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Abstract—In Financial Cryptography 2013, Bringer, Chabanne
and Patey proposed two cryptographic protocols for the com-
putation of Hamming distance in the two-party setting. Their
first scheme uses Oblivious Transfer and provides security in the
semi-honest model. The other scheme uses Committed Oblivious
Transfer (COT) and is claimed to provide full security in the
malicious case. The proposed protocols have direct implications to
biometric authentication schemes between a prover and a verifier
where the verifier has biometric data of the users in plain form.

In this paper, we show that their protocol against malicious
adversaries is not actually secure. Namely, we show a generic
attack such that a malicious user can compute a Hamming
distance which is different from the actual value. For biometric
authentication systems, this attack allows a malicious adversary
to pass the authentication without knowledge of the honest user’s
input with at most O(n) complexity instead of O(2n), where n
is the input length. We propose an enhanced version of their
protocol where this attack is eliminated. The security of our mod-
ified protocol is proved using simulation-based paradigm. Also as
for efficiency concerns, the modified protocol utilizes Verifiable
Oblivious Transfer (VOT) which excludes the commitments to
outputs (as they exist in COT). We show that the use of VOT
does not reduce the security of the protocol but improves the
efficiency significantly.

Index Terms—Biometric Identification, Authentication, Ham-
ming distance, Privacy, Committed Oblivious Transfer.

1. INTRODUCTION

Recently, several commercial organizations have invested

in secure electronic authentication systems to reliably verify

identity of individuals. Biometric authentication mechanisms

is one of the wide-spread popular technology because of the

cost-effective improvements in sensor technologies and in the

efficiency of matching algorithms [1]. The biometric data (i.e.

templates) of a user is inherently unique. This uniqueness

provides the reliability of the individual to be securely authen-

ticated for accessing to an environment when the biometric

data is kept as secret. The biometric data cannot be directly

used with conventional encryption techniques because these

data are inherently noisy [2]. Namely, whenever two sample

of data extracted from the same fingerprint, these data would

not be exactly same. In this context, in order to eliminate noisy
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nature of the biometric templates, several error correction

techniques have been proposed in the literature [3], [4], [5].
Biometric authentication over insecure network raises more

security and privacy issues. The primary security issue is the

protection of the plain biometric templates against malicious

adversary because they cannot be replaced with a new one,

once they are compromised. The common biometric authen-

tication system is as follows. For each user, the biometric

template is stored in a database during the enrollment phase.

In the verification phase, a new fresh acquisition of a user

is compared to the template of the same individual stored

in the database. The verification phase can either be pro-

cessed within the smart card (i.e, on-card matching), or in

a system outside the card (i.e, off-card matching) [6]. Since

the biometric template is not necessarily transferred to the

outside environment, the on-card matching technique protects

the template. In both techniques, the authentication protocol

should not expose the biometric template without the user’s

agreement. In order to ensure privacy of the user, the biometric

template should be stored in an encrypted form in the database

and no one including the server side can learn any information

on link between the user and her biometric data. But still, it

should be possible to verify whether a user is authentic [7].
In order to thwart, the security and privacy issue described

above for the biometric authentication, several matching algo-

rithms are proposed in the literature. Many of them utilize

the computation of the Hamming distance of two binary

biometric templates. Note that the Hamming distance does

not reveal any significant information to any polynomially

bounded adversary. In this context, in Financial Cryptography

2013, Bringer et al. [8] have proposed two secure Hamming

distance computation schemes based on Oblivious Transfer. In

their proposals, the authors integrate the advantages of both

biometrics and cryptography in order to improve the overall

security and privacy of an authentication system. The first

scheme is solely based on 1-out-of-2 Oblivious Transfer (OT)

and it achieves full security in the semi-honest setting, and

one-sided security in the malicious setting. The second scheme

uses Committed Oblivious Transfer (COT) and is claimed to

provide full security against malicious adversaries.

A. Contributions

The main contributions of this paper are summarized as

follows:

• In this paper, we first revisit the Hamming distance com-

putation protocol SHADE of Bringer et al. [8]. We show
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that SHADE is insecure in the malicious model. Namely,

the full scheme has a severe weakness on computation of

Hamming distance. We show that this weakness allows

any malicious adversary to violate the completeness of

the protocol, i.e., a different value of Hamming distance

from the actual one.

The protocol flaw resides in the method used for val-

idation of the inputs of a user. Using zero-knowledge

proofs, the protocol forces the user to submit valid inputs,

i.e. pairs of integers (x, y) that differ by 1. The method

succeeds at checking the difference, however, it fails

at validation of the pairs, i.e. a malicious party can

submit invalid pairs (x − 2−1, x + 2−1). Since SHADE

computes the Hamming distance by summing each side

and evaluating the difference, a verifier would compute

an incorrect value. As a practical example for biometric

authentication, we show that a malicious adversary can

pass the authentication by running the algorithm at most

O(n) times (instead of running O(2n) times, where

n is the input length.). Last but least, an adversary

with knowledge of distribution of inputs can mount a

more powerful attack. Note that we believe this attack

is of independent interest and may be applied to other

schemes.

• In order to eliminate this severe weakness, we propose a

new method for input validation. This way, we remove

the fault in the protocol and enhance the security of it.

We also show that the computational complexity of the

fixed protocol is comparable with the insecure protocol.

Moreover, we optimize the new input validation method

for biometric authentication systems. We prove the secu-

rity of our protocol using ideal/real simulation paradigm

in the standard model [9], [10], [11] and [12].

• Lastly, we consider the efficiency of the protocol and

show that running a COT is not necessary in the second

option of the protocol. We show that VOT is sufficient

instead of using complete COT protocol which contains

additional commitments and zero-knowledge proofs [13].

This leads a considerable improvement in the computa-

tional complexity of the protocol.

B. Organization

Section 2 gives the related work on the computation of

Hamming distance and biometric authentication systems. Sec-

tion 3 provides the security and privacy model for biometric

authentication protocol. Section 4 reviews the two schemes in

the protocol, basic scheme which uses OTs and full scheme

based on COT of bit-strings. In Section 5, we present an attack

to the full scheme of Bringer et al. and show that their protocol

is insecure. In Section 6, we propose a security fix and discuss

the efficiency of their protocol in the malicious model. Here,

we show that VOT is sufficient instead of COT. In Section 7

we prove our fixed protocol using simulation-based paradigm.

The complexity analysis of the proposed protocol is shown in

Section 8. Finally, Section 9 concludes the paper.

2. RELATED WORK

There has been a large amount of research done on the

security and efficiency of biometric authentication systems. In

this section, we review the most recent works for biometric

authentication.

Hamming distance together with Oblivious Transfers is one

of the most elegant tools used in biometric authentication

systems. For example, Jarrous and Pinkas propose binHDOT

protocol [14] to compute Hamming distance based on 1-out-

of-2 Committed Oblivious Transfer with Constant Difference

(COTCD) of Jarecki and Shmatikov [15] and Oblivious Poly-

nomial Evaluation (OPE) of Hazay and Lindell [16]. The

protocol also uses commitments and zero-knowledge proofs to

guarantee that each party follows the protocol. The protocol

provides full security in the malicious model. One OPE

protocol and n COTCDs are invoked to compute the Hamming

distance between two strings of n bits.

The SCiFI (Secure Computation of Face Recognition) of

Osadchy et al. is the first secure face identification sys-

tem which is well suited for real-life applications [17]. The

SCiFI system consist of two parts: a client and a server.

The server prepares face recognition database that contains

representations of face images. This computation is done

offline. In the verification phase, the client prepares her face

representation and then a cryptographic protocol which uses

Paillier encryption and Oblivious Transfer running between the

server and the client. The authors implemented a complete

SCiFI system in which a face is represented with a string

of 900 bits. The authors designed the system by aiming the

minimal online overhead: the most significant requirement

for computing Hamming distance between this length of bit

strings is 8 invocations of 1-out-of-2 OTs.

Bringer et al. [18] used biometric authentica-

tion/identification for access control. Note that it is important

to securely store the biometric template to the server.

Using conventional encryption schemes for securing the

biometric template can provide a strong protection. Note

that conventional cryptography requires exact match while

biometrics always have a threshold value, therefore biometric

authentication over the encrypted domain is a challenging

task. In this paper, a cryptographic scheme is given for

biometric identification over an encrypted domain which uses

Bloom Filters with Storage and Locality-Sensitive Hashing.

This paper is interesting since it proposes the first biometric

authentication/identification scheme over encrypted binary

templates which is stored in the server’s database.

In another paper, Bringer et al. [19] proposed a security

model for biometric-based authentication protocols, relying

the Goldwasser-Micali cryptosystem [20]. This system allows

the biometric match to be performed in the encrypted domain

in such a way that the server cannot identify which user

is authenticating. The proposed system requires storage of

biometric templates in plain form. In order to protect the

privacy, the system ensures that the biometric feature stored

in the database cannot be explicitly linked to any identity, but

the DB only verifies whether the received data belongs to an

identity in the database.
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Erkin et al. [21] propose a privacy preserving face recog-

nition system on encrypted messages which is based on the

standard Eigenface recognition system [22]. In their protocol

design, they utilized semantically secure Paillier homomorphic

public-key encryption schemes and Damgård, Geisler and

Krøigaard (DGK) cryptosystem [23], [24]. Later, Sadeghi et al.

make an improvement over the efficiency of this system [25].

In this study, they merge the eigenface recognition algorithm

using homomorphic encryption and Yao’s garbled circuits.

Their protocol improves the scheme proposed by Erkin et al.

significantly, i.e. it has only a constant number of O(1) rounds

and most of the computation and communication performed

during the pre-computation phase.

Tuyls et al. [26] propose a template protection scheme for

fingerprint based authentication in order to protect biometric

data. During the enrollment phase, Alice’s biometric features

X is extracted, the Helper Data [27] W is computed (that

is required by error-correction mechanism), a one-way hash

function H is applied to S and the data (Alice, W, H(S)) is

stored to the server. Here, S is a randomly chosen secret value

such that G(X, W)=S for a shielding function G [28]. During

the verification phase, after Alice’s noisy biometric data X is

extracted, the server sends W back to the sensor. The sensor

computes S = G(X ,W) and H(S). Then, the server compares

H(S) with H(S), and grants access if the results are equal. The

Helper Data is sent over the public channel, i.e. an adversary

may obtain W. Tuyls et al. however design the system in such

a way that the adversary obtains minimal information about X

by capturing W.

Kulkarni et al. [29] propose a biometric authentication

scheme based on Iris Matching. Their scheme uses the some-

what homomorphic encryption scheme of Boneh et al. [30]

which allows an arbitrary number of addition of ciphertexts

but supports only one multiplication operation between the

ciphertexts. The scheme is based on Paillier encryption and bi-

linear pairing. This scheme consists of two phases: Enrollment

phase and Verification phase. During the Enrollment phase,

first the necessary keys are generated by the server and sent

to the client securely. Secondly, the client’s biometric data

is XORed with the key, and a mask value is XORed with a

mask key. Both XORed values are sent to the server. During

the Verification (authentication) phase, the client sends an

encryption of an authenticated biometric data to compute the

distance. The protocol is proven to be secure in the semi-

honest model.

Kerschbaum et al. [31] propose an authentication scheme

in a different setting. Particularly, they assume that there are

two parties where each of them has a fingerprint template.

They would like to learn whether the templates match, i.e.

generated from the same fingerprint. However, they do not

want to reveal the templates if there is no match. Their protocol

uses secure multi-party computation which is secure only in

the semi-honest model.

Barni et al. propose a privacy preserving authentication

scheme for finger-code templates by using homomorphic en-

cryption which is secure only in the semi-honest model [32],

[33]. Their protocol allows the use of the Euclidean distances

to compare fingerprints in such a way that the biometric data

is reduced for computing a smaller encrypted value that is sent

to the server.

3. SECURITY AND PRIVACY MODEL

We adopt the standard simulation-based definition of

ideal/real security paradigm in the standard model which is

already highlighted in [9], [10], [11] and [12]. In simulation-

based security, the view of a protocol execution in a real set-

ting is compared (a statistical/computational indistinguishable

manner) as if the computation is executed in an ideal setting

where the parties send inputs to a trusted third party F that

performs the computation and returns its result.

In an ideal setting, the parties send their inputs x and y

to a trusted third party F who computes f(x, y) (which is

the output of the Hamming distance in our setting) and sends

f1(x, y) to the first party and f2(x, y) to the second party

(f1(x, y) and f2(x, y) can be ⊥ if only one party is required

to learn the output). Note that the adversary, who controls

one of the parties, can choose to send any input it wishes

to the trusted third party F , while the honest party always

sends its specified input. In a real execution of a protocol, one

of the parties is assumed to be corrupted under the complete

control of an adversary A. Note that we always assume that the

adversary A corrupts one of the two parties at the beginning of

the protocol execution and is fixed throughout the computation

(it is known as static adversary model).

Informally, a protocol is secure if for every real-model

adversary A interacting with an honest party running the

protocol, there exists an ideal-model adversary S interacting

with the trusted party computing f , such that the output

of the adversary and the honest party in the real model is

computationally indistinguishable from the output of simulator

and the honest party in the ideal model. More formally,

Definition 3.1. (Simulation-based security) Let f and the

protocol Π be as above. We say that the protocol Πf securely

computes the ideal functionality F if for any probabilistic

polynomial-time real-world adversary A, there exists a prob-

abilistic polynomial-time an ideal-model adversary S (called

the simulator) such that

REALΠF ,A(x, y)x,y s.t. |x|=|y| ≈ IDEALF,S(x, y)x,y s.t. |x|=|y|

Note that the above definition implies that the parties

already know the input lengths (by the requirement that |x|
= |y|).

Note that VOT and COT protocols are used as sub-protocols.

In [34], [35], it is shown that it is sufficient to analyze the

security of a protocol in a hybrid model in which the parties

interact with each other and assumed to have access to a

trusted third party that computes a VOT (resp. COT) protocol

for them. Thus, in the security analysis of our protocol the

simulator will play the role of the trusted third party for VOT

(resp. COT) functionality when simulating the corrupted party.

Roughly speaking, in the hybrid model, parties run an arbitrary

protocol like in the real model, but have access to a trusted

third party that computes a functionality (in our case VOT or

COT) like in the ideal model. A protocol is secure if any attack

on the real model can be carried out in the hybrid model.
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4. THE BASIC AND THE FULL SCHEME OF BRINGER et al.

In this section, we briefly describe the basic and the full

scheme of [8] used for computation of Hamming distance

between two bit strings. The basic scheme uses oblivious

transfer (OT) and provides full security when the parties are

semi-honest and one-sided security in the malicious model.

The full scheme uses committed oblivious transfer (COT) [36]

and zero-knowledge proofs of knowledge [13] to compute the

Hamming distance in malicious model. Each scheme has two

options to select the party which computes and outputs the

result meaning that each party may act as a server and the

other as a client.

A. The Basic Scheme

The basic scheme is designed to provide secure and efficient

method for computing the Hamming distance between two bit

strings in semi-honest model. The intuition behind this proto-

col is that if both parties are semi-honest, the OT protocols

are sufficient to preserve privacy.

The basic scheme in [8] is roughly as follows:

Using the local notation, let P1 and P2 have the inputs

X = {x1, . . . , xn} and Y = {y1, . . . , yn} respectively. At

the first step, P1 randomly picks r1, . . . , rn ∈R Zn+1 and

computes R =
n
∑

i=1

ri. For each 1 ≤ i ≤ n, the parties run

oblivious transfer in which P1 acts as the sender and P2 acts

as the receiver. More precisely, P1 inputs (ri + xi, ri + xi)
where xi = 1 − xi and P2 inputs yi. At the end of OT, P2

receives ti = (ri +xi) if yi = 0 and (ti = ri +xi) otherwise.

Next, P2 computes T =
n
∑

i=1

ti. In the last step,

• 1st Option: P2 sends T to P1.

P1 computes and outputs T −R.

• 2nd Option: P1 sends R to P2.

P2 computes and outputs T −R.

In the case of one party is malicious, the privacy of the

honest party is still provided because of the flexibility at the

end of the protocol.

Compared to the related protocols for secure computation of

Hamming distance in the semi honest model, the basic scheme

of Bringer et al. [8] is the most efficient protocol as they

proved in Section 6 of [8].

The authors also mention that the basic scheme can be

optimized by using the state of the art techniques, i.e. extended

oblivious transfer, as first proposed by Ishai et al. in [37] and

later improved in [38]. This technique leads to an efficient

construction which extends k OTs to n OTs (k < n) in the

random oracle model that is secure against only semi-honest

adversaries (note that hash functions can be replaced with RO

model in the real case).

B. The Full Scheme

The full scheme of Bringer et al. considers the case where

the parties are assumed to be malicious. Note that running OT

protocol does not prevent a party from modifying her input.

Secondly, the receiver may send a different value than the

actual OT output that she computes. In order to prevent such

scenarios, the authors propose to use the 1-out-of-2 Committed

Oblivious Transfer (COT) protocol of Kiraz et al. presented

in [36]. Though, in Section 5, we show that the idea of input

validation for P1 is not sufficient and can be exploited with

success.

Before we proceed, let’s continue with the description of

the full scheme.

At the first step of the protocol, P2 commits to her inputs

yi’s and proves that each yi is either 0 or 1. At the same

time, P1 generates random ri’s from the plaintext space of

the commitments scheme and computes R =
n
∑

i=1

ri but

this time she commits to (ai, bi) = (ri + xi, ri + xi).
Let’s denote Commit(M) for a commitment functionality of

a message M (note that Commit includes randomness and

we hide it for the sake of simplicity). P1 publishes the

commitments Ai = Commit(ai) and Bi = Commit(bi).
Note that Commit functionality is basically a (2,2)-threshold

homomorphic encryption which is used as a commitment

scheme (e.g., ElGamal [39], Paillier [40]). Furthermore, using

these commitments she proves that her inputs ai’s and bi’s

differ by 1. Next, the COT protocol is run for each i. At the

end of each COT, P2 receives ti = ri + (xi ⊕ yi) and both

parties receive Ci = Commit(ti) . When all the COTs are run,

P2 computes the sum T =
n
∑

i=1

ti.

At this point, there are again two options:

• 1st Option: P2 computes C = Commit(T ) = C1 · . . . ·
Cn because of the underlying homomorphic property [8].

P2 sends T to P1 and proves that C commits to T. P1

computes C = C1 · . . . · Cn and checks the proof. If all

verifications are successful, P1 outputs T −R.

• 2nd Option: P1 computes K = Commit(2R + n) =
A1 · . . . ·An ·B1 · . . . ·Bn. P1 sends R to P2 and proves

that K commits to 2R+ n. P2 computes K = A1 · . . . ·
An ·B1 · . . . ·Bn and checks that K = Commit(2R+n).
If all verifications are successful, P2 outputs T −R.

The authors in [8] claims that the above scheme is fully

secure against malicious parties. However, in the next section

we show that a malicious P1 can easily break the completeness

property of the scheme.

5. SECURITY AND EFFICIENCY ANALYSIS OF THE

BRINGER’S PROTOCOL et al.

We are now ready to describe the protocol flaw of the full

scheme in detail. The security flaw is due to the proof for

validation of P1’s input bits. The flaw allows a malicious P1

to change the Hamming distance between her input and P2’s

input. In the next section, we will propose a solution to fix the

flaw by designing a new proof for validation. We show that

the complexity of the new proof for the validation of P1’s

input bits for biometric authentication systems is significantly

reduced.

Furthermore, we also analyze the protocol from the ef-

ficiency perspective and show that the complexity of the

protocol can be significantly improved. COT protocol is basi-

cally designed as a sub-protocol in order to prevent possible

malicious behaviors between sender and receiver, where the
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committed output of COT is expected to be used in further

parts of the system. However, the committed outputs of COT

are not used in the case that P1 computes the Hamming

distance. Hence, we will point out that verifiable OT will be

sufficient in the case that P1 computes the Hamming distance.

This will eliminate to compute n commitments together with

the zero-knowledge proofs (for each run of COT protocol). In

this way, we will improve the efficiency of the protocol by

using VOT instead of COT when P1 is the server.

A. Attack to the Full Scheme

The protocol is insecure in the case where P1 is malicious.

This is because P1 is free in the sense that she can commit to

any pair such that the absolute value of the difference of the

encrypted values pairs is 1, i.e. P1 proves that |bi − ai| = 1
where the pair (ai, bi) is supposed to be (ri + xi, ri + xi).
However, a malicious P1 may choose invalid pairs in a special

way together with the proofs that difference between each pair

is equal to 1. Our attack uses the fact that at the end of each

COT, P2 receives either ti = ri + g or ti = ri + h and

computes the sum T =
n
∑

i=1

ti, where g, h are within the finite

cyclic group. Note that g is expected to be equal to xi and h

to xi. However, with a careful choosing of g’s and h’s, some

g’s can be neutralized by some h’s in this sum. Hence, the

completeness property of the protocol can be violated.

Before we describe the attack we need to highlight that the

underlying COT scheme uses threshold ElGamal encryption as

a commitment mechanism, i.e. Commit(xi) = Enc(xi) where

xi ∈ G where G is a large finite cyclic group (of a prime

order) [36]. This guarantees the existence of the inverse of n.

Without loss of generality assume that #0’s in P2’s input Y

is ℓ (i.e., #1’s in Y is n− ℓ). We would like to highlight that

the Hamming distance can be scalable with the knowledge of

#0’s (similarly #1’s) in P2 as follows: a malicious P1 may

use (ai, bi) = (ri + g, ri + h) for a predetermined Hamming

distance value HD = ℓg + (n− ℓ)h such that g−h = 1. Then,

HD = ℓg + (n− ℓ)(g − 1) = ng − n+ ℓ.

For an example, if a malicious P1 desires Hamming distance

HD to be 0 then she choose g = 1 − ℓn−1. Next, h= g-1=

-ℓn−1. Hence, P1 may use (ai, bi)=(ri+(1−ℓn−1), ri−ℓn
−1)

as input. To be more concrete, the attack is given as follows:

• P2 commits to her inputs yi’s and proves that each yi is

either 0 or 1. P1 then generates random ri’s and computes

R=
n
∑

i=1

ri.

• Next, instead of following the protocol, P1 computes

(ai, bi)=(ri+(1− ℓn−1), ri− ℓn−1) and publishes Ai =
Commit(ai) and Bi = Commit(bi). Note that for each i,

|bi−ai| = 1 and hence, the proofs will pass successfully.

• At the end of each COT, P2 receives either ti = ri +
(1 − ℓn−1) or ti = ri − ℓn−1. After COTs are run, P2

computes the sum

T =

n
∑

i=1

ti

=
∑

i|yi=0

(

ri + (1− ℓn−1)
)

+
∑

i|yi=1

(

ri − ℓn−1
)

= ℓ(1− ℓn−1) + (n− ℓ)(−ℓn−1) +

n
∑

i=1

ri

=

n
∑

i=1

ri

= R.

Therefore, the Hamming distance dH(X,Y )=T − R will

be equal to 0. We stress that the weakness in the scheme is

destructive as we prove that a relatively insignificant informa-

tion leakage causes computation of a completely inaccurate

result. Namely, without knowledge of the real X , P1 fools P2

into outputting an incorrect Hamming distance value without

being detected. Furthermore, a malicious P1 with the prior

knowledge of ℓ is capable of manipulating HD as it is easy to

find g and h using above equation. This is interesting because

of the following result: The authors in [41] propose a privacy-

preserving protocol for iris-based authentication using Yao’s

garbled circuits. They show that Hamming distance between

two iris codes owning by the same person is rarely close to

0 or to n between different people. Therefore, the scalability

feature of our attack can be easily adopted to various settings.
In this part, we propose the most general case and in the next

section we give a practical attack for biometric authentication

schemes reducing the computational complexity of an attacker

from O(2n) to O(n), where n is the input length. Namely, an

attacker without any prior knowledge can authenticate herself

using only n trials instead of 2n.

B. A Special Case: Apply the Generic Attack to Biometric

Authentication Systems

In this section, we apply the proposed attack for biomet-

ric authentication systems with full success. Note that the

matching procedure for fingerprint, palm print or iris actually

measures the Hamming distance between the two bit-strings

X and Y that encode the biometric sample and template (e.g.,

[7], [42], [29]).
The attack basically uses n (instead of 2n) protocol runs to

successfully authenticate to the system, where n is the input

length. In general, for an n-bit string Y = (y1, . . . , yn), an

attacker must roughly try 2n search for X of length n to pass

the threshold value which is infeasible for large n. However,

using the proposed attack a corrupted P1 can authenticate the

system after at most n trials (because the number of 0s or 1s

in Y is between 0 ≤ ℓ ≤ n). More precisely, for ℓ = 1 to

n a corrupted P1 runs the method proposed previous section.

Because 0 ≤ ℓ ≤ n, the authentication will be successful with

at most n trials without any knowledge of the real input X .

C. Apply the Generic for Uniformly Distributed Inputs

This attack can also be directly applied to uniformly dis-

tributed bit strings X and Y . In this scenario the input bit-
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strings of P2 (which is generated from a biometric template)

is expected to be independent and identically distributed. That

is, there are nearly equal number of zeros and ones in an

input bit string. Below, we show that this fact easily allows an

adversary to minimize the Hamming distance and successfully

deceive a verifier:

1) P2 commits to her inputs yi’s and proves that each yi is

either 0 or 1.

2) P1 picks random ri’s and computes R =
n
∑

i=1

ri.

3) Instead of computing (ai, bi) = (ri + xi, ri + x̄i),
P1 computes (ai, bi) = (ri − 2−1, ri + 2−1) in order

to make the commitments Ai = CommitP1,i(ai) and

Bi = CommitP1,i(bi). The authors in [8] uses homo-

morphic encryption as the commitment mechanism. Since

those cryptosystems work in a group of prime order,

the multiplicative inverse of 2 always exists, i.e. P1 can

commit to (ai, bi) = (ri−2
−1, ri+2−1). Next P1 proves

that |bi− ai| = 1 which always holds. Note that P1 does

not prove the validity of her input, i.e, she does not prove

that the xi’s are equal to either 0 or 1.

4) COTs are run and, in one half of the COTs (because of

the uniform distributed inputs), P2 receives ti=ri − 2−1

and ti = ri + 2−1 in the other half.

5) P2 computes T ←
n
∑

i=1

ti. Since yi’s are equally dis-

tributed, i.e. the numbers of 0s and 1s in {y1, . . . , yn}

are equal, P2 computes T =

(

∑

i

ri + 2−1

)

+
(

∑

i

ri − 2−1

)

=
n
∑

i=1

ri = R.

6) Using the 2nd option, K = CommitP2,i(2R+ n) = A1 ·
. . . ·An ·B1 · . . . ·Bn.

7) P1 sends R and the proof that K commits to 2R+ n to

P2.

8) P2 computes dH(X,Y ) = T − R = 0 and authenticates

P1.

D. Our solution for the attack

The weakness of the full scheme is due to the wrong method

used for validation of the input pairs {(ai, bi), ∀i = 1, . . . , n}.
A malicious P1 can exploit this weakness as described in the

previous section. Therefore, designing cryptographic protocols

should be carefully checked against these kinds of tricks.

As a security fix, we modify the step in which P1 gen-

erates random ri values. Namely, after generating each ri,

P1 will compute and publish Ai = Commit(ri + xi), Bi =
Commit(ri +x) and Commit(ri). Moreover, P1 will send the

proof of:

((ai − ri) = 0 ∨ (bi − ri) = 0) ∧ |bi − ai| = 1

that is equivalent to

(ai + bi − 2ri = 1) ∧ |bi − ai| = 1

This statement contains one more relation than the original

proof in [8]. Although the computation cost of the protocol

is slightly increased, the validation process is now secure. To

see this, assume that (ai + bi − 2ri = 1) ∧ |bi − ai| = 1 is

true. This implies |bi− ai| = 1 and (ai + bi− 2ri = 1). Here,

there are two cases:

ai = bi + 1⇒ 2bi + 1− 2ri = 1⇒ bi = ri, ai = ri + 1

bi = ai + 1⇒ 2ai + 1− 2ri = 1⇒ ai = ri, bi = ri + 1

In Section 7 we provide the security analysis of the im-

proved scheme.

1) More Efficient Solution for Biometric Authentication:

Biometric authentication systems are designed to tolerate a

small level of errors. In general, the measure process is not

perfect in most environments and thus, instead of exact match,

a biometric system authenticates a party that matches with a

small error to prevent false negatives.

The authentication process must also have a small com-

plexity to compute the result in the fastest way. Therefore

each party must prove nothing more than the necessary and

sufficient data for validation of her input.

These motivations lead us to design a more efficient proof

that can be used in the biometric authentication systems.

Namely, after generating and publishing the commitments to

ai, bi, ri as in the previous section, P1 sends the proof of:

ai + bi − 2ri = 1.

The above relation has a smaller complexity than |bi−ai| = 1
while it still provides higher security. This input validation

method is an efficient solution for our attack in the case of

biometric authentication. Note that an adversary may input

(ai, bi) = (ri − 2−1, ri + 2−1) and pass the validation but its

Hamming distance will be n
2 which is the expected value of

Hamming distance between two random inputs with length n.

E. Efficiency Enhancements

In this section, we present some improvements for the

efficiency of the protocol. First, we reduce the computational

complexity of the protocol using VOT instead of COT without

sacrificing the security. Namely, COT will not be necessary in

the case where P2 computes the final Hamming distance. Next

we will reduce the complexity of the proof for the validity of

P1’s inputs in the case of biometric authentication.

1) COT versus VOT: Verifiable OT and Committed OT

are natural combination of
(

2
1

)

-OT and commitments. Let

CommitS and CommitC be commitments by Sender and

Chooser respectively. The functionality of committed OT is

illustrated in Figure 2.

Verifiable OT is defined if the CommitC(xy) is not required

as output. We show that the basic protocol in [8] does not have

to use COT in the case that the server computes the result.

We note two aspects:

What to transfer

{

bits x0, x1 ∈ {0, 1}
strings x0, x1 ∈ {0, 1}

k

Committed Output

{

yes→ Committed OT

no → Verifiable OT

2) Efficiency Improvement Using VOT: In this section, we

point out a computational complexity reduction. Note that

COT is run for the malicious case in [8]. COT requires the
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Sender

Private Input: x0, x1

Private Output: ⊥

Common Input:

CommitS(x0), CommitS(x1),CommitC(y)

Verifiable OT←→

Chooser
Private Input: y

Private Output: xy

Fig. 1: Verifiable Oblivious Transfer

Sender

Private Input: x0, x1

Private Output: ⊥

Common Input:

CommitS(x0), CommitS(x1),CommitC(y)

Committed OT←→
Common Output: CommitC(xy)

Chooser
Private Input: y

Private Output: xy

Fig. 2: Committed Oblivious Transfer

receiver to obtain the output together with its commitment to

this value. In the beginning of the protocol, the input of P1

is an n-bit string X = (x1, . . . , xn) and the input of P2 is

an n-bit string Y = (y1, . . . , yn). After running the protocol

there are two options:

• P1 obtains the Hamming distance dH(X,Y ) and P2

obtains nothing

• P2 obtains the Hamming distance dH(X,Y ) and P1

obtains nothing

In case P2 computes the Hamming distance, the committed

values from the output of COT will not be used. In such

case, these commitments are not necessary to be computed

and, therefore VOT will be sufficient to use. We realized this

observation after writing the COT protocol explicitly with

the overall protocol instead of using as a black box. If P1

computes the Hamming distance COT will still be necessary

to use.

6. OUR FIXED AND IMPROVED SCHEME

We have made modifications to the full scheme in [8]: we

fix the security weakness described in Section 5 and improve

the efficiency of the protocol as mentioned in Section 5. Now,

we give the corrected scheme with all details:

Inputs:

• P1 inputs an n-bit string X = (x1, . . . , xn)
• P2 inputs an n-bit string Y = (y1, . . . , yn)

Outputs:

• 1st Option: P1 obtains dH(X,Y ) and P2 obtains nothing

• 2nd Option: P2 obtains dH(X,Y ) and P1 obtains nothing

Protocol:

1) P2 commits to her inputs yi’s and proves that each of yi
is either 0 or 1.

2) P1 generates random ri’s from the plaintext space of

Commit and computes R =
n
∑

i=1

ri.

3) P1 commits to (ai, bi, ri) = (ri + xi, ri + xi, ri). P1

publishes Ai = Commit(ai), Bi = Commit(bi) and

Commit(ri).

4) P1 proves that (|ai−ri| = 0∨|bi−ri| = 0)∧|bi−ai| = 1.

5) For each i = 1, . . . , n, a COT is run where

• P1 acts as the sender and P2 as the receiver.

• P2’s selection bit is yi.

• P1’s input bit is (ai, bi).
• The output obtained by P2 is ti = ri + (xi ⊕ yi).
• Both parties obtain Ci = Commit(ti).

6) P2 computes T =
n
∑

i=1

ti

7) 1nd Option: Run VOT

a) P1 computes K = Commit(2R + n) = A1 · . . . · An ·
B1 · . . . ·Bn.

b) P1 sends R to P2 and proves that K commits to 2R+n.

c) P2 computes K = A1 · . . . An ·B1 · . . . ·Bn and checks

that K = Commit(2R+ n).
d) If all verifications are successful, P2 outputs T −R.

2st Option: Run COT

a) P2 computes C = Commit(T ) = C1 · . . . · Cn.

b) P2 sends T to P1 and proves that C commits to T.

c) P1 computes C = C1 · . . . · Cn and checks the proof.

d) If all verifications are successful, P1 outputs T −R.

7. SECURITY ANALYSIS OF OUR SCHEME

A cryptographic protocol is secure if the view of an adver-

sary in a real protocol execution can be generated from the

information the adversary has (i.e., its input and output). In

this section, we proved the security of the proposed protocol

by constructing a simulator, which is given only the input

and output of the “corrupted” party, and generating a view

that is indistinguishable from the view of the adversary in a

real protocol execution [9], [10], [11], [12]. This implies that

the adversary learns no information from the real protocol

because it could generate anything from what it sees in such

an execution by itself.

Theorem 7.1. The proposed protocol, which is shown in Fig-

ure 3, is secure in the presence of static malicious adversaries.
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P1 P2

X = x1 . . . xn where xi ∈ {0, 1}, skP1
Y = y1 . . . yn, yi ∈ {0, 1}, skP2

Compute CommitP2,i(yi) ∀i = 1 . . . n ∈R Z
∗
q

CommitP2,i
+Proofs,∀i=1...n

←−−−−−−−−−−−−−−−−−−
Pick r1, . . . , rn ∈R Z

∗
q

Compute R =
n
∑

i=1

ri

Compute (ai, bi) = (ri + xi, ri + x̄i) ∀i = 1 . . . n
Compute Ai = CommitP1,i

(ai) ∀i = 1 . . . n
Compute Bi = CommitP1,i

(bi) ∀i = 1 . . . n
Compute Ri = CommitP1,i

(ri) ∀i = 1 . . . n
<Ai,Bi+Prove that ((ai−ri)=0 or (bi−ri)=0) and |bi−ai=1|,∀i=1...n>
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1st Option:
<VOT((Ai,Bi);CommitP2,i(yi)):∀i=1...n>
←−−−−−−−−−−−−−−−−−−−−−−−−−−→

Obtain ti where ti = ri + xi ⊕ yi ∀i = 1 . . . n

Compute T ←
n
∑

i=1

ti

Compute K = CommitP2,i
(2R+ n) =

n
∏

i=1

AiBi Compute CommitP2,i
(2R+ n) =

n
∏

i=1

AiBi

R+Prove that K commits to (2R + n)
−−−−−−−−−−−−−−−−−−−−−→

dH(X,Y ) = T −R

2nd Option:
<COT((Ai,Bi);CommitP2,i(yi)):∀i=1...n>
←−−−−−−−−−−−−−−−−−−−−−−−−−−→

Obtain ti and Ci = Commit(ti) where

ti = ri + xi ⊕ yi ∀i = 1 . . . n

Compute T =
n
∑

i=1

ti

Compute Commit(T ) =
n
∏

i=1

Ci Compute C = Commit(T ) =
n
∏

i=1

Ci

T+Prove that C=Commit(T )
←−−−−−−−−−−−−−−−−−

dH(X,Y ) = T −R

Fig. 3: Our Improved Scheme

Proof. We show that given a party is corrupted, there exists

a simulator that can produce a view to the adversary that is

statistically indistinguishable from the view in the real protocol

execution based on its private decryption share as well as

public information.

Case-1-P1 is corrupted. Let AP1
be an adversary corrupting

P1. We construct a simulator SP1
and show that the view of

the adversary AP1
in the simulation with SP1

is statistically

close to its view in a hybrid execution of the protocol with

a trusted party running the VOT (resp. COT) protocol. Since

we assume that the VOT (resp. COT) protocol is secure, we

analyze the security of the protocol in the hybrid model with

a trusted party computing the VOT (resp. COT) functionality.

Note that the simulator SP1
knows X, skP1

and dH(X,Y ).
The simulator proceeds as follows:

1) SP1
picks arbitrary Ỹ = ỹ1 . . . ỹn and computes

˜CommitP2,i
. SP1

can simulate the proofs since it knows

the committed input values ỹi’s and skP1
.

2) In case of VOT is run:

a) SP1
first extracts the input of RP1

from VOT function-

ality in the hybrid model, then sends the input to the

trusted party and learns the output value t̃i.

b) SP1
computes T̃ =

n
∑

i=1

t̃i and computes

CommitP2,i
(2R + n) =

n
∏

i=1

AiBi as in the real

protocol.

In case of COT is run:

a) SP1
first extracts the input of RP1

from COT func-

tionality in the hybrid model, then sends the input to

the trusted party and learns the output value t̃i and

C̃i = Commit(t̃i) ∀i = 1, . . . , n.

b) SP1
computes T̃ =

n
∑

i=1

t̃i and Commit(T̃ ) =
n
∏

i=1

C̃i as

in the real protocol.

c) SP1
can simulate the proof since it knows the commit-

ted input value T̃ ’s and skP1
.

Consequently, each step of the proposed authentication

protocol for the simulator is simulated and this completes

the simulation for the malicious verifier. The transcript is

consistent and statistically indistinguishable from the verifier’s

view when interacting with honest P2.

Case-2-P2 is corrupted. Let AP2
be an adversary corrupting

P2, we construct a simulator SP2
as follows. Since we assume

that the COT (resp. VOT) protocol is secure, we analyze the

security of the protocol in the hybrid model with a trusted

party computing the COT (resp. VOT) functionality. Note that

the simulator SP2
knows Y = y1 . . . yn, skP2

and dH(X,Y ).
The simulator proceeds as follows:
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1) SP2
picks arbitrary X̃ = x̃1 . . . x̃n.

2) SP2
picks r̃i ∈R Z

∗
q and computes R̃P2

=
n
∑

i=1

r̃i. Next,

SP2
computes (ãi, b̃i) = (r̃i + x̃i, r̃i + ¯̃

ix) ∀i = 1 . . . n.

SP2
computes Ãi, B̃i and R̃i as in the real protocol.

SP2
can again simulate the proofs since he knows the

committed input values and skP2
.

3) In case VOT is run:

a) SP2
first extracts the input of RP1

from VOT func-

tionality in the hybrid model and then sends the

input to the trusted party. SP2
next computes K̃ =

CommitP2,i
(2R̃+n). SP2

can simulate the proof since

it knows the committed input values and skP2
.

In case COT is run:

a) SP2
first extracts the input of RP1

from COT func-

tionality in the hybrid model and then sends the input

to the trusted party and learn Ci ∀i = 1, . . . , n. SP2

computes Commit(T̃ ) =
n
∏

i=1

C̃i.

Consequently, each step of the proposed authentication

protocol for the simulator is simulated and this completes

the simulation for the malicious verifier. The transcript is

consistent and statistically indistinguishable from the verifier’s

view when interacting with honest P1.

8. COMPLEXITY ANALYSIS OF OUR FIXED PROTOCOL

In this section, we analyze the computational complexity

of our fixed protocol and compare it with the full scheme of

Bringer et al. [8]. In our protocol, the number of invoked zero-

knowledge proofs and multiplication of ciphertexts remain

the same. However, we have improved the efficiency of the

protocol significantly by replacing n COTs with n VOTs in

the second option of the protocol where P2 computes the

final Hamming distance. In this way, we show that n number

commitments, 2n number of partial decryption and 2n number

of ZK proofs can be removed. The number of commitments

of P1 is increased from 2n to 3n in order to guarantee the

validity of P1’s inputs. This is the price that should be paid

to make the protocol secure. The complexity comparison of

the full scheme of Bringer et al. [8] and our fixed protocol is

illustrated in Figure 4.

Scheme of

Bringer et al.

Our Fixed

Scheme

P1 P2 P1 P2

Commitments 2n n 3n n

ZK proofs n

OTs n COTs
1st opt: n COTs

2nd opt: n VOTs

Multiplication

of ciphertexts

1st opt: n

2nd opt: 2n

Fig. 4: Complexity Comparison

Our analysis shows that the additional cost of the security

fix is only n number of commitments made by P1, independent

of the party which computes the final Hamming distance.

However, in the case that P2 computes the final Hamming

distance, the computational savings that can be achieved by

replacing the n COTs with n VOTs are far more larger. In

general, a COT protocol requires one more flow than a VOT

protocol in which the chooser recommits to its received value

and proves that the new commitment equals to her previous

committed input. In particular, the full scheme in [8] uses the

COT scheme of [36] where each run of a COT protocol re-

quires one commitment, two partial decryption of a ciphertext

and two zero-knowledge proofs in addition to a VOT protocol.

As a result, we avoid unnecessary use of two zero-knowledge

proofs and two partial decryptions. Consequently, we improve

the efficiency of the protocol significantly while we establish

the security of the protocol.

9. CONCLUSION

Bringer et al. [8] proposed two Hamming distance computa-

tion schemes which can be applied to biometric authentication

systems. In semi-honest setting, the basic scheme in [8] is

the most efficient up to date. However, their full scheme is

insecure in the malicious case.

In this paper, we show that the full scheme of Bringer et al.

[8] has a critical security issue. In our attack, we show that

an adversary without having any prior knowledge can make

the verifier compute an incorrect Hamming distance. In the

case of biometric authentication systems, a malicious user can

easily authenticate without any information about the honest

party. Namely, the complexity of the security of the system

is reduced from O(2n) to O(n), where n is the input length.

Moreover, we fix the protocol by placing a robust method

for input validation without adding a significant cost. We

also enhance the efficiency of their protocol significantly by

showing that Verifiable Oblivious Transfer (VOT) is sufficient

to use instead of Committed Oblivious Transfer (COT) in

the second option of the full scheme. VOT reduction avoids

the unnecessary computation of one commitment, two zero-

knowledge proofs and two partial decryption of the ciphertext

for each bit of the input.
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