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Abstract Human eyes are highly efficient devices for scanning through a large

quantity of low-level visual sensory data and delivering selective information to

one’s brain for high-level semantic interpretation and gaining situational aware-

ness. Over the last few decades, the computer vision community has endeavoured

to bring about similar perceptual capabilities to artificial visual sensors. Substantial

efforts have been made towards understanding static images of individual objects

and the corresponding processes in the human visual system. This endeavour is in-

tensified further by the need for understanding a massive quantity of video data,

with the aim to comprehend multiple entities not only within a single image but

also over time across multiple video frames for understanding their spatio-temporal

relations. A significant application of video analysis and understanding is intelli-

gent surveillance, which aims to interpret automatically human activity and detect

unusual events that could pose a threat to public security and safety.

1 Introduction

There has been an accelerated expansion of Closed-Circuit TeleVision (CCTV)

surveillance in recent years, largely in response to rising anxieties about crime and

its threat to security and safety. Substantial numbers of surveillance cameras have

been deployed in public spaces ranging from transport infrastructures (e.g. airports,

underground stations), shopping centres, sport arenas to residential streets, serving

as a tool for crime reduction and risk management. Conventional visual surveillance
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systems rely heavily on human operators to monitor activities and determine the ac-

tions to be taken upon the occurrence of an incident, e.g. tracking a suspicious target

from one camera to another camera or alerting relevant agencies to areas of concern.

Unfortunately, many actionable incidents are simply miss-detected in such a

manual system due to inherent limitations from deploying solely human operators

eyeballing CCTV screens. Miss-detections could be caused by (1) excessive number

of video screens to monitor, (2) boredom and tiredness due to prolonged monitoring,

(3) lack of a priori and readily accessible knowledge for what to look for, (4) dis-

traction by additional responsibilities such as other administrative tasks [24]. As a

result, surveillance footages are often used merely as passive records or as evidence

for post-event investigations. Miss-detections of important events can be perilous in

critical surveillance tasks such as border control or airport surveillance. Technology

providers and end-users recognise that manual process alone is inadequate to meet

the need for screening timely and searching exhaustively colossal amount of video

data generated from the growing number of cameras in public spaces. To fulfil such

a need, video content analysis paradigm is shifting from a fully human operator

model to a machine-assisted and automated model.

In the following, we describe applications and the latest advances in automated

visual analysis of human activities for security and surveillance. Section 2 outlines

some of the most common technologies in the market, and highlights technical chal-

lenges that limit the use and growth of video analytics software. Section 3 discusses

state of the art video analytics techniques, which may help in advancing current

security and surveillance applications.

2 Current Systems

There is a surge in demand in the last few years for automated video analysis tech-

nologies. This trend is persisting1,2, mainly driven by the government initiatives and

strong demands from retail and transportation sectors3. Increasing number of CCTV

solutions are made available with some degree of automated analytic capabilities

by suppliers from large-scale system integrators to small and medium enterprise

(SME) software developers including IBM, Bosch, Pelco, GE Security, Honeywell,

Siemens, ObjectVideo, IOImage, Aimetis, Sony, Panasonic, Nice, Vidient, March

Network, Mate, Ipsotek, Citilog, Traficon, and BRS Labs [25, 22].

1 Frost and Sullivan estimates that the video surveillance software market will reach $670.7 million
annually by 2011 [21].
2 The growing interest on video analytics is also evident from various industrial focus conferences
such as the IMS Video Content Analysis Conferences (http://www.imsconferences.
com).
3 Research conducted by the British Industry Security Association demonstrated that video an-
alytics technologies are deployed by the transport and retail sectors most frequently (http:
//www.bsia.co.uk/aboutbsia/cctv/O5E926740891).

http://www.imsconferences.com
http://www.imsconferences.com
http://www.bsia.co.uk/aboutbsia/cctv/O5E926740891
http://www.bsia.co.uk/aboutbsia/cctv/O5E926740891
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Current video analytics find applications in various areas. For instance, IBM

assists the Chicago City in laying out city-wide video analytics system based on

the IBM Smart Surveillance Solution (S3) to detect suspicious activity and poten-

tial public safety concerns [14]. The City of Birmingham, Alabama also sets up a

surveillance system equipped with artificial neural network based analytic software

developed by the BRS Labs to detect suspicious and abnormal situations. Besides

street-level surveillance, video analytics also find wide applications in the transport

sector. For example, the Bosch Intelligent Video Analysis (IVA) software is em-

ployed at the Athens International Airport [10]. For border control, the Video Early

Warning (VEW) software developed by ObjectVideo is used along the US border

to locate suspicious individual or vehicles attempting to cross into the country [50].

Other government and commercial deployment of video analytics include instal-

lations of the IOImage video analytics software at the Israeli parliament, and the

Aimetis VE Series at Volkswagen Sachsen.

Security has been the dominant driver for the development and deployment of

video analytics solutions. Some common applications are:

1. Intruder detection often implies tripwire detection or fence trespassing detec-

tion, which alerts an operator if an intruder is detected crossing a virtual fence4.

The underlying algorithm involves the extraction of foreground objects using

background subtraction, followed by examining whether the foreground objects

overlap with a pre-defined region in an image space. This application is useful to

ensure perimeter control for sensitive and restricted areas such as limited-access

buildings or train track areas, e.g. BRS Labs AISight5.

2. Unattended object detection aims to ignore items attended by nearby person

and only triggers an alarm when an item is deposited in a controlled area longer

than a pre-defined time period, e.g. Honeywell video analytics6.

3. Loitering detection aims to detect persons who stay in a controlled area for an

extended period of time. This is often achieved by tracking an individual and

recording the time stamps of appearance and disappearance of the person. Loi-

tering detection is useful in bringing about attention on suspicious behaviour in

advance to an actual security breach or intrusion, e.g. MarchNetworks Video-

Sphere7.

4. Tailgating detection aims to detect illegal follow-through behaviour at access

control points, e.g. doorways. It relies on individual tracking in conjunction with

an access control system. Alert is generated for an immediate review by security

personnel if multiple persons enter a restricted area while only one of them is

authorised by the access control system, e.g. Mate video analytics8.

4 A set of real-world datasets and alarm definitions are released as the Image Library for Intelli-
gent Detection Systems (i-LIDS), a UK government Home Office Scientific Development Branch
(HOSDB) benchmark for video analytics systems [63], which has also been adopted by the US
National Institute of Standards and Technology (NIST).
5 http://www.brslabs.com/index.php?id=79
6 http://www.honeywellvideo.com/support/library/videos/
7 http://www.marchnetworks.com/Products/Video-and-Data-Analytics/
8 http://mateusa.net/

http://www.brslabs.com/index.php?id=79
http://www.honeywellvideo.com/support/library/videos/
http://www.marchnetworks.com/Products/Video-and-Data-Analytics/
http://mateusa.net/
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5. Crowd management software monitors and collects statistics on the crowd vol-

ume by measuring the foreground occupancy level in a video. It can be used at

transportation hubs and shopping malls to avoid overcrowding situations, e.g. Vi-

dient SmartCatch9.

These applications provide some practical and useful solutions. Nevertheless,

their effectiveness and success depend largely on rather stringent operational con-

ditions in carefully controlled environments. There are growing concerns on the

viability of using such analytics in real-world scenarios especially in unconstrained

crowded public spaces. In particular, existing technologies for video content anal-

ysis largely rely on Video Motion Detection (VMD), hard-wired rules, and object-

centred reasoning in isolation (i.e. object segmentation and tracking) with little if

any context modelling. Such systems often suffer considerably high false alarm rate

due to the changes in visual context, such as different weather conditions and grad-

ual object behaviour drift over time. In addition, fully automated analysis of video

data captured from public spaces is often intrinsically ill-conditioned due to large

(and unknown) variations in video image quality, resolution, imaging noise, diver-

sity of pose and appearance, and severe occlusion in crowded scenes. As a result,

those systems that rely on hard-wired hypotheses and location-specific rules are

likely to break down unexpectedly giving frequent false alarms, requiring elabo-

rative re-configuration and careful parameter tuning by specialists, making system

deployment non-scalable and hugely expensive. In the worst-case scenario, installed

expensive video analytics systems are abandoned or otherwise infrequently used due

to excessive operational burden and intolerable level of false alarms.

3 Emerging Techniques

Addressing the limitations of current systems demands more robust and intelligent

computer vision solutions. In this section, we discuss several emerging video analy-

sis techniques, which could help to remedy the problems with the existing video an-

alytics technologies. We first highlight the recent developments in single view-based

video analysis techniques, ranging from gauging individual intent (Section 3.1) to

analysing crowd behaviour (Section 3.2). We then discuss the use of multiple cam-

eras for cooperative monitoring of complex scenes (Section 3.3). Finally, we look

into how one could exploit contextual information (Section 3.4) and learn from hu-

man feedback (Section 3.5) to facilitate more robust and smarter surveillance.
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(a) (b) (c)

Fig. 1 (a) Facial expression, (b) head pose, and (c) gait may be used as behavioural cues to reveal
human intention (images from [60], [52], [6]).

3.1 Intent Profiling

Psychological studies [16, 15] suggest that one’s intention can be perceived from

the microexpressions and incomplete motion cues. The findings have inspired the

development of automated surveillance system to interpret human intent for making

rapid and anticipatory detection of deceptive intention from visual observations.

For instance, the US Department of Homeland Security undertakes an initiative to

develop automated capabilities for the Fast Attribute Screening Test (FAST)10 in

order to link behavioural cues such as subtle changes in facial temperature to a

variety of hidden emotions, and thereby spotting people being deceptive or planning

for hostile acts.

Various computer vision studies have examined the possibility of inferring hu-

man emotion and intent based on temporal analysis of visual cues such as facial

expression, head pose, body pose, and gait (see Fig. 1). In facial expression anal-

ysis [67], most systems extract either geometric-based [17] or appearance-based

facial features, e.g. Gabor wavelets or local binary patterns [60], to recognise pro-

totypic emotional expressions, such as anger or fear. Different from facial expres-

sions, the head pose of a person may reveal one’s focus of attention. Popular head

pose estimation methods [47] include holistic template based approaches, i.e. clas-

sifying a pose direction based on the appearance of the entire face image, or local

feature set based approaches, i.e. corresponding facial landmarks such as eyes and

lips to a set of trained poses. Recent studies have attempted to estimate head pose

in low-resolution images [8] as well as crowded surveillance videos [52]. In addi-

tion to head pose, body posture configuration [46] and gait [49] may also play an

important role in human intent inference. In particular, by tracking the body pos-

ture of a person over time, we may discover angry or aggressive-looking postures,

indicating threatening intentions. A common strategy to articulated body pose es-

timation is to exploit the mapping of kinematically constrained object parts to a

pictorial structure for the appearance of body parts [20]. As opposed to body pos-

9 http://www.vidient.com/solutions/transportation.php
10 http://www.dhs.gov/xres/programs/gc_1218480185439.shtm

http://www.vidient.com/solutions/transportation.php
http://www.dhs.gov/xres/programs/gc_1218480185439.shtm
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ture inference, gait analysis typically models the characterisation of periodic motion

and spatio-temporal patterns of human silhouettes. Recent studies on gait analysis

have been focusing on coping with variations caused by various covariate condi-

tions (e.g. clothing and view angle) [6], and distinguishing abnormal walking styles

(e.g. walking with objects attached to the legs) [55].

Gauging one’s intent is challenging because behavioural cues are often incom-

plete, vary from person to person, and may last only a fraction of time. In addi-

tion, an image based analysis such as facial expression recognition becomes diffi-

cult given low-resolution video images captured from crowded public scenes. For

accurate and robust intent inference, it is not only necessary to analyse the low-level

imagery features and their inter-correlation, but also critical to model the high-level

visual context, i.e. correlations among facial expression, head pose, body pose, and

gait as well as their relationships with other entities in a scene.

3.2 Crowded Scene Analysis

(a) (b) (c)

Fig. 2 A crowded scene may be structured ((a) and (b)) where crowd motion is almost directionally
coherent over time, or unstructured ((c)) where the motion of the crowd at any given location is
multi-modal. Object tracking in crowded scenes is very challenging due to severe inter-object
occlusion, visual appearance ambiguity, and complex interactions among objects.

Crowded scene analysis is indispensable in most surveillance scenarios since

most video analyses, e.g. intent profiling, have to be carried out in unconstrained

and crowded environments (see Fig. 2). Crowded scene analysis can be categorised

into three main problems: (1) crowd density estimation and people counting, (2)

tracking in crowd, and (3) behaviour recognition in crowd. There exist commercial

applications that support crowd density estimation for overcrowding detection, such

as the solutions developed by iOmniscient and VideoIQ. However, commercial sys-

tems for tracking and behaviour analysis in crowded public scenes are almost non-

existent. The main reason is that most existing commercial solutions generally rely

on object-centred representation with little if any context modelling. Specifically,

they generally assume reliable object localisation and detection as well as smooth

object movement. These assumptions are often invalid in real-world surveillance

settings characterised by severe inter-object occlusions due to excessive number of
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objects in crowded scenes (Fig. 2). In this section, we focus our discussion on re-

cent advances on behaviour analysis in crowded scenes, adopting a non-trajectory

based representation. Tracking in crowd will be discussed in Section 3.4. Readers

are referred to [32] for a review on crowd density estimation.

(a) (b)

Fig. 3 Examples of crowded scene analysis: (a) Action detection in crowd, an example of detection
of ‘standing’ action in a busy underground station. (b) Crowd analysis involving multiple objects,
a police car breaks a red light and turns right through opposing traffic. Here the right flow of the
other traffic is a typical action, as is the left flow of the police car. However, their conjunction
(forbidden by the traffic lights) is not (images from [62], [28]).

One of the key problems in crowd behaviour understanding is action detection,

which aims to detect specific action, e.g. fighting or falling down in a crowded scene

(Fig. 3(a)). The problem of action detection in crowd is largely unresolved as com-

pared to the extensively studied action classification problem in well-defined envi-

ronments [53]. Specifically, unlike action classification that assumes availability of

pre-segmented single action sequence with fairly clean background, action detection

in crowd does not assume well-segmented action clips. A model needs to search for

an action of interest that can be overwhelmed by a large numbers of background

activities in a cluttered scene. Existing approaches [33, 75] typically construct a set

of action templates based on a single sample per action class. These templates are

then used for matching given an unseen clip. The models may not be able to cope

with large intra-class variations since only one sample per action class is used for

a model. The intra-class variations can be captured using large numbers of training

actions, but requiring manual annotations that can be time-consuming and unreli-

able. To generate sufficient training data without laborious manual annotation, dif-

ferent approaches have been proposed, e.g. the use of a multiple instance learning

framework [29], a greedy k-nearest neighbour algorithm for automated annotation

of positive training data [62], and a transfer learning framework [12] to generalise

action detection models built from a source dataset to a new target dataset. For the

detection strategy, most existing studies perform action detection by using sliding

3D search windows [29, 62]. This searching method, however, can be computation-

ally prohibitive due to the enormous search space. This problem is addressed by

Yuan et al. [76] using a 3D branch and bound searching method.
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(a) (b) (c)

Fig. 4 After computing low-level activity features such as optical flow, there are different ap-
proaches to represent activity patterns. For example, (a) decomposition into local fixed-size spatio-
temporal volumes, (b) decomposition into regions, each of which encapsulates location specific
activities that differ from those observed in other regions, and (c) overlay of particles on the op-
tical flow fields (images from [35] (Original video sequence is courtesy of Nippon Telegraph and
Telephone Corporation) , [40], [45]).

Beyond action recognition that focuses on the behaviour of individuals, another

important research area is crowd analysis, which aims to derive a collective un-

derstanding of behaviours and interactions of multiple objects co-exist in a com-

mon space (see Fig. 3(b)). Conventional methods [51,27] often start with individual

tracking in the scene. Owing to the unreliability of tracking caused by extensive

clutter and dynamic occlusions in crowded scenes, increasing numbers of studies

approach the problem using a holistic representation to avoid explicit object seg-

mentation and tracking. In particular, recent studies tend to represent activity pat-

terns using pixel-level features, including foreground pixel changes [7, 66], optical

flow [28, 37], texture [42], and gradients of pixel intensities [35]. To construct a

holistic representation given low-level pixel-based features, a model decomposes

the scene and represents local activities as local fixed-size spatio-temporal volumes

of features [34,35,28,70,45] (Fig. 4(a)). There are also studies [40,66] that decom-

pose a scene into different regions, which are semantically relevant to the activity

dynamics and structural knowledge of a scene (Fig. 4(b)). Alternatively, motivated

by the studies on fluid dynamics, the notions of particle flow [3] and streak flow [44]

are also exploited (Fig. 4(c)). These studies overlay a cloud of particles over opti-

cal flow fields and subsequently learn the dynamics and interactive forces of these

moving particles for crowd segmentation [3,44] and abnormal crowd behaviour de-

tection [45, 73, 44].

Given a representation of localised activity patterns, activity modelling is fur-

ther considered for learning the space-time dependencies between local activities.

To that end, suitable statistical learning models include dynamic Bayesian net-

works (DBNs) [35], Markov random field (MRF) [34], and probabilistic topic mod-

els (PTMs) [70, 28, 37]. Among them, PTMs such as Latent Dirichlet Allocation

(LDA) [9] and Hierarchical Dirichlet Processes (HDP) [64] have gained increasing

popularity. The PTMs are essentially bag of words models that perform clustering

by concurrency. Specifically, local visual activities and video clips are often treated

analogously as ‘words’ and ‘documents’. Each video clip may be viewed as a mix-
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ture of various ‘topics’, i.e. a cluster of co-occurring words in different documents.

In general, PTMs are less demanding computationally and less sensitive to noise

in comparison to DBNs due to the bag of words representation. This advantage,

however, is gained at the expense of throwing away explicit temporal dependen-

cies between local activities. Different solutions have been proposed to address this

shortcoming, e.g. by introducing additional Markov chain to a topic model for mod-

elling explicit temporal dependencies [28].

3.3 Cooperative Multi-Camera Network Surveillance

Multi-camera surveillance is another important and emerging research topic. In

complex public scenes, multiple-camera network systems are more commonly de-

ployed than single-camera systems. Specifically, disjoint cameras with non-overlapping

field of view (FOV) are more prevalent, due to the desire to maximise spatial cov-

erage in a wide-area scene whilst minimising the deployment cost. Most existing

commercial applications for activity understanding and unusual event detection are

designed for single-camera scenarios. Very few working systems are available for

interpreting activity patterns across networked multiple disjoint camera views for

global analysis and a coherent holistic situational awareness.

In this section, we highlight some efforts that have been made in the last few

years by the computer vision community towards developing multi-camera video

analytics, focusing on multi-camera object tracking and activity analysis.

Fig. 5 Partial observations of activities observed from different camera views: a group of people
(highlighted in green boxes) get off a train [Cam 8, frame 10409] and subsequently take an upward
escalator [Cam 5, frame 10443] which leads them to the escalator exit view [Cam 4, frame 10452].
Note that the same objects exhibit drastic appearance variations due to changes in illumination,
camera viewpoint, and the distance between the objects and the cameras.

Object tracking across camera views is a major research topic due to its po-

tential usefulness in visual surveillance, e.g. monitoring long-term activity patterns

of targeted individuals. Current solutions mostly achieve inter-camera tracking by

matching the visual appearance features and motion characteristics, e.g. speed, of a

target object across views. The appearance features are often extracted from the en-

tire individual body since biometric features such as facial appearance is no longer
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reliable under typical surveillance viewing conditions. Inter-camera tracking, also

known as person re-identification, aims to associate individuals observed at diverse

locations in a camera network. Compared to multi-camera object tracking, methods

devised for person re-identification generally ignore the temporal constraints across

views and match objects based solely on appearance features. Due to the dispari-

ties in space, time, and viewpoint among disjoint cameras over different physical

locations, objects travelling across such camera views often undergo drastic appear-

ance variations (Fig. 5). To remedy the problem, different strategies have been pro-

posed, including the mapping of colour distribution from one camera to another

using a brightness transfer function [30, 54], exploiting contextual information ex-

tracted from surrounding people to resolve ambiguities [78], and computing more

robust image features through incremental learning [23], boosting [26], or exploit-

ing asymmetry/symmetry principles [19].

Robustness and accuracy in inter-camera tracking and person re-identification

cannot be achieved ultimately by matching imagery information alone. It is essen-

tial to formulate and model knowledge about inter-camera relationships as contex-

tual constraints in assisting object tracking and re-identification over significantly

different camera views [13, 66]. The problem of inferring the spatial and temporal

relationships between cameras is often known as camera topology inference [43,68],

which involves the estimation of camera transition probabilities, i.e. how likely an

object exiting a camera view would reappear in another camera view, and a inter-

camera time delay distribution, i.e. travel time needed to cross a blind area. Re-

cent studies on topology inference have been focusing on disjoint camera networks.

A common strategy for learning the topology of a disjoint camera network is by

matching individual object’s visual appearance or motion trends. This is essentially

similar to the multi-camera object tracking and the person re-identification tasks as

discussed above. Once object correspondences are established using a large amount

of observations, it would be straightforward to infer the paths and transition time dis-

tributions between cameras. However, without having to solve the correspondence

problem explicitly, which is often nontrivial in itself, another popular strategy ap-

plicable to disjoint cameras is to infer inter-camera relationship through searching

for a consistent temporal correlation from population activity patterns (rather than

individual whereabouts) across views [43, 68, 66]. For example, Makris et al. [43]

present an unsupervised method that accumulates evidence from a large set of cross-

camera entrance/exit events, so as to establish a transition time distribution. A peak

in the transition time distribution essentially implies a connection between the two

camera views.

Global activity analysis across multiple camera views is another emerging prob-

lem to be solved, in which the goal is to build an activity model for understand-

ing activities captured by multiple cameras holistically, e.g. performing unusual

event detection in a global context. Performing global activity analysis in a public

space through multiple cameras is non-trivial, especially with non-overlapping inter-

camera views, in which global activities can only be observed partially with differ-

ent views being separated by unknown time gaps. A straightforward approach to

activity understanding and unusual event detection in multiple disjoint cameras is to
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reconstruct the global path taken by an object by merging its trajectories observed in

different views, followed by conventional single-view trajectory analysis [77]. With

this approach, one must address the camera topology inference problem [43, 68]

and the trajectory correspondence problem [30], both of which are still far from

being solved. Wang et al. [71] propose an alternative trajectory-based method that

bypasses the topology inference and correspondence problems by proposing a LDA-

based co-clustering model. However, this model cannot cope with busy scenes and

it is limited to capturing only co-occurrence relationships among activity patterns.

In contrast to the trajectory-based approaches, Loy et al. [65] developed a method

that automatically infers the unknown time delayed dependencies between local ac-

tivities across views without relying on explicit object-centred segmentation and

tracking. This technique is particularly useful in coping with low-quality public

scene surveillance videos featuring severe inter-object occlusion therefore improv-

ing robustness and accuracy in multi-camera unusual event detection and object

re-identification.

3.4 Context-aware Activity Analysis

(a) (b) (c)

Fig. 6 Visual context learning can benefit various surveillance tasks: (a) Tracking in crowd by
leveraging the context learned from typical crowd motions, (b) arbitrating ambiguities in person re-
identification tasks by exploiting the visual context extracted from surrounding people and objects,
and (c) global unusual event detection in multiple disjoint cameras by learning a global dependency
context (images from [56], [78], [65]).

Visual surveillance in public spaces is challenging due to severe occlusion, visual

appearance variation, and temporal discontinuity. These factors contribute collec-

tively in making visual observations noisy and incomplete, resulting in their inter-

pretations ill-defined and ambiguous. To overcome this problem, a model needs to

explore and discover extra knowledge about behavioural context from visual data.

Activities in a public space are inherently context-aware, exhibited through implicit

physical and social constraints imposed by the scene layout and correlated activi-

ties (and shared spaces) of other objects both in the same camera view and other
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views. Strong psychophysical evidence [5, 58] suggests that visual contexts, which

encompass spatio-temporal relations of an object with its surroundings, are crucial

for establishing a clear comprehension of a scene. Current commercial video analyt-

ics solutions have yet to embrace visual context modelling whilst significant efforts

have been made by the computer vision research community.

Object tracking in crowded public spaces is one of the application areas that

can benefit greatly from visual context modelling. Various techniques have been

proposed following this idea. For instance, tracking-by-detection [72, 11] exploits

human or body part detection as categorical contextual information for more reli-

able tracking. There are also studies that exploit contextual information around a

target object both spatially and temporally to facilitate more robust long-term track-

ing [48,74]. In another study, Ali and Shah [4] exploit scene structure and behaviour

of the crowd to assist appearance-based tracking in structured crowded scenes. The

work is extended by Rodriguez et al. [56] and Kratz et al. [36] to unstructured

crowded scenes, whereby tracking of individuals is aided by leveraging the con-

textual knowledge learned from typical multi-modal crowd motions (Fig. 6(a)). Vi-

sual context is also beneficial for resolving ambiguities from inter-camera track-

ing or person re-identification. For instance, Zheng et al. [78] embed contextual

visual knowledge extracted from surrounding people into supporting descriptions

for matching people across disjoint and distributed multiple views (Fig. 6(b)).

Visual context learning can also facilitate the detection of subtle unusual events

otherwise undetectable in complex public scenes. For example, Li et al. [39] yield

robust detection of unusual events with subtle visual difference but contextually in-

coherent. This system models both behaviour spatial and correlation context in a sin-

gle wide-area camera view to provide situational awareness for where a behaviour

may take place and how it is affected by other objects co-existing in the scene. Be-

yond a single camera view, activity understanding and unusual event detection in a

multiple camera network can also benefit from the visual context learning [66, 65].

In particular, collective partial observations of an inferred global activity (not visu-

ally observable directly in a common space) are correlated and inter-dependent in

that they take place following a certain temporal order even though with uncertain

temporal gaps. Consequently, discovering the time-delayed correlations or depen-

dencies between a set of visually disjoint partial observations can help to establish

plausible and coherent visual context beyond individual camera views that facilitates

more robust activity understanding (Fig. 6(c)).

3.5 Human in the Loop

A primary goal of a visual surveillance system is to detect genuine unusual events

whilst ignoring distractors. Most unusual event detection methods [70, 45, 34] em-

ploy an outlier detection strategy, in which a model is trained using normal events

through unsupervised one-class learning. Events that deviate statistically from the

resulting normal profile are deemed unusual. This strategy offers a practical way
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of bypassing the problems of imbalanced class distribution and inadequate unusual

event training samples. However, the outlier detection strategy may subject to a

few inextricable limitations as pointed out by Loy et al. [41]. Specifically, with-

out human supervision, unsupervised methods have difficulties in detecting subtle

unusual events that are visually similar to a large numbers of normally behaving

objects co-existing in a scene. In addition, surveillance video of public spaces are

highly cluttered with large number of nuisance distractors, often appearing visu-

ally similar to genuine unusual events of interest. Relying on information extracted

from imagery data alone is computationally difficult to distinguish a genuine un-

usual event from noise. The usefulness of machine detected events can benefit from

further examination using human expert knowledge. From statistical model learning

perspective, constructing a model that encompasses ‘all’ normal events is inherently

difficult. Given limited (and often partial) observation, some outlying regions of a

normal class may be falsely detected as being unusual (and of interest) if no human

feedback is taken into account for arbitrating such false alarms.

To overcome this inherent limitation of unsupervised learning from incomplete

data, other sources of information need be exploited. Human feedback is a rich

source of accumulative information that can be utilised to assist in resolving am-

biguities during class decision boundary formation. An attractive approach to learn

a model from human feedback is by employing an active learning strategy [59].

Active learning aims to follow a set of predefined query criteria to select the most

critical and informative point for human feedback on labelling verification. This

strategy for active selection of human verification on some but not all machine de-

tected events allows a model to learn quickly with far fewer samples compared to

passive random labelling strategy. Importantly, it helps in resolving ambiguities of

interest when lacking visual distinctiveness, leading to more robust and accurate

detection of subtle unusual events.

There have been very few active learning systems proposed for activity under-

standing and unusual event detection. Sillito and Fisher [61] formulate a method to

harnesses human feedback on-the-fly for improving unusual event detection perfor-

mance. Specifically, human approval is sought if a newly observed instance devi-

ates statistically from the learned normal profile. If the suspicious instance is indeed

normal, it will be included in the re-training process, or else it will be flagged as

anomaly. In a more recent study, Loy et al. [41] propose a stream-based multi-

criteria model for active learning from human feedback. In particular, the model

makes a decision on-the-fly on whether to request human verification on unsuper-

vised detection. The model selects adaptively two active learning criteria, likeli-

hood criterion and uncertainty criterion, to achieve (1) discovery of unknown event

classes and (2) refinement of classification boundary. The system shows that ac-

tive learning helps in resolving ambiguities in detecting genuine unusual events of

interest, leading to a more robust and accurate detection of subtle unusual events

compared to the conventional outlier detection strategy.
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4 Discussion

Current video surveillance technologies mostly suffer a high false alarm rate, over-

sensitive to visual context changes due to hard-wired rules, and poor scalability

to crowded public scenes. Emerging techniques can help in mitigating some of

these problems. In particular, video analytics can benefit from recent development

in computer vision research for intent profiling, non-trajectory based representation

in crowded scene analysis, multi-camera network cooperative activity monitoring,

visual context modelling, and human-in-the-loop learning. There are other notable

emerging trends in both algorithm and hardware development, which can also im-

prove visual analytics for surveillance and security.

Robust and transfer video analysis aim to construct computer vision algorithms

learning adaptively over long duration of time and across locations in order to cope

with weather conditions, large environmental changes (e.g. different seasons in a

calendar year), camera changes, and transitions of activity dynamics. Knowledge

learned in a particular scene can be transferred selectively to new scenes without the

need to invoke a new learning process from the beginning again.

Multi-sensor surveillance aims to exploit information from multiple heteroge-

neous sensors for collaborative analysis. Utilising different visual devices can be of

benefit, including a combination of pan-tilt-zoom (PTZ) cameras, thermal cameras,

stereo cameras, time-of-flight cameras, or wearable cameras. Non-visual sensors

such as audio sensors, positioning sensors, and motion sensors can also be inte-

grated into such a heterogeneous system in order to assist surveillance tasks, e.g. co-

operative object detection and tracking using multiple active PTZ cameras [18] and

wearable cameras [2].

On-the-fly variable level-of-detail content search can benefit from recent prolifer-

ation on high-resolution and low-cost cameras. Activity and behaviour based focus

of attention can be developed to facilitate capabilities for dynamic sensing of visual

content at variable level of details for on-the-fly automatic searching of interesting

events and object in high-resolution, face recognition, and expression analysis from

long distance in a crowded space. This can be exploited by either the deployment

of selective high-resolution cameras or massively deployed random forest of redun-

dant low-cost cameras. The use of higher resolution videos also demands tractable

and specialised algorithms that are able to run in individual camera nodes, e.g. on

a field-programmable gate array (FPGA) in a camera, to share the computational

loads of the centralised processing server.

5 Further Reading

Interested readers are referred to the following further readings:

• [25] for a general overview of the video surveillance market, the architecture of

a surveillance system, and the technology status of video analytics.
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• [69, 38] for surveys on action and activity recognition.

• [32] for a survey on crowd analysis.

• [31, 1] for system perspectives on multiple camera activity analysis.

• [57] for trends on surveillance hardware development.
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