
UC Berkeley
UC Berkeley Previously Published Works

Title
Security-Aware mapping for TDMA-based real-Time distributed systems

Permalink
https://escholarship.org/uc/item/42g0z3mv

Journal
IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers,
ICCAD, 2015-January(January)

ISSN
1092-3152

ISBN
9781479962785

Authors
Lin, CW
Zhu, Q
Sangiovanni-Vincentelli, A

Publication Date
2015-01-05

DOI
10.1109/ICCAD.2014.7001325

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/42g0z3mv
https://escholarship.org
http://www.cdlib.org/

Security-Aware Mapping for TDMA-Based
Real-Time Distributed Systems

Chung-Wei Lin∗, Qi Zhu†, and Alberto Sangiovanni-Vincentelli∗
University of California, Berkeley, Berkeley, CA∗, University of California, Riverside, Riverside, CA†

E-Mails: cwlin@eecs.berkeley.edu, qzhu@ece.ucr.edu, alberto@berkeley.edu

Abstract—Cyber-security has become a critical issue for real-
time distributed embedded systems in domains such as auto-
motive, avionics, and industrial automation. However, in many
of such systems, tight resource constraints and strict timing
requirements make it difficult or even impossible to add security
mechanisms after the initial design stages. To produce secure
and safe systems with desired performance, security must be
considered together with other objectives at the system level and
from the beginning of the design. In this paper, we focus on
security-aware design for Time Division Multiple Access (TDMA)
based real-time distributed systems. The TDMA-based protocol
we consider is an abstraction of many time-triggered protocols
that are being adopted in various safety-critical systems for
their more predictable timing behavior, such as FlexRay, Time-
Triggered Protocol, and Time-Triggered Ethernet. To protect
against attacks on TDMA-based real-time distributed systems,
we apply a message authentication mechanism with time-delayed
release of keys, which provides a good balance between security
and computational overhead but needs sophisticated network
scheduling to ensure that the increased latencies due to delayed
key releases will not violate timing requirements. We propose
formulations and an algorithm to optimize the task allocation,
priority assignment, network scheduling, and key-release interval
length during the mapping process, while meeting both security
and timing requirements. Experimental results of an automotive
case study and a synthetic example show the effectiveness and
efficiency of our approach.

I. INTRODUCTION

Cyber-security has become increasingly critical for real-
time distributed embedded systems, as they become more
networked and more connected with the physical environment,
surrounding infrastructures, and other systems. Having more
external interfaces increases the possibility of systems being
compromised by attackers. Furthermore, the internal architec-
tures of such systems are often designed without sufficient
(or any) security consideration. Once part of the system is
compromised by attackers, other sub-systems or even the entire
system might be affected. For instance, in automotive domain,
researchers demonstrated that modern vehicles can be attacked
from a variety of interfaces including physical access, short-
range wireless, and long-range wireless channels [2], [4],
[5]. They also showed that by compromising one Electronic
Control Unit (ECU) through those interfaces, the attacker may
gain access to other ECUs via communication buses such
as Controller Area Network (CAN) buses, and attack safety
critical sub-systems such as engine and brake systems [2].

To protect against attacks, not only the various interfaces
of the real-time distributed embedded systems need to be
secured, the internal architectures need to be hardened with
security mechanisms as well. However, such systems usually
have tight resource constraints, such as limited communication
bandwidths and computational resources, and strict timing

requirements for system safety and performance. This makes
it very difficult or sometimes impossible to add security
mechanisms after the initial design stages without violating
the system constraints or impeding the system performance. It
is therefore important to address security together with other
design objectives from the beginning of design process and
at the system level, where many important design choices are
decided.

There are two main challenges when addressing security
together with other design objectives for real-time distributed
embedded systems. The first is to apply appropriate security
mechanisms, which highly depends on the functional require-
ments (such as security levels and real-time deadlines) and
the architecture specifications (such as system sizes, com-
munication bandwidths, and computational resources). The
second is to develop formulations and algorithms to effectively
explore the design space for optimizing design objectives while
meeting all design constraints (which are often in conflict
and require careful trade-offs). In [6], a Mixed Integer Linear
Programming (MILP) approach is proposed to address security
together with other metrics during the design stage for CAN-
based automotive systems.

In this paper, we focus on security-aware design for Time
Division Multiple Access (TDMA) based real-time distributed
systems. The TDMA-based protocol we consider is an abstrac-
tion of many existing protocols, such as the FlexRay [3], the
Time-Triggered Protocol [9], and the Time-Triggered Ether-
net [10]. It is critically important to address these protocols, as
they are being increasingly adopted in various safety-critical
systems such as automotive and avionics electronic systems
for their more predictable timing behavior. Compared with
priority-based networks such as CAN, TDMA-based systems
have fundamental differences on system modeling (in partic-
ular for latency modeling), on security mechanism selection
(global time is available for security reasons), on design space
(network scheduling is the focus of this work but not a factor
in [6]), and on algorithm design (MILP is not suitable for
this work because of modeling complexity). Therefore, the
approaches for priority-based systems such as [6] do not
apply to TDMA-based systems. We need to rethink appropriate
security mechanisms and develop a new set of formulations
and algorithms to explore the design space.

There are many security mechanisms that can be applied
to the TDMA-based protocol. For message authentication,
legit senders and receivers usually share keys so that they
can use the keys to compute Message Authentication Codes
(MACs) and protect against masquerade attacks1. In [11], key
management strategies are divided into several categories: one

1A masquerade attack is the case that an attacker sends a message in which
it claims to be a node other than itself.

key for all nodes, one key for each node, private and public
keys, and time-delayed release of keys. The one-key-for-all
approach is simple but not suitable for distributed systems
because it does not protect against masquerade attacks from
a node in the group. The one-key-for-each approach protects
against such masquerade attacks, but it has limited scalability
because the message size increases quickly with the number of
nodes in the network. The approach of private and public keys
provides higher security level, but its computational overhead
is much higher with the usage of asymmetric ciphers, which
makes it difficult to be used in resource-limited real-time
distributed systems. Compared with these three approaches, the
approach of time-delayed release of keys is the most suitable
for real-time distributed embedded systems because it provides
a good balance between security level and computation and
communication overhead [11]. As an example, the Timed
Efficient Stream Loss-Tolerant Authentication (TESLA) [7],
[8] security mechanism, is based on the time-delayed release
of keys.

Despite being a more economical choice, using the time-
delayed release of keys for TDMA-based systems still puts
significant timing overheads on communication and computa-
tion in real-time embedded systems. In particular, the message
latencies may significantly increase due to the waiting for key
releases, and the end-to-end latencies may violate deadline
requirements. For system safety and performance, it is critical
to ensure that the usage of such security mechanism will not
violate any timing constraint.

In this work, we apply message authentication with the
time-delayed release of keys to protect against attacks on
a TDMA-based protocol, and develop formulations and an
algorithm to explore the design space while meeting both
the security and the timing requirements. Specifically for
the exploration, we optimize the task allocation, priority as-
signment, network scheduling, and key-release interval length
during the mapping process from the functional model to the
architectural model, while considering the overhead of the
security mechanism and end-to-end deadline constraints. To
the best of our knowledge, this is the first work to address
both the security and safety constraints during the system
level mapping process for the time-delayed release of keys
for TDMA-based real-time distributed systems.

We develop an algorithm that combines simulated an-
nealing with a set of efficient optimization heuristics for
security-aware mapping. In particular, we propose a network
scheduler and a transmission delay analyzer (which outputs
exact solutions in a single-switch network) to optimize the
network scheduling and analyze the worst-case transmission
delay. Our network scheduler and latency analyzer can address
synchronous and asynchronous message arrivals, both of which
are common scenarios in real-time distributed systems, e.g.,
they match the Time-Triggered (TT) messages and the Rate-
Constrained (RC) messages in the Time-Triggered Ethernet
protocol. Experimental results of an industrial case study and a
synthetic example show the effectiveness and efficiency of our
algorithm, and demonstrate that security must be considered
with other metrics during the design stage.

The rest of the paper is organized as follows. Section II
introduces the background. Section III presents the design

node switch

fu
n
ct

io
n
al

m
o
d
el

τ3

σ1

µ1

µ2

τ2

τ1

τ6

τ5

τ4

τ8

τ7

σ2

σ3

σ4

σ5

σ6

ε2ε1
µ4

µ5

ε3

ar
ch

it
ec

tu
re

p
la

tf
o
rm

task allocation signal mapping

transmission

task signal

message

µ3 µ6

µ µ µ µ µ µ µ µ µ µ µ µµ µschedule µ3 µ6 µ5 µ1 µ4 µ2 µ3 µ6 µ5 µ1 µ4 µ2

cycle cycle

µ5 µ5

Fig. 1. System model.

space and our mapping algorithm. Section IV reports the
experimental results, and Section V concludes the paper.

II. BACKGROUND

A. System Model

The mapping problem addressed in this paper is based
on the Platform-Based Design paradigm [1], [12], where the
functional model and the architecture (physical) platform are
initially captured separately and defined through some ab-
stractions. Then, they are brought together through a mapping
process, meaning that the functional model is implemented
on the architecture platform. Besides, there are objectives
and constraints in the mapping process to be optimized and
satisfied.

As shown in Figure 1, the functional model is a task
graph that consists of a set of tasks, denoted by T =
{τ1, τ2, . . . , τ|T |}, and a set of signals, denoted by S =
{σ1, σ2, . . . , σ|S|}. Each signal is between a source task and a
destination task. Tasks are activated periodically and commu-
nicate with each other through signals.

The architecture model is a distributed platform that
consists of a set of computation nodes, denoted by E =
{ε1, ε2, . . . , ε|E|}, and nodes are assumed to support pre-
emptive priority-based task scheduling. The nodes are con-
nected through a TDMA-based switch (we focus on the
single-switch case in this paper, and our formulation can
be extended to multi-switches cases). A set of messages is
communicated among nodes through the switch, denoted by
M = {µ1, µ2, . . . , µ|M|}. The switch uses a TDMA-based
model for scheduling, in which each time slot in the schedule
can be assigned to one message. Several time slots form a
cycle, and the network switch repeats the same scheduling
sequence after each cycle. It is possible that a time slot is
empty (not assigned to any message) in a schedule, and it is
also possible that there are more than one time slots assigned
to the same message in a cycle.

During mapping, the functional model is mapped onto the
architecture platform, as shown in Figure 1. Specifically, the
tasks are allocated onto nodes with their priorities, and the
signals are mapped onto messages and transmitted on the
network. Messages are triggered periodically and each message
contains the latest values of the signals that are mapped to the
message.

D1

M1

K-1

D1

M1

K-1

D2

M2

K-1

D2

M2

K-1

D3

M3

K-1

D3

M3

K-1

D4

M4

K0

D5

M5

K0

D4

M4

K0

D5

M5

K0

D6

M6

K1

D7

M7

K1

D6

M6

K1

D7

M7

K1

K-1 K0 K1

K1 K2 K3

Interval 1 Interval 2 Interval 3

release

use

send

time

authentication delay

receive

se
n

d
er

re
ce

iv
er

D: data M: MAC (message authentication code) K: key

T
S

T
R

T
K

T
I

Fig. 2. Time-delayed release of keys. TS , TR, and TK are the sending time,
the receiving time, and the key-receiving time of the packet (D1,M1,K−1),
respectively. TI is the starting time of Interval 3.

B. Attack Model

We consider three possible types of attacks as in [11],
including tapping the port of an existing node, replacing an
existing node, and connecting to an empty port of the switch.
The time-delayed release of keys approach [7], [8], [11] as
shown below is used to prevent these attacks.

C. Time-Delayed Release of Keys

Definition 1: A packet is an instance of a message.

The time-delayed release of keys is a popular approach
for message authentication. In this security mechanism, each
sender maintains a key chain where the keys in the key chain
are computed in a reversed order to provide fault tolerance.
Usually, keys in the key chain are not used for computing
MACs. Instead, they are used for computing other keys, and
those keys are used for computing MACs [7], [8]. A sender
maintains intervals, and it uses the same key to compute
MACs in one interval. When the sender intends to send a
packet in an interval, it uses the corresponding key in the
interval to compute a MAC and sends the packet including the
data, the MAC, and the key used in several intervals before.
When a receiver receives the packet, it stores the data and the
MAC first. Once the receiver receives the corresponding key
(which will be released by the sender after several intervals),
it can authenticate the packet.

An example of the time-delayed release of keys is shown in
Figure 2, where we show the keys used for computing MACs
and the released keys. When the sender intends to send data D1

in Interval 1, it uses key K1 to compute MAC M1 and sends
(D1,M1,K−1), where K−1 is the key used in two intervals
before. The receiver receives it and stores D1 and M1 first. In
Interval 3, the sender sends (D6,M6,K1). When the receiver
receives the packet, it uses K1 to authenticate (D1,M1,K−1).

Definition 2: Given a packet P , the sending time TS of
the packet is the time that its sender sends it. The receiving
time TR of the packet is the time that its receiver receives it.
The key-receiving time TK of the packet is the time that its
receiver receives its corresponding key (for the first time).

The security requirement of the time-delayed release of
keys is stated in [7], [8]: a packet is safe if its receiving time
is before the moment its corresponding key may be released
(otherwise masquerade attacks can be conducted), i.e., for each
packet,

TR < TI , (1)

Mapping Result, Feasibility, and Objective Value

Task Allocation

and

Priority Assignment

Simulated Annealing

Input

Output

Ask for Optimization and Evaluation

Network Scheduling Refinement

Interval Length Exploration

Worst-Case Transmission

Delay Analysis

Network Scheduling

Signal Mapping

Inner Loop Optimization

Scheduler

Analyzer

Fig. 3. Algorithm flow.

where TI is the starting time of the interval in which the
corresponding key for the packet is released2.

In the example in Figure 2, since the sender uses K1 to
compute M3 for the packet (D3,M3,K−1) and the packet
arrives at the receiver in Interval 2, the sender has to wait
until Interval 3 to release K1.

Definition 3: Given a packet P , the transmission delay
DT of the packet is its receiving time minus its sending time,
i.e., DT = TR − TS . The authentication delay DA of the
packet is its key-receiving time minus its receiving time, i.e.,
DA = TK − TR. The latency L of the packet is its key-
receiving time minus its sending time, i.e., L = TK − TS =
DT +DA.

Compared with traditional symmetric ciphers, the time-
delayed release of keys has a lower computational overhead
because a sender only needs to compute one MAC for each
packet. Compared with asymmetric ciphers which have more
complex calculation, the time-delayed release of keys also has
a much lower computational overhead [11]. However, as shown
in Figure 2, it increases the latency of a packet due to the
authentication delay. In Section III-D, we will show how the
network scheduling plays an important role in reducing the
latency of a packet, which is extremely critical for real-time
distributed systems.

III. ALGORITHM

Given a system described in Section II-A, we explore the
design space of task allocation, priority assignment, signal
mapping, network scheduling, and interval length. The end-
to-end deadline requirements are set on a set of time-critical
functional paths. The worst-case latency of a time-critical
path should not be larger than its deadline. The optimization
objective is to minimize the summation of the worst-case
latencies of all time-critical paths.

A. Overview

Figure 3 shows the flow of our algorithm. It combines
simulated annealing with a set of optimization heuristics. In the
simulated annealing, the task allocation and the task priority
are randomly changed. Every time the task allocation and the
task priority are changed, the algorithm calls the inner loop
optimization to perform a set of optimization heuristics and

2If the synchronization precision is considered, we can add a small positive
constant (the precision of time) to the left-hand side.

evaluate the feasibility and the objective value. The inner loop
optimization consists of five steps: signal mapping, network
scheduling, worst-case transmission delay analysis, interval
length exploration, and network scheduling refinement. After
these five steps, the inner loop optimization returns the map-
ping result (signal mapping, network schedule, and interval
length). It also returns the feasibility and the objective value,
which are used by the simulated annealing to decide whether
to keep the changed task allocation and task priority or not.
We decide the task allocation and the task priority first in the
simulated annealing because they have significant impact on
the design constraints and objectives, and also on the possible
values for other design variables. The inner loop optimization
is called every time the task allocation and the task priority are
changed, so it must be very efficient and effective. The details
are introduced in the following sections.

B. Task Allocation and Priority Assignment

The initial allocation of a task is assigned based on the task
index modulo the number of nodes, i.e., tasks are distributed as
evenly as possible. The initial priority of a task is assigned in
a greedy fashion—the tasks that appear in more time-critical
paths are assigned with higher priorities. During simulated
annealing, two random operations may be performed. The first
one is to allocate a task to another node, and the second one
is to switch the priorities of two tasks. We use a parameter P
to control the probability that the first operation is selected in
each iteration, while the probability that the second operation
is selected is 1− P .

To explore the design space more efficiently, we also
propose an accelerating method for the simulated annealing.
With this accelerating method, tasks are divided into two
groups, depending on whether tasks are in time-critical paths or
not. Tasks in the first group are in at least one time-critical path,
and tasks in the second group are not in any time-critical path.
If the first operation is selected, there is another parameter Q to
control the probability that a task in the first group is selected.
This method can effectively accelerate the simulated annealing
because those tasks in the first group play more important roles
in the constraint satisfaction and the objective minimization.

C. Signal Mapping

Each signal needs to be mapped onto a message, and we
assume each signal is packed into its own message in this
work. Without loss of generality, we assume that signal σj is
mapped to message µj , so the period, the length, the source
node, and the destination node of a message can be directly
decided. What we need to explore is whether a message should
be synchronous or asynchronous.

For a synchronous message, the network knows the time
that each packet of the message is sent. For an asynchronous
message, the network does not know the time that each packet
of the message is sent but knows the period (or pattern) of
the message. In our algorithm, if a signal is time-critical
(the signal is on at least one time-critical path), then its
message is assigned as a synchronous message; otherwise,
its message is assigned as an asynchronous message. If a
message is synchronous, we also need to decide the time that
the first packet of the message is sent. For message µj , we
assign the time that the first packet of the message is sent as

D1

M1

K-1

D1

M1

K-1

D2

M2

K-1

D2

M2

K-1

D3

M3

K-1

D3

M3

K-1

D4

M4

K0

D5

M5

K0

D4

M4

K0

D5

M5

K0

D6

M6

K1

D7

M7

K1

D6

M6

K1

D7

M7

K1

K-1 K0 K1

K1 K2 K3

Interval 1 Interval 2 Interval 3

release

use

send

time

authentication delay

receive

se
n

d
er

re
ce

iv
er

D: data M: MAC (message authentication code) K: key

D6

M6

K1

Fig. 4. An approach to reduce the authentication delay.

j × L modulo T σ
j , where L is the time length of a time slot

and Tσ
j is the period of σj . This assignment can lower the

probability that the packets of two different messages are sent
at the same time. If this happens, one packet will be delayed,
and the transmission delay of its message may increase. It
should be mentioned that, in Time-Triggered Ethernet [10], a
synchronous message matches the Time-Triggered (TT) traffic,
while an asynchronous message matches the Rate-Constrained
(RC) traffic. If a network only supports synchronous messages
or asynchronous messages, then all messages are assigned as
synchronous messages or asynchronous messages.

D. Network Scheduling

To satisfy design constraints, the increased latency due
to the authentication delays must be considered and reduced
during the design stage. We observe that there are three
approaches for the network scheduling that can reduce packet
latency.

The first approach is that a scheduler may schedule each
sender’s first packet within an interval so that it can be received
earlier. The key-receiving time of a packet P is the receiving
time of the first packet P ′ carrying the corresponding key, so
the latency of P is

L = TK − TS = T ′
R − TS = T ′

S +D′
T − TS , (2)

where T ′
S , T ′

R, and D′
T are the sending time, the receiving

time, and the transmission delay of packet P ′. The first
approach minimizes L by minimizing D′

T . As shown in
Figure 4, M1, M2, and M3 are computed by K1. Because
the receiver receives the packet (D6,M6,K1) earlier, it can
authenticate the packets (D1,M1,K−1), (D2,M2,K−1), and
(D3,M3,K−1) earlier, and their authentication delays and
latencies become smaller, compared with the timing illustrated
in Figure 2.

The second approach is that a scheduler may try to schedule
a packet earlier to ensure that it is received before the end
of the interval. As a result, the sender can release keys one
interval earlier without violating the security requirement, and
the authentication delays and latencies become smaller. The
first packet P ′ carrying the corresponding key is sent after the
starting time of the corresponding interval, so

TI < T ′
S . (3)

Note that TI is the starting time of the interval in which the cor-
responding key for the packet is released. The second approach
minimizes TI first so that T ′

S can also be minimized (the
corresponding key can be released earlier). From Equation (2),
the latency of P becomes smaller. As shown in Figure 5,

K2

D1

M1

D1

M1

D2

M2

D2

M2

D3

M3

D3

M3

D4

M4

K0

D5

M5

K0

D4

M4

D5

M5

D6

M6

K1

D7

M7

K1

D6

M6

K1

D7

M7

K1

K0 K1

K1 K2 K3

Interval 1 Interval 2 Interval 3

release

use

send

time

receive

se
n

d
er

re
ce

iv
er

D: data M: MAC (message authentication code) K: key

K0

K0 K0 K0

K2 K2

K2 K2

authentication delay

D3

M3

K0

Fig. 5. A more effective approach to reduce the authentication delay.

because the receiver receivers the packet (D3,M3,K0) before
the end of Interval 1, the sender can release keys just one
interval earlier without violating the security requirement. As a
result, the authentication delays and latencies become smaller,
compared with the timing illustrated in Figure 2.

The third approach is that a scheduler may minimize the
worst-case transmission delay of packets. In some cases, if
a scheduler cannot schedule a packet so that it is sent and
received in the same interval (for example, a packet is sent just
before the end of an interval), the above second approach will
not work. However, it provides an insight that, if a scheduler
can minimize the worst-case transmission delay of packets,
keys can be released earlier. In the third approach, different
from the traditional design of the time-delayed release of keys,
the intervals of used keys and released keys are not aligned.
As shown in Figure 6, given the worst-case transmission delay
DT , a key is released DT time units after the end of the interval
in which the key is used for computing MACs. As a result,
the authentication delay and the latency are also reduced,
compared with the timing illustrated in Figure 2. Combining
Definition 2 and Equations (1) and (3), we get

TR = TS +DT < TI < T ′
S . (4)

The third approach minimizes DT first so that TI and then T ′
S

can also be minimized. From Equation (2), the latency of P
becomes smaller.

We will reduce the latency of a packet through the above
three approaches. In this step, we minimize the worst-case
transmission delay of packets so that keys can be released
earlier (the second and the third approaches3). We will then
try to release keys earlier in the network scheduling refinement
step in Section III-G (the first approach).

Specifically, in this step, we first assign priorities to mes-
sages. A message whose corresponding signal appears more
times in the time-critical paths is given a higher priority.
We then schedule messages one-by-one according to their
priorities. If message µj is synchronous, we schedule time
slots to it “as early as possible”. In other words, we schedule
the first time slot after the arrival of a packet to the message.
If message µj is asynchronous, we first compute the number
of time slots that we plan to allocate to the message in a cycle.
For asynchronous message µj , the number of time slots in a
cycle is

⌈
R× N×L

Tσ
j

⌉
, where R is a parameter larger than or

equal to 1, N is the number of time slots in a cycle, L is
the time length of a time slot, and T σ

j is the period of σj .

3Note that the second approach can be regarded as a special case of the
third approach. Both of them try to minimize transmission delays of packets.

K1

D1

M1

K-1

D1

M1

K-1

D2

M2

D2

M2

D3

M3

D3

M3

D4

M4

K0

D5

M5

D4

M4

K0

D5

M5

D6

M6

K1

D7

M7

D6

M6

K1

D7

M7

K-1 K0

K1 K2 K3

Interval 1 Interval 2 Interval 3

release

use

send

time

authentication delay

receive

se
n

d
er

re
ce

iv
er

D: data M: MAC (message authentication code) K: key

K2

K0

K0

K1 K2

K2K1

K-1

K-1

D
T

Fig. 6. Given the worst-case transmission delay DT , an approach to reduce
the authentication delay.

After computing the number of time slots, we schedule time
slots to the asynchronous message “as evenly as possible”.
It is possible that a time slot has been used (occupied) by a
higher-priority message. In this case, we schedule the next
empty time slot to the message. It is very important that
we schedule synchronous messages as early as possible and
asynchronous messages as evenly as possible, as they are the
optimal strategies for each of them (which will be further
demonstrated in the next section).

One thing that should be emphasized is the choice of R
value. A large R means that denser time slots are scheduled
to an asynchronous message, and the worst-case transmission
delay of the message may decrease. If we do not consider
the time-delayed release of keys, the decreasing of the worst-
case transmission delay of an asynchronous message has no
effect on the objective value because only non-time-critical
signals are mapped to an asynchronous message. This is also
a reason that a traditional scheduler may not be suitable for this
problem. On the contrary, when we consider the time-delayed
release of keys in this case, the decreasing of the worst-case
transmission delay of an asynchronous message enables its
sender to release keys earlier, so the worst-case latencies of
synchronous messages and the objective value can become
smaller. Therefore, we increase the parameter R in our case.
Specifically, if R = 1 and the network utilization rate (the ratio
of the number of scheduled time slots to the number of total
time slots) is smaller than a pre-assigned value U , we increase
R so that the network utilization rate reaches U .

E. Worst-Case Transmission Delay Analysis

Besides network scheduling, an accurate analyzer for com-
puting the worst-case transmission delay is also very impor-
tant. Given the worst-case transmission delay DT , a key can
be released DT time units after the end of the interval in
which the key is used for computing MACs. If the analyzer
underestimates the worst-case transmission delay, the security
requirement may be violated because keys may be released too
early. If the analyzer overestimates the worst-case transmission
delay (i.e., being too pessimistic), minimizing the worst-case
transmission delay may not be effective. To compute the worst-
case transmission delay, we first define the packet arrival
pattern and the schedule pattern of a message as follows.

Definition 4: A packet arrival pattern A is defined by
m, p and a1, a2, . . . , am, where the arriving times of packets
are a1, a2, a3, . . . , am, and the pattern repeats with a period p
(ai < p for all i, 1 ≤ i ≤ m).

packet arrival: A 1 2

schedule: S

packet processing 1

1 2

1

schedule

packet arrival 3 4 5 6

2 3 4 5

unused

round 2 3
m = 2, p = 4,

(a1,a2) = (0,3)

n = 2, q = 4,

(s1,s2) = (1,2)

Fig. 7. An example for synchronous messages with tree rounds. The
second packet (#2, #4, or #6) of each round is an unscheduled packet after
its corresponding round, and the second time slot of the first round is an
unused time slot. The second round and the third round have the same packet
processing pattern.

Definition 5: A schedule pattern S is defined by n, q
and s1, s2, . . . , sn, where the starting times of time slots are
s1, s2, s3, . . . , sn, and the pattern repeats with a period q (si <
q for all i, 1 ≤ i ≤ n).

The problem here is: “given the packet arrival pattern A
and the schedule pattern S of a message, what is the worst-
case transmission delay of the packet arrival pattern?” We will
discuss synchronous messages and asynchronous messages in
the following sections.

1) Synchronous Message:

Definition 6: A round is a time period whose length is the
least common multiple of p and q. A packet is unscheduled
after a round if it is not assigned to any time slot after the
round; otherwise, it is scheduled. A time slot is unused if no
packet is assigned to it; otherwise, it is used.

In Figure 7, there are three rounds. The second packet of
each round is an unscheduled packet after its corresponding
round. The second time slot of the first round is an unused
time slot. Given a synchronous packet arrival pattern A and
its schedule pattern S, we only need to consider two rounds for
the worst-case transmission delay of the packet arrival pattern.
In the analysis, we start from the first packet and assign each
packet to the first unused time slot after the arrival of the
packet.

Theorem 1: We only need to consider two rounds for the
worst-case transmission delay of the packet arrival pattern.

Proof: We claim that the numbers of unscheduled packets
after the first round and the second round are the same.
Therefore, the pattern of the second round is the same as that
of any following round. We will prove that the number of
unscheduled packets does not decrease or increase after the
second round. For the non-decreasing part, it is because the
second round is more difficult (with some unscheduled packets
after the first round) than the first round. For the non-increasing
part, we first assume that m

p ≤ n
q , i.e., the number of packets in

a round is never larger than the number of time slots in a round;
otherwise, the algorithm returns infinity directly. Given this
assumption, after the first round, the number of unscheduled
packets is never larger than the number of unused time slots.
Accordingly, in the second round, the repeated time slots of
those unused time slots in the first round are sufficient for those
unscheduled packets in the first round. Besides, the repeated
time slots of those used time slots in the first round are still
sufficient for the repeated packets of those scheduled packets in
the first round. Therefore, the number of unscheduled packets
does not increase. Combining the two parts, the numbers of
unscheduled packets after the first round and the second round

packet processing 1

1 2

schedule

packet arrival 3

2 3

(a)

packet processing 1

1 2

schedule

packet arrival 3

2 3

(b)

1

1

(c)

(d)

1

1

(e)

1

1 2 3

2 3

(f)

1 2 3

2 3

just missjust missjust miss

just miss just miss

unused

Pi Pi PiPk

Sj Sj Sj

1

(b) (d) (f)

Fig. 8. For asynchronous messages, if the worst-case transmission delay
happens when packet Pi is assigned to time slot Sj , then (a–b) one of Pi

itself and the packets arriving before Pi must just miss a time slot, and (c–f)
there must be no unused time slot between the arriving time of the packet just
missing a time slot and the starting time of Sj .

are the same, so we only need to consider the first two rounds.

The theorem also implies that an unscheduled packet after
the second round does not affect the result. An example is
shown in Figure 7, where the second round and the third round
have the same packet processing pattern. It also shows that
we need to consider at least two rounds for the worst-case
transmission delay of the packet arrival pattern.

2) Asynchronous Message:

Definition 7: A packet just misses a time slot if the
starting time of the time slot is ϵ time unit earlier than the
arriving time of the packet where ϵ → 0.

Theorem 2: If the worst-case transmission delay happens
when packet Pi is assigned to time slot Sj , then (1) one of Pi

itself and the packets arriving before Pi must have just missed
a time slot, and (2) there must be no unused time slot between
the arriving time of the packet just missing a time slot and the
starting time of Sj .

The proof is omitted due to the limitation of space.
Figure 8(a) is an example of the first part of the theorem.
We can shift all packets so that they arrive earlier as shown
in Figure 8(b), and the transmission delays of them become
larger. Figure 8(c) is an example of the first case of the second
part of the theorem, where Pi should be assigned to the unused
time slot as shown in Figure 8(d). Figure 8(e) is an example of
the second case of the second part of the theorem. We can shift
all packets so that they arrive earlier as shown in Figure 8(f),
and the transmission delays of the packets arriving between
Pk and Pi become larger.

Given Theorem 2, we only need to consider a finite number
of different alignments of the packet arrival pattern and the
schedule pattern—they are the cases that at least one packet
just misses a time slot. Here, we assume that the patterns have
been repeated (duplicated) enough to A′ and S′ with lengths
equal to the least common multiple of p and q. The worst-case
transmission delay of the packet arrival pattern is

max
1≤i≤m,1≤j≤n,1≤k≤m

(
(s′j+k − s′j)− (a′i+k−1 − a′i)

)
, (5)

where a′1, a
′
2, . . . , a

′
m are arriving times of packets and s′1, s

′
2,

. . . , s′n are the starting times of time slots. For each (i, j, k),

the equation computes the transmission delay of the (i+k−1)-
th packet under the case that the i-th packet just misses the
j-th time slot4. The equation can be written as

max
1≤k≤m

(
max
1≤j≤n

(
s′j+k − s′j

)
− min

1≤i≤m

(
a′i+k−1 − a′i

))
. (6)

As a result, we can reduce the complexity of the computation
from O(m2n) to O(mn+m2).

F. Interval Length Exploration

The latency of a packet highly depends on the length of
an interval. A shorter interval results in a smaller latency
of a packet, but, if the number of keys in a key chain is a
constant (the memory size for storing keys), a shorter interval
means that a sender needs to recompute a key chain more
frequently, which increases the computational overhead. After
we decide the network scheduling and compute the worst-case
transmission delay, we explore the interval length of each node.
For each node, there is a list of possible interval lengths, we
start from the shortest one and check if the task computing
a new key chain can meet its deadline which is the number
of keys times the length of an interval. If it cannot meet its
deadline, we will check the next possible interval length.

G. Network Scheduling Refinement

To further minimize the latency of a packet, we want keys
to be released as early as possible without violating security
requirement. After the interval length of each node is decided,
a key can be released with the first packet in an interval.
Therefore, for each sender, we check if there is any empty
time slot between the starting time of a releasing interval of a
sender and the first time slot assigned to a message sent by the
sender. If there is such a time slot, we assign the time slot to
the sender so that the sender can use the time slot to release
a key. It is after the starting time of a releasing interval of
a sender to satisfy the security requirement; and it is before
the first time slot assigned to a message sent by the sender,
so the key is released earlier, and the latency of a packet can
be reduced. Furthermore, because the time slot is originally
empty, it will not increase the latencies of other packets.

After this step, we can compute the worst-case latencies
of time-critical paths and the objective value and check the
feasibility. The mapping result, the feasibility and the objective
value are returned to the simulated annealing in the outer loop.

IV. EXPERIMENTAL RESULTS

We obtained the industrial test case used in [6]. The
test case is an automotive system which supports advanced
distributed functions with end-to-end computations collecting
data from 360-degree sensors to the actuators, consisting of
the throttle, brake and steering subsystems and of advanced
Human-Machine Interface devices. The architecture platform
consists of 9 nodes (ECUs) which are assumed to be con-
nected through a TDMA network (an abstraction of the Time-
Triggered Ethernet or the FlexRay). The network parameters
are set according to [10], while the computation time for
a MAC or a key chain is scaled from [11]. The functional

4The concept here is that the densest part of the packet arrival pattern is
served by the least dense part of the schedule pattern.

model consists of 41 tasks and 83 signals, and 171 paths are
selected with deadlines 300 msec or 100 msec. The algorithm
is implemented in C/C++. The experiments on the mapping
problem were run on a 2.5-GHz processor with 4GB RAM.

We compare the results of a non-security-aware mapping
approach and our security-aware algorithm. The non-security-
aware mapping approach is based on the same simulated
annealing core, but it does not consider any effect from the
time-delayed release of keys during the mapping, i.e., the
latency of a packet is exactly its transmission delay because
it does not need to wait a key. After the mapping is decided,
we then apply the time-delayed release of keys on the design
(in this step, we explore the interval of each node). On the
contrary, our security-aware algorithm considers the overheads
of the time-delayed release of keys from the beginning and
solve the security-aware mapping problem as mentioned in
Section III. There are two optional optimization techniques
which result in four possible combinations of the two. The
first optimization technique (OPT1) is to increase R (R > 1)
in the network scheduling, as mentioned in Section III-D. The
second optimization technique (OPT2) is to use empty time
slots and release keys earlier in the network refinement, as
mentioned in Section III-G. For the simulated annealing (SA),
the parameters P and Q are both set to 0.9, where Q is
for the accelerated method (Accelerated SA) as mentioned in
Section III-B.

The results are listed in Table I where all of them are the av-
erages of 10 runs. To have a fair comparison, we let all settings
run with the same number (15,000) of iterations in the simu-
lated annealing. The objective is the summation of the worst-
case latencies of all time-critical paths. The non-security-aware
mapping approach cannot find a feasible solution because
applying the time-delayed release of keys after the mapping is
decided makes some time-critical paths miss their deadlines.
On the contrary, our security-aware mapping algorithm can
find a feasible solution with the objective value 22,256 msec.
If we consider the objective value of the non-security-aware
mapping approach (although it is not feasible), it is 25,007
msec, larger than that of our security-aware mapping algorithm.
This is because our security-aware mapping algorithm tends to
minimize the transmission delays of asynchronous messages,
which enable their senders to release keys earlier and lead to a
smaller objective value. Besides, our security-aware mapping
algorithm has smaller runtimes because it has a stronger force
to allocate the source and target tasks of a signal to the same
node and leave fewer messages on the network, which makes
the runtime of network scheduling smaller.

With the two optimization techniques, the objective values
are reduced to 21,415 msec and 21,329 msec, respectively. This
is because, the OPT1 tries to further minimize the transmission
delay of an asynchronous message, and the OPT2 tries to use
empty time slots and release keys earlier. These two techniques
are exactly the third and the first approaches in Section III-D.
By combining both of them, the objective value is further
reduced to 20,853 msec. If the accelerated SA is applied,
the design space can be explored more effectively. With the
same number of iterations, the accelerated SA can find smaller
objective values, compared with the basic SA. Especially, it
can find a feasible solution earlier, which is because it focuses
more on those tasks which play more important roles in the
constraint satisfaction and the objective minimization. The

TABLE I. The comparison between a non-security-aware mapping approach (its objectives are reported, but its solutions are infeasible) and our
security-aware mapping algorithm for the industrial test case, where there are two optional optimization techniques resulting in four combinations. The
objective is the summation of the worst-case latencies of all time-critical paths. The feasible time is the time it takes to find the first feasible solution.

Non-Security-Aware Security-Aware Mapping
Mapping No OPT1/OPT2 OPT1 Only OPT2 Only OPT1+OPT2

Objective (msec) 25,006.665 22,256.048 21,414.690 21,329.322 20,853.017
Basic SA Runtime (s) 56.435 47.046 50.725 47.767 47.862

Feasible Time (s) × 3.576 3.652 3.439 4.818
Objective (msec) 23,475.727 21,156.529 20,581.321 21,010.984 20,236.140

Accelerated SA Runtime (s) 55.695 50.441 47.963 44.070 48.065
Feasible Time (s) × 2.959 2.910 1.733 1.826

0

6

12

18
Basic SA

Accelerated SA

O
b
je

ct
iv

e
V

al
u
e

(1
0

6

m

s
e
c
)

0

0 1,000 2,000 3,000

Number of Iterations

O
b
je

ct
iv

e

Fig. 9. The converging behaviors of the basic SA and the accelerated SA for
the industrial test case. The x-axis represents the number of iterations of the
simulated annealing, and the y-axis represents the objective value (106 msec)
where each constraint violation contributes 100,000 to the objective value.

converging behaviors of the basic SA and the accelerated SA
are illustrated in Figure 9. The accelerated SA converges faster
than the basic SA. From the experimental results, it is difficult
to tell whether OPT1 or OPT2 is more effective, but having
both of them outperforms each individual. Besides, all exper-
iments with our algorithm (using different combinations) are
done within one minute. Even only considering task allocation
and task priority assignment, an MILP-based approach similar
to that in [6] cannot find a feasible solution in one hour. This
shows the efficiency of our algorithm.

We also generate a large random test case including 500
tasks, 1,000 signals, 50 nodes, and 100 time-critical paths.
We apply our security-aware mapping algorithm with the
accelerated SA and the two optimization techniques (OPT1
and OPT2). In addition to algorithm scalability, we are also
interested in the impact of resource availability (specifically the
network utilization5) on the system performance and feasibil-
ity. Table II lists the objectives and runtimes under different
signal periods and therefore different network utilizations (all
settings are run with the same number of iterations). First of
all, we can see that the algorithm scales well with the problem
size because of the efficient inner loop optimization heuristics.
Furthermore, as the utilization increases, the objectives and
the runtimes increases dramatically. This shows the significant
impact of resource availability on the system performance
and feasibility when security is taken into consideration, and
therefore further demonstrates the need to address security
together with other metrics in an integrated formulation.

V. CONCLUSION

In this paper, we present formulations and an algorithm
to address security together with other design objectives dur-
ing the mapping stage for TDMA-based real-time distributed
systems. The algorithm optimizes the task allocation, prior-
ity assignment, network scheduling, and key-release interval

5Here, utilization is defined as the ratio of the number of used (not
scheduled) time slots to the number of total time slots.

TABLE II. Results of a large random test case.
Security-Aware Mapping

(Accelerated SA + OPT1 + OPT2)
Signal Period Setting 1X 0.75X 0.5X
Network Utilization 0.464 0.597 0.859

Objective (msec) 20,403.161 24,714.822 45,513.222
Runtime (s) 280.823 334.415 440.395

Feasible Time (s) 21.384 29.395 60.946

length, with the consideration of the overhead and constraints
from a time-delayed release of keys security mechanism. An
industrial case study and a synthetic example demonstrate that
our approach can effectively and efficiently explore the design
space to meet all design requirements, and demonstrate the
importance of considering security together with other metrics
during the design stage.

ACKNOWLEDGMENT

This work was supported in part by the TerraSwarm
Research Center, one of six centers supported by the STARnet
phase of the Focus Center Research Program (FCRP), a
Semiconductor Research Corporation program sponsored by
MARCO and DARPA. This work was supported in part by
the Industrial Cyber-Physical Systems Center (iCyPhy).

REFERENCES

[1] L. Carloni, F. D. Bernardinis, C. Pinello, A. Sangiovanni-Vincentelli, and M.
Sgroi, “Platform-based design for embedded systems,” Embedded Systems Hand-
book, CRC Press, 2005.

[2] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K.
Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive experimental
analyses of automotive attack surfaces,” USENIX Conf. on Security, 2011.

[3] FlexRay Consortium, “FlexRay communications system protocol specification,”
v3.0.1, 2010.

[4] P. Kleberger, T. Olovsson, and E. Jonsson, “Security aspects of the in-vehicle
network in the connected car,” IEEE Intelligent Vehicles Symp., pp. 528–533,
2011.

[5] F. Koushanfar, A.-R. Sadeghi, and H. Seudie, “EDA for secure and dependable
cybercars: challenges and opportunities,” ACM/IEEE Design Automation Conf.,
pp. 220–228, 2012.

[6] C.-W. Lin, Q. Zhu, C. Phung, and A. Sangiovanni-Vincentelli, “Security-aware
mapping for CAN-based real-time distributed automotive systems,” IEEE/ACM
International Conf. on Computer-Aided Design, pp. 115–121, 2013.

[7] A. Perrig, R. Canetti, D. Tygar, and D. Song, “Efficient authentication and signing
of multicast streams over lossy channels,” IEEE Symp. on Security and Privacy,
pp. 56–73, 2000.

[8] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient and secure source
authentication for multicast,” Network and Distributed System Security Symp.,
pp. 35–46, 2001.

[9] SAE Aerospace, “TTP communication protocol,” SAE AS6003 Standard, 2011.
[10] SAE Aerospace, “Time-Triggered Ethernet,” SAE AS6802 Standard, 2011.
[11] A. Wasicek, C. El-Salloum, and H. Kopetz, “Authentication in time-triggered

systems using time-delayed release of keys,” IEEE International Symp. on
Object/Component/Service-Oriented Real-Time Distributed Computing, pp. 31–
39, 2011.

[12] Q. Zhu, Y. Yang, M. Di Natale, E. Scholte, and A. Sangiovanni-Vincentelli,
“Optimizing the software architecture for extensibility in hard real-time distributed
systems,” IEEE Trans. on Industrial Informatics, vol. 6, no. 4, pp. 621–636, 2010.

