adversary (a “simulator”)S such thatEXECπρ1,...,ρm ,A,Z

d=
IDEALg,S,Z , satisfying Definition 9.
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5.4. Proof of Theorem10

As in the nonadaptive case, we only prove the theorem for the case of active adversaries
(i.e., t-security). In addition, we only treat the case where the trusted partyT is called
only once. The extension to the case of multiple functions and multiple calls toT is the
same as in the nonadaptive case. Section 5.4.1 contains an outline of the changes from
the nonadaptive case. The body of the proof is in Section 5.4.2. All the extensions from
Section 4.4.3 are relevant here as well.

5.4.1. Additional Difficulties

The proof outline is similar to that of the nonadaptive case. We sketch the additional
difficulties arising from the adaptiveness of the adversaries and simulators. Full details
appear in Section 5.4.2. Recall thatπ is a protocol in thef -hybrid model,ρ is a protocol
for evaluatingf , andπρ is the composed protocol.A is a given adversary that interacts
with πρ . In addition, we now have an environmentZ that interacts withA. Aρ is a
constructed adversary that interacts withρ, following the relevant instructions ofA.
AdversaryAπ follows the instructions ofA relevant to the interaction with protocolπ ;
the interaction ofA with ρ is simulated usingSρ , the simulator forAρ .

1. Recall thatAρ operates by running a copy of adversaryA. In the adaptive case
Aρ has to accommodate corruption requests made byA throughout the execution
of πρ . For this purpose,Aρ is given access to an arbitrary environment machine
and proceeds as follows. Corruption requests that occur beforeρ is invoked are
answered using the initial data received from the environment machine. Whenever
the simulatedA requests to corrupt partyP during the execution ofρ, adversary
Aρ corruptsP in its real-life interaction and handsP’s internal data toA. P’s
internal data from the (suspended) execution of protocolπ is obtained from the
environment. Onceρ is completed andAρ generates its output, a postexecution
corruption phase starts whereAρ receives corruption requests from its environment,
corrupts the relevant parties, and provides the environment with the internal data
of the corrupted parties.

2. In the adaptive case specifying an environment is necessary for obtaining a simula-
torSρ forAρ . For this purpose, an environment machine, denotedZρ , is constructed
as follows. (Note thatZρ is in general different than the given environmentZ.)
The input ofZρ will describe a global state of an execution ofπρ with A and
Z at roundl (ρ) − 1.Zρ will orchestrate a run ofπρ from the given global state,
with the following exception:Zρ will ignore the random inputs of the uncorrupted
parties for the execution protocolρ. Instead,Zρ will provideAρ with the necessary
information for interacting with parties runningρ, and will extract the necessary
information from the resulting interaction. More specifically,Zρ first providesAρ
with the internal state ofAwhenρ is invoked; next, for each party corrupted during
the execution ofρ, Zρ providesAρ with the internal state of that party from the
suspended execution ofπ ; finally, it extracts fromAρ the internal state from the
execution ofρ of the parties that are corrupted byA afterρ is completed.

3. Recall thatAπ operates by simulating copies ofA andSρ . Here this is done
as follows. LetP′1, . . . , P′n denote the set of (simulated) parties with whichSρ
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interacts, and letP′′1 , . . . , P′′n denote the set of (simulated) parties with whichA
interacts.
(a) When adversaryAπ runs the simulatorSρ , it has to accommodateSρ ’s cor-

ruption requests made in the ideal process. This is done as follows: whenever
Sρ requests to corrupt a partyP′i in the ideal model, adversaryAπ corruptsPi

in its hybrid model, and learns the valuev that Pi is about to hand its trusted
party. Next,Aπ “plays the environment forAρ” and handsv back toSρ as the
input of P′i . If P′i is corruptedafter the ideal call to the trusted party is made,
then the output ofP′i is also given toSρ .

(b) AdversaryAπ has to accommodateA’s corruption requests madeafter the
(simulated) execution ofρ is completed. This is done as follows: WheneverA
requests to corrupt a partyP′′i , adversaryAπ corruptsPi in its hybrid model,
and obtains the internal data ofPi from protocolπ . In addition,Aπ plays the
role of the environment forSρ , and asksSρ to corruptP′i . ThenAπ combines
the internal data ofPi from protocolπ andSρ ’s answer, obtains simulated
internal data forP′′i , and hands this value to the simulatedA.

An important point in the analysis is that the way in whichAπ “plays the role of
the environment forSρ” is identical to an interaction betweenSρ andZρ .

5.4.2. A Detailed Proof

LetA be an adversary and letZ be an environment (interacting with parties runningπρ).
First we present the constructions ofAρ ,Zρ , andAπ . Next we show thatEXECπρ,A,Z

d=
EXEC

f
π,Aπ ,Z .

Terminology. We use the same notions of executions, internal states, and running an
adversary from an internal state as in the nonadaptive case (Section 4.4.2). Yet here
these notions refer of course to the adaptive model. In addition, the notion of global
state is modified as follows. (Recall that in the nonadaptive case the global state was the
concatenation of the local states of the uncorrupted parties and the adversary.)

1. The global state is augmented to include all the information that the uncorrupted
parties have ever seen in the past. That is, let theinternal history of party Pi at
round l be the concatenation of all the internal states from the beginning of the
execution through roundl . The global state at roundl is now the concatenation of
the internalhistoriesof the uncorrupted parties, together with the internal state of
the adversary.

This convention is needed to maintain the property that the global state of an
execution at any round uniquely determines the continuation of the execution until
its completion. (Recall that upon corrupting a party the adversary gets access to
all the information that the party knew in the past; see Remark 4 in Section 5.2 for
more discussion on this definitional decision.)

2. The global state is augmented to include also the local state of the environment.
3. The global state is extended to rounds after the execution of the protocol has been

completed, until the the environment halts.
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Adversary Aρ
Let Zρ denote the environment, letP1, . . . , Pn denote the parties running protocol
ρ, and letk be a value for the security parameter. (Note thatAρ uses the code ofA.)

1. Let lρ be the round where protocolπρ starts running protocolρ. (This is the
round whereπ calls T .) First receive a valueζ ρ0 from the environment, and
verify thatζ ρ0 is a valid internal state ofA at roundlρ − 1. If ζ ρ0 is not valid,
then halt with empty output.

2. Corrupt the parties that are corrupted inζ ρ0 , and ignore their inputs and the
corresponding values received from the environment. (Call these parties the
a priori corrupted parties.)

3. Continue the above run ofA from roundlρ on, followA’s instructions, and
hand the gathered information toA. More precisely, letP′1, . . . , P′n denote the
simulated parties with whichA interacts. Then:

(a) Whenever a message is sent from an uncorrupted partyPi to a corrupted
party, hand this message toA as coming fromP′i .

(b) WheneverA instructs some corrupted partyP′i to send a message to an
uncorrupted partyP′j , instructPi to send the same message toPj .

(c) WhenA corrupts a new party,P′i , during the execution of protocolρ,
proceed as follows. First corruptPi in its real-life model and obtainPi ’s
internal history for protocolρ. In addition,A needs to be provided with
the internal history ofP′i from the execution of protocolπ , and with the
information thatA receives from its own environment at this point. This
information is assumed to be provided by the environment,Zρ , upon the
corruption of Pi . That is, treat the valueζ ρi received fromZρ upon the
corruption ofPi as a concatenation of two valuesζ ρi = 〈a,b〉. The value
a is treated as the internal history ofP′i at roundlρ − 1; it is combined
with the internal history ofPi (pertaining to protocolρ) and handed to
A as the internal data ofP′i (pertaining to protocolπρ). The valueb
is handed toA as the value received fromA’s environment upon the
corruption ofP′i .

4. Once protocolρ is completed, output the current internal state of the simulated
A. Next, interact with the environmentZρ , as follows: When the environment
asks for corruption ofPi , if less thant parties are corrupted, corruptPi and
handPi ’s internal history to the environment. Ift parties are already corrupted,
then ignore the corruption request.

Fig. 5. Description of adversaryAρ in the adaptive model.

Let GSπρ,A,Z(l , k, Ex, z, Er ) denote the global state at roundl of an execution of
protocolπρ in the real-life model with adversaryA, environmentZ, security para-
meterk, inputs Ex for the parties andz to the environment, and random inputsEr . Let
GS

f
π,Aπ ,Z(l , k, Ex, z, Er ) be similarly defined with respect to protocolπ and adversary

Aπ in the f -hybrid model.

Construction ofAρ . Given adversaryA, adversaryAρ proceeds as in the above outline.
A more complete description appears in Fig. 5.
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The environmentZρ
EnvironmentZρ proceeds as follows, given a valuek for the security parameter
and inputζ , and interacting with partiesP1, . . . , Pn running protocolρ and with an
adversaryAρ . (Note thatZρ uses the code ofZ and ofA.)

1. The inputζ is assumed to describe a global state at roundlρ−1 of an execution
of πρ with adversaryA and environmentZ. Letζ ρ0 denote the internal state of
A, let ζZ denote the internal state ofZ, and letζ ρi denote the internal history
of thei th party, as described inζ . If the inputζ is not in the right format, then
halt with no output.

2. (This instruction is carried out throughout the execution ofρ.) ProvideAρ with
the valueζ ρ0 . Furthermore, wheneverAρ corrupts partyPi , provideAρ with
ζ
ρ

i .

3. (This instruction is carried out at the completion of the execution ofρ.) Let ui

denote the output of partyPi , and letu0 denote the output ofAρ . Recall that
Zρ obtains these values when they are generated.

Upon obtainingu0 · · ·un, run a simulated interaction between adversaryA,
environmentZ, and (simulated) partiesP′1, . . . , P′n runningπρ , starting from
the roundlπ in which protocolπ resumes. AdversaryA is run from the internal
state described inu0. EnvironmentZ is run from stateζZ . PartyP′i is run from
a stateζ ′i that is obtained fromζi and the outputui of ρ. (Note thatζi andui

may not be sufficient for obtaining a complete internal state ofP′i at roundlπ ,
since the internal data ofP′i from the execution ofρ is not given. However,
as long asP′i remains uncorrupted the internal data fromρ is not needed for
the simulated interaction. Figuratively, the internal data fromρ is zeroed out.)
When the simulatedA corrupts partyP′i , proceed as follows:

(a) Issue a “corrupt Pi ” request toAρ . The response, denoteddi , is inter-
preted as the internal history ofPi from the execution ofρ.

(b) Obtain, by continuing the simulation ofZ, the value thatZ handsA upon
the corruption ofP′i , and hand this value toA.

(c) Combinedi with the current (and incomplete) internal history ofP′i , obtain
Pi ’s complete internal history forπρ , and hand this data toA.

4. Halt whenZ does, with an output valuew that is structured as follows. First,
w holds the inputζ , followed byu0, . . . ,un, the local outputs of all the un-
corrupted parties and the adversary at the completion of protocolρ. Next,w
holds the internal data of all the uncorrupted parties, obtained in Step 3(a).

Fig. 6. Description of the environmentZρ .

Construction ofZρ . The environmentZρ proceeds as described in the above outline.
A detailed description appears in Fig. 6.

It follows from the security of protocolρ that there exists an ideal-process adversary
Sρ such thatIDEAL f,Sρ ,Zρ

d= EXECρ,Aρ ,Zρ .
The special structure ofAρ implies thatSρ has an additional property, described as

follows.19 Note thatAρ completely ignores the internal history of thea priori corrupted

19 This property and the related discussion are very similar to the nonadaptive case. Nonetheless, we repeat
the presentation in full, with the appropriate modifications to the adaptive case. A reader that is familiar with
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parties. (These are the parties that are already corrupted when protocolρ is invoked.)
Therefore, the distribution of the output ofAρ , as well as the global output of the system
after runningρ with Aρ , remains unchanged if we set the input value of the a priori
corrupted parties to 0, and their internal history to null. Consequently, the distribution
of the global output of the ideal process for evaluatingf with Sρ has the same property.
We formalize this discussion as follows. LetExρ |0 denote the vector obtained fromExρ by
replacing all the entries that correspond to the a priori corrupted parties with 0. Then we
have:

Claim 13. For any input vectorExρ for the parties and input zρ for Zρ we have

IDEAL f,Sρ ,Zρ (k, Exρ, zρ) d= IDEAL f,Sρ ,Zρ (k, Exρ |0, zρ).

Proof. We have argued above thatEXECρ,Aρ ,Zρ (k,Exρ,zρ) d= EXECρ,Aρ ,Zρ (k,Exρ |0,zρ).
However,IDEAL f ,Sρ ,Zρ (k,Exρ,zρ) d= EXECρ,Aρ ,Zρ (k,Exρ,zρ), andIDEAL f ,Sρ ,Zρ (k,Exρ |0,zρ)
d= EXECρ,Aρ ,Zρ (k,Exρ |0,zρ). The claim follows.

Construction ofAπ . AdversaryAπ proceeds as described in the above outline. A
detailed description appears in Fig. 7.

Analysis ofAπ . It is evident that the running time ofAπ is linear in the running time
ofA, plus the running time ofSρ , plus the running time ofπρ . Fix an input vectorEx, an
environmentZ with input z, and some value of the security parameter. We show that

EXECπρ,A,Z(k, Ex, z) d= EXEC
f
π,Aπ ,Z(k, Ex, z), (12)

where the symbol
d= denotes equality ofdistributions, not ensembles. This is shown in

three steps, as follows. (The steps are analogous to the nonadaptive case.)
We first set some notation. (This notation is analogous to the nonadaptive case, see

Section 4.4.2.) Recall thatlρ is the round where protocolπ makes the ideal evalua-
tion call, and protocolπρ invokesρ. Given vectorsEr π = r πZ , r

π
0 , . . . , r

π
n and Er ρ =

r ρZ, r
ρ

0 , . . . , r
ρ
n (whereEr π is interpreted as random input for the execution ofπρ except

for the execution ofρ, andEr ρ is interpreted as random input for the execution ofρ),
let Er π,ρ = r π,ρ0 , . . . , r π,ρn denote the combination ofEr π andEr ρ to a full random-input
vector for the execution ofπρ . (That is, partyPi usesr ρi for the execution ofρ andr πi
for the execution ofπ , the adversary usesr ρ0 during the execution ofρ andr π0 at other
rounds, and the environment usesr ρZ during the execution ofρ andr πZ at other rounds.)
Similarly, givenr π = r πZ , r

π
0 , . . . , r

π
n andEr f , whereEr π is as above andEr f is interpreted

as a random vector for roundlρ in the f -hybrid model (that is,Er f = r f
Z , r

f
0 , r

f
1 where

r f
Z , r

f
0 is the random inputs for the adversary and the environment for this round andr f

1
is the random input for the trusted party forf ), let Er π, f denote the combination ofEr π
andEr f to a full random-input vector for the execution ofπ in the f -hybrid model.

the nonadaptive case can safely skip to the construction of adversaryAπ .



Adversary Aπ
AdversaryAπ , given valuek for the security parameter, and interacting with an
environment machineZ, with partiesP1, . . . , Pn running protocolπ , and with a
trusted partyT for evaluating f , proceeds as follows. (Note thatAπ uses the code
of Z and ofA.)

1. As in the nonadaptive case, invokeA on its own input, auxiliary input, and
random input, and follow the instructions ofA up to roundlρ−1. (Recall that,
so far, both inπ and inπρ the parties runπ .) In addition, keep another piece
of the random input “on the side.” This piece, denotedr ρ , is used below.

2. At the onset of roundlρ , A expects to start interacting with parties running
protocolρ (as subroutine), whereas partiesP1, . . . , Pn call a trusted party for
ideal evaluation of functionf . Thus, in order to continue the run ofA, invoke
simulatorSρ as follows. LetP′1, . . . , P′n denote the set of simulated parties
with whichSρ interacts, and letP′′1 , . . . , P′′n denote the set of simulated parties
with whichA interacts.

(a) The random input ofSρ is set tor ρ . The initial value thatSρ expects to
receive from its environment is set to the current internal state ofA.

(b) WhenSρ asks to corrupt (in its ideal process) a partyP′i such thatPi is
already corrupted,Sρ is given input values 0 forP′i . (Recall that these
are the a priori corrupted parties, thus their inputs and the data from the
environment do not affect the distribution of the output ofSρ .)

(c) WhenSρ asks to corrupt a partyP′i that is not yet corrupted, corruptPi

in the f -hybrid model; letx f
i be the value thatPi is about to handT , the

trusted party forf . Then informSρ that the input ofP′i is x f
i . In addition,

set ζ ρi to contain the internal history ofPi , and handζ ρi to Aρ as the
information from the environment.

(d) WhenSρ hands the inputs of the corrupted parties to its trusted party, and
asks for the values off , invoke the trusted party,T , for f with the same
input values for the corrupted parties, and hand the value provided by the
trusted party back toSρ .

(e) If Sρ corruptsP′i after Step 2(d), thenSρ is also given the value thatPi

received from the trusted party.

3. Let v denote the output ofSρ , before it starts the postexecution corruption
phase. Recall thatv is an internal state ofAat the round,lπ , where the execution
of π resumes. Continue the current run ofA from internal statev until the
completion of protocolπ , and followA’s instructions. WhenA corrupts a
party P′′i at this stage, proceed as follows:

(a) Corrupt Pi in its f -hybrid model and obtain the internal history ofP
pertaining to protocolπ .

(b) Play the role of the environment forSρ , and request corruption ofP′i . Then
obtain the (simulated) internal history ofP′i pertaining to protocolρ. (In
the processSρ may corruptP′i in its ideal process. In this case handSρ
the input forP′i and the value from the environment as described in Step
2(c).)

(c) Combine the data from the previous two steps to obtain the internal his-
tory of P′′i pertaining to protocolπρ , add the value received fromAπ ’s
environment, and hand all this data toA.

4. Once protocolπ terminates, output whateverA outputs, and continue to sim-
ulateA as in Step 3 throughout the postexecution corruption phase.

Fig. 7. Description of adversaryAπ in the adaptive model.
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StepI. Until roundlρ −1 protocolsπ andπρ behave the same. That is, fix some value
Er π for the random-input of the system. We have

GSπρ,A,Z(lρ − 1, k, Ex, z, Er π ) = GSπ,Aπ ,Z(lρ − 1, k, Ex, z, Er π ).

StepII. We show that the global state in the hybrid model at the end of roundlρ is
distributed identically to the global state in the real-life model at the round where protocol
ρ returns. This is done in three substeps:

1. We first show that the parameters set in the hybrid model for the ideal evaluation
of f are identical to the parameters set in the real-life model for the invocation of
ρ. Let C be the set of a priori corrupted parties, determined byEr π . (That is,C is
the set of corrupted parties at the onset of roundlρ .) The setC is identical in the
two executions. Letzρ , an input value for environmentZρ , consist of the global
statezρ = GSπρ,A,Z(lρ − 1, k, Ex, z, Er π ).

Let xρi denote the input value of uncorrupted partyPi for protocolρ, as de-
termined inGSπρ,A,Z(lρ − 1, k, Ex, z, Er π ). If Pi is corrupted, thenxρi = 0. Let
Exρ = xρ1 , . . . , xρn . Similarly, letx f

i denote the value that partyPi hands the trusted
party for f , as determined inGSπ,Aπ ,Z(lρ−1, k, Ex, z, Er π ), and letEx f = x f

1 , . . . , x f
n .

It follows that Exρ = Ex f |0.
2. Next we assert that the global output of the execution ofρ, that is implicit in the

run of πρ with adversaryA, is distributed identically to the global output of the
ideal evaluation off that is implicit in roundlρ of the run ofπ in the hybrid model.
That is, from the validity ofSρ , from Step II.1, and from Claim 13 we have

EXECρ,Aρ ,Zρ (k,Exρ,zρ) d= IDEAL f ,Sρ ,Zρ (k,Exρ,zρ)= IDEAL f ,Sρ ,Zρ (k,Ex f |0,zρ)
d= IDEAL f ,Sρ ,Zρ (k,Ex f ,zρ). (13)

(Note that (13) also applies to the interaction between the environmentZρ and
the respective adversaries, afterρ is completed. This fact plays a central role in
Step III.)

3. We show that the global state in the hybrid model at the end of roundlρ is distributed
identically to the global state in the real-life model when protocolρ returns. That
is, letlπ denote the round where the call to protocolρ returns (within protocolπρ).
Then it follows from the definition ofπρ and the constructions ofAρ ,Zρ , andAπ
that:
(a) Let Er ρ be a random-input vector for protocolρ. Let ĜSπρ,A,Z(l , k, Ex, z, Er π,ρ)

be the vectorGSπρ,A,Z(l , k, Ex, z, Er π,ρ) after removing, for each uncorrupted
party, all the internal states pertaining to protocolρ except for the output
from ρ. ThenĜSπρ,A,Z(lπ , k, Ex, z, Er π,ρ) can be obtained fromGSπρ,A,Z(lρ −
1, k, Ex, z, Er π ) andEXECρ,Aρ ,Zρ (k, Exρ, zρ, Er ρ) via a deterministic, simple pro-
cess, denotedC. (ProcessC essentially updates the internal histories of the
parties and the internal state of the adversary. More precisely, recall that

w
def= EXECρ,Aρ ,Zρ (k, Exρ, zρ, Er ρ) is the output ofZρ from that execution.

ProcessC first modifies the internal history of each uncorrupted partyPi by
adding the appropriate portion ofw to GSπρ,A,Z(lρ − 1, k, Ex, z, Er π ) in the
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appropriate place. NextC outputs the internal state ofA as it appears inAρ ’s
output inw, together with the modified internal histories of the uncorrupted
parties.)

(b) Let Er f be a random input vector for the ideal evaluation process off . Then
GSπ,Aπ ,Z(lρ, k, Ex, z, Er π, f ) is obtained fromGSπ,Aπ ,Z(lρ − 1, k, Ex, z, Er π ) and
IDEAL f,Sρ ,Zρ (k, Ex f , zf , Er f ) via the same process, C, as in the real-life execu-
tion.

It follows that for any value ofEr π , and for vectorsEr ρ andEr f that are uniformly
chosen in their respective domains, we have

ĜSπρ,A,Z(l , k, Ex, z, Er π,ρ) d= GSπ,Aπ ,Z(lρ, k, Ex, z, Er π, f ).

StepIII. We assert (12). We have:

1. For each roundl > lπ the vectorĜSπρ,A,Z(l , k, Ex, z, Er π,ρ) can be obtained from

ĜSπρ,A,Z(l −1, k, Ex, z, Er π ) andw
def= EXECρ,Aρ ,Zρ (k, Exρ, zρ, Er ρ) via the following

process,C ′: Continue the execution for one round from the global state described
in ĜSπρ,A,Z(l − 1, k, Ex, z, Er π ). If no new corruption occurs in this round, then
ĜSπρ,A,Z(l , k, Ex, z, Er π,ρ) is obtained. In case thatA corrupts a new party,Pi , take
the internal history ofPi pertaining to protocolρ fromw. (It is guaranteed thatPi

is corrupted inw.)
A’s interaction with the environmentZ at the completion of the execution ofπρ

is determined bŷGSπρ,A,Z(lπ , k, Ex, z, Er π ) andw via a similar process. In particular,
the global outputEXECπρ,A,Z(k, Ex, z, Er π,ρ) is uniquely determined.

2. For each roundl > lπ vectorGSπ,Aπ ,Z(l , k, Ex, z, Er π, f ) is determined fromGSπ,Aπ ,Zρ
(l − 1, k, Ex, z, Er π, f ) andIDEAL f,Sρ ,Zρ (k, Exρ, zρ, Er ρ) via the same process,C ′, as in
the the real-life execution. The interaction with environmentZ at the completion
of the execution ofπ is also determined in the same way as there. In particular, the
global outputEXEC

f
π,Aπ ,Z(k, Ex, z, Er π, f ) is determined in the same way as there.

It follows that for any value ofEr π , and for vectorsEr ρ andEr f that are uniformly chosen
in their respective domains, we have

EXECπρ,A,Z(k, Ex, z, Er π,ρ) d= EXEC
f
π,Aπ ,Z(k, Ex, z, Er π, f ).

Equation (12) follows by lettingEr π be randomly chosen in its domain.
This completes the proof for the case of a single ideal evaluation call. The case of

multiple ideal evaluation calls is treated in the same way as in the nonadaptive case. We
omit further details.

6. The Computational Setting

This section defines secure protocols and proves the composition theorem in the compu-
tational setting, where the adversary sees all the communication among the parties and
is restricted to probabilistic polynomial time. We concentrate on the case of adaptive
adversaries. The simpler case of nonadaptive adversaries can be easily inferred.
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The treatment is quite similar to that of the secure channels setting (Section 5). There-
fore, this section isnot self-contained; we assume familiarity with Section 5 and only
highlight the differences. Section 6.1 contains definitions of secure protocols. All the
remarks from Sections 4.2 and 5.2 are relevant here. Additional remarks specific to
the computational setting appear in Section 6.2. Section 6.3 presents and proves the
composition theorem.

6.1. Definition of Security: The Computational Case

We define adaptively secure multiparty computation in thecomputational setting. Exe-
cuting a protocolπ in the real-life scenario, as well as the notationEXECπ,A,Z , are the
same as in the adaptive secure channels setting, with the following exceptions:

1. The real-life adversary,A, and the environmentZ are probabilistic polynomial
time (PPT). Note that this is aweakeningof the security offered by this model,
relative to that of Section 5. (The running time of the adversary, as well as that
of all other entities involved, is measured as a function of the security parame-
ter, k. To accommodate the convention that the running time is measured against
the length of the input we envision that the string 1k is given as an additional
input.)

2. Asees all the communication between the uncorrupted parties. Consequently, when
a party gets corrupted thenewdata learned by the adversary is only the party’s input
and random input. Note that this is astrengtheningof the security offered by this
model, relative to that of Section 5.20

The ideal process is the same as in the secure channels setting. (Since the real-life
adversary is alwaysPPT, so is the ideal-process adversary.) The notationIDEAL f,S,Z
remains unchanged.

We define emulation of the ideal process by a real-life computation in the same way,
with the exception that here we only require that the global outputs arecomputationally
indistinguishable(as defined in Section 3):

Definition 14 (Adaptive Security in the Computational Setting). Letf be ann-party
function, and letπ be a protocol fornparties. We say thatπ adaptively t -securely evaluates
f in the computational setting, if for any PPTt-limited real-life adversaryA and anyPPT

environmentZ there exists aPPTideal-process adversaryS, such that

IDEAL f,S,Z
c≈ EXECπ,A,Z (14)

If A andS are passive, thenπ adaptively t -privately evaluates f in the computational
setting.

20 We assume that the links areideally authenticated, namely, the adversary cannotalter the communication.
This assumption is used in many works on cryptographic protocols, and makes the analysis of protocols much
easier. Removing this assumption can be done in a “modular” way that concentrates on the task of message
authentication. See, for instance, [BCK].
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6.2. Discussion

Remark1: On the complexity ofZ. We stress that Definition 14 quantifies only over
all environmentsZ that arePPT. This is so since in the computational setting we assume
that all involved entities (including the environment, represented byZ) arePPT. Indeed,
a definition that allowsZ more computational power will be hard to satisfy, since an
overpowerfulZ may be able to break cryptographic primitives used by the parties, and
thus distinguish between the real-life computation and the ideal process. (Recall that our
model allowsZ access to the communication among the parties, viaA’s view.)

Remark2: On “absolute” versus “computational” correctness. (This remark is par-
tially motivated by observations made by Silvio Micali.) Definition 14 only requires
the two sides of (14) to be computationally indistinguishable. That is, it is required that
for anyPPTdistinguishing algorithmD, and for any values ofk, Ex, z, algorithmD dis-
tinguishes between(k, Ex, z, IDEAL f,S,Z(k, Ex, z)) and(k, Ex, z, EXECπ,A,Z(k, Ex, z)) only
with probability that is negligible in the security parameterk. In particular, this means
that the ensemble describing the outputs of theuncorruptedparties in the real-life model
is only required to be computationally indistinguishable from the ensemble describing
these outputs in the ideal process.

We first discuss the consequences of this requirement in the case ofpassiveadversaries.
The case of active adversaries is somewhat more involved and is addressed below. In the
case of passive adversaries Definition 14 imposes different requirements depending on
whether the evaluated function is deterministic or probabilistic. Whenf is deterministic
the output of each uncorrupted party in a protocol that securely evaluatesf will be the
(uniquely determined) value off on the corresponding set of inputs. In this case we say
that the definition guarantees “absolute correctness.” Whenf is probabilistic, a protocol
that securely evaluatesf only guarantees that the distribution of the outputs of the
uncorrupted parties is computationally indistinguishable from the specified distribution.
It is not guaranteed that the distribution of the outputs of the uncorrupted parties will
be equal to the specified distribution. In this case we say that the definition guarantees
“computational correctness.”

We demonstrate this point via an example. Assume that the function to be evaluated is
f1(x1, . . . , xn) = g(

⊕n
i=1 xi )whereg is some pseudorandom number generator, and

⊕
denotes bitwise exclusive or. In this case, only protocols where the uncorrupted parties
output the value ofg(

⊕n
i=1 xi ) on any input sequencex1, . . . , xn will be considered

secure. In contrast, assume that the evaluated function isf2() = r , wherer is a random
value of the same length asg(·) above. (That is,f2 is a probabilistic function andr is
chosen using the “intrinsic randomness” off2.) In this caseanyprotocol in which the
parties output apseudorandom valueof the appropriate length is secure.

In the case of active adversaries the distinction between the cases where the definition
guarantees “absolute correctness” and the cases where the definition guarantees only
“computational correctness” is more drastic. The reason is that here the corrupted parties
(both in the real-life and in the ideal model) may contribute to the computation values
chosen irrespectively of the given input values; in particular the contributed values can be
chosenrandomlyaccording to some distribution. Consequently, the definition guarantees
“absolute correctness” only for functions where the output value is uniquely determined
by the inputs of theuncorruptedparties alone.
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We demonstrate this point via another example. Consider the functionf1 described
above. This function is deterministic; however, the valuex (and, consequently, the output
of the parties) is not well-defined given the inputs of the uncorrupted parties. In particular,
when the corrupted parties contribute randomly chosen values, the function value is in
effectg(r ) wherer is random and independent from the inputs of the parties. Therefore
it is possible to construct protocols that securely evaluatef1 according to Definition 14,
but where the parties output a random value, independently of the inputs of the parties.

In contrast, consider the functionf3(x1, . . . , xn) = g(x1) if x1 = x2 = · · · = xn, and
f3(x1, . . . , xn) =⊥ otherwise. Here the output of the parties is uniquely defined (up to
an error value) given the inputs of the uncorrupted parties. Consequently, in a protocol
that securely evaluatesf3 the uncorrupted parties output the (uniquely defined) output
value on each input.

The above discussion brings us to the more general issue of how formally to cast
an “intuitive task” as a function to be evaluated. We have seen that seemingly similar
formalizations result in very different security requirements on protocols. Thus, care
must be taken to formalize a given task in a way that correctly captures the desired
security requirements.

6.3. Modular Composition: The Computational Case

We state and prove the composition theorem and its corollary for the case of adaptive
adversaries in the computational setting.

The computational hybrid model. The (computational, adaptive)( f1, . . . , fm)-hybrid
model is defined identically to the secure channels, adaptive case (Section 5.3), with
the exception that we start from the computational real-life model, rather than from the
secure-channels real-life model. The notationEXEC

f1,..., fm
π,A,Z remains unchanged (here it

applies to the computational setting). The “mechanics” of replacing an ideal-evaluation
call of protocolπ with a call to a subroutine real-life protocol,ρ, are also identical to
the case of secure channels.

Theorem 15(Adaptive Computational Modular Composition: General Statement).Let
t < n, and let f1, . . . , fm be n-party functions. Let π be an n-party protocol in the
computational( f1, . . . , fm)-hybrid model where no more than one ideal evaluation call
is made at each round, and letρ1, . . . , ρm be n-party protocols whereρi adaptively
t-securely(resp., t-privately) evaluates fi in the computational setting. Then, for any
PPT adaptive t-limited active(resp., passive) real-life adversaryA and for PPT any
environment machineZ there exists aPPTadaptive active(resp., passive) adversaryS
in the( f1, . . . , fm)-hybrid model such that

EXEC
f1,..., fm
π,S,Z

c≈ EXECπρ1,...,ρm ,A,Z . (15)

Protocols for securely evaluating a functiong in the computational( f1, . . . , fm)-
hybrid model are defined in the usual way:

Definition 16. Let f1, . . . , fm, g be n-party functions and letπ be a protocol forn
parties in the computational( f1, . . . , fm)-hybrid model. We say thatπ adaptively t -
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securely evaluates g in the computational ( f1, . . . , fm)-hybrid model if for anyPPTadaptive
t-limited adversaryA (in the( f1, . . . , fm)-hybrid model) and everyPPTenvironmentZ,
there exists aPPTadaptive ideal-process adversaryS such that

IDEALg,S,Z
c≈ EXEC

f1,..., fm
π,A,Z . (16)

If A andS are passive adversaries, then we say thatπ adaptively t -privately evaluates g
in the computational ( f1, . . . , fm)-hybrid model.

Corollary 17 (Adaptive Computational Modular Composition: Secure Function Eval-
uation). Let t < n, and let f1, . . . , fm, g be n-party functions. Let π be an n-party
protocol that adaptively t-securely(resp., t-privately) evaluates g in the computational
( f1, . . . , fm)-hybrid model, and assume that no more than one ideal evaluation call
is made at each round. Let ρ1, . . . , ρm be n-party protocols that adaptively t-securely
(resp., t-privately) evaluate f1, . . . , fm, respectively, in the computational setting. Then
protocolπρ1,...,ρm adaptively t-securely(resp., t-privately) evaluates g in the computa-
tional setting.

The proof of Corollary 17 is identical to that of Corollary 12.

Proof of Theorem 15. Again, we only prove the theorem for the case of active adver-
saries. The simpler case of passive adversaries can be easily inferred. As in the case of
adaptive security with secure channels, we first restrict the presentation to active adver-
saries and to protocols where the trusted party is called only once. The case of multiple
ideal evaluation calls is treated at the end of the proof.

The constructions ofAρ ,Zρ , andAπ are identical to those of Section 5.4 (the adaptive,
secure channels case), with the obvious exception that the simulated adversaryA is also
being given the messages sent among the uncorrupted parties. The complexities ofAρ ,Zρ
are linear in the complexity ofA, and the complexity ofAπ is linear in the complexities
of A andSρ . We show

EXECπρ,A,Z
c≈ EXEC

f
π,Aπ ,Z . (17)

Essentially, the only difference from the proof in the secure channels case is in Step II.2,
namely, thatEXECρ,Aρ ,Zρ andIDEAL f,Sρ ,Zρ are only guaranteed to be computationally
indistinguishable; but this suffices to show (17).

More precisely, given a distinguisherD betweenEXECπρ,A,Z andEXEC
f
π,Aπ ,Z , con-

struct a distinguisherD′ betweenEXECρ,Aρ ,Zρ andIDEAL f,Sρ ,Zρ . On inputk and a value
w (which is the output ofZρ), distinguisherD′ orchestrates an execution ofπρ with
adversaryA and corruptorZ, on the inputs and random inputs appearing inw, and
using the data inw for the parties’ outputs fromρ. Once the global outputw′ from this
execution is generated,D′ runsD on (k, w′) and outputs whateverD outputs.

Using the same arguments as in the secure channels case, it is seen that ifw has
the distribution ofEXECρ,Aρ ,Zρ (k, Ex, z) for someEx, z, thenw′ has the distribution of
EXECπρ,A,Z(k, Ex, z). Similarly, ifw has the distribution ofIDEAL f,Sρ ,Zρ (k, Ex, z), thenw′

has the distribution ofEXEC
f
π,Aπ ,Z(k, Ex, z). Consequently, ifD distinguishes between
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EXECπρ,A,Z(k, Ex, z) andEXEC
f
π,Aπ ,Z(k, Ex, z)with probability that is not negligible, then

D distinguishes betweenEXECρ,Aρ ,Zρ (k, Ex, z) andIDEAL f,Sρ ,Zρ (k, Ex, z)with probability
that is not negligible.

On multiple ideal evaluation calls. As in the secure channels model, the case of multiple
ideal evaluation calls is a straightforward generalization of the case of a single call.
The construction of the generalized adversary is the same as in the secure channels
model; however, the analysis uses a “hybrids argument.” We sketch the main points of
difference from the single call, computational case. (These points are analogous to the
ones discussed in the nonadaptive, secure channels case, see Section 4.4.2.)

1. An adversaryAρi is constructed for each protocolρi . All theAρi ’s are identical to
adversaryAρ described above, with the exception that protocolρ is replaced by
ρi . If ρi = ρj for somei, j , thenAρi = Aρj .

2. Similarly, an environment machineZρi is constructed for each protocolρi . All the
Zρi ’s are identical toZρ described above, with the exception that protocolρ is
replaced byρi . (If ρi = ρj for somei, j , thenZρi = Zρj .)

3. Construct an adversarỹAπ that is identical toAπ described above, with the excep-
tion that at each round whereπ instructs the parties to evaluatefi ideally, adversary
Ãπ runs a copy ofSρi in the same way thatAπ runsSρ . The initial value given to
Sρi is set to the current internal state of the simulatedA within Aπ . (Recall that
there may be many invocations of the same simulatorSρi , where each invocation
corresponds to a different ideal evaluation call tofi . These invocations will have
different initial values.)

4. As in the case of a single ideal evaluation call, it is evident that the running time
of Ãπ is linear in the running time ofA, plus the sum of the running times of all
the invocations ofSρ1, . . . ,Sρm, plus the running time ofπρ1,...,ρm. We sketch a

proof thatEXECπρ1,...,ρm ,A,Z
c≈ EXEC

f1,..., fm
π,Ãπ ,Z

. Let c denote the total number of ideal
evaluation calls made byπ in the f1, . . . , fm-hybrid model. First definec + 1
hybrid protocolsπ0, . . . , πc, all in the f1, . . . , fm-hybrid model, whereπj follows
π until the end of thej th ideal evaluation call, and followsπρ1,...,ρm for the rest
of the interaction. Similarly, definec + 1 adversariesA0, . . . ,Ac, whereA j is
the adversary that follows the instructions ofAπ until the end of thej th ideal
evaluation call, and follows the instructions ofA for the rest of the interaction. Let
Hj denote the ensembleEXEC

f1,..., fm
πj ,Ã j ,Z .

It can be seen thatH0 = EXECπρ1,...,ρm ,A,Z andHc = EXEC
f1,..., fm
π,Ãπ ,Z

. Furthermore,
using a similar argument to the one used for the single call case, it can be seen that
if there exists a distinguisher betweenHj and Hj+1 for some j > 0, then there
exists a distinguisher betweenEXECρi ,Aρi ,Zρi

and IDEAL fi ,Sρ ,Zρi
, where fi is the

function evaluated in thej th call. (The distinguishing probability is reduced by a
factor ofc.)

Nonadaptive security in the computational setting. A definition of nonadaptive security
in the computational setting can be easily derived from Definitions 4 and 14. Furthermore,
composition theorems similar to the ones here hold in that case as well.
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We remark, however, that in the computational nonadaptive case the distinguisherD′
described above does not work. This is so since there, in contrast to the adaptive case, the
global output of the execution of protocolρ does not include sufficient information for
orchestrating an execution ofπρ withA. Consequently,D′ will receive this information,
namely, the inputs and random inputs of the parties for protocolπ , in its auxiliary input
(see Definition 3).21 See more details on the nonadaptive computational case in [G3].
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Appendix. Other Definitions

We briefly review some definitions of secure multiparty computation. More specifically,
we review the definitions of Micali and Rogaway [MR], Goldwasser and Levin [GL],
Beaver [B2], [B1], and Canetti et al. [C], [CFGN]. These definitions vary in their level
of restrictiveness. In addition, the works vary in the level of detail and rigor in which
the definitions are presented. The most comprehensively and rigorously presented set of
definitions appears in [MR].

The definition of Micali and Rogaway. Micali and Rogaway envision an ideal process,
similar to the one here, for secure function evaluation. However, the ideal process remains
as a motivating intuition and is not explicitly used in the actual definition, sketched below.
(This definition deals only with the secure channels setting, and only with protocols that
evaluate deterministic functions.)

First the input that each party contributes to the computation, as well as its output,
should be determined exclusively from the communication of that party with the other
parties. The functions that determine the input and output, calledinput awareness and
output awareness functions, should be computable in polynomial time. (The adversary
cannot evaluate these functions since in the secure channels setting it does not have
access to the entire communication of an uncorrupted party with the other parties.)

Correctness is guaranteed by requiring that, in any execution of the protocol, the

21 Indeed, in the case of adaptive adversaries a weaker version of Definition 3 that does not provide the
distinguisher with auxiliary input would be sufficient for the composition theorem to hold. We formulate the
stronger notion in order to be compatible with the nonadaptive computational case.
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outputs of the uncorrupted parties (determined by applying the output awareness func-
tion to the communication) should equal the value of the evaluated function applied to the
contributed inputs (determined by applying the input awareness function to the commu-
nication). Security is guaranteed by requiring that there exists a “black-box simulator”
that generates, in probabilistic polynomial time, a simulated conversation between the
(real-life) adversary and the uncorrupted parties. The simulator is restricted toone pass
simulation (i.e., it cannot rewind the adversary), and receives external information re-
garding the inputs of the corrupted parties and their outputs. This external information is
related to the values of the input and output awareness functions applied to the simulated
conversation. Furthermore, it is received in a timely fashion: the simulator receives the
designated outputs of the corrupted parties (i.e., the appropriate function values) only
at a certain prespecified round (this is the round where the inputs become determined
by the input-awareness function applied to the comunication); in addition, only when a
party is corrupted by the adversary can the simulator receive the input value of that party.

This definition of security seems to imply ours (in the settings where it applies). In
fact, it seems considerably more restrictive. We highlight three aspects of this extra
restrictiveness. First, the requirement that the input and output awareness functions be
computable from the communication alone implies that protocols where parts of the
computation are done locally without interaction (e.g., the trivial protocol where no
communication takes place and each party computes its output locally) are considered
insecure. Second, limiting the simulator toone passblack-box simulation excludes a
proof technique that seems essential for proving security of a wide range of protocols
(e.g., zero-knowledge proofs [GMR], [GMW1]). Third, requiring that the simulator
receives the outputs of the corrupted parties only after the inputs are determined by the
communication excludes an additional set of protocols.22

The definition of Goldwasser and Levin. Goldwasser and Levin take a different ap-
proach. First they formalize the “inevitable advantages” of the adversary in the ideal
process (we briefly sketch these “inevitable advantages” below). Next they say that a
protocol isrobust if for any adversary there exists an “equivalent” adversary that is lim-
ited to these “inevitable privileges,” and that has the same effect on the computation.
Their notion of robustness of protocols has the advantage that it is independent of the
specific function to be evaluated (except for some technical subtleties ignored here).

The “inevitable privileges” of the adversary, extracted from the ideal process, can be
sketched as follows. First, the adversary may choose to corrupt parties (either adaptively
or nonadaptively.) Next, if the adversary is active, then the inputs of the corrupted
parties may be modified. (However, this is done without knowledge of the inputs of the
uncorrupted parties.) Next, the adversary may learn the specified outputs of the corrupted
parties. This may inevitably reveal some information on the inputs of the uncorrupted

22 For instance, let the “bit transmission” function be such that the output of partyR (the receiver) equals the
input of partyS(the sender). Consider the protocol whereSsimply sends its input toRover the private channel.
This protocol is rejected by the definition of [MR] since the simulator is required to provide a corrupted receiver
with the value of the transmitted bitbeforethis value becomes known. (This protocol securely evaluates the
bit transmission function according to the definition here.)
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parties. Furthermore, if the adversary is adaptive, then it can corrupt parties, after the
computation is completed, based on the output of the computation.23

The difference between the [GL] approach and ours may be viewed as follows. Instead
of directly comparing (as we do) executions of the protocol in real-life with an ideal pro-
cess where a specific function is evaluated, they first compare real-life executions of the
protocol with executions of thesame protocolin an idealized model where the adversary
is limited as described above. So far one does not need to specify what functionality
the protocol is fulfilling. In a second step (which is implicit in [GL]), one claims that
executing the protocol in the idealized model is equivalent to an ideal evaluation process
of a specific function.

The definition of Beaver. Beaver’s definition [B1], [B2] takes a similar approach to the
one here. We sketch this approach using the terminology of [B1]. First a general notion of
comparing security of protocols is formulated, as follows. Consider two protocolsα and
β for evaluating the same function. Protocolα is at least as secure as protocolβ if there
exists aninterface that turns any adversaryA attackingα into an adversaryA′ attacking
β, such that for any inputs the global output of the two computations are identically
distributed. The global output is defined similarly to here. The interaction between the
interface andA is apparently a black-box, and rewinding the adversary is not allowed.
(The definition does not fully specify the details of the interaction between the interface
andA.) A protocol for evaluating a function is secure if it is at least as secure as the trivial
protocol for evaluating the function in an ideal model similar to the one here. To allow for
secure sequential composition, the definition allows the adversary to receive additional
auxiliary information upon corrupting a party. In addition it requires the protocol to be
postprotocol corruptible. That is, the adversary should be able to respond to “any sequence
of postexecution corruption requests” with the internal data of the relevant parties.

Disallowing rewinding is a considerable limitation, especially in the computational
setting. (See Remark 3 in Section 4.2.) An additional weakness of this definition is that,
unlike here,A′ is not required to be as efficient asA. (See Remark 1 in Section 4.2.)
Compared with our notion of an environment machine, the requirement of postprotocol
corruptibility has two main drawbacks. First, it does not take into account the fact that
the postexecution corruption requests can be adaptive and depend on the execution of the
protocol itself and on the data learned from previous corruptions (rather than being fixed
in advance). Second, this formalization does not generalize to the computational setting,
where the corruption requests must be generated by aPPT machine (see Remark 1 in
Section 6.2).

The definition of Canetti et al. The definitions of [C] and [CFGN] differs from the
one here in the following aspects. First, as in [B1], these definitions require the ideal-
process adversary to operate via black-box simulation with no rewinds. Next, they do not
incorporate auxiliary input in the definition, and do not include an environment machine.
Finally, these definitions have an additional structure whose purpose is to formalize the

23 If a majority of the parties are corrupted then, in addition to the privileges described above, the adversary
cannot be prevented from “quitting early,” i.e., disrupting the computation at any time. However, this is done
without knowing the output with more certainty than the uncorrupted parties.
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amount of internal deviation from the protocol allowed touncorruptedparties. That is,
first they define what it means for a protocolπ ′ to be asemihonest protocol for a known
protocolπ . (Essentially,π ′ allows even uncorrupted parties to deviate fromπ internally,
as long as this deviation is undetectable by the other parties.) Next they say thatπ is
secure only if any semihonest protocol forπ is secure.
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