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ABSTRACT With the increasing demands on quality healthcare and the raising cost of care, pervasive

healthcare is considered as a technological solutions to address the global health issues. In particular,

the recent advances in Internet of Things have led to the development of Internet of Medical Things (IoMT).

Although such low cost and pervasive sensing devices could potentially transform the current reactive care

to preventative care, the security and privacy issues of such sensing system are often overlooked. As the

medical devices capture and process very sensitive personal health data, the devices and their associated

communications have to be very secured to protect the user’s privacy. However, the miniaturized IoMT

devices have very limited computation power and fairly limited security schemes can be implemented in

such devices. In addition, with the widespread use of IoMT devices, managing and ensuring the security

of IoMT systems are very challenging and which are the major issues hindering the adoption of IoMT for

clinical applications. In this paper, the security and privacy challenges, requirements, threats, and future

research directions in the domain of IoMT are reviewed providing a general overview of the state-of-the-art

approaches.

INDEX TERMS Security, privacy, Internet of Medical Things, IoMT, mIoT, healthcare systems, survey.

I. INTRODUCTION

In the healthcare industry, significant improvements in effi-

ciency and quality of care are expected from the diverse range

of developments in Internet of Things (IoT), which is often

referred as Internet of Healthcare Things (IoHT) or Internet

of Medical Things (IoMT). In particular, smart wearable and

implantable medical devices have attracted much interest in

recent years due to the advances in microelectronics, materi-

als, and biosensor designs. The rapid development of IoMT,

however, has meant that the security and privacy of these

IoMT-based healthcare systems often has received insuf-

ficient attention. The consequences of inadequate security

in IoMT healthcare systems can be, for instance, compro-

mised patients’ privacy due to eavesdropping, and delayed

detection of life threatening episodes due to the disruption

of normal operations of IoMT devices caused by Denial

of Service (DoS) attacks. A study conducted by HP For-

tify in 2015 found that the 10 most popular smartwatches

(at the time) all had security vulnerabilities from insufficient

authentication or authorization, lack of data transmission
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encryption, insecure interfaces, insecure software/firmware,

and privacy concerns [1]. Authentication, for example, is the

process of confirming identity of the user. All IoMT health-

care systems should only be accessed by authorized and

authenticated users or devices. Insufficient authentication

protection could potentially allow attackers to enter the sys-

tem and gain access to private healthcare data of the users.

User and device authentication is important to a system

as it ensures that the data is correctly attributed and infor-

mation in the systems is only accessible to the authorized

entities. In the context of healthcare systems, the ability

to authenticate the users of medical devices could be used

to establish the integrity of the data, for instance, activ-

ity information form obese patients. Authentication would

also be used to safeguard patients’ privacy by ensuring

that information, such as the patients’ electronic medi-

cal records [2], is only accessible to the authorized and

authenticated users (i.e. patients’ general practitioners). Net-

work and system security is a well-established field, and

extensive security protection schemes and methods are

available to protect computer systems and networks. For

example, public-key cryptosystems, such as Rivest-Shamir-

Adleman (RSA) [3] and Digital Signature Algorithm (DSA)
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[4], are commonly used algorithms in securing computer

networks.

However, many of such cryptosystems cannot be applied

for IoT devices due to their low power and low computational

capability [5]. Compare to typical IoT devices, wearable

and implantable medical and healthcare devices are often

designed with even lower computational power and battery

capacities as they have to be miniaturized in size. IoMT

devices have to store and process personalized health data,

and some devices even have actuation functions to support

the users’ health (i.e. insulin pump). Therefore, the level

of security required for IoMT devices are expected to be

much higher than typical IoT and computing devices [6]. Yet,

security and threats are often overlooked in the design of

IoMT healthcare systems.

Most of the IoMT devices are designed to transmit and

store the data in the cloud, which can be further pro-

cessed and analyzed. This advancement in healthcare systems

enables the medical carer to provide faster and more accurate

responses to the patients that are being monitored by the

medical and healthcare devices. However, it also introduces

risks of users’ data stored in the cloud servers being abused

or stolen [7]. The privacy of the users’ data, especially users’

personal data must be well protected. Yet, many examples of

security breaches of cloud servers from large enterprises, such

as Facebook [8] and Yahoo [9], raise the question on whether

the patients’ sensitive health data can really be protected.

In fact, more andmoremalicious attackers are targetingmedi-

cal servers and eHealth systems, because personal health data

is very valuable in the illegalmarkets [10]. Therefore, medical

service providers require even stronger security measures,

which inevitably increases the costs of creating, running, and

maintaining these medical services.

In addition to developing countermeasures to attacks,

post-attack measures are also needed to be well considered.

Financial information, such as credit card security codes, can

be made invalid and useless quickly, but personal health data

can reveal a person’s current health conditions [11]. When

such data is stolen in a case of security breach, the retrieval

and elimination of the stolen data is both challenging and

critical. To protect patients’ data, strong regulations and

severe penalties must be in place from governments and

healthcare organizations. In the EuropeanUnion, Information

Commissioner’s Office (ICO) could only fine a company

who is responsible for a data breach up to 500,000 pounds

previously, however, with the newly introduced General Data

Protection Regulation (GDPR), ICO is now able to fine

a company based on the company’s profits. For example,

British Airways is suspected to be fined up to 183 mil-

lion pounds, due to a data breach of 500,000 users from

its website and mobile app [12]. In the United States,

the Health Insurance Portability and Accountability Act

of 1996 (HIPAA) provides rules and provisions for the pri-

vacy of medical and healthcare data. The law also forces

healthcare service providers to ensure the security and pri-

vacy of their systems against cyber-attacks and ransomware

attacks. In addition, according to the GDPR, any incidents

of data breaches in the healthcare systems must be reported

promptly within 72 hours [13], where as HIPAA requires

companies to report data breaches no later than 60 days if

the breach affected more than 500 people [14].

Medical devices in the U.S. are regulated by the Food

and Drug Administration (FDA). According to a study [15],

among 13.79% of all the medical devices approved or cleared

by FDA that include software, only 2.13% have incorporated

cybersecurity in their software designs from 2002 to 2016.

Recently, the FDA had issued a warning on cybersecurity

vulnerabilities referred as ‘‘URGENT/11’’ which exists in a

third-party software called IPnet. The URGENT/11 would

affect more than 200 million devices related to medical ser-

vices [16]. FDAhas also updated their cybersecurity guidance

on medical device software in 2018, to provide up to date

instructions on protecting patients’ data on medical devices

and services. Despite the recent efforts put in by the gov-

ernments and agencies, the number of cyberattack against

medical services has increased [17].

This paper provides an overview of the current the chal-

lenges, requirements, and identify potential threats for the

security and privacy of the IoMT healthcare systems. Despite

there are several reviews and surveys on this topic in the liter-

ature, they all have different research focuses. Sun et al. [18]

published a review that focuses on the security and privacy

requirements regarding to the data flow in different layers

of IoMT systems. Williams and McCauley [19] reviewed the

vulnerabilities of interconnected medical devices in the IoHT

environment. Sahi et al. [20] presented a review that discusses

the privacy preservation issues in the context of e-healthcare

environments. Alsubaei et al. [21] published a review that

provides a taxonomy of the security and privacy issues of

IoMT. Hatzivasilis et al. [22] reviewed security and privacy

challenges of IoMT in a business stand point. Algarni [23]

surveyed and analyzed security research for smart healthcare

systems by classifying and ranking top contributed research

works in their applicable domains.

This paper uses a bottom-up approach, reviewing the secu-

rity and privacy challenges and requirements from the data

level to the medical server level of the IoMT-based healthcare

systems. In addition, this paper presents the potential of

biometrics and its applications for securing IoMT healthcare

systems. This paper also discusses the security schemes for

implantable IoMT devices, as there are increasing number

of medical implantable devices and they shares unique chal-

lenges due to their hardware limitations. The rest of the paper

is organized as follows: Section II provides an overview of the

IoMT-based healthcare system and challenges for the IoMT

network and protocol designs. A survey of the security and

privacy requirements for each level of the IoMT healthcare

systems is presented in Section III. Then, the state-of-the-

art security research is discussed in Section IV, as well as

biometric authentication and implantable security schemes.

Discussions, future research directions, and conclusions are

presented in the last three sections.
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FIGURE 1. Architecture of IoMT-based healthcare systems [24].

II. INTERNET OF MEDICAL THINGS: SYSTEMS,

NETWORKS, AND DESIGN CHALLENGES

A. IoMT-BASED HEALTHCARE SYSTEMS

IoMT-based healthcare systems often consist of 3 tiers, sen-

sor level, personal server level, and medical server level,

as indicated in Fig. 1. This architecture of IoMT healthcare

systems have adopted in many recently proposed IoMT-based

healthcare systems, such as [25]. Medical devices and

sensors are located in the sensor level, which form a

local network and often referred as a Body Sensor Net-

work (BSN) [26]. Low-power wireless technology standards

including Bluetooth Low Energy (BLE), Near-Field Commu-

nication (NFC), and Radio-Frequency IDentification (RFID),

are often employed for wireless communications in the sen-

sor and personal server levels. BLE supports many network

topologies, such as star and mesh, whereas NFC and RFID

can only support ultra-low energy, device-to-device close

proximity direct communications, which are often required

by implantable devices.

Physiological data collected by the medical devices will

be sent to personal servers, which can be on-body devices,

such as smart phones, programmers, and tablets, or off-body

devices, such as routers and gateways. The purposes of per-

sonal servers are to process and store patients’ data locally

before sending to the centralized medical servers. A personal

server is required to be able to operate normally when the

network connection to the medical servers is lost. Medical

personnel, such as doctors, are able to access patients’ data

remotely, providing prompt advice to the patients. Algo-

rithms and computer programs for early diagnoses and reha-

bilitation progress assessments can also be run on the medical

servers with patients’ consents. Many IoMT-based healthcare

systems have been proposed for continuous patient moni-

toring in the last decades, but many of them do not adopt

any security and privacy measures in their designs or left

out as future work, such as MobiCare [27]. These research

have focused more on other design challenges such as power

consumption and usability, rather than the security of the

systems and the privacy of patients’ data. Recently proposed

IoMT-based healthcare systems, such as BSN-Care [28], have

adopted encryption and authentication schemes into their

designs.

B. NETWORK AND PROTOCOL DESIGN CHALLENGES

Protocol is a set of rules that govern the exchange or transmis-

sion of data between devices, and a routing protocol spec-

ifies how network routers exchange data with one another,

disseminating information that enables them to select routes

between any two nodes in the same network or in different

networks. Routing protocols in wireless networks are more

complex than those used in wired networks in many respects,

including network topology, power conservation, and channel

effectiveness. Thus, transferring data between nodes is not the

only functionality required from routing protocols in wireless

networks.

1) POSTURAL BODY MOVEMENTS

On-body medical devices and sensors are often in a group-

based, postural body movement as the patients under diag-

nosis or users under monitoring are often not stationary,

resulting in frequent changes in network topology and com-

ponents [29]. Routing protocols in BSNs should be adaptive

to both repetitive and unpredictable changes in the quality

of communication links between sensor nodes, which varies

as a function of time against body movements. It can be

utilized in routing protocols to conserve energy. For example,

a transmission power control scheme based on gait cycle for

BSNs has been proposed in [30], where transmission time is

optimized by matching link quality changes due to walking.

On the other hand, there are also unpredictable changes of

link quality due to signal blockage by clothes or bags that

intensifies channel attenuation.

2) TEMPERATURE RISE

Antenna radiation absorption and power consumption of node

circuitry are the two sources than cause temperature rise in

sensor nodes [31]. Radio energy can also be absorbed by the

tissues which could heat up the tissues, attenuate the signals,
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and cause skin or tissue burns [32]. Therefore, transmission

and computing power in sensor nodes should be considered

in routing protocols, and extra attention should be made for

implant sensor nodes, as heat can damage tissues and organs

of the human body.

3) ENERGY EFFICIENCY

Routing protocols in IoMT systems should be designed to

optimize the energy efficiency for both local energy con-

sumption on sensor nodes and overall network lifetime.

Energy efficiency is a crucial element of IoMT systems, as it

determines the size of the devices, the lifetime of the system,

and the usability of the devices. For instance, surgeries will

be required for implant sensor nodes to replace batteries,

and such surgeries are risky and very expensive. Typical

implantable devices, such as pacemakers, should have the

battery lifetime of at least 10 to 15 years to enable the user to

live a normal life [33]. For wearable sensor nodes, frequently

charging or replacing batteries hinder the usability of the

devices.

4) TRANSMISSION RANGE

Short transmission range along with the postural body move-

ments could lead to the problems of disconnection and

re-partitioning among sensor nodes in IoMT systems [34].

The number of sensor nodes on a patient or a user should

be minimized to reduce discomfort, which results in fewer

routes to neighbour sensor nodes. Therefore, if the connecting

sensor node is out of range, packets will have to be routed

by an alternative path resulting in higher energy consump-

tion in that path and longer time for packets to reach the

destination. In BSNs, if the alternative path includes one or

more implantable devices, the routing protocol must be able

to decide whether to take this alternative path based on the

importance of the contents in the packets.

5) HETEROGENEOUS ENVIRONMENT

In most of the IoMT applications, different types of sen-

sor nodes from a variety of medical equipment vendors are

required tomeasure different physiological signals of patients

or users. Therefore, routing protocols have to be designed

to tackle the challenges of heterogeneous environments in

many BSN applications. To solve this problem, many BSN

platforms and frameworks have been proposed for medical

devices from different vendors to work together, such as

DexterNet [35].

6) QUALITY OF SERVICE

Real time life-critical BSN applications, such as Electrocar-

diogram (ECG) sensing, are both data loss sensitive and time

critical, and the QoS requirements of such applications must

be met [36]. However, implantable sensor nodes has limited

memory and computation capability, which means routing

protocols have to adopt QoS measures such as retransmission

and error correction strategies without increasing computa-

tional complexity on the sensor nodes.

III. SECURITY AND PRIVACY REQUIREMENTS

FOR IoMT HEALTHCARE SYSTEMS

Security and privacy requirements for the IoMT healthcare

systems are more rigorous than that of the typical IoT-based

infrastructures. IoMT healthcare systems have many addi-

tional security requirements, such as device localization [37],

which can also contribute to ensure the security and privacy

of the systems. The functionalities of each level of the IoMT

healthcare systems are different, which means each level

has different security and privacy requirements. Therefore,

the requirements for each level are analyzed and discussed

individually. In addition, the security and privacy require-

ments in the data level is also discussed in the context of the

GDPR and HIPAA.

A. DATA LEVEL

1) CONFIDENTIALITY

Collection and storage of patient health data must comply

with legal and ethical privacy regulations, such as GDPR and

HIPAA, in which only authorized individuals can have access

to those data. To prevent breaches of data, adequate measures

must be adopted to ensure the confidentiality of the health

data associated with individual patients. The importance of

such measures cannot be overemphasized, as the data stolen

by cyber criminals could be sold in illegal markets, causing

the patients to suffer from not only privacy violation but

also possible financial and reputational damages. It has been

stated in Article 5(e) of the GDPR that personal data should

be erased once it has been processed and no longer required,

with exceptions, such as archiving, scientific, historical or

statistical purposes (Article 89). On the other hand, HIPAA

has no restrictions on how long the patients’ data can be

kept. Medical service providers under HIPAA compliance

may disclose protected health information (PHI) of patients

to another provider without patients’ consent, whereas care

providers who are compliant with the GDPR must obtain

explicit consent from EU patients for any PHI exchanges with

other providers [38].

2) INTEGRITY

For IoMT healthcare systems, the purpose of the data

integrity requirement is to ensure that the data arriving at

the intended destination have not been compromised in any

way during the wireless transmission [39]. Attackers could

gain access to and modify patient data by taking advantage

of the broadcast characteristic of the wireless network, and

which could lead to severe implications in life-threatening

cases. To guarantee that the data have not been compromised,

the capacity to detect potential unauthorized distortions or

manipulations of the data is critical. Therefore, appropriate

mechanisms of data integrity must be implemented to prevent

alteration of transferred data by malicious attacks. Moreover,

the integrity of the data stored in the medical servers also

needs to be ensured, which means the data cannot be tem-

pered with. Article 5(d) of the GDPR states that medical
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service providers have to make necessary measures to keep

patients’ data accurate and up to date. It also requires inaccu-

rate personal data to be erased or rectified as soon as possible.

The GDPR also emphasizes on the ‘accuracy’ of the data,

allowing data owners request service providers for the rectifi-

cation of any inaccurate data, and the service providers must

respond to the requests within a calendar month. Similarly,

HIPAA requires medical service providers to adopt necessary

measures to ensure any PHI stored in the systems cannot be

altered without authorization.

3) AVAILABILITY

Services and data must be accessible when they are required

to the relevant users. Such services and data, provided by the

medical servers and devices, will become inaccessible if DoS

attacks occur. Any inaccessible data or services could lead to

life threatening incidents, such as unable to provide prompt

alert in the case of a heart attack. Therefore, to accommodate

the possibility of availability loss, the healthcare applications

must be always-on to ensure data availability to the users and

emergency services. According to Article 32 of the GDPR,

medical service providers must have the ability to restore the

availability and access to personal data in a timely manner,

such as adopting preventive security measures and counter-

measures to DoS attacks [40]. Furthermore, according to

Article 17 of the GDPR, patients in the EU have the right to

request their data held by the medical service providers to be

erased, which is known as ‘Right to Be Forgotten’, however,

such right is not required by the HIPAA [38].

B. SENSOR LEVEL

The security and privacy in the sensor level faces the most

challenges of the 3-tier IoMT healthcare system, due to the

limited computational capability and power constraint of the

medical devices and sensors [41]. The current trend in sensor

level security research is to put most of the computations in

the personal server level instead, and the security measures

in the sensor level are required to be light-weight and less

communication overheads.

1) TAMPER-PROOF HARDWARE

IoMT devices, especially ambient sensors, can be stolen

physically, which leads to security information being exposed

to attackers. Furthermore, the stolen devices can be repro-

grammed by attackers and redeployed to the system, listening

to communications without being noticed [42]. Therefore,

physical theft of medical devices is a severe security threat

andmust be addressed in the IoMT healthcare systems.Medi-

cal devices in the systems should at least have tamper resistant

integrated circuits, preventing codes loaded on the devices

being read by third parties once being deployed. A example

solution is to use Physically Unclonable Functions (PUFs)

to secure data stored in the Integrated Circuits (ICs) of the

medical devices [43].

2) LOCALIZATION

Researchers are focusing on two types of sensor localization,

on-body sensor position and sensor’s/patient’s location in

an indoor environment. The former sensor localization is

typically designed to identify whether the sensors are located

in the desired body positions. Such on-body sensor position

identification is of vital importance for applications such as

activity recognition [44]. The later sensor localization, also

known as Location of Things (LoT), is designed to locate the

sensor in a room or to locate the patient wearing the sensor

in a building. In addition, due to the design of the IoMT

healthcare systems, medical devices could move in and out

of the network coverage very frequently. Therefore, a real-

time intrusion detection measure is required if the network

allows its sensors to leave and rejoin irregularly. An example

of such measures is SVELTE [45], an intrusion detection

method that reports malicious nodes joining the network to

administrators.

3) SELF-HEALING

Self-healing, introduced in Autonomic Computing [46], is of

great importance for the IoMT systems, as IoMT devices

shall resume operation after the network attacks. To achieve

self-healing, an IoMT system should be able to detect and

diagnose the attacks, and apply corresponding security mech-

anisms [47] with minimal human intervention. Self-healing

methods deployed should also be light-weight, in terms of

communication overheads to the network and computational

complexity to the medical and healthcare devices. An exam-

ple of self-healing architecture for IoT is proposed in [48],

where dendritic cells algorithm is applied in the network to

detect network attacks. However, as different types of net-

work attacks require different detection and recovery meth-

ods, it is important for network administrators to decide

which autonomic security schemes should be implemented

in the network.

4) OVER-THE-AIR PROGRAMMING

Over-the-air programming or updating (OTA) has become a

popular method to update an IoT system with a large number

of sensor nodes, which introduces security concerns such as

malicious sensor nodes listening updates and forging iden-

tities into the network. OTA can be part of the self-healing

mechanism, updating security rules for the network instantly.

To implement OTA properly, security measures must be

made to prevent OTA updates being exploited by attackers.

An example solution is SEDA [49], which is a secure OTA

programming protocol designed for distributed network like

IoMT systems.

5) FORWARD AND BACKWARD COMPATIBILITY

This is also a key requirement in real-time healthcare appli-

cations where faulty medical sensors are replaced promptly

with new ones. Forward compatibility is characterized by the

fact that future messages cannot be read by medical sensors
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if their transmission occurs after the sensors have left the

network. Conversely, in backward compatibility, messages

that have been transmitted earlier cannot be read by a sensor

which just entered the network [50]. Compatibility issues can

potentially be solved by implementing OTA programming for

the distribution of the newest software update promptly.

C. PERSONAL SERVER LEVEL

As patients’ data is often stored and aggregated in the per-

sonal server level before being forwarded to the medical

servers in the IoMT healthcare systems [51], it is essential

to ensure that the data is well protected while on the per-

sonal servers. Generally, two types of authentication schemes

must be deployed to ensure security and privacy in the per-

sonal server level, namely device authentication and user

authentication.

1) DEVICE AUTHENTICATION

Personal server (i.e. a smart phone) shall perform authenti-

cation before accepting data sent from the medical devices

and sensors. Device authentication scheme should be able

to establish secured/encrypted communications for data con-

fidentiality and integrity [52]. False information from mali-

cious devices about patients’ physical conditions could have

severe negative impacts on the clinical diagnosis and care

decisions, therefore, device authentication must be imple-

mented in any IoMT healthcare systems. Device authenti-

cation is mutual between personal servers and devices, but

the majority of the computation should be performed on

the personal servers, as they often have more computational

capability and power than the medical devices and sensors.

2) USER AUTHENTICATION

The data stored either temporarily or permanently on the

personal servers should only be accessed by the patients and

medical staff, such as caregivers, therefore, effective user

authentication schemes are required [53]. Personal servers in

the IoMT healthcare systems should also support emergency

access of the data if the patients are in critical conditions,

such as having a stroke or a seizure. A popular solution to

user authentication in the personal server level is the use

of biometrics, which is particularly applicable in the IoMT

healthcare systems, as most of the biometrics can be easily

collected from medical and healthcare devices worn by or

implanted in the human body.

D. MEDICAL SERVER LEVEL

Two of the most important requirements on the security

and privacy of patients’ data in the medical server level

are: only authorized devices and personnel have access to

the data; and the data itself must be encrypted at all time

when stored in the databases [54]. With more and more

paper-based medical records have been digitized into Elec-

tronic Medical Record (EMR), security and privacy concerns

with the medical servers storing EMRs are growing [55].

Therefore, proper security measures must be in place in the

medical server level for IoMT healthcare systems.

1) ACCESS CONTROL

To ensure only authorized devices and personnel have access

to the medical servers, effective access control schemes must

be deployed. It is difficult to ask permission or consent of a

patient every time a data access request is made, therefore,

the service providers of the medical servers should provide

selective access control for patients, i.e. to choose which data

can be shared without permissions andwhich third parties can

have access. A popular solution of selective access control is

Attribute-Based Encryption (ABE) [56], which is categorized

as public-key cryptography where the secret keys are gen-

erated from attributes (i.e. received signal strength, location,

and channel frequency). Access trees in the ABE solutions

can be selectively constructed with a set of attributes, so that

only a set of attributes that satisfies the tree will be granted

access to the encrypted data.

Medical servers should also be capable of updating access

control policy efficiently. Policy update can be redundant

for medical servers, for example, many cloud security mea-

sures require the change of encryption keys when updat-

ing access control policy [57], which leads to decrypt and

re-encrypt data in the medical servers and in the personal

servers. Therefore, a scalable and less redundant policy

update scheme should be deployed to reduce or eliminate

the computational overheads in cryptography. A popular

solution is the 2-layer over-encryption [58], where pol-

icy update can be made in surface encryption layer (SEL)

while a further encryption is imposed by the data owners in

base encryption layer (BEL). Furthermore, emergency access

control should also be supported in the medical servers,

either by disabling security measures over patient’s data or

by granting a third-party emergency access. For example,

Proxy Re-Encryption (PRE) [59] can be used to convert data

encrypted by a patient’s public key into encrypted data which

can be decrypted by a third party, without revealing patients’

data during the transmission.

2) KEY MANAGEMENT

The development of secure applications depends on key

management protocols, of which the goal is to implement

and distribute cryptographic keys to sensor nodes. Trusted

server are key pre-distribution are the two main types of key

management protocols used in the IoMT healthcare systems.

Trusted server protocols achieve key agreement within the

network in a trusted base station. These types of protocols

are appropriate for hierarchical networks, however, in spite

of this, the trusted server protocols are inadequate for critical

applications like those related to healthcare because a whole

network failure could paralyze a trusted server in a real-time

environment [60]. Key pre-distribution protocols are often

implemented in symmetric key cryptography, to share secret

keys within the network prior to the network being fully

functional. These types of protocols are more appropriate for
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TABLE 1. DoS attacks at each routing protocol layer.

resource-limited sensor networks because their implemen-

tation is straightforward and do not require very complex

computation.

3) TRUST MANAGEMENT

Trust means that there is a two-way association between

two reliable nodes, such as a sensor node and a network

coordinator, that share data with one another. Similarly, one

study [61] explained that trust as the extent to which a node is

secured and dependable when it interacts with another node.

Distributed collaboration between the nodes of network must

exist for wireless healthcare applications to be successful.

In this regard, the level of trust of a node can be determined

with trust management systems, which are important partic-

ularly as the trust assessment of a node’s behaviour, such

as the delivery and quality of data, is essential in healthcare

applications [62].

4) RESISTANCE TO DoS ATTACKS

Table 1 lists common DoS attacks against wireless health-

care applications [63]. Attackers can use high-energy signals

to stop the wireless network from operating properly, such

as jamming attacks in the physical layer [64]. There are

many approaches proposed in safeguarding and self-repairing

the network against such attacks, such as evasion defence

and competition strategies, but they are all at early stage

of research [65]. Therefore, much research is required to

develop strategies to protect the system against DoS attacks

for real-time IoMT healthcare systems, due to the mobile and

dynamic nature of the wireless networks.

IV. SECURITY SCHEMES FOR IoMT

HEALTHCARE SYSTEMS

In this section, state-of-the-art security schemes for IoMT

healthcare systems are discussed. A comparison of the state-

of-the-art IoMT security research is presented in Table 2.

A detailed discussion on the comparative study is presented,

in terms of their cryptographic designs, applications and secu-

rity analysis. In addition, random number generator (RNG),

which is an important part of the cryptosystems is also

discussed, and example RNG research applicable on IoMT

devices is highlighted. Furthermore, a review on the biometric

authentication and its application in the IoMT healthcare

systems is provided, and a survey of security schemes for

implantable IoMT devices is presented.

A. STATE-OF-THE-ART

There are generally two common types of cryptographic algo-

rithms: symmetrical and asymmetrical (public-key). Com-

pare to symmetric encryption, asymmetric cryptosystems

provide better security protection but require significantly

more computational capability. Due to the limited computa-

tional capacities of IoMT devices in the sensor level, any data

encryption and decryption solutions proposed for securing

IoMT devices should be light-weight and the overhead of

the communication channels should be minimized. Whereas

data transmission between personal server level and medical

server level should be protected with much stronger security

schemes, as the data is often transmitted via public channels

such as the internet.

As listed in Table 2, the majority of cloud-based authen-

tication, data storage, and access control research adopt

public-key cryptography over symmetrical cryptography.

Among these research ( [66], [67], [69]–[73], [78], [79]),

Elliptic curve cryptography (ECC) is the most popular

public-key cryptographic algorithm, as it requires smaller

key size over other traditional public-key cryptographic

algorithms, such as Rivest-Shamir-Adleman (RSA). On the

other hand, symmetric cryptographic algorithms are often

used in research ( [68], [75], [76]) on access control,

data transmission to and from IoMT sensors, as they

are light-weight on those resource constraint devices. For

hybrid security schemes ( [74], [77], [80], [81]), sym-

metric cryptographic algorithms are often used as session

keys. Furthermore, the most applied attacks in the adver-

sarial/security analysis are Chosen Plaintext Attack CPA),

replay, impersonation, insider, eavesdropping, and Man-

in-the-Middle (MitM) attacks. A number of research also

analyze their security schemes in terms of Mutual Authen-

tication (MA), Anonymity and Traceability (A&T), Forward

Security (FS), Contextual Privacy (CP), and and unlinkabil-

ity. Apart from ( [68], [81]) that performed their experiments

on actual hardware, the others performed their experiments

using computer simulations.

Although the state-of-the-art security schemes are mainly

using readily available RNGs in their simulations, on-node

random number generation is an emerging research topic

for IoMT applications. Random numbers are often generated

by a pseudo-random number generator (PRNG) with a ran-

dom seed in modern computers. PRNGs are deterministic

approaches implemented in software. The PRNGs with the

same seed will always generate the same sequence of random
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TABLE 2. Comparison of state-of-the-art security and privacy research on IoMT healthcare systems (EHR = Electronic Health Record, Sim = Simulation,
Proto = Prototype, MA = Mutual Authentication, FS = Forward Security, CP = Contextual Privacy, CPA = Chosen Plaintext Attack, A&T = Anonymity and
Traceability, MitM = Man-in-the-Middle, DoS = Denial of Service).
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TABLE 3. Characteristics of biometric traits and the requirements of biometric authentication schemes [82].

numbers. If the seed is not generated from a true random

source, the PRNGs can be deduced by potential attackers.

Due to the size and power constraint of IoMT devices, many

true random number generators based on randomness of

physical phenomena are not suitable for the miniaturized sen-

sors. An example solution to generate true random numbers is

the use of inertial sensors on IoMT devices. Voris et al. [83]

proposed the use of an accelerometer as the random source

for generating random numbers on a RFID tag. Human’s

walking acceleration and gyroscope measurements collected

by inertial sensors can also be used as random sources for

TRNGs [84]. Furthermore, Wallace et al. [85] proposed Sen-

soRNG, a TRNGdesign based onmultiple internal sensors on

mobile phones, including microphones, inertial sensors, and

radio. Inertial sensors based TRNGs have the potentials to

be used in IoMT devices for data encryption, but issues such

as low entropy when idling and high power consumption for

implantable devices need to be addressed first.

B. BIOMETRIC AUTHENTICATION

Different types of factors can be used to confirm identity.

Facts can be knowledge factors, such as user’s secrets, which

are verifiable objects possessed by the user, or inherent fac-

tors, which are characteristics of the user [89]. Most com-

mercial IoMT devices currently available for monitoring

health and well-being, such as smartwatches, use numeric

or alphanumeric passwords for authentication, instead of

biometric authentication. For IoMT healthcare systems,

researchers are exploring the use of biometric inherent factors

that are unique to the user, as it is assumed that these fac-

tors are more challenging for attackers to compromise, espe-

cially in comparison to the short passwords commonly used

in smartwatches. Such biometric-based security schemes

in IoMT healthcare systems should meet the requirements

in Table 3.

A biometric-based security systems often perform two

types of actions, namely identification and verification. Iden-

tification is the matching of a sample against all the sam-

ples in the database, whereas, verification is the matching

of an input sample against one person’s samples in the

database [90]. Fig. 2 is a block diagram illustrating a gen-

eral biometric authentication system (retrieved from [86]).

There are two phases, enrolment phase and matching phase,

in the biometric authentication systems. In the enrolment

phase, subjects register their raw biometric samples into

the database, then, the recorded biometric samples will be

processed into a template or a feature vector and stored

into the database. In the matching phase, similar process is

performed. The subject will be authenticated only if his/her

sample matches the templates or the feature vectors of the

claimed identity in the database. If not, the authentication

attempt will be rejected by the system.

To assess the performance of biometric authentication sys-

tems, some likelihood-based performance metrics, as listed

in Table 4, are commonly used [88]. A trade-off will be made

between False Acceptance Rate (FAR) and False Rejection

Rate (FRR) by choosing a decision threshold value t for the

biometric authentication systems, as shown in Fig. 3a. If the

matching score s is larger or equal than t , the authentica-

tion is considered to be successful. If s is smaller than t ,

the authentication is failed and the person is considered to be

an impostor. The higher the decision threshold t is, the more

secure the biometric authentication systems are, and t is often

chosen based on the security requirements of the applications

as shown in Fig. 3b.

Behavioural biometric traits, including signature, voice,

gait, ECG, and keystrokes, can be used in IoMT healthcare

systems. The strengths and weaknesses of those behavioural

biometric traits are summarized in Table 5 [91]. Behavioural

biometric traits can often be capturedwith low-cost hardware,

requiring only adequate algorithms for feature extraction,

which makes behavioural biometric-based security systems

simpler and less costly. Signature and keystroke dynamics are

not applicable to IoMT devices in the sensor level, due to the

size of the sampling hardware, such as keypad and electronic

signature pad. However, they can be used on mobile phones,

which are in the personal server level of the IoMT healthcare

systems.

On the other hand, a large number of physical biometric

traits of humans can also be used for authentication applica-

tions. In the recent years, the majority of physical biomet-

ric traits have been exploited in biometric security systems,

including fingerprint, palm print, face, retina/iris, hand geom-

etry, ear shape, body odour, vein pattern, and DNA, as sum-

marized in Table 6. Every physical biometric trait has its own

application scenarios regarding to the security requirement

and hardware availability of the systems, as no individual

biometric system can perform well in all possible scenarios.

In order to achieve a higher level of security, multi-biometric

fusion has drawn attentions from many researchers.
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FIGURE 2. Block diagram of general biometric authentication systems [86].

TABLE 4. Common performance metrics in biometric authentication systems [88].

Although physical biometrics has been widely adopted in

a variety of security applications, behavioural biometrics is

very promising and it can be easily adapted into the current

IoMT infrastructures due to its cost efficiency and less pro-

cessing complexity.

1) HEART RHYTHM OR ELECTROCARDIOGRAM (ECG)

Electrocardiogram can be measured by both wearable and

implantable devices, therefore it is often used as security

measures for IoMT healthcare systems. Bao et al. [92]

first proposed an ECG-based security scheme using grouped

Inter-pulse Intervals (IPIs) of heartbeats as the source for

key generation. The scheme has been further improved by

the group [93] using Error-Correcting Codes (ECC). IPIs

can also be accumulated to improve randomness, such as

MRE-IPI [94], a new randomness extraction method which

can extract Martingale Randomness from IPIs of ECG

signals.

2) MOTION AND GAIT

Compare to ECG, gait is a relatively new biometric mea-

surement. Due to the difference in bio-mechanical structure
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FIGURE 3. Trade-off between FRR and FAR [87].

TABLE 5. Common behavioural biometric traits [91].

and phenotypes, everyone walks differently and by capturing

the gait parameters, individual can be identified. Apart from

user authentication, device-to-device authentication can also

be achieved by using gait parameters, as inertial sensors,

embedded in the wearable or implantable devices on the same

user, can capture the similar gait parameters when the user

walks [95]. A study carried out byMuaaz and Mayrhofer [96]

demonstrates that a person’s gait inertial signals are very

difficult to be imitated, because impersonators often lose

their own regularity between steps when mimicking legit-

imate users. Despite open problems such as gait changes

due to ageing and low performance on false agreement rate,

gait biometric holds great potentials in cryptographic appli-

cations due to its uniqueness, freshness, and availability.

3) VOICE

Instead of using pin numbers, banks have started to use

voice recognition for user authentication in their telephone

banking services. Due to the structural difference in vocal

chords, trachea, nose, teeth and accentuates sounds, one’s

voice can be as distinctive as his/her fingerprint [97]. Unlike

other biometric, voice print does not require physical con-

tact with the scanner/reader and can be taken remotely.
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TABLE 6. Common physical biometric traits.

Voice authentication methods have been adapted in many

IoMT systems in the last decade.

4) ELECTROENCEPHALOGRAM (EEG)

Many wearable EEG sensors have been developed in

recent years, and many EEG biometrics-based authentica-

tion schemes has been proposed. EEG biometrics is very

rich in discriminative information and features in both time

and frequency domains. Moreover, EEG biometrics has both

unique/time-varying patterns, which may occur when the

subject is watching an unique picture (visual stimuli), as well

as permanent patterns, which occur regularly. Recently, deep

learning approaches have been exploited in EEG biometrics

for IoMT healthcare systems, such as [98]. As stated in [99],

a person’s EEG signals varies from that of another person

due to different brain structures, memory, mood, stress, and

mental state, mimicking an individual’s EEG signals is very

difficult to achieve with current technologies.

C. SECURITY SCHEMES FOR IMPLANTABLE IoMT DEVICES

Implantable IoMT devices typically requires surgeries to be

implanted into patients’ body. Therefore, security schemes

for implantable devices have restrict requirements on power

consumption, communication overhead, attack resilience,

and support for emergency situations [100]. In addition to the

aforementioned challenges, security schemes for implantable

devices must comply with restrict regulations [101].

1) PROXY BASED PROTECTION

The concept of proxy based implant security is based on

a secondary device acting as a ‘‘proxy’’ between commu-

nications of the implant and external devices. The advan-

tage of this scheme is that it aims to enhance security

of existing implanted devices. An example of this is the

‘‘IMD-Shield’’ [102]. ‘‘shielding’’ is carried out by introduc-

ing noise to intercept communication between the implant

and any device that attempts to communicate with it. The

decoding of implant signal at the proxy is made possi-

ble with the knowledge of the generated noise. A security

scheme is implemented such that only authenticated com-

munication is relayed to/from the implant. Another proxy

based Implantable Medical Device (IMD) protection is the

‘IMDGuard’’ [103], which is able to share keys between the

IMD and the guardian using the owner’s ECG signals.
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2) DISTANCE BOUNDING

Distance bounding, or proximity based access control, limits

attack possibilities by restricting the wireless communication

distance between an implant and an external device [104].

One example of this is inductive coupling, which often is

limited to a few centimetres. While inductive links inherently

operates at shorter distances and are suitable for use with

device charging and programming, for data communication

it lacks the bandwidth of modern devices. Implant manufac-

turers have adopted the higher bandwidth MICS (Medical

Implant Communication System) which runs in the spec-

tral range of 402-405MHz and signals from the implant are

limited to a maximum of 2m. Practically bed-side systems

streaming implant data operations at < 1m. Another example

of distance bounding authentication through physical layer

is [105], which distinguishes legitimate external device and

adversary based on the received signal power.

3) ECG BASED ENCRYPTION

Theoretically, ECG signals can be captured by IMDs, there-

fore, ECG based data encryption schemes have the poten-

tials to be applied for implantable devices. The advantage

of using ECG signals as entropy sources for data encryption

is that patients are not required to remember passwords,

which remove the risks of being stolen. For example, an One-

Time-Pad (OTP) encryption scheme proposed in [106], which

uses the Inter-pulse Intervals of the ECG signals to encrypt

messages between the IMD and the external device. The

disadvantages of using ECG signals as entropy sources are as

follows: firstly, ECG based security schemes typically require

signal collection time, which is not feasible in emergency

situations; secondly, distortion and attenuation can be easily

introduced to ECG signals due to patients’ movement or

poor contact between skin and the electrodes of ECG sen-

sors; thirdly, although error collection coding is often used

to reduce bit errors, it is not sufficient to eliminate false

rejection rate. Although ECG signals can be measured very

accurately by an external device, the ECG signals captured

by the external device are still different from that of the ECG

signals captured by the IMD at a different location.

4) ANALOGUE SHIELDING

Researchers have shown that implants without adequately

robust sensor architectures are susceptible to ‘‘analogue

attacks’’ [107]. Typically, sensors play a pivotal role in a

closed loop system such as implanted insulin pumps. The

sensor signal is inherently analogue in nature and can be inter-

fered, resulting in incorrect sensor readings and erroneous

implant operation [108]. The disturbance of analogue signals,

often of small amplitude, from intentional noise injection can

be mitigated by following good design practices, such as use

shielded cables for data transmission.

5) ZERO POWER COMMUNICATION

This security measure is devised to counter ‘‘power drawing’’

attacks where deliberate continuous requests to communicate

with the implant are used with the intention to deplete the

implant battery. Zero power communication requires all com-

munication from the implant to be initialized by non-battery

sources such as piezoelectric RF harvesters [109], also

improving patient security awareness by signalling during

communication initialization. Zero power communication

can also be achieved by radio frequency energy harvesting.

For example, a powerless mutual authentication protocol pro-

posed in [110] utilizes Ultra High Frequency (UHF) energy

harvester and dynamic encryption keys extracted from ECG

signals for securing IMDs. zero power communication can

only work when the two devices are in very close proximity,

which inevitably limits its applications.

6) ANOMALY DETECTION

Resource depletion attacks, which could sufficiently reduce

the battery power of an IMD, can be detected by anomaly

detection, by investigating the patterns of communications

between a IMD and legitimate external devices. An exam-

ple of anomaly detection is MedMon [111], in which a

smart phone examining physical layer characteristics, such

as Received Signal Strength Indication (RSSI) and Time of

Arrival (TOA), as well as behavioural characteristics, such as

value range and frequency, of the signals to and from IMDs

to identify potential malicious communications. A limitation

of MedMon is that it only provides IMD integrity protec-

tion, therefore, additional security schemes should be used to

protect the confidentiality and availability of the implantable

devices.

V. DISCUSSIONS

With the internet andwireless connectivity of IoMT technolo-

gies, the new generation of medical devices are facing secu-

rity and privacy challenges aforementioned in this survey.

Instead of medical equipment securely installed in hospital

wards or laboratories, the new generation of IoMT devices

will be worn by or implanted in patients such that they can be

monitored continuously. As the majority of the IoMT devices

have to handle personal and physiological data of the users,

the impact of security attacks on the users could be more

direct and severe compare to other IoT systems. For example,

wireless connected implantable devices are designed to man-

age cardiac functions, insulin functions, nerve stimulation,

etc. and equipped with electrodes, pumps and other actuators.

Malicious attacks on such devices could have life threatening

effects on the patients. If only minimal security protection is

applied to these medical devices, they can easily be hacked.

For example, Radcliffe demonstrated that he can hack into an

insulin pump 150 feet away and disable the device or instruct

the device to inject excessive amount of insulin [112].

There are always new approaches and methods to attack

a network, and administrators have to be constantly updated

with patches and anti-virus libraries to protect the systems

against malicious attacks. However, unlike computer net-

works where patches or virus update can easily be injected

into the systems, wearable and implantable medical devices
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often do not have sufficient network bandwidth and resources

to update their firmware regularly [113]. Majority of these

health devices cannot be shut down and wait until security

experts to find the anti-virus or patches to recover the devices

after the attacks. The state-of-the-art security research in

IoMT systems are often analyzed in computer simulations,

how the security schemes handle the over-the-air updates in

real-world scenarios have not been researched thoroughly.

Biometric authentication is another emerging research

topic in the field of IoMT security and privacy. However,

it has yet to be widely adopted due to the limitations, such

as costs of the sensors and low authentication performance.

Given the fact that most medical devices capture physio-

logical measurements of the users, there are advantages of

applying biometric authentication schemes over other meth-

ods. For example, a real-time biometric key authentication

can be carried out by comparing physiological measurements

of the patient captured by wearable devices with the signals

obtained by implanted sensors. Such scenarios occur in many

IoMT applications, giving advantages to biometric authenti-

cation over other security schemes.

VI. FUTURE RESEARCH DIRECTIONS

With other emerging technologies, such as cloud computing,

become popular, there are some interesting future research

directions that have not been fully exploited by the IoMT

security and privacy research community. The followings

are a few example research directions that could potentially

be applied for the security and privacy of IoMT healthcare

systems.

A. BLOCKCHAIN

Blockchain was developed for securely keeping financial

ledger records in a decentralized fashion, so that the ‘‘blocks’’

in the blockchain depend on one another. It would also be

applied to medical data stored distributively in the medi-

cal servers, providing extensively strong security and pri-

vacy protection to the IoMT healthcare systems. However,

blockchain requires a significant amount of computational

resources on the devices to generate blocks, which is infea-

sible on the resource constraint IoMT devices. On the

other hand, blockchain can be used for securing electronic

health records stored in the medical servers. An example is

MedRec [114], a pioneer research on using blockchain for

medical data access and permission management.

B. ARTIFICIAL INTELLIGENCE

Machine learning and deep learning has become the most

popular research topics in nearly every industry, including

network security. Many machine learning based network

intrusion detection methods, such as [115], have been pro-

posed in recent years, and they can also be applied to IoMT

healthcare systems. As there is a trend of using deep learn-

ing approaches for disease diagnosis in the medical servers,

the use of such approaches for security and privacy of the

systems should also be taken into consideration. An example

research is [116], where PHI in different levels of the IoMT

systems are examined by deep learning networks for interme-

diate attack detection.

C. SECURITY ASSESSMENT

Security research is often carried out by different research

groups individually, and there is not a standard on how to

measure the security strength of the proposed IoMT secu-

rity strength. Adversarial analysis is one of the tools for

researchers to measure the security level of their research,

and yet, these adversarial analysis is not based on the

same assumptions and principles, thus cannot be compared

together. Therefore, developing a framework for assessing the

security and privacy level of security research is of necessity

for the IoMT security and privacy community. An example

research is IoMT-SAF [117], a web-based IoMT security

assessment framework where recommendations can be made

based on the input of the users. However this work does not

assess the security strength of the existing research and does

not provide crypto-analysis for the cryptographic algorithms.

Further research is required regarding to assessing security

strength of the IoMT healthcare systems.

VII. CONCLUSION

In the last few years, the number of IoMT devices deployed

in healthcare systems have grown and expanded rapidly,

as a myriad of new wearable and implantable medical

devices have been introduced in recent years for healthcare

applications, ranging from glucose sensors, insulin pumps,

to ingestible core body temperature sensors and drug-eluting

stents. These smart devices have facilitated the transforma-

tion of healthcare services, enabling personalized and pre-

ventative patient care. Although the network connectivity of

these IoMT devices greatly eases the control and monitoring

functions of the devices, it inevitably causes vulnerabilities

of the devices and the network. Similar to other IoT devices

and systems, IoMT devices could suffer from same security

threats and attacks. Given the fact that the IoMT devices han-

dle highly personal health data and some of the devices have

life supporting actuation functions, security attacks on con-

nected health devices could have direct and life-threatening

impacts on the users.

Many security schemes developed for IoMT devices could

potentially be applied for protecting medical devices, how-

ever, due to the size and power constraints, wearable and

implantable devices are tended to be built with very lim-

ited resources and they may not have sufficient resources to

implement those schemes. Ensuring the safety and security

of such devices requires new solutions that span across the

design space of human, cyber and physical elements. Apart

from increasing research efforts in the security and privacy

of IoMT devices, close collaboration is needed between the

academic, industries and standard agencies to develop new

methods, regulations, and standards to ensure the security of

this new generation of medical technologies.
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