
Security and Usability Challenges of Moving-Object CAPTCHAs:

Decoding Codewords in Motion

Y. Xu†, G. Reynaga‡, S. Chiasson‡, J-M. Frahm†, F. Monrose† and P. van Oorschot‡

†Department of Computer Science, University of North Carolina at Chapel Hill, USA
‡School of Computer Science, Carleton University, Canada
email:{yix,jmf,fabian}@cs.unc.edu, {gerardor,chiasson,paulv}@scs.carleton.ca

Abstract

We explore the robustness and usability of moving-

image object recognition (video) captchas, designing and

implementing automated attacks based on computer vi-

sion techniques. Our approach is suitable for broad

classes of moving-image captchas involving rigid ob-

jects. We first present an attack that defeats instances

of such a captcha (NuCaptcha) representing the state-of-

the-art, involving dynamic text strings called codewords.

We then consider design modifications to mitigate the at-

tacks (e.g., overlapping characters more closely). We im-

plement the modified captchas and test if designs mod-

ified for greater robustness maintain usability. Our lab-

based studies show that the modified captchas fail to of-

fer viable usability, even when the captcha strength is re-

duced below acceptable targets—signaling that the mod-

ified designs are not viable. We also implement and test

another variant of moving text strings using the known

emerging images idea. This variant is resilient to our at-

tacks and also offers similar usability to commercially

available approaches. We explain why fundamental ele-

ments of the emerging images concept resist our current

attack where others fails.

1 Introduction

Humans can recognize a wide variety of objects at a

glance, with no apparent effort, despite tremendous vari-

ations in the appearance of visual objects; and we can

answer a variety of questions regarding shape properties

and spatial relationships of what we see. The apparent

ease with which we recognize objects belies the mag-

nitude of this feat. We can also do so with astonishing

speed (e.g., in a fraction of a second) [41]. Indeed, the

Cognitive Science literature abounds with studies on vi-

sual perception showing that, for the most part, people

do not require noticeably more processing time for ob-

ject categorization (e.g., deciding whether the object is

a bird, a flower, a car) than for more fine grained object

classification (e.g., an eagle, a rose) [13]. Grill et al. [20]

showed that by the time subjects knew that a picture con-

tained an object at all, they already knew its class. If such

easy-for-human tasks are, in contrast, difficult for com-

puters, then they are strong candidates for distinguishing

humans from machines.

Since understanding what we see requires cognitive

ability, it is unsurprising that the decoding of motion-

based challenges has been adopted as a security mecha-

nism: various forms of motion-based object recognition

tasks have been suggested as reverse Turing tests, or what

are called Completely Automated Public Turing tests to

tell Computers and Humans Apart (captchas). Among

the key properties of captchas are: they must be easily

solved by humans; they should be usable; correct solu-

tions should only be attainable by solving the underly-

ing AI problem they are based on; they should be robust

(i.e., resist automated attacks); and the cost of answering

challenges with automated programs should exceed that

of soliciting humans to do the same task [1, 46]. To date,

a myriad of text, audio, and video-based captchas have

been suggested [22], many of which have succumbed to

different attacks [6, 7, 19, 32, 47, 48, 53].

While text-based captchas that prompt users to rec-

ognize distorted characters have been the most popular

form to date, motion-based or video captchas that pro-

vide some form of moving challenge have recently been

proposed as the successor to static captchas. One promi-

nent and contemporary example of this new breed of

captchas is NuCaptcha [35], which asserts to be “the

most secure and usable captcha,” and serves millions

of video captchas per day. The general idea embod-

ied in these approaches is to exploit the remarkable per-

ceptual abilities of humans to unravel structure-from-

motion [30]. For example, users are shown a video with a

series of characters (so-called random codewords) mov-

ing across a dynamic scene, and solve the captcha by en-

tering the correct codeword. For enhanced security, the

codewords are presented among adversarial clutter [32]

(e.g., moving backgrounds and other objects with dif-

ferent trajectories), and consecutive characters may even

overlap significantly. The underlying assumption is that

attacks based on state-of-the-art computer vision tech-

niques are likely to fail at uncovering these challenges

within video sequences, whereas real users will be able

to solve the challenges with little effort.

However, unlike in humans, it turns out that object

classification, not recognition of known objects, is the

more challenging problem in Computer Vision [43].

That is, it is considerably more difficult to capture in

a computer recognition system the essence of a dog, a

horse, or a tree—i.e., the kind of classification that is

natural and immediate for the human visual system [29].

To this day, classification of objects in real-world scenes

remains an open and difficult problem. Recognizing

known objects, on the other hand, is more tractable, espe-

cially where it involves specific shapes undergoing trans-

formations that are easy to compensate for. As we show

later, many of these well-defined transformations hold in

current motion-based captcha designs, due in part to de-

sign choices that increase usability.

In what follows, we present an automated attack to

defeat the current state-of-the-art in moving-image ob-

ject recognition captchas. Through extensive evaluation

of several thousand real-world captchas, our attack can

completely undermine the security of the most prominent

examples of these, namely those currently generated by

NuCaptcha. After examining properties that enable our

attack, we explore a series of security countermeasures

designed to reduce the success of our attacks, including

natural extensions to the scheme under examination, as

well as an implementation of a recently proposed idea

(called Emerging Images [31]) for which attacks do not

appear as readily available. Rather than idle conjecture

about the efficacy of countermeasures, we implement

captchas embedding them and evaluate these strength-

ened variations of moving-image captchas by carrying

out and reporting on a usability study with subjects asked

to solve such captchas.

Our findings highlight the well-known tension be-

tween security and usability, which often have subtle in-

fluences on each other. In particular, we show that the

design of robust and usable moving-image captchas is

much harder than it looks. For example, while such

captchas may be more usable than their still-based coun-

terparts, they provide an attacker with a significant num-

ber of views of the target, each providing opportunities to

increase the confidence of guesses. Thus the challenge is

limiting the volume of visual cues available to automated

attacks, without adversely impacting usability.

2 Captcha Taxonomy and Related Work

Most captchas in commercial use today are character-

recognition (CR) captchas involving still images of dis-

torted characters; attacks essentially involve building on

optical character recognition advances. Audio captchas

(AUD) are a distinct second category, though unre-

lated to our present work. A third major category,

image-recognition (IR) captchas, involves classification

or recognition, of images or objects other than charac-

ters. A well-known example, proposed and then bro-

ken, is the Asirra captcha [16, 19] which involves ob-

ject classification (e.g., distinguishing cats from other

animals such as dogs). CR and IR schemes may in-

volve still images (CR-still, IR-still), or various types of

dynamic images (CR-dynamic, IR-dynamic). Dynamic

text and objects are of main interest in the present paper,

and contribute to a cross-class category: moving-image

object recognition (MIOR) captchas, involving objects

in motion through animations, emergent-image schemes,

and video [10–12, 26, 31, 35, 38]. A fourth category,

cognitive-based captchas (COG), include puzzles, ques-

tions, and other challenges related to the semantics of

images or language constructs. We include here content-

based video-labeling of YouTube videos [24].

The most comprehensive surveys of captchas to date

are those by Hidalgo and Maranon [22] and Basso and

Bergadano [2]. We also recommend other comprehen-

sive summaries: for defeating classes of AUD captchas,

Soupionis [40] and Bursztein et al. [4, 6]; for defeating

CR captchas, Yan et al. [47, 50] and Bursztein [7]; for a

systematic treatment of IR captchas and attacks, Zhu et

al. [53], as well as for robustness guidelines.

Usability has also been a central focus, for example,

including a large user study of CR and AUD captchas

involving Amazon Mechanical Turk users [5], a user

study of video-tagging [24], usability guidelines and

frameworks related to CR captchas [49]. Chellapilla et

al. [8, 9] also address robustness. Hidalgo et al. [22]

and Bursztein et al. [7] also review evaluation guidelines

including usability. Lastly, research on underground

markets for solving captchas [33], and malware-based

captcha farms [15], raise interesting questions about the

long-term viability of captchas.

Lastly, concurrent to our own work, Bursztein [3]

presents an approach to break the video captchas used by

NuCaptcha. The technique exploits the video by treat-

ing it as a series of independent frames, and then applies

a frame-based background removal process [7] to dis-

card the video background. Next, frame characteristics

(e.g., spatial salient feature density and text aspect ratio

of the overlapping letters) are used to detect the code-

word, after which a clustering technique is used to help

segment the characters of the codeword. As a final step,

traditional CR-still based attacks are used to recognize

the characters in each of the segmented frames. The ap-

proach taken by Bursztein is closely related to our base-

line method (§4.1) as it only uses single frame segmen-

tation and recognition. In contrast, our subsequent tech-

niques inherently use temporal information contained in

the video to identify the codeword, to improve the seg-

mentation, and to enhance the recognition step during the

codeword recovery process.

3 Background

In the human brain, it is generally assumed that an image

is represented by the activity of “units” tuned to local

features (e.g., small line and edge fragments). It is also

widely believed that objects appearing in a consistent or

familiar background are detected more accurately, and

processed more quickly, than objects appearing in an in-

consistent scene [36]. In either case, we must somehow

separate as much as possible of the image once we see

it. This feat is believed to be done via a segmentation

process that attempts to find the different objects in the

image that “go together” [43].

As with other aspects of our visual system, segmen-

tation involves different processes using a multitude of

sources of information (e.g., texture and color), which

makes it difficult to establish which spatial properties and

relations are important for different visual tasks. While

there is evidence that human vision contains processes

that perform grouping and segmentation prior to, and in-

dependent of, subsequent recognition processes, the ex-

act processes involved are still being debated [36].

Given the complexity of the visual system, it is not

surprising that this feat remains unmatched by computer

vision algorithms. One of the many reasons why this

task remains elusive is that perception of seemingly sim-

ple spatial relations often requires complex computations

that are difficult to unravel. This is due, in part, to the fact

that object classification (that is, the ability to accurately

discriminate each object of an object class from all other

possible objects in the scene) is computationally difficult

because even a single individual object can already pro-

duce an infinite set of different images (on the retina)

due to variations in position, scale, pose, illumination,

etc. Discriminating objects of a certain class is further

complicated by the often very large inner class variabil-

ity, which significantly changes the appearance beyond

the factors encountered for a single object. Hence, vision

operates in a high-dimensional space, making it difficult

to build useful forms of visual representation.

In computer vision, the somewhat simpler process of

recognizing known objects is simulated by first analyz-

ing an image locally to produce an edge map composed

of a large collection of local edge elements, from which

we proceed to identify larger structures. In this paper, we

are primarily interested in techniques for object segmen-

tation and tracking. In its simplest form, object tracking

can be defined as the problem of estimating the trajec-

tory of an object in the image plane as it moves around

a scene. Tracking makes use of temporal information

computed from a sequence of frames. This task can be

difficult for computer vision algorithms because of issues

related to noise in the image, complex object motion, the

nonrigid nature of objects, etc. However, the tracking

problem can be simplified if one can assume that ob-

ject motion is smooth, the motion is of constant velocity,

knowledge of the number and the size of the objects, or

even appearance and shape information. In NuCaptcha,

for example, many of these simplifications hold and so

several features (e.g., edges, optical flow) can be used to

help track objects. The correspondence search from one

frame to the next is performed by using tracking.

In video, this correspondence can be achieved by

building a representation of the scene (called the back-

ground model) and then finding deviations from the

model for each incoming frame. Intuitively, any signif-

icant change in the image region from the background

model signifies a moving object. The pixels constitut-

ing the regions undergoing change are marked for fur-

ther processing, and a connected component algorithm

is applied to obtain connected regions. This process is

typically referred to as background subtraction. At this

point, all that is needed is a way to partition the im-

age into perceptually similar regions, and then infer what

each of those regions represent. In §4, we discuss the ap-

proach we take for tackling the problems of background

subtraction, object tracking, segmentation, and classifi-

cation of the extracted regions.

4 Our Automated Approach

The aforementioned processes of segmentation, object

tracking, and region identification are possible in today’s

MIOR captchas because of several design decisions that

promote rapid visual identification [14]. NuCaptcha, for

instance, presents a streaming video containing moving

text against a dynamic background. The videos have four

noticeable characteristics, namely: (1) the letters are pre-

sented as rigid objects in order to improve a user’s abil-

ity to recognize the characters; (2) the background video

and the foreground character color are nearly constant in

color and always maintain a high contrast—we posit that

this is done to ease cognitive burden on users; (3) the

random “codewords” each have independent (but over-

lapping trajectories) which better enable users to distin-

guish adjacent characters; (4) lastly, the codewords are

chosen from a reduced alphabet where easily confused

characters are omitted. Some examples of a state-of-the-

Figure 1: Example moving-image object recognition (MIOR)

captchas from NuCaptcha (see http://nucaptcha.com/demo).

art MIOR captcha are given in Figure 1.

Before delving into the specifics of our most success-

ful attack, we first present a naïve approach for automat-

ically decoding the challenges shown in MIOR captchas.

To see how this attack would work, we remind the reader

that a video can be seen as a stream of single pictures that

simply provides multiple views of a temporally evolving

scene. It is well known that human observers perceive a

naturally moving scene at a level of about thirty frames

per second, and for this reason, video captchas tend to

use a comparable frame rate to provide a natural video

experience that is not too jerky. Similarly, the challenge

shown in the captcha is rendered in multiple frames to

allow users to perceive and decode the codewords in an

effortless manner. In the NuCaptcha scheme, for exam-

ple, a single frame may contain the full codeword.

4.1 A Naïve Attack

Given this observation, one way to attack such schemes

is to simply apply traditional OCR-based techniques that

work well at defeating CR-still captchas (e.g., [32, 47]).

More specifically, choose k frames at random, and iden-

tify the foreground pixels of the codeword by comparing

their color with a given reference color; notice the at-

tacker would likely know this value since the users are

asked to, for example, “type the RED moving charac-

ters”. Next, the length of the codeword can be inferred

by finding the leftmost and rightmost pixels on the fore-

ground. This in essence defines a line spanning over the

foreground pixels (see Figure 2). The positions of the

characters along the line can be determined by dividing

the line into n equidistant segments, where n denotes the

desired number of characters in the codeword. For each

of the segments, compute the center of gravity of the

foreground pixels in the vertical area of the image be-

longing to the segment. Lastly, select an image patch (of

the expected size of the characters) around the centers of

gravity of the segments, and feed each patch to a classi-

fier. In our work, we use a neural network approach [39]

because it is known to perform well at this object identi-

fication task. The neural network is trained in a manner

similar to what we discuss in §4.3.

Figure 2: Naïve attack: Based on the foreground pixels, we

find the longest horizontal distance (white line) and the mean

value of vertical area (the respective bounding boxes above).

The above process yields a guess for each of the char-

acters of the codeword in the chosen frames of the video.

Let i denote the number of possible answers for each

character. By transforming the score from the neural net-

work into the probability pi jk where the j-th character

of the codeword corresponds to the i-th character in the

k-th frame, we calculate the probability Pi j for each char-

acter j = 1, . . . ,n of the codeword over all k frames as

Pi j =
1
sp

∑k pi jk with sp = ∑i, j,k pi jk. The choice that has

the highest probability is selected as the corresponding

character. With k = 10, this naïve attack resulted in a

success rate of approximately 36% accuracy in correctly

deducing all three characters in the codewords of 4000

captchas from NuCaptcha. While this relatively simple

attack already raises doubts about the robustness of this

new MIOR captcha, we now present a significantly im-

proved attack that makes fewer assumptions about pixel

invariants [50] in the videos.

4.2 Exploiting Temporal Information

A clear limitation of the naïve attack is the fact that it

is not easily generalizable and it is not robust to slight

changes in the videos. In what follows, we make no as-

sumption about a priori knowledge of the color of the

codewords, nor do we assume that the centers of grav-

ity for each patch are equidistant. To do so, we apply a

robust segmentation method that utilizes temporal infor-

mation to improve our ability to recognize the characters

in the video.

D
ec

o
d

in
g

 P
ro

ce
ss

❶

tracking

video stream

foreground extraction

segmentation

classification

❷

❸

❹

❺

feedback

Figure 3: High-level overview of our attack. (This, and other

figures, are best viewed in color.)

A basic overview of our attack is shown in Figure 3.

Given a MIOR captcha we extract the motion contained

in the video using the concept of salient features. Salient

features are characteristic areas of an image that can be

reliably detected in several frames. To infer the motion of

the salient feature points, we apply object tracking tech-

niques (stage ➊). With a set of salient features at hand,

we then use these features to estimate the color statis-

tics of the background. Specifically, we use a Gaussian

mixture model [18], which represents the color statistics

of the background through a limited set of Gaussian dis-

tributions. We use the color model of the background

to measure, for all pixels in each frame, their likelihood

of belonging to the background. Pixels with low likeli-

hoods are then extracted as foreground pixels (stage ➋).

The trajectories of the foreground pixels are then refined

using information inferred about the color of these pix-

els, and a foreground color model is built. Next, to ac-

count for the fact that all characters of the codewords

move independently, we segment the foreground into n

segments as in the naïve attack (stage ➌). We select each

image patch containing a candidate character and evalu-

ate the patch using a neural network based classifier [39]

(stage ➍). The classifier outputs a likelihood score that

the patch contains a character. As a final enhancement,

we incorporate a feedback mechanism in which we use

high confidence inferences to improve low confidence

detections of other patches. The net effect is that we

reduce the distractions caused by mutually overlapping

characters. Once all segments have been classified, we

output our guess for all characters of the codeword. We

now discuss the stages of our approach in more detail.

Figure 4: The circles depict salient features. These salient

features are usually corners of an object or texture areas.

Detecting Salient Features and Their

Motion (Stage ➊)

A well-known class of salient features in the computer

vision community is gray value corners in images. In

this paper, we use the Harris corner detector [21] for

computing salient features, which uses the image gradi-

ent to identify points in the image with two orthogonal

gradients of significant magnitude. An example of the

detected corners is shown in Figure 4.

After identifying salient features in one frame of the

video we now need to identify their respective position

in the subsequent frames of the video. In general, there

are two choices for identifying the corresponding salient

features in the subsequent frames of the video. The

first choice is to independently detect salient features in

all frames and then compare them by using their image

neighborhoods (patches) to identify correlating patches

through an image based correlation (commonly called

matching). The second class of methods leverages the

small motion occurring in between two frames for an it-

erative search (commonly called tracking).

We opt for a tracking method given that tracking re-

sults for video are superior in accuracy and precision

to matching results. Specifically, we deploy the well

known KLT-tracking method [28], which is based on the

assumption that the image of a scene object has a con-

stant appearance in the different frames capturing the

object (brightness constancy). The MIOR captchas by

NuCaptcha use constant colors on the characters of the

codewords. This implies that the NuCaptcha frames are

well suited for our method. Note that no assumption

about the specific color is made; only constant appear-

ance of each of the salient features is assumed. We return

to this assumption later in Section 5.2.

Motion Trajectory Clustering (Stage ➋)

In a typical video, the detected salient features will be

spread throughout the image. In the case of NuCaptcha,

the detected features are either on the background, the

plain (i.e., non-codeword) characters or the codeword

characters. We are foremost interested in obtaining the

information of the codeword characters. To identify the

codeword characters we use their distinctive motion pat-

terns as their motion is the most irregular motion in the

video captcha. In the case of NuCaptcha, we take advan-

tage of the fact that the motion trajectories of the back-

ground are significantly less stable (i.e., across consec-

utive frames) than the trajectories of the features on the

characters. Hence we can identify background features

by finding motion trajectories covering only a fraction of

the sequence; specifically we assume presence for less

than l = 20 frames. In our analysis, we observed little

sensitivity with respect to l.

Additionally, given that all characters (plain and code-

word) move along a common trajectory, we can further

identify this common component by linearly fitting a tra-

jectory to their path. Note that the centers of the rotating

codeword characters still move along this trajectory. Ac-

cordingly, we use the distinctive rotation of the codeword

characters to identify any of their associated patterns by

simply searching for the trajectories with the largest de-

viation from the more common motion trajectory. This

identifies the pixels belonging to the codeword charac-

ters as well as the plain characters. Additionally, the

features on the identified codeword characters allow us

to obtain the specific color of the codeword characters

without knowing the color a priori (see Figure 5).

Knowing the position of the codeword characters al-

lows us to learn a foreground color model. We use

a Gaussian mixture model for the foreground learning,

which in our case has a single moment corresponding

to the foreground color.1 Additionally, given the above

identified salient features on the background, we also

learn a Gaussian mixture for the background, thereby

further separating the characters from the background.

At this point, we have isolated the trajectories of code-

word characters, and separated the codewords from the

background (see Figure 6). However, to decide which

salient features on the codeword characters belong to-

gether, we required additional trajectories. To acquire

these, we simply relax the constraint on the sharpness

of corners we care about (i.e., we lower the threshold

for the Harris corner detection algorithm) and rerun the

Figure 5: (Top): Initial optical flow. (Middle): salient points

with short trajectories in background are discarded. (Lower):

Trajectories on non-codeword characters are also discarded.

KLT-tracking on the new salient features. This yields

significantly more trajectories for use by our segmenta-

tion algorithm. Notice how dense the salient features are

in Figure 7. Note also that since the foreground extrac-

tion step provides patches that are not related to the back-

ground, we can automatically generate training samples

for our classifier, irrespective of the various backgrounds

the characters are contained in.

Figure 6: Example foreground extraction.

Figure 7: re-running tracking with a lower threshold on corner

quality: Left: before modification. Right: after modification.

Segmentation (Stage ➌)

To segment the derived trajectories into groups, we use k-

means clustering [23]. We chose this approach over other

considerations (e.g., mean-shift [37] based clustering, or

RANSAC [17] based clustering [51]) because of its sim-

plicity, coupled with the fact that we can take advantage

of our knowledge of the desired number of characters

(i.e., k), and use that to help guide the clustering proce-

dure. We cannot, however, apply the standard k-means

approach directly since it relies on Euclidean distances,

where each sample is a point. In our case, we need to take

the relationship between frames of the video sequence

into consideration, and so we must instead use each tra-

jectory as an observation. That is, we cluster the differ-

ent trajectories. However, this results in a non-Euclidean

space because different trajectories have different begin-

ning and ending frames. To address this problem, we

utilize the rigidity assumption [42] and define a distance

metric for trajectories that takes into consideration their

spatial distance, as well as the variation of their spatial

distance. The result is a robust technique that typically

converges within 5 iterations when k = 3, and 20 intera-

tions (on average) when k = 23. A sample output of this

stage is shown in Figure 8.

Figure 8: Left: before segmentation. Right: trajectories are

marked with different colors and bounding boxes are calculated

based on the center of the trajectories and the orientation of the

points. The red points denote areas with no trajectories.

4.3 Codeword Extraction and

Classification (Stage ➍)

Given the center and orientation of each codeword char-

acter, the goal is to figure out exactly what that character

is. For this task, we extract a fixed-sized area around

each character (as in Figure 8), and supply that to our

classification stage. Before doing so, however, we refine

the patches by deleting pixels that are too close to the

trajectories of adjacent characters.

As mentioned earlier, we use a neural network for clas-

sifying the refined patches. A neural network is a mathe-

matical model or computational model that is inspired by

the structure of a biological neural network. The training

of a neural network is based on the notion of the possi-

bility of learning. Given a specific task to solve, and a

class of functions, learning in this context means using

a set of observations to find a function which solves the

task in some optimal sense.

Optimization: While the process outlined in stages ➊-

➍ works surprisingly well, there are several opportuni-

ties for improvement. Perhaps one of the most natural

extensions is to utilize a feedback mechanism to boost

recognition accuracy. The idea we pursue is based on

the observation that an adversary can leverage her confi-

dence about what particular patches represent to improve

her overall ability to break the captcha. Specifically, we

find and block the character that we are most confident

about. The basic idea is that although we may not be able

to infer all the characters at once, it is very likely that we

can infer some of the characters. By masking the char-

acter that we are most confident about, we can simplify

the problem into one of decoding a codeword with fewer

characters; which is easier to segment and recognize.

Figure 9: Iterative decoding of a captcha.

The most confident character can be found using the

probability score provided by the classifier, although it

is non-trivial to do so without masking out too much of

the other characters. We solve this problem as follows.

In order to block a character, we try to match it with

templates of each character that can be gained by learn-

ing. One way to do that is to match scale-invariant fea-

ture transforms (SIFT) between the patch and a reference

template. While SIFT features can deal with scaling, ro-

tation and translation of characters, there are times when

some frames have insufficient SIFT features. Our solu-

tion is to find a frame with enough features to apply SIFT,

and then warp the template to mask the target character

in that frame. Once found, this frame is used as the ini-

tial position in an incremental alignment approach based

on KLT tracking. Essentially, we combine the benefits

of SIFT and KLT to provide a video sequence where the

character we are most confident about is omitted. At that

point, we rerun our attack, but with one fewer character.

This process is repeated until we have no characters left

to decode. This process is illustrated in Figure 9.

Runtime: Our implementation is based on a collection

of modules written in a mix of C++ and Matlab code.

We make extensive use of the Open Source Computer

Vision library (OpenCV). Our un-optimized code takes

approximately 30s to decode the three characters in a

MIOR captcha when the feedback loop optimization (in

stage ➍) is disabled. With feedback enabled, processing

time increases to 250s. The bottleneck is in the incre-

mental alignment procedure (written in Matlab).

5 Evaluation

We now discuss the results of experiments we performed

on MIOR captchas. Specifically, the first set of experi-

ments are based on video sequences downloaded off the

demo page of NuCaptcha’s website. On each visit to the

demo page, a captcha with a random 3-character code-

word is displayed for 6 seconds before the video loops.

The displayed captchas were saved locally using a Fire-

fox plugin called NetVideoHunter. We downloaded 4500

captchas during November and December of 2011.

The collected videos contain captchas with all 19

backgrounds in use by NuCaptcha as of December 2011.

In each of these videos, the backgrounds are of moving

scenes (e.g., waves on a beach, kids playing baseball,

etc.) and the text in the foreground either moves across

the field of view or in-place. We painstakingly labeled

each of the videos by hand to obtain the ground truth.

We note that while NuCaptcha provides an API for ob-

taining captchas, we opted not to use that service as we

did not want to interfere with their service in any way. In

addition, our second set of experiments examine several

countermeasures against our attacks, and so for ethical

reasons, we opted to perform such experiments in a con-

trolled manner rather than with any in-the-wild experi-

mentation. These countermeasures are also evaluated in

our user study (§6).

5.1 Results

The naïve attack was analyzed on 4000 captchas. Due

to time constraints, the extended attack (with and with-

out the feedback optimization) were each analyzed on a

random sample of 500 captchas. To determine an appro-

priate training set size, we varied the number of videos as

well as the number of extracted frames and examined the

recognition rate. The results (not shown) show that while

accuracy steadily increased with more training videos

(e.g., 50 versus 100 videos), we only observed marginal

improvement when the number of training patches taken

from each video exceeded 1500. In the subsequent anal-

yses, we use 300 video sequences for training (i.e., 900

codeword characters) and for each detected character, we

select 2 frames containing that character (yielding 1800

training patches in total). We use dense SIFT descrip-

tors [44] as the features for each patch (i.e., a SIFT de-

scriptor is extracted for each pixel in the patch, and con-

catenated to form a feature vector). The feature vectors

are used to train the neural network. For testing, we

choose a different set of 200 captchas, almost evenly dis-

tributed among the 19 backgrounds. The accuracy of the

attacks (in §4) are given in Table 1.

The result indicate that the robustness of these MIOR

captchas are far weaker than one would hope. In par-

ticular, our automated attacks can completely decode the

captchas more than three quarters of the time. In fact,

our success rates are even higher than some of the OCR-

based attacks on CR-still captchas [7, 19, 32, 47]. There

are, however, some obvious countermeasures that de-

signers of MIOR captchas might employ.

5.2 Mitigation

To highlight some of the tensions that exists between

the security and usability of MIOR captchas, we explore

a series of possible mitigations to our attacks. In or-

der to do so, we generate video captchas that closely

mimic those from NuCaptcha. In particular, we built

a framework for generating videos with characters that

move across a background scene with constant velocity

in the horizontal direction, and move up and down har-

monically. Similar to NuCaptcha, the characters of the

codeword also rotate. Our framework is tunable, and all

the parameters are set to the defaults calculated from the

original videos from NuCaptcha (denoted Standard). We

refer the interested reader to Appendix A for more details

on how we set the parameters. Given this framework, we

explore the following defenses:

• Extended: the codeword consists of m > 3 random

characters moving across a dynamic scene.

• Overlapping: same as the Standard case (i.e., m =
3), except characters are more closely overlapped.

• Semi-Transparent: identical to the Standard case,

except that the characters are semi-transparent.

• Emerging objects: a different MIOR captcha where

the codewords are 3 characters but created using an

“Emerging Images” [31] concept (see below).

Figure 10: Extended case. Top: scrolling; bottom: in-place.

Increasing the number of random characters shown in

the captcha would be a natural way to mitigate our attack.

Hence, the Extended characters case is meant to investi-

gate the point at which the success rate of our attacks fall

Attack Single Character 3-Character

Strategy Accuracy Accuracy

Naïve 68.5% (8216/12000) 36.3% (1450/4000)

Enhanced (no feedback) 90.0% (540/600) 75.5% (151/200)

Enhanced (with feedback) 90.3% (542/600) 77.0% (154/200)

Table 1: Reconstruction accuracy for various attacks.

below a predefined threshold. An example is shown in

Figure 10. Similarly, we initially thought that increas-

ing the overlap between consecutive characters (i.e., the

Overlapping defense, Fig. 11) might be a viable alterna-

tive. We estimate the degree that two characters overlap

by the ratio of the horizontal distance of their centers and

their average width. That is, suppose that one character

is 20 pixels wide, and the other is 30 pixels wide. If the

horizontal distance of their centers is 20, then their over-

lap ratio is computed as 20/ 20+30
2 = 0.8. The smaller

this overlap ratio, the more the characters overlap. A ra-

tio of 0.5 means that the middle character is completely

overlapped in the horizontal direction. In both the origi-

nal captchas from NuCaptcha and our Standard case, the

overlap ratio is 0.95 for any two adjacent characters.

Figure 11: Overlapping characters (with ratio = 0.49).

The Semi-Transparent defense is an attempt to break

the assumption that the foreground is of constant color.

In this case, foreground extraction (stage ➋) will be dif-

ficult. To mimic this defense strategy, we adjust the

background-to-foreground pixel ratio. An example is

shown in figure 12.

Figure 12: Semi-transparent: 80% background to 20% fore-

ground pixel ratio. (Best viewed in color.)

The final countermeasure is based on the notion of

Emerging Images proposed by Mitra et al. [31]. Emer-

gence refers to “the unique human ability to aggregate

information from seemingly meaningless pieces, and to

perceive a whole that is meaningful” [31].2 The con-

cept has been exploited in Computer Graphics to prevent

automated tracking by computers, while simultaneously

allowing for high recognition rates in humans because of

our remarkable visual system. We apply the concepts

outlined by Mitra et al. [31] to generate captchas that

are resilient to our attacks. The key differences between

our implementation and the original paper is that our in-

put is 2D characters instead of 3D objects, and we do

not have the luxury of incorporating shadow information.

Our Emerging captchas are constructed as follows:

fra
m

e
 i

fra
m

e
 i+

1
fra

m
e

 i+
2

c
re

a
tio

n
 o

f a
 fra

m
e

(a) (b)

Figure 13: Emerging captcha. (a) Top: noisy background

frame. Middle: derivative of foreground image. Bottom: single

frame for an Emerging captcha. (b) Successive frames.

1. We build a noisy frame Ibg by creating an image

with each pixel following a Gaussian distribution.

We blur the image such that the value of each pixel

is related to nearby pixels. We also include time cor-

respondence by filtering in the time domain. That is,

each frame is a mixture of a new noisy image and

the last frame.

2. We generate an image I f g similar to that in Nu-

Captcha. We then find the edges in the image by

calculating the norm of derivatives of the image.

3. We combine Ibg and I f g by creating a new im-

age I where each pixel in I is defined as I(x,y) :=

Ibg(x,y) ∗ exp(
I f g

const
), where exp(x) is the exponen-

tial function. In this way, the pixels near the bound-

ary of characters in I are made more noisy than

other pixels.

4. We define a constant threshold t < 0. All pixel val-

ues in I that are larger than t are made white. All

the other pixels in I are made black.

The above procedure results in a series of frames

where no single frame contains the codeword in a way

that is easy to segment. The pixels near the boundaries

of the characters are also more likely to be blacker than

other pixels, which the human visual system somehow

uses to identify the structure from motion. This feat re-

mains challenging for computers since the points near the

boundaries change color randomly, making it difficult, if

not impossible, to track, using existing techniques. An

illustration is shown in Figure 13. To the best of our

knowledge, we provide the first concrete instantiation of

the notion of Emerging Images applied to captchas, as

well as a corresponding lab-based usability study (§6).

We refer interested readers to http://www.cs.

unc.edu/videocaptcha/ for examples of the mit-

igation strategies we explored.

5.2.1 Results

We now report on the results of running attacks on

captchas employing the aforementioned defenses. Fig-

ure 14 depicts the results for the Extended defense strat-

egy. In these experiments, we generated 100 random

captchas for each m ∈ [3,23]. Our results clearly show

that simply increasing the codeword length is not neces-

sarily a viable defense. In fact, even at 23 characters, our

success rate is still 5%, on average.

Figure 14: Attack success as a function of codeword length.

Figure 15 shows the results for the Overlapping de-

fense strategy. As before, the results are averaged over

100 sequences per point. The graph shows that the suc-

cess rate drops steadily as the overlap ratio decreases (de-

noted as “sensitivity” level in that plot). Interestingly,

NuCaptcha mentions that this defense strategy is in fact

one of the security features enabled by its behavioral

analysis engine. The images provided on their website

for the “very secure” mode, however, have an overlap ra-

tio of 0.78, which our attacks would still be able to break

more than 50% of the time.3 Our success rate is still rel-

atively high (at 5%) even when the overlap ratio is as low

as 0.49. Recall that, at that point, the middle character is

100% overlapped, and others are 51% overlapped.

Figure 15 also shows the results for the Semi-

Transparent experiment. In that case, we varied the

transparency of the foreground pixel from 100% down

to 20%. Even when the codewords are barely visible (to

the human eye), we are still able to break the captchas

5% of the time. An example of one such captcha (with a

background to foreground ratio of 80 to 20 percent) was

shown earlier in Figure 12.

Figure 15: Attack success rate against Overlapping and Semi-

Transparent defenses. Sensitivity refers to the overlap ratio

(circles) or the background-to-foreground ratio (squares).

Lastly, we generated 100 captchas based on our imple-

mentation of the Emerging Images concept. It comes as

no surprise that the attacks in this paper were not able to

decode a single one of these challenges — precisely be-

cause these captchas were specifically designed to make

optical flow tracking and object segmentation difficult.

From a security perspective, these MIOR captchas are

more robust than the other defenses we examined. We

return to that discussion in §7.

5.2.2 Discussion

The question remains, however, whether for any of the

defenses, parameters could be tuned to increase the ro-

bustness and still retain usablility. We explore precisely

that question next. That said, the forthcoming analysis

raises interesting questions, especially as it relates to the

robustness of captchas. In particular, there is presently

no consensus on the required adversarial effort a captcha

should present, or the security threshold in terms of suc-

cess rate that adversaries should be held below. For ex-

ample, Chellapilla et al. [8] state: “automated attacks

should not be more than 0.01% successful but the human

success rate should be at least 90%”. Others argue that

“if it is at least as expensive for an attacker to break the

challenge by machine than it would be to pay a human to

take the captcha, the test can be considered secure” [22].

Zhu et al. [53] use the metric that the bot success rate

should not exceed 0.6%.

In the course of our pilot studies, it became clear

that if the parameters for the Extended, Overlapping,

and Semi-Transparent countermeasures are set too strin-

gently (e.g., to defeat automated attacks 99% of the

time), then the resulting MIOR captchas would be ex-

ceedingly difficult for humans to solve. Therefore, to

better measure the tension between usability and secu-

rity, we set the parameters for the videos (in §6) to values

where our attacks have a 5% success rate, despite that be-

ing intolerably high for practical security. Any captcha

at this parametrization, which is found to be unusable, is

thus entirely unviable.

6 User study

We now report on an IRB-approved user study with 25

participants that we conducted to assess the usability of

the aforementioned countermeasures. If the challenges

produced by the countermeasures prove too difficult for

both computers and humans to solve, then they are not

viable as captcha challenges. We chose a controlled

lab study because besides collecting quantitative perfor-

mance data, it gave us the opportunity to collect partici-

pants’ impromptu reactions and comments, and allowed

us to interview participants about their experience. This

type of information is invaluable in learning why cer-

tain mitigation strategies are unacceptable or difficult for

users and learning which strategies are deemed most ac-

ceptable. Additionally, while web-based or Mechanical

Turk studies may have allowed us to collect data from

more participants, such approaches lack the richness of

data available when the experimenter has the opportunity

to interact with the participants one-on-one. Mechani-

cal Turk studies have previously been used in captcha

research [5] when the goal of the studies are entirely

performance-based. However, since we are studying new

mitigation strategies, we felt that it was important to

gather both qualitative and quantitative data for a more

holistic perspective.

6.1 Methodology

We compared the defenses in §5.2 to a Standard ap-

proach which mimics NuCaptcha’s design. In these

captchas the video contains scrolling text with 2-3 words

in white font, followed by 3 random red characters that

move along the same trajectory as the white words. Simi-

lar to NuCaptcha, the red characters (i.e., the codewords)

also independently rotate as they move. For the Extended

strategy, we set m = 23. All 23 characters are continu-

ously visible on the screen. During pilot testing, we also

tried a scrolling 23-character variation of the Extended

scheme. However, this proved extremely difficult for

users to solve and they voiced strong dislike (and out-

rage) for the variation. For the Overlapping strategy, we

set the ratio to be 0.49. Recall that at this ratio, the mid-

dle character is overlapped 100% of the time, and the

others are 51% overlapped. For the Semi-Transparent

strategy, we set the ratio to be 80% background and 20%

foreground. For all experiments, we use the same alpha-

bet (of 20 characters) in NuCaptcha’s original videos.

A challenge refers to a single captcha puzzle to be

solved by the user. Each challenge was displayed on a

6-second video clip that used a canvas of size 300×126

and looped continuously. This is the same specification

used in NuCaptcha’s videos. Three different HD video

backgrounds (of a forest, a beach, and a sky) were used.

Some examples are shown in Figure 16. Sixty chal-

lenges were generated for each variation (20 for each

background, as applicable).

We also tested the Emerging strategy. The three-

character codeword was represented by black and white

pixel-based noise as described in §5.2. Sixty challenges

were generated using the same video parameters as the

other conditions.

The twenty-five participants were undergraduate,

graduate students, staff and faculty (15 males, 10 fe-

males, mean age 26) from a variety of disciplines. A

within-subjects experimental design was used, where

each participant had a chance to complete a set of 10

captchas for each strategy. The order of presentation for

the variations was counterbalanced according to a 5× 5

Latin Square to eliminate biases from learning effects;

Latin Squares are preferred over random ordering of con-

ditions because randomization could lead to a situation

where one condition is favored (e.g., appearing in the

last position more frequently than other conditions, giv-

ing participants more chance to practice). Within each

variation, challenges were randomly selected.

A simple web-based user interface was designed

where users could enter their response in the textbox and

press submit, could request a new challenge, or could

access the help file. Indication of correctness was pro-

vided when users submitted their responses, and users

were randomly shown the next challenge in the set. Im-

mediately after completing the 10 challenges for a vari-

ation, users were asked to complete a paper-based ques-

tionnaire collecting their perception and opinion of that

variation. At the end of the session, a brief interview was

conducted to gather any overall comments. Each partici-

pant completed their session one-on-one with the exper-

imenter. A session lasted at most 45 minutes and users

were compensated $15 for their time.

(a) Forest background (b) Beach background (c) Sky background

Figure 16: Three backgrounds used for the challenges, shown for the Semi-Transparent variant.

6.2 Data Collection

The user interface was instrumented to log each user’s

interactions with the system. For each challenge, the

user’s textual response, the timing information, and the

outcome was recorded. A challenge could result in three

possible outcomes: success, error, or skipped. Question-

naire and interview data was also collected.

6.3 Analysis

Our analysis focused on the effects of five different

captcha variants on outcomes and solving times. We also

analyzed and reviewed questionnaire data representing

participant perceptions of the five variants. We used sev-

eral statistical tests and the within-subjects design of our

study impacted our choice of statistical tests; in each case

the chosen test accounted for the fact that we had multi-

ple data points from each participant. In all of our tests,

we chose p < 0.05 as the threshold for determining sta-

tistical significance.

One-way repeated-measures ANOVAs [25] were used

to evaluate aggregate differences between the means for

success rates and times. When the ANOVA revealed

a significant difference, we used post-hoc Tukey HSD

tests [27] to determine between which pairs the differ-

ences occurred. Here, we were interested only in whether

the four proposed mitigation strategies differed from the

Standard variant, so we report only on these four cases.

Our questionnaires used Likert-scale responses to as-

sess agreement with particular statements (1 - Strongly

Disagree, 10 - Strongly Agree). To compare this ordinal

data, we used the non-parametric Friedman’s Test [27].

When overall significant differences were found, we

used post-hoc Pairwise Wilcoxon tests with Bonferroni

correction to see which of the four proposed variants dif-

fered from the Standard variant.

Outcomes: Participants were presented with 10 chal-

lenges of each variant. Figure 17 shows a stacked bar

graph representing the mean number of success, error,

and skipped outcomes. To be identified as a Success,

the user’s response had to be entirely correct. An Er-

ror occurred when the user’s response did not match the

challenge’s solution. A Skipped outcome occurred when

the participant pressed the “Get A New Challenge” but-

ton and was presented with a different challenge. We

observe differences in the outcomes, with the Standard

variant being most successful and the Semi-Transparent

variant resulting in the most skipped outcomes.

Figure 17: Mean number of success, error, and skipped out-

comes for Standard, Extended, Overlapping, Semi-Transparent

and Emerging variants, respectively.

For the purposes of our statistical tests, errors and

skipped outcomes were grouped since in both cases the

user was unable to solve the challenge. Each participant

was given a score comprising the number of successful

outcomes for each variant (out of 10 challenges).4

A one-way repeated-measure ANOVA showed signif-

icant differences between the five variants (F(4,120) =
29.12, p < 0.001). We used post-hoc Tukey HSD tests

to see whether any of the differences occurred between

the Standard variant and any of the other four variants.

The tests showed a statistically significant difference be-

tween all pairs except for the Standard⇔Emerging pair.

This means that the Extended, Overlapping, and Semi-

Transparent variants had a significantly lower number

of successes than the Standard variant, while Emerging

variant showed no difference.

Time to Solve: The time to solve was measured as the

time between when the challenge was displayed to when

the response was received. This included the time to type

the answer (correctly or incorrectly), as well as the time it

took the system to receive the reply (since the challenges

were served from our local server, transmission time was

negligible). Times for skipped challenges were not in-

cluded since users made “skip” decisions very quickly

and this may unfairly skew the results towards shorter

mean times. We include challenges that resulted in er-

rors because in these cases participants actively tried to

Figure 18: Time taken to solve the MBOR captchas.

solve the challenge. The time distributions are depicted

in Figure 18 using boxplots. Notice that the Extended

variant took considerably longer to solve than the others.

We examined the differences in mean times using

a one-way repeated-measure ANOVA. The ANOVA

showed overall significant differences between the five

variants (F(4,120) = 112.95, p < 0.001). Once again,

we compared the Standard variant to the others in

our post-hoc tests. Tukey HSD tests showed no sig-

nificant differences between the Standard⇔Emerging

or Standard⇔Overlapping pairs. However, signifi-

cant differences were found for the Standard⇔Semi-

Transparent and Standard⇔Extended pairs. This means

that the Semi-Transparent and Extended variants took

significantly longer to solve than the Standard variant,

but the others showed no differences.

Skipped outcomes: The choice of background ap-

pears to have especially impacted the usability of the

Semi-Transparent variant. Participants most frequently

skipped challenges for the Semi-Transparent variant and

found the Forest background especially difficult to use.

Many users would immediately skip any challenge that

appeared with the Forest background because the trans-

parent letters were simply too difficult to see. For the

Semi-Transparent variant, 35% of challenges presented

on the Forest background were skipped, compared 17-

18% of challenges using the other two backgrounds. Par-

ticipants’ verbal and written comments confirm that they

found the Forest background very difficult, with some

users mentioning that they could not even find the letters

as they scrolled over some parts of the image.

Errors: Figure 19 shows the distribution of errors.

It shows that the majority of errors were made on the

middle characters of the challenge. We also examined

the types of errors, and found that most were mistakes

between characters that have similar appearances. The

most commonly confused pairs were: S/5, P/R, E/F, V/N,

C/G, and 7/T. About half of the errors for the Extended

variant were due to confusing pairs of characters, while

the other half involved either missing letters or including

extra ones. For the other variants, nearly all errors were

due to confusing pairs of characters.

Figure 19: Location of errors within the codewords.

User perception: Immediately after completing the

set of challenges for each variant, participants completed

a Likert-scale questionnaire to collect their opinion and

perception of that variant. For each variant, participants

were asked to rate their agreement with the following

statements:

1. It was easy to accurately solve the challenge

2. The challenges were easy to understand

3. This captcha mechanism was pleasant to use

4. This captcha mechanism is more prone to mistakes

than traditional text-based captchas

Figure 20 shows boxplots representing users’ re-

sponses. Since Q.4 was negatively worded, responses

were inverted for easier comparisons. In all cases, higher

values on the y-axis indicate a more favorable response.

The results show that users clearly preferred the Stan-

dard variant and rated the others considerably lower

on all subjective measures. Friedman’s Tests showed

overall significant differences for each question (p <
0.001). Pairwise Wilcoxon Tests with Bonferroni correc-

tion were used to assess differences between the Stan-

dard variant and each of the other variants. Significant

differences were found between each pair compared.

The only exceptions are that users felt that the Extended

and Emerging variants were no more difficult to under-

stand (Question 2) than the Standard variant. This result

appears to contradict the results observed in Figure 20

and we believe that this is because the Wilcoxon test

compares ranks rather than means or medians.

Comments: Participants had the opportunity to pro-

vide free-form comments about each variant and offer

verbal comments to the experimenter. Samples are in-

cluded in Appendix B. Participants clearly preferred the

Standard variant, and most disliked the Extended variant.

(a) Accuracy (b) Easy to understand (c) Pleasant to use (d) More error-prone (responses

inverted)

Figure 20: Likert-scale responses: 1 is most negative, 10 is most positive.

Of the remaining schemes, the Emerging variant seemed

most acceptable although it also had its share of negative

reactions (e.g., one subject found it to be hideous).

7 Summary and Concluding Remarks

Our attack inherently leverages the temporal informa-

tion in the moving-image object recognition (MIOR)

captchas, and also exploits the fact that only object

recognition of known objects is needed. Our methods

also rely on a reasonably consistent appearance or slowly

varying appearance over time. That said, they can be

applied to any set of known objects or narrowly de-

fined objects under affine transformations that are known

to work well with detection methods in computer vi-

sion [45]. For the specific case of NuCaptcha, we showed

that not only are there inherent weaknesses in the current

MIOR captcha design, but that several obvious counter-

measures (e.g., extending the length of the codeword)

are not viable attack countermeasures. More importantly,

our work highlights the fact that the choice of underlying

hard problem by NuCaptcha’s designers was misguided;

its particular implementation falls into a solvable sub-

class of computer vision problems.

In the case of emergent captchas, our attacks fail

for two main reasons. First, in each frame there are

not enough visual cues that help distinguish the charac-

ters from the background. Second, the codewords have

no temporally consistent appearance. Combined, these

two facts pose significant challenges to existing com-

puter vision methods, which typically assume reason-

ably consistent appearance and visually distinctive fore-

grounds [52]. Nevertheless, our user study showed that

people had little trouble solving these captchas. This

bodes well for emergent captchas—per today’s attacks.

Looking towards the future, greater robustness would

result if MIOR captchas required automated attacks to

perform classification, categorization of classes with

large inner class variance, or to identify higher level se-

mantics to understand the presented challenge. Consider,

for example, the case where the user is presented with

two objects (a person and a truck) at the same scale, and

asked to identify which one is larger. To succeed, the

automated attack would need to determine the objects

(without prior knowledge of what the objects are of) and

then understand the relationship. Humans can perform

this task because of the inherent priors learned in daily

life, but this feat remains a daunting problem in com-

puter vision. Therefore, this combination seems to of-

fer the right balance and underscores the ideas put forth

by Naor [34] and von Ahn et al. [1]—i.e., it is prudent

to employ hard (and useful) underlying AI problems in

captchas since it leads to a win-win situation: either the

captcha is not broken and there is a way to distinguish

between humans and computers, or it is broken and a

useful problem is solved.

Acknowledgments

The authors thank Pierre Georgel, Joseph Tighe, and Avi

Rubin for insightful discussions about this work, and for

valuable feedback on an earlier draft of this manuscript.

We are also especially grateful to Fletcher Fairey (of the

Office of University Counsel at Chapel Hill), and Cindy

Cohn and Marcia Hofmann (of the Electronic Frontier

Foundation) for their guidance and assistance in making

our findings available to NuCaptcha in a timely manner.

Sonia Chiasson holds a Canada Research Chair in Hu-

man Oriented Computer Security and Paul Van Oorschot

holds a Canada Research Chair in Authentication and

Computer Security; both acknowledge the Natural Sci-

ences and Engineering Research Council of Canada

(NSERC) for funding the Chairs and Discovery Grants,

as well as funding from NSERC ISSNet. This work

is also supported by the National Science Foundation

(NSF) under award number 1148895.

Notes

1In the case where the foreground characters have varying appear-

ance, we simply use multiple modes.
2Readers can view videos of the Emerging Images concept [31]

at http://graphics.stanford.edu/~niloy/research/

emergence/emergence_image_siga_09.html.
3See the Security Features discussed at http://www.

nucaptcha.com/features/security-features, 2012.

4One participant opted to view only six challenges in each of the

Extended and Emerging variants. We count the remaining four as skips.

References

[1] L. V. Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA:

using hard AI problems for security. In Eurocrypt, pages 294–

311, 2003.

[2] A. Basso and F. Bergadano. Anti-bot strategies based on hu-

man interactive proofs. In P. Stavroulakis and M. Stamp, editors,

Handbook of Information and Communication Security, pages

273–291. Springer, 2010.

[3] E. Bursztein. How we broke the NuCaptcha video scheme

and what we proposed to fix it. See http://elie.im/

blog/security/how-we-broke-the-nucaptcha\

-video-scheme-and-what-we-propose-to-fix-it/,

Accessed March, 2012.

[4] E. Bursztein and S. Bethard. DeCAPTCHA: breaking 75% of

ebay audio CAPTCHAs. In Proceedings of the 3rd USENIX

Workshop on Offensive Technologies, 2009.

[5] E. Bursztein, S. Bethard, C. Fabry, J. C. Mitchell, and D. Juraf-

sky. How good are humans at solving CAPTCHAs? a large scale

evaluation. In IEEE Symposium on Security and Privacy, pages

399–413, 2010.

[6] E. Bursztein, R. Beauxis, H. Paskov, D. Perito, C. Fabry, and

J. C. Mitchell. The failure of noise-based non-continuous audio

CAPTCHAs. In IEEE Symposium on Security and Privacy, pages

19–31, 2011.

[7] E. Bursztein, M. Martin, and J. Mitchell. Text-based CAPTCHA

strengths and weaknesses. In Proceedings of the 18th ACM con-

ference on Computer and communications security, pages 125–

138, 2011.

[8] K. Chellapilla, K. Larson, P. Y. Simard, and M. Czerwinski. De-

signing human friendly human interaction proofs (hips). In ACM

Conference on Human Factors in Computing Systems, pages

711–720, 2005.

[9] K. Chellapilla, K. Larson, P. Y. Simard, and M. Czerwinski.

Building segmentation based human-friendly human interaction

proofs (hips). In Human Interactive Proofs, Second International

Workshop, pages 1–26, 2005.

[10] J. Cui, W. Zhang, Y. Peng, Y. Liang, B. Xiao, J. Mei, D. Zhang,

and X. Wang. A 3-layer Dynamic CAPTCHA Implementation.

In Workshop on Education Technology and Computer Science,

volume 1, pages 23–26, march 2010.

[11] J.-S. Cui, J.-T. Mei, X. Wang, D. Zhang, and W.-Z. Zhang. A

CAPTCHA Implementation Based on 3D Animation. In Inter-

national Conference on Multimedia Information Networking and

Security, volume 2, pages 179 –182, nov. 2009.

[12] J.-S. Cui, J.-T. Mei, W.-Z. Zhang, X. Wang, and D. Zhang. A

CAPTCHA Implementation Based on Moving Objects Recogni-

tion Problem. In International Conference on E-Business and

E-Government, pages 1277–1280, may 2010.

[13] J. J. DiCarlo and D. D. Cox. Untangling invariant object recog-

nition. Trends in Cognitive Sciences, 11:333–341, 2007.

[14] J. Driver and G. Baylis. Edge-assignment and figure-ground seg-

mentation in short-term visual matching. Cognitive Psychology,

31:248–306, 1996.

[15] M. Egele, L. Bilge, E. Kirda, and C. Kruegel. Captcha smug-

gling: hijacking web browsing sessions to create captcha farms.

In Proceedings of the ACM Symposium on Applied Computing,

pages 1865–1870, 2010.

[16] J. Elson, J. R. Douceur, J. Howell, and J. Saul. Asirra: a

CAPTCHA that exploits interest-aligned manual image catego-

rization. In Proceedings of the ACM Conference on Computer

and Communications Security, pages 366–374, 2007.

[17] M. Fischler and R. Bolles. Random sample consensus: A

paradigm for model fitting with applications to image analysis

and automated cartography. Comm. of the ACM, 24(6):381–395,

1981.

[18] N. Friedman and S. Russell. Image segmentation in video se-

quences: A probabilistic approach. University of California,

Berkeley, 94720, 1776.

[19] P. Golle. Machine learning attacks against the Asirra CAPTCHA.

In Proceedings of the ACM Conference on Computer and Com-

munications Security, pages 535–542, 2008.

[20] K. Grill-Spector and N. Kanwisher. Visual recognition: as soon

as you know it is there, you know what it is. Psychological Sci-

ence, 16(2):152–160, 2005.

[21] C. Harris and M. Stephens. A combined corner and edge de-

tection. In Proceedings of The Fourth Alvey Vision Conference,

volume 15, pages 147–151, 1988.

[22] J. M. G. Hidalgo and G. Alvarez. CAPTCHAs: An Artificial In-

telligence Application to Web Security. Advances in Computers,

83:109–181, 2011.

[23] A. Jain, M. Murty, and P. Flynn. Data clustering: a review. ACM

computing Surveys, 31(3):264–323, 1999.

[24] K. A. Kluever and R. Zanibbi. Balancing usability and security

in a video CAPTCHA. In Proceedings of the 5th Symposium on

Usable Privacy and Security, pages 1–14, 2009.

[25] J. Lazar, J. H. Feng, and H. Hochheiser. Research Methods in

Human-Computer Interaction. John Wiley and Sons, 2010.

[26] W.-H. Liao and C.-C. Chang. Embedding information within dy-

namic visual patterns. In Multimedia and Expo, IEEE Interna-

tional Conference on, volume 2, pages 895–898, june 2004.

[27] R. Lowry. Concepts and Applications of Inferential Statistics.

Vassar College, http://faculty.vassar.edu/lowry/

webtext.html, 1998.

[28] B. Lucas and T. Kanade. An iterative image registration technique

with an application to stereo vision. In International Joint Con-

ference on Artificial Intelligence (IJCAI), pages 674–679, 1981.

[29] D. Marr. Vision: a computational investigation into the human

representation and processing of visual information. W. H. Free-

man, San Francisco, 1982.

[30] D. Marr and T. Poggio. A computational theory of human stereo

vision. Proceedings of the Royal Society of London. Series B,

Biological Sciences, 204(1156):301–328, 1979.

[31] N. J. Mitra, H.-K. Chu, T.-Y. Lee, L. Wolf, H. Yeshurun, and

D. Cohen-Or. Emerging images. ACM Transactions on Graphics,

28(5), 2009.

[32] G. Mori and J. Malik. Recognizing objects in adversarial clutter:

breaking a visual CAPTCHA. In Computer Vision and Pattern

Recognition, volume 1, pages 134 –141, june 2003.

[33] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M.

Voelker, and S. Savage. Re: CAPTCHAs-understanding

CAPTCHA-solving services in an economic context. In USENIX

Security Symposium, pages 435–462, 2010.

[34] M. Naor. Verification of a human in the loop or identification via

the Turing test, 1996.

[35] NuCaptcha. Whitepaper: NuCaptcha & Traditional Captcha,

2011. http://nucaptcha.com.

[36] A. Oliva and A. Torralba. The role of context in object recogni-

tion. Trends in Cognitive Sciences, 11(12):520 – 527, 2007.

[37] S. Ray and R. Turi. Determination of number of clusters in k-

means clustering and application in colour image segmentation.

In Proceedings of the International conference on advances in

pattern recognition and digital techniques, pages 137–143, 1999.

[38] M. Shirali-Shahreza and S. Shirali-Shahreza. Motion

CAPTCHA. In Conference on Human System Interactions, pages

1042–1044, May 2008.

[39] P. Simard, D. Steinkraus, and J. Platt. Best practices for convo-

lutional neural networks applied to visual document analysis. In

Proceedings of the Seventh International Conference on Docu-

ment Analysis and Recognition, volume 2, pages 958–962, 2003.

[40] Y. Soupionis and D. Gritzalis. Audio CAPTCHA: Existing so-

lutions assessment and a new implementation for voip telephony.

Computers & Security, 29(5):603–618, 2010.

[41] S. Thorpe, D. Fize, and C. Marlot. Speed of processing in the

human visual system. Nature, 381(6582):520–522, 1996.

[42] S. Ullman. Computational studies in the interpretation of struc-

ture and motion: Summary and extension. In Human and Ma-

chine Vision. Academic Press, 1983.

[43] S. Ullman. High-Level Vision: Object Recognition and Visual

Cognition. The MIT Press, 1 edition, July 2000.

[44] A. Vedaldi and B. Fulkerson. Vlfeat: An open and portable li-

brary of computer vision algorithms. In Proceedings of the inter-

national conference on Multimedia, pages 1469–1472, 2010.

[45] P. A. Viola and M. J. Jones. Rapid object detection using a

boosted cascade of simple features. In Computer Vision and Pat-

tern Recognition, 2001.

[46] L. von Ahn, M. Blum, and J. Langford. Telling humans and com-

puters apart automatically. Commun. ACM, 47:56–60, February

2004.

[47] J. Yan and A. S. E. Ahmad. Breaking visual CAPTCHAs with

naive pattern recognition algorithms. In ACSAC, pages 279–291,

2007.

[48] J. Yan and A. S. E. Ahmad. A low-cost attack on a microsoft

CAPTCHA. In ACM Conference on Computer and Communica-

tions Security, pages 543–554, 2008.

[49] J. Yan and A. S. E. Ahmad. Usability of CAPTCHAs or usability

issues in CAPTCHA design. In SOUPS, pages 44–52, 2008.

[50] J. Yan and A. El Ahmad. CAPTCHA robustness: A security

engineering perspective. Computer, 44(2):54 –60, feb. 2011.

[51] J. Yan and M. Pollefeys. Articulated motion segmentation using

RANSAC with priors. Dynamical Vision, pages 75–85, 2007.

[52] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey.

ACM Comput. Surv., 38, December 2006.

[53] B. B. Zhu, J. Yan, Q. Li, C. Yang, J. Liu, N. Xu, M. Yi, and

K. Cai. Attacks and design of image recognition CAPTCHAs.

In ACM Conference on Computer and Communications Security,

pages 187–200, 2010.

A Parameters for video generation

Similar to NuCaptcha’s videos, our sequences have letters that move

across a background scene with constant velocity in the horizontal di-

rection, and move up and down harmonically (i.e., y(t) = A∗ sin(ωt +
ψ), y is the vertical position of the letter, t is the frame id, and A,ω,ψ
are adjustable parameters). The horizontal distance between two letters

is a function of their average width. If their widths are width1,width2,

the distance between their centers are set to be α ∗
width1+width2

2 , where

α is an adjustable parameter that indicates how much two letters over-

lap. Our letters also rotate and loop around. The angleθ to which a

letter rotates is also decided by a sin function θ = θ0 ∗ sin(ωθ t +ψθ),
where θ0,ωθ ,ψθ are adjustable parameters. For the standard case, we

set the parameters the same as in NuCaptcha’s videos. We adjust these

parameters based on the type of defenses we explore (in Section 5.2).

B Comments from User Study

Table 2 highlights some of the free-form responses written on the ques-

tionnaire used in our study.

Variant Comments

Standard - User friendly

- It was too easy

- Much easier than traditional captchas

Extended - My mother would not be able to solve these

- Giant Pain in the Butt! Sheer mass of text was

overwhelming and I got lost many times

- Too long! I would prefer a shorter text

- It was very time consuming, and is very prone to

mistakes

Overlapping - Letters too bunched – several loops needed to de-

cipher

- Takes longer because I had to wait for the letter to

move a bit so I can see more of it

- Still had a dizzying affect. Not pleasant

- Some characters were only partially revealed, ‘Y’

looked like a ‘V’

Semi-

Transparent

- Tree background is unreadable, any non-solid

background creates too much interference

- With some backgrounds I almost didn’t realize

there were red letters

- It was almost faded and very time consuming. I

think I made more mistakes in this mechanism

Emerging - Not that complicated

- I’d feel dizzy after staring at it for more than 1 min

- It was hideous! Like an early 2000s website. But

it did do the job. It made my eyes feel ‘fuzzy’ after

a while

- It was good, better than the challenges with line

through letters

Table 2: Sample participant comments for each variant

