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Abstract—In this paper, we propose a distributed algorithm
to solve the Security Constrained Optimal Power Flow (SC-
OPF) Problem. We consider a network of devices, each with
its own dynamic constraints and objective, subject to reliability
constraints across multiple scenarios. Each scenario corresponds
to the failure or degradation of a set of devices and has an
associated probability of occurrence. The network objective is
to minimize the cost of operation of all devices, over a given
time horizon, across all scenarios subject to the constraints of
transmission limit, upper and lower generating limits, generation-
load balance etc. This is a large optimization problem, with
variables for consumption and generation for each device, in each
scenario. In this paper, we extend the proximal message passing
framework to handle reliability constraints across scenarios. The
resulting algorithm is extremely scalable with respect to both
network size and the number of scenarios.

Index Terms—Alternating Direction Method of Multipliers
(ADMM), Locational Marginal Price (LMP), Augmented La-
grangian, Shift Factor Matrix

I. INTRODUCTION

The operation of power grids depends critically on the ability

to maintain economic efficiency in the presence of unforeseen

events. In this paper, we consider the security-constrained

optimal power flow (SCOPF) problem, in which devices are

connected on a network and there exists a set of scenarios

— each associated with a given probability of occurrence and

corresponding to the failure and/or degradation of a set of

devices — over which we must ensure efficient operation of

the network. For each scenario, the scenario objective is to

minimize the sum of the objective functions associated with

that scenario for each device. These objective functions extend

over a given time horizon and encode operating costs and

constraints for a given device operating under that scenario.

Solving the SCOPF generates a contingency plan for each

device in each scenario. The plans tell us the (real) power

flow in each device under nominal system operation, as

well as in a set of specified contingencies or scenarios. The

contingencies can correspond to failure or degraded operation

of a transmission line or generator, or they can correspond to

a substantial change in a device. In each scenario the powers

for each device must satisfy the network equations (taking

into account any failures for that scenario). These powers are

constrained in various ways across the scenarios. Generators

and loads, for example, might be constrained to maintain their

power generation or consumption in any adverse (non-nominal)

scenario. Transmission lines, which we model as two-terminal

devices, simply work according to the flow equations in any

scenario, except one in which they have failed. The goal is to

minimize a composite cost function that includes the cost (and

constraints) of nominal operation, as well as those associated

with operation in any of the (adverse) scenarios. This results

in a large optimization problem, since each variable in the

network, namely, real power flow, is repeated N times, where

N is the number of contingencies. We use a suitable modified

version of the message passing algorithm in [11] to solve this

problem efficiently. For simplicity, we consider only DC power

flows in this paper. The extension to AC power flow involves

applying the AC-OPF model from [12], [13] to each scenario

and requiring that the phase angles of a given devices are equal

across all scenarios in the first time period. In this paper, we

extend application of the Proximal Message Passing Algorithm

from solving the standard Optimal Power Flow(OPF) Problem

to solving the (N-1) Security Constrained OPF (SCOPF). The

rest of the paper is organized as follows: In section-II, we

give brief literature survey followed by section-III, where we

derive the Mathematical Formulations for several different

scenarios gradually increasing the level of complexity in our

model. Then, in Section-IV, the preceding generalized cases

are reformulated into a different framework, DT N (Devices-

Terminals-Nets) Formulation, which is particularly suitable for

the ADMM (Alternating Direction Method of Multipliers) [1]

Based Proximal Message Passing Algorithm to be applied to the

problems. Thereafter, we derive the Proximal Message Passing

Algorithm for the scenarios focusing mainly on the Dynamic

OPF (D-OPF) Problem in Section-V. Section-VI discusses some

of the numerical results. Finally, some concluding remarks are

drawn and future works are mentioned in Section-VII.

II. LITERATURE SURVEY AND RELATED WORK

The Optimal Power Flow Problem is at the heart of every

kind of Power Systems planning and operations activities. It

has been studied for more than half a century now. A recent

reference that provides a good summary of the historical

development of the problem is [2] by Cain, O’Neill and Castillo.

The references cited there also provides good insights into

formulation and modeling particularly, of the ACOPF. The
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pioneering work on the Security Constrained OPF (SCOPF) was

done by Stott et al in [14]. Significant early works on ADMM

method during the 70s and 80s were [8], [6], [5] etc. followed

by work during the 90’s which include [4], [3]. Combining

these two fields gives rise to the Distributed Computational

methods for OPF problem and significant references in that

field include works by Baldick and Kim [9], [10]. Particularly,

the last reference provides a good comparison of the distributed

methods till the end of 90s.

III. CONVENTIONAL OPF FORMULATIONS

In this section, we consider the conventional or traditional

OPF Formulation. We will next introduce the notations and

conventions we are going to use for the rest of the paper.

A. Notations and Conventions

We have categorized the entities used in the subsequent

formulations into four different groups: Sets, Elements, Index

and Parameters.
1) Sets: D: Set of Devices

T : Set of Terminals

N : Set of Nets or Buses

The next three sets form partitions of the set of devices:

G ⊆ D: Set of Generators

T ⊆ D: Set of Transmission Lines

L ⊆ D: Set of Loads

L = {0, 1, 2, ..., |L|}: Set of possible (N-1) Contingencies. The

element, 0 indicates the base case.
2) Elements: t: Elements of T

g: Elements of G

D: Elements of L

T : Elements of T

N : Elements of N
3) Indices: i, j, k: Buses, c: Contingencies, q: Generators,

k: Terminals, d: Loads, r: Transmission Lines (in this section,

we index them using the bus indices of the ends).
4) Parameters: Rij , Xij , Bij , Zij = Rij+jXij : Resistance,

Reactance, Susceptance and Impedance of the transmission line

between buses i and j (for this section) and RTr
, XTr

, ZTr
=

RTr
+ jXTr

: Resistance, Reactance and Impedance of the rth

Transmission Line (for the next section)

The variables are the real power P and the bus angles

θ (There are no bus angles for DC tie-lines). The fol-

lowing is the convention we follow in order to identify

the associations of any particular variable to the sets:

Variable
(ContingencyIndex)
Net/DeviceElement

TerminalNumber

.

For instance, P
(c)
Nitk

indicates the real power flowing out of the

kth terminal, which belongs to the ith net, for the contingency

scenario, (c). P
(c)
Trtk

indicates the real power flowing out of

the kth terminal, which belongs to the rth Transmission Line

(Device), for the contingency scenario, (c).
In the example in Fig. 1, the terminals of generators 1 and 2 are

respectively t1 and t5. The terminals of the three transmission

lines on Bus-1, which is also net N1 are t2(I,II,III) and those

at Bus-2, which is also net N2 are t4(I,II,III), whereas those

of loads D1 and D2 are t3 and t6 respectively.

P1 P2
1 2

demand
D2

demand
D1

a, b, c: capacity 100 MW/125 MW

- �

-�

n n
Fig. 1: Three trans-

mission lines, a,

b, c, joining two

buses, 1, and 2.

B. Illustration of Simplest Two Bus Case

First consider the simplest possible case of a two bus system

shown in Fig. 1. There are three transmission lines between

the two buses with equal impedances and equal power carrying

capabilities (100 MW: Continuous and 125 MW: Short time).

Assume, that the marginal costs for generating power are

$10/MWh and $20/MWh for Generators 1 and 2 respectively

and they stay the same for the entire range of generating

capability. We will try to solve a very simple (N-1) Security

constrained dispatch calculation for such a system. We will

build the model in steps, increasing the complexity and adding

on new constraints for making the analysis more realistic at

each step. We will generalize the analysis to arbitrary systems

at each step. This approach will help us gain insight as to what

exactly is going on physically, as well as understand how the

mathematical model is fitting into the pertinent situation. First

assume that it is certain that no line outages are ever going to

happen and so we can transfer a maximum of 300 MW from

Bus-1 to Bus-2. Let load D2 and D1 be 500 MW and 300 MW,

respectively, and also let both the generators have very high or

infinite generating capability. So, Generator-1 will be generating

P1 = D1 + 300 = 600MW , Generator-2 will be generating

the remaining 500-300 i.e. 200 MW, and the LMPs (LMP:

Locational Marginal Prices for electricity, the incremental cost

for generating or providing power at a particular bus, the price

at which electricity is traded in the wholesale market) at buses

1 and 2 will be $10/MWh and $20/MWh, respectively. The

problem for this system can be mathematically formulated as

follows, solving which will actually give the same results that

we just intuitively examined.

min
P1,P2

C1(P1) + C2(P2) (1a)

Subject to : P1 + P2 = D1 +D2 (1b)

|P1 −D1| ≤ L (1c)

|P2 −D2| ≤ L Redundant Constraint (1d)

where, P1 and P2 are real powers produced by Generators-1

and 2 respectively (Decision Variables) and L is the maximum

power transfer capability of the lines from Bus-1 to Bus-2,

which is the sum total of all the three transmission lines between

the two buses.



C. Generalization of the Simplest Case to Multi-Bus Systems

The formulation is as follows:

min
Pi

X

i∈G

Ci(Pi) (2a)

Subject to :
X

i∈N

Pi =
X

i∈N

Di (2b)

|Φ(P−D)| ≤ L (2c)

where the bold face letters indicate vectors, Φ is the Shift

Factor matrix. From now onward, we will use Φ for the shift

factor matrix and Φ
(c) for the shift factor matrix for a particular

base-case/contingency scenario. The index c = 0 stands for

base-case. We can also think of Φ as a |T |× |N | matrix with

elements φln which are the ratio between the real power flow

on line l and the injection and withdrawal at bus n and the

slack bus respectively, where the implicit assumption is that, the

linearization of line power flow holds true. Also, (P−D) is the

vector of the real power bus injections. Our next step would be

to make the situation a little more realistic by considering the

maximum and minimum real power generating limits and so

the only other constraints to be added in the above formulations

are Pi
min

≤ Pi ≤ Pi
max, ∀i ∈ N . (For those buses that do

not have a Generator, Pi
min = Pi

max = 0).

D. (N-1) Contingency Constrained OPF for the Two Bus Case:

Unequal Capacities and Line Impedances

Moving on to the next level of sophistication in our model,

we will now consider incorporation of (N − 1) security

constraints in our formulation. In the simple two bus case

discussed previously, let’s, for the sake of simplicity, initially

ignore the short term ratings of lines. We are again assuming

equal impedances of the lines and identical maximum line flow

limits of 100 MW for each line. In order to be secure with

respect to a single contingency, now only 200 MW can be

transferred from Bus-1 to Bus-2 and so, the remaining (500-

200) i.e. 300 MW of load has to be provided by Generator-

2. Therefore, being secure with respect to the single outage

of the line amounts to evaluating how much power can be

transferred if the line is taken out of service, without violating

the limit constraints and actually allowing that very quantity

of power to flow during pre-contingency. In a more general

context, where the impedances as well as the capacities

are different and lets assume that the impedances (in this

case, the reactances, since we are neglecting the resistances)

are X1, X2, X3 with X1 ≥ X2 ≥ X3 (with X1, X2, X3

respectively, the reactances of lines 1, 2 and 3 with capacities

a1, a2, a3 (with a1 ≥ a2 ≥ a3, which ensures binding

constraints)respectively). Now, the SCOPF is formulated as):

min
P1,P2

C1(P1) + C2(P2) (3a)

Subject to : P1 + P2 = D1 +D2 (3b)

Base Case :
(P1 −D1)

(X1X2 +X2X3 +X3X1)
(X2X3) ≤ a1

(3c)

(P1 −D1)

(X1X2 +X2X3 +X3X1)
(X1X3) ≤ a2 (3d)

(P1 −D1)

(X1X2 +X2X3 +X3X1)
(X1X2) ≤ a3 (3e)

Outage of ”c” :
(P1 −D1)

(X1 +X2)
(X2) ≤ a1 (3f)

(P1 −D1)

(X1 +X2)
(X1) ≤ a2 (3g)

Outage of ”b” :
(P1 −D1)

(X1 +X3)
(X3) ≤ a1 (3h)

(P1 −D1)

(X1 +X3)
(X1) ≤ a3 (3i)

Outage of ”a” :
(P1 −D1)

(X3 +X2)
(X3) ≤ a2 (3j)

(P1 −D1)

(X3 +X2)
(X2) ≤ a3 (3k)

It is to be observed that the particular case of equal line

impedance and equal/unequal capacities can be derived from

the above model.

E. (N-1) Contingency Constrained OPF for the Generalized

Multi-Bus Case: Unequal Capacities and Line Impedances

Hence, the generalized SCOPF can be written down as:

min
Pi

X

i∈G

Ci(Pi) (4a)

Subject to :
X

i∈N

Pi =
X

i∈N

Di (4b)

|Φ(0)(P−D)| ≤ L
(0)

(4c)

|Φ(c)(P−D)| ≤ L
(c)

(4d)

IV. DT N REFORMULATIONS OF THE OPF SCENARIOS

In this section we carry out the reformulation of only the

generalized models that we presented in the last section in

order for us to be able to solve the problems by the Proximal

Message Passing method. In the material that follows, we will

group the terms of the objective into three different categories.

We will define them for each case. These are:

1)Cost of Generation (C(P )): This term consists of the actual

total cost of generating real power by the different generators

as well as the indicator functions corresponding to the lower

and upper generating limits of the different generators. For

this term, the real power generated is always considered at the

base case.

2)Line Flow Limit Constraint (F (P )): This term consists

of the sum of the indicator functions corresponding to the



constraints meant for enforcement of the real power flow on

the lines being less the maximum allowed, both at the base-

case as well as different contingencies.

3)Power-Angle Relation (χ(P, θ)):This term consists of the

sum of the indicator functions corresponding to the relation

of the power flow at each end of the lines and the voltage

phase angles at the two ends, both at the base-case and the

contingencies.

A. DT N Formulation Applied to the Generalization of the

Simplest Case to Multi-Bus Systems

We are considering here the generalization of the simplest

two bus case to arbitrary systems and are going to reformulate

the OPF equations similar to the paradigm introduced in [11].

Let us introduce the following sign convention that we will

follow throughout the rest of the paper: Power coming out of

a terminal is positive and going into a terminal is considered

negative. Let Pti refer to the real power coming out of the

terminals ti each of which is associated with exactly one device

and one net. Since the loads consume real power, in our two

bus case, PD1t3
= −D1, PD2t6

= −D2. Let a particular net,

Ni ∈ N has |Ni| number of terminals. The average power

mismatch for each net is as follows:

PNi
=

1

|Ni|

X

tk∈Ni∩T

PNitk
= PNitk

∀Ni ∈ N , ∀tk ∈ Ni ∩ T (5a)

Similarly, the phase angle inconsistency equations are:

θNi
=

1

|Ni|

X

tk∈Ni∩T

θNitk
(6a)

θ̃Nitk
= θNitk

− θNi

∀Ni ∈ N , ∀tk ∈ Ni ∩ T (6b)

The indicator functions corresponding to the line flow limit

constraints are as follows:
P

Tr∈T

P
tk∈Tr∩T I≤(LmaxTr

−

|PTrtk
|).(where I≤(x) = 0 if x ≥ 0 and = ∞

otherwise) The indicator functions corresponding to

the defining relationship between the power injections

on the lines and the phase angles are as follows:
P

Tr∈T

P
tk,t

k
0 ∈Tr∩T I=(PTrtk

+
θTrtk

−θTrt
k
0

XTr
).(which,

unlike the previously defined indicator functions are zero only

when the respective arguments are zero and ∞ otherwise)

The indicator functions corresponding to the Generator

maximum and minimum real power generating limits areP|G|
tk∈gq∩T ,q=1(I≤(Pmaxgq

− Pgqtk

) + I≤(Pgqtk

− Pmingq
))

and the Generator Cost functions are of the form

Cgq (Pgqtk

) = αgqPgqtk

2 + βgqPgqtk

+ γgq . As before,

the different terms of the objective function in this case are:

1)Cost of Generation: C(P ) =
P|G|

tk∈gq∩T ,q=1(Cgq (Pgqtk

) +

I≤(Pmaxgq
− Pgqtk

) +

I≤(Pgqtk

− Pmingq
))

2)Line Flow Limit Constraint: F (P ) =P
Tr∈T

P
tk∈Tr∩T I≤(LmaxTr

− |PTrtk
|)

3)Power-Angle Relation: χ(P, θ) =
P

Tr∈T

P
tk,t

k
0 ∈Tr∩T I=(PTrtk

+
θTrtk

−θTrt
k
0

XTr
)

With all the above components, the reformulated OPF for this

particular case can written as:

min
Ptk

,θtk

C(P ) + F (P ) + χ(P, θ) (7a)

Subject to : PNitk
= 0, θ̃Nitk

= 0, ∀Ni ∈ N , ∀tk ∈ T

(7b)

B. DT N Formulation Applied to the (N-1) Contingency

Constrained Generalized Multi-Bus Case: Unequal Capacities

and Unequal Line Impedances

The average net real power imbalance for the base case as

well as the contingencies are as follows (similar to the ones

presented before in section 4.3):

P
(c)

Ni
=

1

|Ni|

X

tk∈Ni∩T

P
(c)
Nitk

= P
(c)

Nitk

∀Ni ∈ N , ∀tk ∈ Ni ∩ T , ∀(c) ∈ L (8a)

and the phase consistency constraints for the base case as well

as contingencies are as follows:

θ
(c)

Ni
=

1

|Ni|

X

tk∈Ni∩T

θ
(c)
Nitk

(9a)

θ̃
(c)
Nitk

= θ
(c)
Nitk

− θ
(c)

Ni

∀Ni ∈ N , ∀tk ∈ Ni ∩ T , ∀(c) ∈ L (9b)

The components of the objective function are as follows:

1)Cost of Generation (At Base Case):

C(P (0)) =
P|G|

tk∈gq∩T ,q=1(Cgq (P
(0)
gqtk

) +

I≤(Pmaxgq
− P

(0)
gqtk

) + I≤(P
(0)
gqtk

− Pmingq
))

2)Line Flow Limit Constraint ((N-1) Secure):

F (P (c)) =
P

(c)∈L

P
Tr∈T

P
tk∈Tr∩T I≤(L

(c)

Tr
− |P

(c)
Trtk

|)

3)Power-Angle Relation ((N-1) Secure):

χ(P (c), θ(c)) =
P

(c)∈L

P
Tr∈T

P
tk,t

k
0 ∈Tr∩T I=(P

(c)
Trtk

+

θ
(c)
Trtk

−θ
(c)
Trt

k
0

X
(c)
Tr

)

So, the reformulated OPF Problem for this case is as follows:

min
P

(c)
tk

,θ
(c)
tk

C(P (0)) + F (P (c)) + χ(P (c), θ(c)) (10a)

Subject to : P
(c)

Nitk

= 0, θ̃
(c)
Nitk

= 0, ∀Ni ∈ N , ∀tk ∈ T ,

∀(c) ∈ L (10b)
X

Tr∈Ni∩T

P
(c)
NiTrtk

=
X

Tr∈Ni∩T

P
(0)
NiTrtk

, ∀(c) ∈ L, ∀Ni ∈ N

(10c)

The last constraint is for enforcing the condition that within a

particular dispatch interval, the pre-and post-contingency bus

injections for the transmission lines are the same and the only

things that change are the line flows, as long as we consider

outage of only transmission elements and are in the DC-OPF

regime.



V. ADMM BASED PROXIMAL MESSAGE PASSING

ALGORITHM FOR THE SCOPF PROBLEM

In this section, we will present the ADMM Based Proximal

Message Passing iterations for only two of the models presented

in the previous sections: The Generalization to the Multi-Bus

Case with and without the (N-1) Contingency Constraint. For

the sake of completeness, we present here a brief summary

of the ADMM based Proximal Message Passing Algorithm as

applied to OPF problem, but for details we refer the readers

to [11] and [1].

A. Message passing algorithm

In this section, we describe the message passing algorithm

used to solve the SC-OPF. We begin by assuming that all device

objective functions are convex, closed, and proper (CCP) func-

tions. We then derive a distributed, message passing algorithm

using operator splitting and the alternating directions method

of multipliers (ADMM) [1]. This algorithm has guaranteed

convergence for CCP functions, is fully decentralized, and is

robust.

B. Consensus form SC-OPF

Before applying ADMM to solve the SC-OPF, we first

replicate the power plans P 2 R|T |×(|L|+1) by introducing

a copy, z 2 R|T |×(|L|+1), of the plans. We then solve the

consensus form SC-OPF:

minimize f(P )
subject to z̄ = 0

P = z.
(11)

Where z̄ is the arithmetic mean of z associated with a particular

net. Because of the consensus constraint, when we solve the

consensus form SC-OPF, the optimal solution will agree with

the solution of the original SC-OPF. We introduce the indicator

function g(z) = I{z|z̄=0}(z), which is 0 whenever z̄ = 0 and

+1 otherwise (if the power balance constraint is violated).

Because z̄ is the average power at each net, the set {z | z̄ = 0}
can be written as

T

Ni∈N {z | z̄Ni
= 0}, where z̄Ni

is the

average power at net Ni; then,

g(z) =
X

Ni∈N

gNi
(z) =

X

Ni∈N

I{z|z̄Ni
=0}(z).

Since the summands in the last expression only involve each

net Ni separately, g(z) separates across nets completely

g(z) =
X

Ni∈N

I{zNi
|z̄Ni

=0}(zNi
).

C. ADMM and the prox-project message passing algorithm

We apply ADMM to solve the SC-OPF by first forming the

(scaled) augmented Lagrangian,

L(P, z, u) = f(P ) + g(z) + (ρ/2)kP � z + uk22,

where u = (1/ρ)y is the scaled dual variable y associated with

the consensus constraint P = z. We obtained the augmented

Lagrangian by completing the squares. ADMM is then

P (⌫+1) = argmin
P

⇣

f(P ) + (ρ/2)kP � z(⌫) + u(⌫)k22

⌘

z(⌫+1) = argmin
z

⇣

g(z) + (ρ/2)kP (⌫+1) � z + u(⌫)k22

⌘

u(⌫+1) = u(⌫) + (P (⌫+1) � z(⌫+1)).

where the superscript is an iteration counter. Because of our

problem structure, we can further simplify ADMM. The P -

updates separate across devices and

P
(⌫+1)
d = argmin

Pd

⇣

fd(Pd) + (ρ/2)kPd � z
(⌫)
d + u

(⌫)
d k22

⌘

for all d 2 D. Furthermore, the z-updates separate across nets

and zNi
-update is just a Euclidean projection on to the set

z̄Ni
= 0 and can be solved analytically, so

z
(⌫+1)
Ni

= P
(⌫+1)
Ni

+ u
(⌫)
Ni

� P̄
(⌫+1)
Ni

� ū
(⌫)
Ni

.

Substituting this expression for zNi
in to the u-update—which

also splits across nets—we obtain the proximal message

passing algorithm:

1) Proximal plan updates.

P
(⌫+1)
d = proxfd,⇢

(P
(⌫)
d � P̄

(⌫)
d � u

(⌫)
d ), 8d 2 D.

2) Scaled price updates.

u
(⌫+1)
Ni

:= u
(⌫)
Ni

+ P̄
(⌫+1)
Ni

, 8Ni 2 N ,

where the proximal function for a function g is given by

proxg,⇢(v) = argmin
x

(g(x) + (ρ/2)kx� vk22).

This algorithm alternates between evaluating prox functions

(in parallel) on each device and performing price updates on

each net. This algorithm has the following three properties:

a) Convergence.: With mild conditions on device objec-

tive functions fd—namely, that they are closed, convex, and

proper—and provided a feasible solution exists, the following

properties of our algorithm hold.

1) Residual convergence. P̄ (⌫) ! 0 as ν ! 1,

2) Objective convergence.
P

d∈D fd(P
(⌫)
d ) +

P

Ni∈N gNi
(P

(⌫)
Ni

) ! f? as ν ! 1,

3) Dual variable convergence. ρu(⌫) = y(⌫) ! y? as ν !
1,

where f? is the optimal value for the (convex) SC-OPF, and

y? are the optimal dual variables (prices). A proof of these

conditions can be found in [1]. Convergence of our algorithm

guarantees that, if message passing is run long enough, power

balance will be satisfied by P (⌫) to any desired accuracy.

b) Distributed.: As long as each device has the ability to

access the average power imbalance for the nets it shares with

its neighbors, this algorithm can be completely decentralized.

Then, the algorithm consists of each device planning for each

contingency and a broadcast of plans to its neighbors.



D. Stopping criterion

We can define primal and dual residuals for the prox-project

message passing algorithm:

r(ν) = P̄ (ν), s(ν) = ⇢
⇣

(P (ν) � P̄ (ν))� (P (ν−1) � P̄ (ν−1))
⌘

.

Here P (ν) is interpreted as a power plan. A simple terminating

criterion for prox-project message passing is when

kr(ν)k2  ✏pri, ks(ν)k2  ✏dual,

where ✏pri and ✏dual are, respectively, primal and dual toler-

ances.

E. Choice of ⇢

The value of the algorithm parameter ⇢ can greatly affect

the convergence rate of the message passing algorithm. There

are no known methods for choosing the optimal value of ⇢ a

priori, except in certain special cases [7]. For more details on

⇢ selection, consult [1].

F. Implementation of proximal functions

Each device is responsible for implementing its proximal

function. In general, evaluating the proximal function requires

solving an optimization problem. The complexity of solving

this optimization problem depends on the structure of the local

problem. In the case of SC-OPF, the variables are the local

power plans Pd and any other private variables. At most, the

variables are coupled through the base case P
(0)
d . This results in

an arrow structure in the KKT system of the local optimization

problem. This kind of structure can be exploited and solved

with linear complexity. If the power plans do not couple through

the base case, then the local problem is completely separable

across the contingencies. Because of this simple structure in

the local SC-OPF problems on each device, we can quickly

and efficiently evaluate the proximal functions for each device.

G. Proximal Message Passing for Generalization of the Sim-

plest Case to Multi-Bus Systems

A slightly reformulated version of the DT N equations from

the last section, which allows us to apply the Proximal Message

Passing Algorithm is presented here:

min
Ptk

,θtk

C(P ) + F (P ) + �(P, ✓) +
X

Ni∈N

(I(zNitk) + Ĩ(⇠Nitk))

(12a)

Subject to : Ptk = ztk , ✓tk = ⇠tk , 8Ni 2 N , 8tk 2 T
(12b)

where I(zNitk) and Ĩ(⇠Nitk) are indicator functions of the sets

{ztk |zNitk} and {⇠tk |⇠̃Nitk} respectively.

1) Iterates for Generators: They consist of the update

equations for the real power and voltage-phase angles of the

generator terminals and are as follows:

(P
(ν+1)
gqtk

, ✓
(ν+1)
gqtk

) = argminPgqtk
,θgqtk

[Cgqtk(Pgqtk , ✓gqtk)+

I≤(Pmaxgq
� Pgqtk

) + I≤(Pgqtk

� Pmingq
)+

⇢

2
(||Pgqtk

� z
(ν)
gqtk

+ u
(ν)
gqtk

||
2

2
+ ||✓gqtk

� ⇠
(ν)
gqtk

+ v
(ν)
gqtk

||
2

2
)],

8gq 2 G, tk 2 T \G (13a)

Here, ⌫, (⇢)(utk) and (⇢)(vtk) are the iteration count, dual

variable for power balance and dual variable for phase consis-

tency constraints respectively.⇢ is the penalty parameter of the

Augmented Lagrangian term.

2) Iterates for Transmission Lines: They consist of the

update equations for the real power and voltage-phase angles

of the Transmission Line terminals, which are two terminal

devices and are as follows:

(P
(ν+1)
Trtk

, ✓
(ν+1)
Trtk

)

= argminPTrtk
,θTrtk

[
X

k,k
0
∈T ∩Tr

(LTr
� |PTrtk

|+

I=(PTrtk
+

✓Trtk
� ✓Trt

k
0

XTr

)+

⇢

2
(||PTrtk

� z
(ν)
Trtk

+ u
(ν)
Trtk

||
2

2
+ ||✓Trtk

� ⇠
(ν)
Trtk

+ v
(ν)
Trtk

||
2

2
))],

8Tr 2 T, tk 2 T \ T (14a)

3) Iterates for Loads: They consist of the update equations

for the real power and voltage-phase angles of the loads (which

have constant real power consumption) and are as follows:

P
(ν+1)
Ddtk

= P
(ν)
Ddtk

✓
(ν+1)
Ddtk

= argminθDdtk
[
⇢

2
(||✓Ddtk

� ⇠
(ν)
Ddtk

+ v
(ν)
Ddtk

||
2

2
)],

8Dd 2 L, tk 2 T \ L (15a)

4) Iterates for Nets: We are writing here just the analytical

forms already derived in [11].

8Ni 2 N , 8tk 2 T \Ni

z
(ν+1)
Nitk

= u
(ν)
Nitk

+ P
(ν+1)
Nitk

� u
(ν)
Nitk

� P
(ν+1)

Nitk
(16a)

⇠
(ν+1)
Nitk

= v
(ν)
Nitk

� ✓
(ν+1)

Nitk
(16b)

u
(ν+1)
Nitk

= u
(ν)
Nitk

+ (P
(ν+1)
Nitk

� z
(ν+1)
Nitk

) (16c)

v
(ν+1)
Nitk

= v
(ν)
Nitk

+ (✓
(ν+1)
Nitk

� ⇠
(ν+1)
Nitk

) (16d)

In the above, all the devices update their variables in parallel.

Then all the nets update the first two variables in parallel and

then update the next two in parallel. It is to be observed here

that, each PNitk actually comes from the updates from the

devices in the previous set of updates, because each of them

is actually the real power output/consumption of the respective

device having the same terminal in the particular net. Using the



above equations, the prox-functions and the proximal message

passing algorithm for this case can be written as follows:

(P
(ν+1)
gqtk

, θ
(ν+1)
gqtk

)

= proxC(P ),ρ(P
(ν)
gqtk

− P
(ν)

gqtk
− u

(ν)
gqtk

, v
(ν−1)
gqtk

+ θ
(ν)

gqtk
− v

(ν)
gqtk

),

∀gq ∈ G (17a)

(P
(ν+1)
Trtk

, θ
(ν+1)
Trtk

, P
(ν+1)
Trt

k
0
, θ

(ν+1)
Trt

k
0
)

= proxF+χ,ρ(P
(ν)
Trtk

− P
(ν)

Trtk
− u

(ν)
Trtk

, v
(ν−1)
Trtk

+ θ
(ν)

Trtk
− v

(ν)
Trtk

),

∀Tr ∈ T (17b)

(P
(ν+1)
Ddtk

, θ
(ν+1)
Ddtk

)

= prox−D,ρ(v
(ν−1)
Ddtk

+ θ
(ν)

Ddtk
− v

(ν)
Ddtk

), ∀Dd ∈ L (17c)

u
(ν+1)
Nitk

= u
(ν)
Nitk

+ P
(ν+1)

Nitk
, ∀Ni ∈ N (17d)

v
(ν+1)
Nitk

= ṽ
(ν)
Nitk

+ θ̃
(ν+1)
Nitk

, ∀Ni ∈ N (17e)

H. Proximal Message Passing for (N-1) Contingency Con-

strained Generalized Multi-Bus Case: Unequal Capacities and

Unequal Line Impedances

The slightly reformulated DT N equations from previous

section are:

min
P

(c)
tk

,θ
(c)
tk

C(P (0)) + F (P (c)) + χ(P (c), θ(c))

+
X

(c)∈L

X

Ni∈N

(I(z
(c)
Nitk

) + Ĩ(ξ
(c)
Nitk

)) (18a)

Subject to : P
(c)
tk

= z
(c)
tk

, θ
(c)
tk

= ξ
(c)
tk

, ∀Ni ∈ N , ∀tk ∈ T ,

∀(c) ∈ L (18b)

It is to be observed here that the power balance and the

phase consistency constraints need to be satisfied for each

and every contingency scenario. The different update equations

of the Proximal Message Passing Algorithm in this case are

as follows:

1) Iterates for Generators: They consist of the update

equations for the real power output and voltage-phase angles of

the generator terminals for both the base case and the different

(N-1) contingency scenarios and are as follows:

(P
(0)(ν+1)
gqtk

, θ
(c)(ν+1)
gqtk

) = argmin
P

(0)
gqtk

,θ
(c)
gqtk

[Cgqtk(P
(0)
gqtk

, θ
(c)
gqtk

)

+I≤(P
max
gq

− P (0)
gqtk

) + I≤(P
(0)
gqtk

− Pmin
gq

)+

X

(c)∈L

(
ρ

2
)(||P (0)

gqtk

− z
(c)(ν)
gqtk

+ u
(c)(ν)
gqtk

||
2

2
+

||θ(c)gqtk

− ξ
(c)(ν)
gqtk

+ v
(c)(ν)
gqtk

||
2

2
)],

∀gq ∈ G, tk ∈ T ∩G (19a)

2) Iterates for Transmission Lines:

(P
(c)(ν+1)
Trtk

, θ
(c)(ν+1)
Trtk

, P
(c)(ν+1)
Trt

k
0

, θ
(c)(ν+1)
Trt

k
0

)

= argmin
P

(c)
Trtk

,θ
(c)
Trtk

[
X

k,k
0
∈T ∩Tr

(I≤(L
(c)

Tr
− |P

(c)
Trtk

|)+

I=(P
(c)
Trtk

+
θ
(c)
Trtk

− θ
(c)
Trt

k
0

X
(c)
Tr

)+

ρ

2
(||P

(c)
Trtk

− z
(c)(ν)
Trtk

+ u
(c)(ν)
Trtk

||
2

2
+

||θ
(c)
Trtk

− ξ
(c)(ν)
Trtk

+ v
(c)(ν)
Trtk

||
2

2
))]

∀Tr ∈ T, tk ∈ T ∩ T, (c) ∈ L (20a)

3) Iterates for Loads: They consist of the update equations

for the real power and voltage-phase angles of the loads (which

have constant real power consumption) and are as follows:

P
(c)(ν+1)
Ddtk

= P
(c)(ν)
Ddtk

= −Ddtk

θ
(c)(ν+1)
Ddtk

= argmin
θ
(c)
Ddtk

[
ρ

2
(||θ

(c)
Ddtk

− ξ
(c)(ν)
Ddtk

+ v
(c)(ν)
Ddtk

||
2

2
)],

∀Dd ∈ L, tk ∈ T ∩ L, (c) ∈ L (21a)

4) Iterates for Nets: We are writing here just the analytical

forms already derived in [11].

∀Ni ∈ N , ∀tk ∈ T ∩Ni, ∀(c) ∈ L

z
(c)(ν+1)
Nitk

= u
(c)(ν)
Nitk

+ P
(c)(ν+1)
Nitk

− u
(c)(ν)
Nitk

− P
(c)(ν+1)

Nitk
(22a)

ξ
(c)(ν+1)
Nitk

= v
(c)(ν)
Nitk

+ θ
(c)(ν+1)

Nitk
(22b)

u
(c)(ν+1)
Nitk

= u
(c)(ν)
Nitk

+ (P
(c)(ν+1)
Nitk

− z
(c)(ν+1)
Nitk

) (22c)

v
(c)(ν+1)
Nitk

= v
(c)(ν)
Nitk

+ (θ
(c)(ν+1)
Nitk

− ξ
(c)(ν+1)
Nitk

) (22d)

In the above, as before, not only do all the devices update

their variables in parallel, but also, except the generators,

all devices have associated with them the base-case and the

contingency scenarios, each of which in turn update their

respective variables in parallel as well. Then all the nets and the

base-case/contingency scenarios associated with them update

the first two set of variables in parallel and then update the

next two in parallel. For this case, the prox messages and the



Proximal Message Passing Algorithm is as follows:

(P
(0)(ν+1)
gqtk

, ✓
(c)(ν+1)
gqtk

)

= proxC(P (0)),ρ(P
(0)(ν)
gqtk

− P
(c)(ν)

gqtk
− u

(c)(ν)
gqtk

,

v
(c)(ν−1)
gqtk

+ ✓
(c)(ν)

gqtk
− v

(c)(ν)
gqtk

), ∀gq ∈ G, ∀(c) ∈ L (23a)

(P
(c)(ν+1)
Trtk

, ✓
(c)(ν+1)
Trtk

, P
(c)(ν+1)
Trt

k
0

, ✓
(c)(ν+1)
Trt

k
0

)

= proxF (P (c))+χ(P (c),θ(c)),ρ(P
(c)(ν)
Trtk

− P
(c)(ν)

Trtk
− u

(c)(ν)
Trtk

,

v
(c)(ν−1)
Trtk

+ ✓
(c)(ν)

Trtk
− v

(c)(ν)
Trtk

),

∀Tr ∈ T, ∀(c) ∈ L (23b)

(P
(c)(ν+1)
Ddtk

, ✓
(c)(ν+1)
Ddtk

)

= prox
−D,ρ(v

(c)(ν−1)
Ddtk

+ ✓
(c)(ν)

Ddtk
− v

(c)(ν)
Ddtk

), ∀Dd ∈ L,

∀(c) ∈ L (23c)

u
(c)(ν+1)
Nitk

= u
(c)(ν)
Nitk

+ P
(c)(ν+1)

Nitk
, ∀Ni ∈ N , ∀(c) ∈ L (23d)

v
(c)(ν+1)
Nitk

= ṽ
(c)(ν)
Nitk

+ ✓̃
(c)(ν+1)
Nitk

, ∀Ni ∈ N , ∀(c) ∈ L (23e)

VI. SIMULATION STUDIES AND RESULTS

We have carried out our numerical simulations on a computer

with an Intel (R) Xeon (R) CPU E5-2670 with a clocking

frequency of 2.6 GHz, having 1.5 GB RAM, running Windows

7 Enterprise. We have used MATLAB R 2013a with CVX

installed on it in order to write the code. So far, we have

only done a purely serial implementation of the algorithm with

the parameters, ⇢ set to 1 and ✏pri to 0.001. For the sake of

brevity, in this paper, we are mentioning the results of only

the two bus system (which we introduced in Section-II). This

will help us compare the simulation results with the ones we

obtained intuitively, so that it validates our approach. Again,

for the purposes of this simulation, we have assumed all the

transmission lines having equal capacities of 100 MW and

reactances of 0.15 Ω. For the SCOPF case, we have assumed

outage of just line-3. Also, our lower and upper generating

limits for both Generators 1 and 2 were 0 MW and 10000

MW respectively. Here are the most important parameters:

A. Simple Two Bus OPF

Time required to solve:231.8139 s; Number of Iterations:

122; Generator 1: 600.0003 MW (600 MW), Generator 2:

199.9986 MW, (200 MW)Line Flow on each line: 100 MW

(100 MW); Scaled Dual Variable for Power balance (LMP) on

Bus-1: 9.9729 (10)$/MWh, Bus-2: 20.002 (20)$/MWh and the

primal tolerance at the solution: 2.8267 × 10−4. The values

in the parentheses above are the ones which we determined

earlier intuitively and they match very well with the simulated

ones.

B. Two Bus SCOPF

Time required to solve:639.7596 s; Number of Iterations:

193; Generator 1: 500.0008 MW (500 MW) at base case,

Generator 2: 299.999 MW, (300 MW) at base case, Line Flow

on each line: 66.667 MW (66.667 MW) at base case; Line

Flow on each line: 100 MW (100 MW) at post contingency

case;Scaled Dual Variable for Power balance on Bus-1: 7.4857

$/MWh, Bus-2: 7.4787 $/MWh at base case and Bus-1:

2.4744 $/MWh, Bus 2: 12.49 $/MWh at post-contingency. The

primal tolerance at the solution: 2.57× 10−4. Figures within

parentheses indicate intuitively determined values as before.

In the above case, the sum of base case and post-contingency

scaled dual variables give the actual LMPs.

VII. CONCLUSION & FUTURE WORK

In this paper, we looked at the extension of the Alternating

Direction Method of Multipliers(ADMM) Based Proximal

Message Passing Algorithm from solving simple OPF Problems

to solving SCOPF Problems which are secure to (N-1)

Contingencies. We have specifically considered outages of

Transmission Lines in this paper. We have presented the algo-

rithm and looked at the numerical results pertaining to a simple

systems. In our future work, we will be extending the method

to implement multiple dispatch time look-ahead calculation

with emphasis to post-fault thermal limit restoration and also

we will be implementing the fully distributed/multithreading

and peer-to-peer computations.
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