
Vol. 5, No. 2, March–April 2006

Security Evaluation of J2ME CLDC Embed-
ded Java Platform ∗

Mourad Debbabi, Mohamed Saleh, Chamseddine Talhi and Sami Zhioua

Computer Security Laboratory
Concordia Institute for Information Systems Engineering

Concordia University

Java 2 Micro-Edition Connected Limited Device Configuration (J2ME CLDC) is
the platform of choice when it comes to running mobile applications on resource-
constrained devices (cell phones, set-top boxes, etc.). The large deployment of this
platform makes it a target for security attacks. The intent of this paper is twofold:
First, we study and evaluate the security model of J2ME CLDC. Second, we provide
a vulnerability analysis of this Java platform. The evaluated components are: Vir-
tual machine, CLDC API and MIDP (Mobile Information Device Profile) API. The
analysis covers the specifications, the reference implementation (RI) as well as sev-
eral other widely-deployed implementations of this platform. The aspects targeted
by this security analysis encompass: Networking, record management system, virtual
machine, multi-threading and digital rights management. This work identifies security
weaknesses in J2ME CLDC that may represent sources of security exploits. Moreover,
the results reported in this paper are valuable for any attempt to test or harden the
security of this platform.

1 INTRODUCTION

With the proliferation of mobile, wireless and internet-enabled devices (e.g. PDAs,
cell phones, pagers, etc.), Java is emerging as a standard execution environment due
to its security, portability, mobility and network support features. The platform of
choice in this setting is J2ME CLDC [19, 25]. It is an enabling technology for a
plethora of services and applications: games, messaging, presence and availability,
web-services, mobile commerce, etc.

This platform has been deployed now by more than 20 telecommunication op-
erators. The total number of deployed Java mobile devices in the market exceeds
250 million units worldwide. According to IDC, a prestigious market research firm,
there will be more than 1.2 billion deployed Java-based mobile devices by 2006.

J2ME CLDC gained a big momentum and is now standardized by the Java
Community Process (JCP) and adopted by many standardization bodies such as

Cite this document as follows: M. Debbabi, M. Saleh, C. Talhi and S. Zhioua: Security
Evaluation of J2ME CLDC Embedded Java Platform ∗, in Journal of Object Technology, vol.
5, no. 2, March–April 2006, pages 125–154,
http://www.jot.fm/issues/issues 2006 3/article2

http://www.jot.fm/issues/issues_2006_3/article2

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

3GPP, OMA, etc. Another factor that has amplified the wide industrial adoption of
J2ME is the broad range of Java-based solutions that are available in the market.
All these factors made Java in general and J2ME in particular an ideal solution for
software development in the arena of embedded and wireless systems.

The typical most widely deployed J2ME CLDC platform consists of several com-
ponents that can be classified into virtual machine, APIs and tools. The virtual ma-
chine is the KVM [20, 26]. The APIs are CLDC [34] and MIDP[23, 25]. The tools
are the pre-verifier and the Java code compacter. KVM (Kilobyte Virtual Machine)
is an implementation of the Java Virtual Machine (JVM) [10]. It lies on top of the
host operating system and its main goal is to execute compiled program units (class
files). CLDC provides the most basic set of libraries and virtual-machine features for
resource-constrained, network-connected devices. MIDP is a layer on top of CLDC
configuration. It extends the latter with more specific capabilities, namely, net-
working, graphics, security, application management, and persistent storage. The
preverifier checks all the Java classes to enforce object, stack and control-flow safety.
This is done off-line and the result is stored as attributes in the compiled program
units. The Java code compactor (JCC) is in charge of the romizing process. The
latter is a feature of KVM that allows to load and link Java classes at startup. The
idea is to link these classes off-line, then create an image of these classes in a file
and finally to link the image with KVM.

With the large number of applications that could be available for Java-enabled
devices, security is of paramount importance. Applications can handle user-sensitive
data such as phonebook data or bank account information. Moreover, Java-enabled
devices support networking, which means that applications can also create network
connections and send or receive data. Security in all of these cases should be a major
concern. Malicious code has caused a lot of harm in the computer world, and with
phones having the ability to download and run applications there is an actual risk of
facing this same threat. Currently, viruses for phones start to emerge (e.g. Cabir),
a number of model specific attacks has been reported (e.g Nokia 6210 DoS, Siemens
S55 SMS, etc.), and mobile attacks and exploits are starting to get attention in the
hacker community (e.g. www.defcon.org).

This paper aims to provide a careful study of the J2ME CLDC security. The
purpose of this paper is twofold; (first) study and evaluate the security model of
J2ME CLDC, (second) provide a vulnerability analysis of this Java platform. In
this regard, we investigated both, the published specifications and the available
implementations. By analyzing specifications, we provide a comprehensive study of
the J2ME CLDC security model, pointing out possible shortcomings and aspects
open for improvement. By investigating available implementations, we discovered
existent weaknesses through security testing. To make the results of our analysis
as credible as possible, we investigated several implementations of the platform like
Sun’s RI, phone emulators, and actual phones.

By identifying weaknesses that may represent sources of security breaches, our
security evaluation provides a starting point to a process that aims to improve the

126 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

2 RELATED WORK

security of J2ME CLDC, which is the final goal of this research work.

This paper is organized into six sections beginning with the introduction. In
section 2, we present related work concerning the comprehension of J2ME CLDC
security and its evaluation. In sections 3 and 4, we present the security architecture
of J2ME CLDC, followed by our evaluation of the underlying security model. They
are followed by our vulnerability analysis, which starts by presenting the previously
reported flaws, and then giving the actual results of our analysis. Finally section 6
concludes the paper.

2 RELATED WORK

This section gives an overview of what has been published in the literature regarding
J2ME CLDC security evaluation. The majority of these efforts provided tutorials on
J2ME CLDC security and tried to evaluate the underlying security model. Typically,
these papers contain a description of the security model for J2ME CLDC (MIDP
1.0 and/or MIDP 2.0) followed by an evaluation of that model. Some papers point
out weaknesses while others provide ideas to improve the security mechanisms.

In [15], Kolsi and Virtanen, tried to evaluate the new security features of MIDP
2.0. They started by giving an exhaustive classification of all threats and security
needs in mobile environment, in particular for J2ME. Based on that analysis, the
authors emphasized the security weaknesses in MIDP 1.0. Then, the new security
mechanisms and features of MIDP 2.0 are analyzed showing how the security prob-
lems of MIDP 1.0 are addressed. Finally, the authors concluded that several security
problems were addressed by MIDP 2.0, but some problems are still present mainly
related to the PKI. These problems are illustrated in [3].

In [1], Sanjay Chadha discusses various issues about J2ME applications. In
particular, he discusses two security concerns. First, he points out that the J2ME
built-in security is not enough because the application has to be delivered to the
device before it is processed through the security verification process. He claims
that this is not sufficient in the wireless world since it is already too late if a malign
application is delivered to a mobile device. He thinks that applications need to be
tested for viruses and other potential malign behavior on the server side before they
are deployed to the mobile device. Second, he highlights the lack of DRM (Digital
Rights Management) support in J2ME. For example, most users prefer to try an
application before making a purchasing decision. Without such capability, users are
reluctant to buy games, which leads to lost revenue for operators.

Also [37] presents security challenges and solutions for J2ME-based mobile com-
merce applications. Yuan and Long closely examine the potential security advan-
tages of J2ME-based applications over other wireless alternatives such as WAP and
native applications. Then, they explain the security model available on the J2ME
platform (CLDC and CDC). As part of their discussion, Yuan and Long suggest
some potential ways to enhance network and data security for J2ME applications.

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 127

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

For example, they claim that point-to-point protocols such as SSL are not suitable
for web services and to address this issue there is a need to an end-to-end security
model with flexible encryption schemes. They believe that the focus should be on se-
curing content rather than connection. Also, they propose to secure content through
securing XML which is their format of choice for data communication between J2ME
wireless applications and back-end services. Finally, they summarize the feasibility
of developing advanced secure applications for the smallest wireless devices using
J2ME technologies. It should be noticed also that their article is published in 2002
and some issues discussed by the authors were addressed by new JSRs. For example,
JSR 172 provides basic XML procession capabilities to J2ME.

It is important to note that there is a large number of efforts in the J2ME
CLDC security literature that focus on supporting security at the application layer
[9, 35, 11, 12, 13, 14]. These papers discuss security solutions that do not rely on
protocols at lower layers. That is, the security related functions are implemented in
the application (MIDlet) itself.

3 J2ME CLDC SECURITY ARCHITECTURE

The high-level J2ME CLDC architecture defines 3 layers on top of the device’s oper-
ating system: The virtual machine(KVM) [17], the Configuration (CLDC) which is
a minimal set of class libraries that provide the basic functionalities for a particular
range of devices, and the Profile (MIDP) which is an extension of the Configuration
that addresses the specific demands of a device family. At the implementation level,
MIDP also consists of a set of Application Program Interfaces (APIs).

Applications developed for the J2ME CLDC platform (MIDlets) are downloaded
to the device in the form of two files: the Java Archive (JAR), and the Java Appli-
cation Descriptor (JAD). The JAR is an archive file that contains the JAR manifest,
which is a text file that contains various attributes like the MIDlet name. It also
contains preverified class files of the MIDlet, plus any other Supporting files needed
by the application (e.g. graphic files). One JAR file can contain more than one
MIDlet and the set of MIDlets in a JAR file is called MIDlet suite. The JAD on
the other hand, is a plain text file that contains several attributes like the MIDlet
name and MIDP version needed to run the MIDlet. The JAD is also used to give
some information about the MIDlet, such as the vendor’s name, a small description,
etc. The software entity on the device that is responsible for MIDlet management
is called the Application Management System (AMS), or the Java Application

Manager (JAM).

On J2ME CLDC devices security issues are classified as:

• Low-level security deals with safety issues related to the virtual machine. In
general, the role of the low-level security mechanisms is to ensure that class
files loaded into the virtual machine do not execute in any way that is not

128 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

3 J2ME CLDC SECURITY ARCHITECTURE

allowed by the Java virtual machine specification [17].

• By application-level security, we mean that “Java applications can access only
those libraries, system resources and other components that the device and
the Java application environment allow it to access” [34].

• End-to-end security has a larger scope involving secure networking. The main
objective of end-to-end security is to ensure safe delivery of data and code
between server machines and client devices.

Low-level and application security are addressed in CLDC, while MIDP addresses
application and end-to-end security.

CLDC Security

To understand the security model of CLDC, it is important to notice that the
security of CLDC is affected by the absence of some general Java features - that
are usually present in Java platforms - and that have been dropped because of
performance and security issues. Consequently security in CLDC is characterized
by:

• No Java Native Interface (JNI): Mainly for security and performance reasons,
JNI [16] is not implemented in CLDC. Although, a Kilo Native Interface (KNI)
[32] is provided for J2ME CLDC, KNI does not have the ability to dynamically
load and call arbitrary native functions from Java programs (which could cause
significant security problems in the absence of the full Java 2 security model).

• No user-defined class loaders : Mainly for security reasons, the class loader
in CLDC is a built-in “bootstrap” class loader that cannot be overridden,
replaced, or reconfigured. The elimination of user-defined class loaders is part
of the “Sandbox” security model restrictions.

• No thread groups or daemon threads : While supporting multithreading, CLDC
has no support for thread groups or daemon threads.

• No support for reflection: No reflection features are supported, and therefore
there is no support for remote method invocation (RMI) or object serialization.

Low-Level Security

Low level security in CLDC is mainly based on type safety mechanisms. The class
file verifier is the module in charge of type safety checking. The class file verifier
ensures that the bytecodes and other items stored in class files cannot contain illegal
instructions, cannot be executed in an illegal order, and cannot contain references to

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 129

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

invalid memory locations or memory areas that are outside the Java object memory
(the object heap) [34].

In J2ME CLDC and due to the constraints on device resources, this is done in
two steps:

• Off-device pre-verification: During this phase, which is performed on the de-
velopment platform, certain bytecodes will be removed, and class files will
be augmented with additional StackMap attributes in order to speed up the
runtime verification.

• In-device verification: The runtime verifier component uses the additional
StackMap attributes generated by the preverifier to perform the actual class
file verification efficiently [34].

Application-level Security

The CLDC application security is mainly ensured by adopting a sandbox model, by
protecting system classes, and by restricting dynamic class loading:

• Sandbox Model :

1. Java class files are properly verified and are valid Java classes.

2. Only a closed predefined set of Java APIs is available to the applica-
tion programmer, as defined by CLDC, profiles and manufacturer-specific
classes.

3. Downloading, installing, and managing MIDlets on the devices takes
place at the native level inside the virtual machine. Therefore, the appli-
cation programmer cannot modify or bypass the standard class loading
mechanisms of the virtual machine.

4. The set of functions accessible to the virtual machine is closed. Thus,
developers cannot download any new libraries containing native func-
tionality or access any native functions that are not part of the Java
libraries provided by CLDC, MIDP, or the manufacturer.

• Protecting System Classes : In CLDC, the application programmer cannot
override, modify, or add any classes to the protected system packages, i.e.
packages belonging to configuration, profile, or manufacturer. Thus, the sys-
tem classes are protected from the downloaded applications. Also, the appli-
cation programmer is not able to manipulate the class file lookup order in any
way.

• Restrictions on dynamic class loading : One important restriction is made on
dynamically loading class files: A Java application can load application classes
only from its own Java Archive (JAR) file.

130 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

3 J2ME CLDC SECURITY ARCHITECTURE

MIDP Security

MIDP 1.0 Security

Application security in MIDP 1.0 is based on a Java sandbox model which was ex-
plained earlier. It is also important to note that in MIDP 1.0, MIDlet suites are
allowed to save data in persistent storage files (called record stores). However, shar-
ing of record stores between MIDlet suites is not allowed. With respect to end-to-end
security, MIDP 1.0 specification does not include any cryptographic functionality.
The only network protocol provided in MIDP 1.0 is the HTTP protocol.

MIDP 2.0 Security

The difference between MIDP 1.0 security and MIDP 2.0 security is that, in MIDP
2.0, accessing sensitive resources (APIs and functions) is not totally prohibited.
Instead, MIDP 2.0 controls access to protected APIs by granting permissions to
protection domains and binding each MIDlet on the device to one protection domain.
Thus, a MIDlet will be granted all permissions provided to the protection domain
that has been bound to it. A MIDlet is bound to one protection domain according to
a well defined procedure that allows the AMS to authenticate the origin of a MIDlet:
If one MIDlet can be authenticated, then it is qualified as trusted, otherwise, it will
be qualified as untrusted. In addition, MIDP 2.0 introduces the ability to share
record stores between MIDlet suites. The protection of record stores is discussed
later in this section. Also, an important difference between the security of MIDP
1.0 and MIDP 2.0 is that MIDP 2.0 provides end-to-end security by allowing secure
networking using HTTPS protocol.

Sensitive APIs

In MIDP 2.0, some capabilities of the device are exposed to MIDlets through a set
of APIs that are identified as sensitive and therefore should be protected. The sen-
sitive APIs in MIDP 2.0 are the ones related to connectivity and the PushRegistry

class.

Permissions and Protection Domains

Access to sensitive APIs is protected by permissions. A protection domain defines
a set of permissions, and for each permission, the protection domain defines the
level of access to the API protected by the permission. The level of access can be
either Allowed or User. For the Allowed level, the permission is granted without
involving the user. As for the User level, access to the protected API requires
explicit authorization from the user. This authorization can be in one the following
modes [23]:

1. Blanket The permission is valid for every invocation of the protected API.

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 131

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

2. Session: The permission is valid during one execution of the MIDlet.

3. Oneshot: The user must be prompted for each invocation of the protected
API.

By default, four protection domains are provided by MIDP 2.0:

• Minimum: This domain contains no permissions. Access is denied for all
sensitive APIs.

• Untrusted : Requires that sensitive APIs can only be accessed through user
permissions.

• Trusted : All permissions are granted.

• Maximum: Same as trusted.

In [33] which is an addendum to the MIDP 2.0 specification, protection domains
are categorized into four classes, namely, Manufacturer, Operator, Trusted third
party, and Untrusted domain. Protection domains are defined in a policy file. An
example of the policy file is given in figure 1 which is the policy file provided with
the RI. The procedure for determining whether a MIDlet suite is trusted is device-
specific. Some devices might trust only MIDlet suites obtained from certain servers.
Other devices might support only untrusted MIDlet suites. Others authenticate
MIDlet suites using the Public Key Infrastructure (PKI), which is the case shown in
figure 1. This authentication includes certificate path validation, signature checks
and expiration checks for the certificates.

Signing a MIDlet suite

In order to sign a MIDlet suite, the signer needs to have a private and public
key pair, and a certificate for his public key. If this certificate is not a certificate
authority (a certificate that is stored in the device), there should be another certifi-
cate that vouches that the first one is valid. If this second certificate is still not a
certificate authority, it requires a third certificate vouching for it, and so on until a
root certificate is reached.

The procedure of signing the MIDlet consists of the execution of the following
steps:

• The signer computes a digital fingerprint of the JAR file by applying a hash
function (SHA-1).

• They then sign the digital fingerprint by encrypting it with the private Key.

• The signed fingerprint is placed in the JAD file.

132 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

3 J2ME CLDC SECURITY ARCHITECTURE

Figure 1: Trusting a MIDlet suite and binding it to a protection domain

• The certificate of the public key is placed in the JAD (except if the certifi-
cate is the root certificate, which resides on the device), as well as the other
certificates, if any.

Persistent Storage Security

In MIDP 2.0 a MIDlet suite can save data in a persistent storage area. The
storage unit in J2ME CLDC is the record store. Each MIDlet suite can have one or
more record stores, these are stored on the persistent storage of the device. Record
stores are identified by a unique full name, which is a concatenation of the vendor
name, the MIDlet suite name, and the record store name. Within the same MIDlet,
two record stores cannot have the same name. However, if they belong to two
different MIDlet suites, they can have the same name since their full names will be

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 133

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

Figure 2: Record Stores in MIDP.

unique. The actual structure of the record store on the device storage consists of a
header and a body. The header contains information about the record store while
the body consists of a number of byte arrays called records, these contain the actual
data to be stored. Figure 2 shows the structure of the storage system. The part
of the Java platform responsible for manipulating the storage is called the Record
Management System (RMS).

For MIDP 1.0, record stores were not allowed to be shared among MIDlet suites.
In MIDP 2.0, sharing of record stores is allowed; the MIDlet suite that created the
record store can choose to make it shared or not. Moreover, the sharing mode can
be set to read-only or read/write. Sharing information is stored in the header of
each record store, and the default mode of sharing is private (no sharing).

End-to-end Security

MIDP 2.0 specification mandates that HTTPS be implemented to allow secure
connection with remote sites. HTTPS implementations must provide server authen-
tication. The Certificate authorities present in the device are used to authenticate
sites by verifying certificate chain provided by a server.

4 J2ME CLDC SECURITY MODEL EVALUATION

We provide in this section our evaluation of the J2ME CLDC security model. This
section is organized into to parts:

• A comparison of the J2ME CLDC model with the security model of J2SE.

134 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

4 J2ME CLDC SECURITY MODEL EVALUATION

The objective of such comparison is to extract the resemblances between the
two models and identify mechanisms dropped for the J2ME CLDC model or
changed to fit in embedded platforms.

• Our evaluation is presented by giving the advantages and the drawbacks of
the security model. This evaluation covers permissions, protection domains,
security policy, and the protection of persistent storage.

To provide a credible evaluation of the J2ME CLDC security model, we inves-
tigated both, the published specifications and the available implementations. By
analyzing specifications, we provide a comprehensive study of the J2ME CLDC
security model (see the previous section), pointing out possible shortcomings and
aspects open for improvement. The available implementations are investigated in or-
der to enhance our understanding of the J2ME CLDC security model and to discover
existent weaknesses through security testing. It is important to mention that we in-
vestigated several implementations of the platform like Sun’s RI, phone emulators,
and actual phones. Our evaluation is reinforced by a compilation of the reported
flaws related to the security of J2ME CLDC security. The results of investigating
the implementations are reported in the Section 5, which presents a vulnerability
analysis of the J2ME CLDC platform.

J2ME CLDC Security versus J2SE Security

The security concepts of Java 2 (permissions, protection domains, security policy,
etc.) are not typical to the J2ME CLDC platform. They were first introduced in the
Java 2 Platform Security Architecture [31]. This architecture defines the security
features of J2SE platform. However, the scope, the design, and the implementation
of these concepts vary greatly in J2ME CLDC and J2SE platforms. In the following
we highlight the main differences between them.

J2SE platform comes with a complete and full security model (Security Manager,
Access Controller, etc.). This model cannot be fully deployed in J2ME CLDC
platform because of the severely constrained resources (memory budget, processing
capabilities, and power consumption). Indeed, the security model of J2ME CLDC
can be considered as a subset of the J2SE security model. Some features were
disabled and others were replaced by more lightweight ones.

In the following, we consider each concept at a time and we try to exhibit the
main differences between both security models according to that concept. The main
concepts that we focus on are: permissions, protection domains, security policy, and
security manager.

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 135

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

Permissions

A permission protects access to a system resource. The system resources can be
connectivity protocols, files, etc. Although the purpose is the same, two main differ-
ences exist in how this concept is implemented in J2ME CLDC and J2SE. (First),
the number of resources protected by permissions in J2ME CLDC is less than the
one in J2SE platform. In J2ME CLDC RI, only connectivity protocols and push
functionality are guarded by permissions. We note that in more recent JSRs, other
resources are defined to be protected by permissions (SMS and MMS [2], Bluetooth
[36], etc). In J2SE, however, various resources are guarded by permissions (File,
Property, Runtime, etc.). Moreover, it is possible to define new permissions that
are more tailored to the specific needs of a given program. This is not possible
in J2ME CLDC. For example, in the RI, all permissions are defined in com.sun-

.midp.security.Permissions class which cannot be modified by the programmer.
This difference between the two platforms may explain the rigidity of the J2ME
CLDC security model compared to J2SE. Indeed, since only few valued resources
are available in J2ME CLDC, the implementation of a fine-grained security policy
will not entail important gains. However, the resulting overhead will be important.
(Second), Permissions in J2ME CLDC are more atomic and are limited to either
enabling or denying access to protected resources. In J2SE, permissions specify
more information such as the CodeBase and the actions to be allowed. Due to the
requirements of the mobile environment, J2ME CLDC introduces the concept of
interaction mode which is not present in J2SE. This concept results in more involv-
ing the user when granting permissions to a given MIDlet. We can think of the
interaction mode as a concept in J2ME CLDC to compensate the fact that users
cannot change the security policy.

Protection Domains

In J2SE, a protection domain ProtDom is defined by a set of permissions P and
a source S. All classes coming from S are bound to ProtDom and are granted
permissions P. Whereas in J2ME CLDC, the protection domain ProtDom is defined
by a set of permissions P and a certificate authority CA. All MIDlets signed by CA
are bound to ProtDom. Hence, the first difference between protection domains in
the two security models lays in the level of granularity. In J2SE, each class is bound
to a protection domain, whereas in J2ME CLDC each MIDlet (Java application) is
associated with a protection domain.

The way the protection domain concept is implemented differs in both platforms.
In J2SE, a protection domain is created by instantiating the java.security.Pro-

tectionDomain class. The set of permissions associated to that protection domain
is determined based on the security policy. Hence, the protection domain is an
object that specifies a set of permissions. In J2ME CLDC a protection domain is
not represented by an object. It is only defined in the security policy. Since the
security policy is not open to users for manipulation, there is no way by which the

136 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

4 J2ME CLDC SECURITY MODEL EVALUATION

user can add new protection domains.

A major difference between J2ME CLDC and J2SE lays in the mechanism of
assigning protection domains to classes and MIDlets. Once a MIDlet or class is
loaded, it should be associated to a protection domain. In J2SE, this is done by the
class loader and is based on the origin of the code. The source of the code can be
defined by its URL and/or the entity or entities that signed it.

In J2ME CLDC, the association of MIDlets to protection domains is achieved
according to the certification authority that is used to check the signature of the
MIDlet. Indeed, the device maintains a list of root certificates. Each certificate
is associated with a protection domain. Once a MIDlet is loaded, its certification
chain is checked and the root certificate of this chain is used to bind the MIDlet
to a protection domain. So Associating protection domains is based on the root
certificates present in the device.

Security Policy

The security policy specifies which permission can be granted to which code. In
the RI of J2ME CLDC, security policy is represented in one policy configuration
file (policy.txt file). This file specifies for each protection domain the associated
permissions with their interaction modes. In J2SE, the security policy is represented
by a policy object (java.security.policy). Nevertheless, the policy information
itself is stored typically in one or more policy configuration files. These files are
composed of grant entries that specify the permission to be granted with the corre-
sponding CodeBase and allowed actions.

In J2SE, the security policy can be changed statically or dynamically. By stat-
ically, we mean changing the security policy before launching the Java Runtime
Environment (JRE). This can be achieved in two ways. Fist by using the policy-
Tool. Second by changing directly the security policy file. By dynamically, we mean
changing the security policy while the JRE is running. This can be achieved in two
steps. The first step is to change the security policy file in the same way as the
static alternative. The second step is to call the refresh method. Accordingly, the
modifications to the security policy will be considered at runtime.

In J2ME CLDC, the security policy can only be changed statically. There is only
one alternative which is modifying directly the policy configuration file. However,
it should be noted that on real devices, the policy configuration file is not open to
users for manipulation.

Security Manager

The security manager is the entity responsible for checking accesses to protected
resources. Typically, it defines several methods whose names begin with the word
“check”. In J2SE, the java.lang.SecurityManager class represents the imple-

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 137

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

mentation of the security manager. The latter defines all “check” methods. The
security manager of J2SE uses the Access Controller to decide whether to grant a
permission requested by a given program. Actually, since JDK 1.2 all access control
checks are done by the AccessController. The securityManager classes are kept to
support compatibility with previous versions.

In J2ME CLDC, no security manager class is defined. It is up to the MIDP
implementor to provide an implementation for this concept. For instance, in the
RI the alternative is the Security Token (ST). Each entity that wants to access a
protected resource needs a valid ST, that is, a ST with the required permissions.
The SecurityToken class defines all “check” methods. However, these methods do
not use an AccessController. As mentioned earlier, the reason for the absence of
the AccessController is that at a given moment, only one protection domain is in
effect. So, access control consists in checking only that protection domain. However
in J2SE, several protection domains may be in effect at a given moment. Therefore,
an AccessController is needed to analyze the current context and decide whether or
not to grant a requested permission. A typical AccessController algorithm consists
in inspecting the stack [4], that is, checking the protection domain of each frame in
the stack.

Security Model Evaluation

Now, we present our evaluation of the J2ME CLDC security model. This evaluation
is based on our understanding of the J2ME CLDC and the specification of security
mechanisms deployed in this platform. Before presenting our evaluation of the J2ME
CLDC security model, it is important to explain the positive impact of dropping
some general Java features in the J2ME CLDC platform. The eliminated features
related to security are:

• Java Native Interface (JNI): JNI is absent from J2ME CLDC because it is
very expensive to be deployed in embedded devices (memory constraints).
This absence protects the platform from downloaded native code, which is
difficult to protect from and can seriously damage the device.

• User-defined class loaders : The class loader in CLDC is a built-in class that
cannot be overridden or replaced by the user. Having only one class loader will
protect the platform from attacks that are based on user defined class loaders,
which is one of the main attacking techniques on Java platforms [18].

• Support for reflection: As a result of dropping reflection features, no support
for RMI (Remote Method Invocation) nor object serialization are provided in
J2ME CLDC. This results in more protection of the internal architecture from
being exposed to MIDlets.

J2ME CLDC security model is based on restricting access to sensitive resources
on the device. Giving to a MIDlet the ability to access particular resources is

138 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

4 J2ME CLDC SECURITY MODEL EVALUATION

based on the level of trust the device has for the MIDlet. The implementation of
this model consists of the concepts of permissions, protection domains and security
policies. Moreover certain security measures are taken by the Record Management
System to protect data in the persistent storage of the device. In the following
we present our comments on the previously mentioned security features of J2ME
CLDC.

Permissions

• The user is the weakest link in security : One of the key features of MIDP 2.0
security model is that the device asks the user (by means of dialog screen)
whether to allow a given MIDlet to call security-sensitive APIs or not. The
advantage of this concept is that the user is aware of the attempts to use
security-sensitive APIs. Also, this allows MIDlets in the untrusted protection
domain to call protected APIs provided that the user accepts to grant the
permissions. However, with this concept of interaction mode goes the risk of
having the user answer automatically without checking the displayed messages.
This may happen if the MIDlet asks for too many permissions. Moreover, one
can maliciously develop a MIDlet that pushes the user to ignore the displayed
messages and answer automatically just to get rid of the annoying messages.
Hence, the strict procedure of signing MIDlets with trusted certificates, upon
which the whole MIDP security model is based, can be circumvented by a
precipitated permission granted by the user.

• Programmers cannot define new permissions : Programmers are not provided
with the ability to define new permissions. In J2ME CLDC RI, a single class
implements all permissions and it is not possible to define new permissions by
subclassing this class. It is interesting to have the power of personalizing the
defined set of permissions.

• Permissions are atomic: One MIDlet is granted access to the resource or
not. The actions that one MIDlet can perform on the granted resource is not
specified. It is preferred to have more detailed specification of what a MIDlet
can perform on granted resources.

Protection Domains

Protection domain is a central concept in MIDP 2.0 security. A protection
domain is defined as a set of permissions that will be granted to each MIDlet that
is associated with this protection domain. According to this point of view, defining
protection domains in J2ME CLDC is a way of organizing permissions. Our main
critiques to the definition of protection domains in J2ME CLDC are the following:

• Protection domains can be misused : The task of binding the appropriate pro-
tection domain to a given MIDlet is critical for the security of MIDP. When

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 139

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

granting a set of permissions to a MIDlet, one must be sure that the MIDlet
will not misuse the granted permissions (accidentally or maliciously) and cause
harm to the device. Developers could guarantee that their MIDlets are correct
and safe by signing them. But in practice, it is often the case that a program
written by a trusted developer can make a wrong behavior. The task of bind-
ing MIDlets to protection domains will be more complicated if the signer is
a third party. Third parties are often manufacturers where the corresponding
protection domains have more granted permissions.

• Protection domains are not well standardized : In MIDP specification, manu-
facturers and operators are free to define their proper protection domains. This
will result in a standardization problem of protection domains. The absence of
such a standard will have a negative impact on the facility of developing and
deploying MIDlets. A developer who wants to deploy his MIDlets would have
to require a different protection domain for each different manufacturer or op-
erator. Moreover, a developer can be obliged to change his MIDlet if the set
of permissions required by the MIDlet do not correspond to any permissions
set of any protection domain on the device. This would prevent developers
from one of the main advantages of the Java programming language, which is
“Write Once, Run Everywhere”.

• No way to deny permissions of a protection domain: We found interesting to
have the ability to deny a subset of permissions among those already granted
by a protection domain associated with a MIDlet suite. This is motivated by
the two following arguments:

1. According to the specification of protection domains, even if a permission
is not granted by a protection domain (either allowed or user), a MIDlet
still has the ability to get the permission by asking the user directly.

2. A MIDlet that declares some permissions in the MIDlet-Permissions

attribute, can during execution ask the user for other permissions of the
protection domain.

The model of protection domains presented in J2ME CLDC has room for
some refinements in order to harden the overall security model. We believe
that denying permissions granted by the protection domain and not required
by the MIDlet suite, will enhance considerably the security of J2ME CLDC.
We can give the following main advantages:

1. The user will be protected from being asked for permissions that are not
granted by the protection domain. In this case, the signing authority
will have the complete responsibility of granting permissions to a MIDlet
suite.

2. A MIDlet will no longer be able to ask for permissions that it did not ask
for in its MIDlet-Permissions attribute.

140 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

4 J2ME CLDC SECURITY MODEL EVALUATION

3. No technique bypassing the user - like Siemens attacks - can be deployed
to get permissions that are denied for one MIDlet suite.

Security Policy

The security policy in J2ME CLDC specifies protection domains with the as-
sociated permissions and interaction modes. Since the security policy file defines
permissions to access sensitive resources, MIDlets do not have the power to change
the security policy file. Access to protected resources is critical and will cost money
to the user of the device. Thus preventing MIDlets from modifying the security
policy is motivated by commercial and safety reasons.

At the other side, it is viewed as too rigid that the users do not have the ability to
modify the security policy for any subset of sensitive APIs or for the data produced
by MIDlets on the device. One possible extension to the current security policy
model is to provide MIDlets with the power of defining permissions to access data
in the persistent storage (which can be records in data bases, game scores, .etc)

Persistent Storage Protection

J2ME CLDC provides a model to store application data and protect them. Data
can be stored in a persistent storage shared by all MIDlets. Data in record stores
can be accessed or modified only from MIDlets creating them. The only case where
a record store can be accessed (read or read/write) by a MIDlet other then the one
creating it, is when the creating MIDlet declares the record store as shared record.
Our critics to this model are the following:

• Record stores are either shared or not : This is a rigid model because often,
MIDlets need to share their data with a specific set of MIDlets and rarely want
to share records with all MIDlets on the device. If the shared data is critical,
then it can be red by all MIDlets on the device. The risk will be more serious
if the sensitive data is shared by read/write mode. In this case, the data will
be exposed to malicious MIDlets on the device and can be modified in a non
safe manner.

• Data can be accessed within the device: Critical data can be vulnerable to any
attack from outside the RMS; record stores can be accessed from the device’s
utilities (without using a MIDlet). This is a serious problem because record
stores will be manipulated as files (copied, renamed, deleted, etc.).

• No encryption used for persistent data: No encryption method is specified in
order to protect sensitive data in the persistent storage. Thus, no critical data
can be stored securely in the persistent storage.

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 141

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

5 VULNERABILITY ANALYSIS

The purpose of this section is to thoroughly investigate the presence of vulnerabili-
ties in J2ME CLDC platform and to assess each found vulnerability. Vulnerability
analysis is the process of carefully studying a system with the purpose of detecting
security related errors. These errors may come from faults in the system specifica-
tion or the system implementation. The presence of an error weakens the security
structure of the system, making it vulnerable to malicious attacks.

Approach

There are several possible strategies for detecting vulnerabilities in software. In this
paper, two main paths were taken for this purpose. The first path relied on inspect-
ing the source code (RI of J2ME CLDC), looking for possible security related flaws.
The second path consisted of executing black box testing (using phone emulators
and actual phones), with the purpose of finding possible attacks on the platform.
Our vulnerability analysis is reinforced by looking for already reported bugs, and
investigating them to assess their seriousness from the security point of view.

The objective of security code inspection is to look for known types of vulnera-
bilities (e.g. buffer overflow vulnerability). In this regard, a list of security checks
was compiled both for C and Java code to guide the inspection process. Also, we
identified sensible areas in the code and investigated them more seriously in order
to find vulnerabilities to certain known attack scenarios. As for security testing,
test cases were designed, implemented, and executed in order to perform attacks
compromising the security and safety of the platform. Each success of one test case
execution will reveal the presence of some security vulnerability in the platform.

Previously Reported Flaws

Few security flaws about J2ME CLDC have been reported. The most serious one
is the Siemens S55 SMS flaw. Besides, several problems about MIDP RI have been
reported.

Siemens S55 SMS

In late 2003, the Phenoelit hackers group [24] has discovered that the Siemens S55
phone suffers from one vulnerability that allows malicious code on the device to send
SMS messages without the authorization of the user. This attack can be carried out
by a malicious MIDlet, which does not have the permission to send SMS messages.
By executing the attack the MIDlet will be able to send an SMS message without
the explicit authorization of the user. This is due to a race condition during which

142 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

5 VULNERABILITY ANALYSIS

the Java code can overlay the normal permission request with an arbitrary screen
display.

Problems on MIDP RI

The Bug Database of Sun Microsystems contains hundreds of problems about J2ME
CLDC. However, few are related to security. In the following we describe the prob-
lems that we deem as relevant from the security standpoint:

1. When establishing a socket connection (socket://hostname:portnumber),
permissions are necessarily needed. But if one runs the RI on PC where
portnumber is already occupied, the application does not check for permission
[30]. Instead, it throws an IOException. This is not correct because there
is no need to access native sockets if application has not enough permissions.
When investigating MIDP 2.0 RI for the same vulnerability, the execution
results in throwing a ConnectionNotFoundException exception which means
that the permission checking were bypassed.

2. A problem has been reported on the RSA algorithm implementation claiming
that the big number division function checks the numerator instead of the
divisor for zero [28]. On the available MIDP 2.0 RI, we could not be sure of
this problem because the RSA algorithm implementation is provided in object
files (without source files).

3. Basic Authentication Scheme is not fully supported in the RI [29]. According
to the MIDP 2.0 specification, the device MUST be capable of “responding to
a 401 (Unauthorized) or 407 (Proxy Authentication Required) response to an
HTTP request by asking the user for a user name and password and re-sending
the HTTP request with the credentials supplied. The device MUST be able
to support at least the RFC2617 Basic Authentication Scheme” [5]. However,
the RI utilizes Basic Authentication Scheme only in the case of MIDlet Suite
installation (to retrieve JAD and JAR). Any other HTTP responses with 401,
407 won’t be recognized to re-send the request with the user-supplied creden-
tials.

4. The return value of midpInitializeMemory() method called in main() is
never checked [27]. When memory allocation fails, system will crash without
any way to figure out the reason of that crash.

Vulnerability Analysis Results

This section represents the findings of our vulnerability analysis performed on the
J2ME CLDC platform. Results are in the form of flaws that would compromise the
security and safety of the platform. They are organized according to the platform
component in which they were discovered (e.g. storage system, KVM, etc.).

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 143

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

Networking Vulnerabilities

MIDP SSL Vulnerability

In order to establish a secure connection with remote sites (HTTPS), MIDP uses
the SSLv3.0 protocol. The implementation is based on KSSL [7] from Sun Labs.

During the SSL handshake, the protocol has to generate random values to be
used to compute the master secret. The master secret is then used to generate a
set of symmetric keys for encryption. Hence, generating random values that are
unpredictable is an important security aspect of SSL.

The method PRand.generateData is used to generate random data. This method
computes the random values progressively 16 bytes by 16 bytes. The first chunk is
computed by applying a hash algorithm (MD5) on the seed. Then, after the first
chunk is copied into the random value array, the seed is updated and the hash
algorithm is applied a second time to generate the second chunk. This operation
continues until the random value array is completely populated.

Since MD5 is deterministic, in the case it is applied on the same seed, it will
generate the same “random” value. Consequently, the challenge is “how to update
the seed in an unpredictable fashion?”.

The RI method used to update the seed is called updateSeed and is given in the
following:

public void updateSeed() {

long l = System.currentTimeMillis();

byte abyte0[] = new byte[8];

for(int i = 0; i < 8; i++) {

abyte0[i] = (byte)(int)(l & 255L);

l >>>= 8;

}

md.update(seed, 0, seed.length);

md.doFinal(abyte0, 0, abyte0.length, seed, 0);

}

It is easy to notice that the seed update depends only on the system time
(System.currentTimeMillis). Hence, in order to obtain the random value gen-
erated by the client, all what the attacker has to do is to guess the precise system
time (in milliseconds) at the moment of the random value computation. To this
end, popular Ethernet sniffing tools can be used. These tools (e.g. tcpdump) record
the precise time they see each packet. This allows the attacker to guess a very close
interval of the correct system time. At that moment, it remains to try all possible
values in that interval. For example, the attack that was carried out against the

144 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

5 VULNERABILITY ANALYSIS

Netscape browser implementation of SSL in 1996 [6] used sniffing tools to determine
the seconds variable of the system time. Then, to find the microseconds variable,
every possible value of the 1 million possibilities is tried.

Unauthorized SMS Sending Vulnerability

As mentioned earlier, the Phenoelit hackers group [24] has discovered that the
Siemens S55 phone has a vulnerability that allows malicious code on the device to
send SMS messages without the authorization of the user. The idea was to fill the
screen with different items when the device is asking the user for SMS permission.
In this way, the user unwittingly will approve sending SMS messages since he thinks
that he is answering a different question.

In order to prove this vulnerability, we developed a MIDlet that tries to take
advantage of this flaw. The MIDlet uses two threads. The first sends an SMS
message and the second fills the screen with other items but without changing the
buttons of the screen. The important code chunks of this MIDlet are illustrated in
the following:

The first thread sends the SMS message:

public void startApp (){

.....

display = Display.getDisplay(this);

.....

ObscuringThread T = new ObscuringThread();

T.start();

SMS.send("15142457980", SMSstr);

.....

}

The second thread obscures the screen with other items:

public void run(){

ObscureCanvas OCanvas = new ObscureCanvas();

....

sleep(1000);

smsAttack.display.setCurrent(OCanvas);

....

}

The key point in this attack is that only the screen is overwritten. The but-
tons (soft buttons) behavior is not changed and it is still about the SMS message

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 145

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

permission. We ran the MIDlet on Siemens S55 emulator using Sun One Studio 4.
The result was as we expected: The SMS authorization dialog (i.e. send SMS ?)
was obscured by a different item (play game). This makes the user think that he
is answering an invitation to play a game!

Since its publication, this flaw was always bound to Siemens S55 phones. How-
ever, nothing was said about its applicability on other phones. We run the previous
MIDlet on other Siemens phones emulators, namely, 2128, CF62, and MC60. We
found that all these phones are vulnerable to SMS authorization attack. By check-
ing the APIs of all these phones, we found that the SMS APIs are almost the same,
which explains our findings.

Unlike Siemens phones, Sun RI of MIDP is not vulnerable to this attack. Indeed,
when the device asks the user for permission, MIDP RI prevents any modification
of the screen until an answer is received. This is achieved by preemptDisplay

method, which locks access to the display until the user provides an answer, then
the display is unlocked by the doneDisplay method.

Storage System Vulnerabilities

Detailed analysis of the RMS using MIDP specifications and RI revealed the vul-
nerabilities listed below.

Unprotected Data Vulnerability

Data in record stores are not protected against malicious attacks. There is
no mention in the specification of protecting sensitive user data for example with
encryption and/or passwords. Data can be vulnerable to any attack from outside
the RMS, such as when transferring data to or from a PC for backup and restoring.
Moreover the whole storage system in MIDP can be accessed from any other file
system on the device. This can happen in the case of PDAs, where the operating
system can access the actual files of the record stores on the device storage and hence
any sensitive data stored in them. An example of such access can be performed using
the FExplorer software. This example is discussed with further issues in the next
sections.

Managing the Available Free Persistent Storage Vulnerability

When a MIDlet needs to store information in the persistent storage, it can cre-
ate new records. Since the persistent storage is shared by all Midlets installed on
the device, restrictions must be made on the amount of storage attributed to each
MIDlet. This is motivated by the fact that embedded devices have limited memory
resources. As we can see from the MIDP specification, there is no restriction on
the size of storage granted to one MIDlet, which means that one cannot prevent
any MIDlet from getting all the available free space on the persistent storage for its

146 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

5 VULNERABILITY ANALYSIS

Figure 3: Various Levels of Abstraction in APIs for Mobile Devices.

record stores. By allowing this, all other MIDlets will be prevented from getting ad-
ditional persistent storage (that can be vital for their life cycle). This vulnerability
was discovered in the MIDP RI as well as in the Wireless Toolkits.

Unprotected Internal APIs Vulnerability

MIDP APIs were designed to provide all the functionalities needed by the de-
veloper, and they should be the only APIs available for direct use by developers.
However, these are high level API’s designed to make programming easier, so they
need the help of other low level APIs and native methods to deal with the device
hardware. The low level APIs are closer to the device hardware, and therefore are
more difficult to program, but they have more privileges and less restrictions in or-
der to be able to have more freedom when dealing with the device hardware. This
should not affect the system security, provided that access to these APIs is restricted
to the higher level APIs. In other words, developers should not have access to these
low level APIs. This is not the case with the J2ME CLDC RI. Figure 3 illustrates
how the different levels of APIs are accessed.

In order to exhibit the danger of having the programmer access to internal APIs,
we give the example of deleting a record store belonging to another MIDlet. In
the storage system of MIDP, RecordStore is one high level API that provides the
functionalities needed by the developer to manipulate record stores such as opening,
closing, deleting, etc. This class also checks for access rights before doing such
actions, this is to protect data security and integrity, for instance no MIDlet is
allowed to delete a record store of another MIDlet. There is another low level class,
which is RecordStoreFile, this class is closer to the device hardware, it calls native
methods and provides services to the RecordStore class. This class should not be
available for direct use by developers, because it has more access rights and bypasses
the security checks. In RI, this class can be used directly by programmers, which
can compromise data security. We were able to use this vulnerability to have a
MIDlet that deleted a record store belonging to another MIDlet.

First, a MIDlet rmstest was developed that creates a private (unshared) record
store called attack. Then, another MIDlet was developed which uses the methods
of the RecordStoreFile class to bypass security checks and delete the record store
created by the previous MIDlet:

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 147

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

private TextBox tb;

...

Display.getDisplay(this).setCurrent(tb);

tb.setCommandListener(this);

String s = RecordStoreFile.getUniqueIdPath

("Unknown", "rmsTest", "attack");

boolean b = RecordStoreFile.deleteFile(s);

if (b){

tb.insert("Deleting successful", tb.size());

}

else{

tb.insert("Cannot delete", tb.size());

}

}

The first MIDlet was run first to create the record store, then the second one
was run and succeeded to delete it.

Retrieving and Transferring JAR Files from a Device

A typical scenario of getting a MIDlet into a device is to connect to a provider
web site and to download a chosen MIDlet usually after paying a certain amount of
money. Once a MIDlet is installed on a device the user should be able to perform two
kinds of operations, namely, executing and uninstalling the MIDlet. If, in addition,
the user has the capability to transfer the MIDlet and make it run on another device,
it results in a problem for the provider of the MIDlet. Indeed, this allows for illegal
redistribution of MIDlets and consequently for financial losses.

In our experiments, we succeeded to transfer MIDlets from one device to another.
This was possible thanks to a free software for Series 60 phones [21]. The FExplorer
software [8] makes it possible to navigate through the files and MIDlets installed on
the device just like navigating on a desktop file system. In order to transfer MIDlet
JAD and JAR files into a second device, all we had to do is to go to the location
where these files are stored and choose any sending option. This operation is also
possible in all Series 60 devices. These include Samsung, Siemens, Panasonic and
mainly Nokia devices [21].

Finally, it is important to note that transferring is not possible for DRM (Digital
Right Management) protected MIDlets (protection should be at least by the forward
lock mode [22]).

Retrieving and Transferring MIDlet Persistent Data

Using FExplorer software, (in addition to JAR and JAD files) it is also possible
to transfer MIDlet persistent data from a device to another. Indeed, rms.db file that

148 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

5 VULNERABILITY ANALYSIS

holds all MIDlet persistent data is located in the same location as JAD and JAR
files and can be transferred following the same steps. Moreover, the DRM issue is
no more valid for rms.db. That is, even if the MIDlet is DRM protected the rms.db
can be transferred because the DRM protection holds only for JAR files [22]. This
may have a serious impact on the privacy of the MIDlet since it is possible to tamper
with its persistent data.

KVM Vulnerabilities

Buffer Overflow Vulnerability

Buffer overflow is a well-known problem and may result in many security breaches.
It occurs when the program does not perform bounds checking of buffers before copy-
ing. A typical scenario consists in the following: a buffer (e.g. an array of integer)
is located in the execution stack. The program tries to overwrite that buffer with
another one using for example strcpy function (for C code). The danger occurs
when the second buffer (source) is larger than the first (destination). In that case
some values in the execution stack may be overwritten. Among these values it is
possible to overwrite the return address of the current function. By overwriting
that address, the attacker will be able to jump to whatever code he wants. This
allows the attacker to execute the code that he wants with the same privilege as the
program.

By inspecting the source code of KVM, we identified a memory overflow vulner-
ability. The vulnerable code is the following code in native.c file:

sprintf(str_buffer," Method %s :: %s not found",

className, methodName(thisMethod));

This code throws an exception if a native method is declared in a class file without
implementing it elsewhere. The code does not check the size of the message that will
be stored in str buffer. Knowing that str buffer is a global variable declared
as an array of characters (char str buffer[512];), it is clear that the code might
result in a strange behavior if the size of the string to be stored in str buffer

exceeds 512. One part of the string to be stored in str buffer is the name of the
invoked native method. Knowing that no restrictions are imposed by the VM on the
size of method or field names, we wrote a simple Java program that declares a native
method name counting 2000 characters (greater than the str buffer size). This
native method is declared without giving any implementation (in order to force the
throw of the exception). When the exception is thrown, the native method name is
concatenated in str buffer overwriting more than 1500 characters in the memory
segment. The Java program exploiting this vulnerability is the following:

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 149

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

public HelloWorld() {

System.out.println("Hello World");

/* the native method name is 2000 characters */

HelloWorldHelloWorld...();

}

public static void main(String arg[]) {

HelloWorld hw = new HelloWorld();

}

// the native method name is 2000 characters //

public native void HelloWorldHelloWorld...(); }

6 CONCLUSION AND FUTURE WORK

In this paper, we provide a careful study of J2ME CLDC security. We started by
presenting the security architecture of this Java platform, followed by our evaluation
of the underlying security model. In our study, we investigated the existing imple-
mentations of the platform in order to look for vulnerabilities. Actual phone models
were tested and an important set of attack scenarios were designed and executed.
We showed that the J2ME CLDC security model needs some refinements (e.g. per-
missions and protection domains). Moreover, we demonstrated the presence of some
vulnerabilities exist in the RI of MIDP 2.0 (e.g. SSL implementation). Some phones
were also shown to be vulnerable to security attacks like the Siemens SMS attack,
while other phones followed a restrictive approach in implementing the J2ME CLDC
platform. With this study in hand, improvements can be performed to harden the
J2ME CLDC security. Therefore, the security model can be improved by fixing the
discovered vulnerabilities and by proposing new security extensions.

REFERENCES

[1] S. Chadha. J2me issues in the real wireless world. http://www.microjava.

com/articles/perspective/issues?content_id=4323, January 2003.

[2] J. Eichhloz. JSR 205 Wireless Messaging API 2.0, June 2004.

[3] Carl Ellison and Bruce Schneier. Ten risks of PKI: What you’re not being told
about Public Key Infrastructure. Computer Security Journal, 16(1):1–7, 2000.

[4] Cédric Fournet and Andrew D. Gordon. Stack inspection: theory and
variants. In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 307–318. ACM Press, 2002.

150 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

http://www.microjava.com/articles/perspective/issues?content_id=4323
http://www.microjava.com/articles/perspective/issues?content_id=4323

6 CONCLUSION AND FUTURE WORK

[5] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen,
and L. Stewart. RFC 2617: HTTP Authentication: Basic and Digest Access
Authentication, June 1999.

[6] Ian Goldberg and David Wagner. Randomness and the Netscape browser. Dr.
Dobb’s Journal of Software Tools, 21(1):66, 68–70, January 1996.

[7] Vipul Gupta and Sumit Gupta. KSSL: Experiments in Wireless Internet Se-
curity. Technical Report TR-2001-103, Sun Microsystems, Inc, Santa Clara,
California, USA, November 2001.

[8] D. Hugo. FExplorer Web Site. http://users.skynet.be/domi/fexplorer.

htm.

[9] Wassim Itani and Ayman Kayssi. J2me application-layer end-to-end security
for m-commerce. Journal of Network and Computer Applications, 27(1):13–32,
January 2004.

[10] G. Steele J. Gosling, B. Joy and G. Bracha. The Java Language Specification
Second Edition. The Java Series. Addison-Wesley, Boston, Mass., 2000.

[11] J. Knudsen. MIDP Application Security 1: Design Concerns and Cryptogra-
phy. http://developers.sun.com/techtopics/mobility/midp/articles/

security1/, September 2002.

[12] J. Knudsen. MIDP Application Security 2: Understanding SSL and
TLS. http://developers.sun.com/techtopics/mobility/midp/articles/

security2/, October 2002.

[13] J. Knudsen. MIDP Application Security 3: Authentication in MIDP. http://
developers.sun.com/techtopics/mobility/midp/articles/security3/,
December 2002.

[14] J. Knudsen. MIDP Application Security 4: Encryption in MIDP. http://

developers.sun.com/techtopics/mobility/midp/articles/security4/,
June 2003.

[15] O. Kolsi and T. Virtanen. MIDP 2.0 Security Enhancements. In Proceed-
ings of the 37th Annual Hawaii International Conference on System Sciences
(HICSS’04) - Track 9 - Volume 9, Washington DC, USA, dec 2004.

[16] Sheng Liang. Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley, Reading, MA, USA, 1999.

[17] T. Lindholm and F. Yellin. The Java Virtual Machine Specification (Second
Edition). Addison Wesley, April 1999.

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 151

http://users.skynet.be/domi/fexplorer.htm
http://users.skynet.be/domi/fexplorer.htm
http://developers.sun.com/techtopics/mobility/midp/articles/security1/
http://developers.sun.com/techtopics/mobility/midp/articles/security1/
http://developers.sun.com/techtopics/mobility/midp/articles/security2/
http://developers.sun.com/techtopics/mobility/midp/articles/security2/
http://developers.sun.com/techtopics/mobility/midp/articles/security3/
http://developers.sun.com/techtopics/mobility/midp/articles/security3/
http://developers.sun.com/techtopics/mobility/midp/articles/security4/
http://developers.sun.com/techtopics/mobility/midp/articles/security4/

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

[18] LSD Research Group. Java and Java Virtual Machine Security, Vulner-
abilities and their Exploitation Techniques. http://www.blackhat.com/

presentations/bh-asia-02/LSD/bh-asia-02-lsd-article.pdf, Septem-
ber 2002.

[19] Sun MicroSystems. Connected, Limited Device Configuration. Specification
Version 1.0, Java 2 Platform Micro Edition. Technical report, Sun MicroSys-
tems, California, USA, May 2000.

[20] Sun MicroSystems. KVM Porting Guide. Technical report, Sun MicroSystems,
California, USA, September 2001.

[21] Nokia. Series 60 Platform. http://www.nokia.com/nokia/0,8764,46827,

00.html.

[22] OMA. Implementation Best Practices for OMA DRM v1.0 Protected MIDlets,
May 2004.

[23] J. Van Peursem. JSR 118 Mobile Information Device Profile 2.0, November
2002.

[24] Phenoelit Hackers Group. http://www.phenoelit.de/, 2003.

[25] Roger Riggs, Antero Taivalsaari, Mark VandenBrink, and Jim Holliday. Pro-
gramming wireless devices with the Java 2 platform, micro edition: J2ME Con-
nected Limited Device Configuration (CLDC), Mobile Information Device Pro-
file (MIDP). Addison-Wesley, Reading, MA, USA, 2001.

[26] T. Sayeed, A. Taivalsaari, and F. Yellin. Inside The K Virtual Machine. http:
//java.sun.com/javaone/javaone2001/pdfs/1113.pdf, Jan 2001.

[27] Bug 4824821: Return value of midpInitializeMemory is not checked. http://

bugs.sun.com/bugdatabase/view_bug.do?bug_id=4824821, February 2003.

[28] Bug 4959337: RSA Division by Zero. http://bugs.sun.com/bugdatabase/

view_bug.do?bug_id=4959337, November 2003.

[29] Bug 4963644: Basic Authentication Scheme is not fully supported . http://

bugs.sun.com/bugdatabase/view_bug.do?bug_id=4963644, December 2003.

[30] Bug 4802893: RI checks sockets before checking permissions. http://bugs.

sun.com/bugdatabase/view_bug.do?bug_id=4802893, January 2004.

[31] Sun Microsystems. Java 2 Platform Security Architecture. http://java.sun.
com/j2se/1.4.2/docs/guide/security/index.html, 2002.

[32] Sun Microsystems. KNI Specification K Native Interface (KNI)
1.0. http://www.carfield.com.hk/java_store/j2me/j2me_cldc/doc/kni/

html/index.html, October 2002.

152 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

http://www.blackhat.com/presentations/bh-asia-02/LSD/bh-asia-02-lsd-article.pdf
http://www.blackhat.com/presentations/bh-asia-02/LSD/bh-asia-02-lsd-article.pdf
http://www.nokia.com/nokia/0,8764,46827,00.html
http://www.nokia.com/nokia/0,8764,46827,00.html
http://www.phenoelit.de/
http://java.sun.com/javaone/javaone2001/pdfs/1113.pdf
http://java.sun.com/javaone/javaone2001/pdfs/1113.pdf
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4824821
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4824821
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4959337
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4959337
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4963644
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4963644
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4802893
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4802893
http://java.sun.com/j2se/1.4.2/docs/guide/security/index.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/index.html
http://www.carfield.com.hk/java_store/j2me/j2me_cldc/doc/kni/html/index.html
http://www.carfield.com.hk/java_store/j2me/j2me_cldc/doc/kni/html/index.html

6 CONCLUSION AND FUTURE WORK

[33] Sun Microsystems. The Recommended Security Policy for GSM/UMTS Com-
pliant Devices, Addendum to the Mobile Information Device Profile version 2.0,
2002.

[34] A. Taivalsaari. JSR 139 J2ME Connected Limited Device Configuration 1.1,
March 2003.

[35] The Legion of the Bouncy Castle. Bouncy Castle Cryptography API. http:

//www.bouncycastle.org, 2004.

[36] R. Viswanathan. JSR 82 Java APIs for Bluetooth, Mars 2002.

[37] Michael Juntao Yuan and Ju Long. Securing wireless j2me. http://www-106.
ibm.com/developerworks/java/library/wi-secj2me.html, June 2002.

VOL 5, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 153

http://www.bouncycastle.org
http://www.bouncycastle.org
http://www-106.ibm.com/developerworks/java/library/wi-secj2me.html
http://www-106.ibm.com/developerworks/java/library/wi-secj2me.html

SECURITY EVALUATION OF J2ME CLDC EMBEDDED JAVA PLATFORM ∗

ABOUT THE AUTHORS

Mourad Debbabi holds Ph.D. and M.Sc. degrees in computer science from
Paris-XI Orsay, University, France. He published more than 80 research papers
in journals and conferences on computer security, formal semantics, Java security
and acceleration, cryptographic protocols, malicious code detection, program-
ming languages, type theory and specification and verification of safety-critical
systems. He is a Full Professor and the Associate Director of the Concordia
Institute for Information Systems Engineering, Concordia University, Montreal,
Quebec, Canada. He is the Specification Lead of four Standard JAIN (Java
Intelligent Networks) Java Specification Requests (JSRs) dedicated to the elab-
oration of standard specifications for presence and instant messaging. In the
past, he served as Senior Scientist at the Panasonic Information and Network
Technologies Laboratory, Princeton, New Jersey, USA; Associate Professor at
the Computer Science Department of Laval University, Quebec, Canada; Se-
nior Scientist at General Electric Research Center, New York, USA; Research
Associate at the Computer Science Department of Stanford University, Cali-
fornia, USA; and Permanent Researcher at the Bull Corporate Research Cen-
ter, Paris, France. He can be reached at debbabi@ciise.concordia.ca. See also
http://www.ciise.concordia.ca/~debbabi.

Mohamed Saleh is a Ph.D. student at Concordia Institute for Information Sys-
tems Engineering (CIISE), Concordia University, Montreal, Quebec, Canada.
He is a member of the Computer Security Laboratory (CSL) at CIISE. He is
pursuing a Ph.D. thesis on the specification and analysis of security protocols
using game semantics. He can be reached at m saleh@ece.concordia.ca.

Chamseddine Talhi is a researcher at CSL (Computer Security Laboratory)
research group at Concordia Institute for Information Systems Engineering,
Concordia University, Montreal, Quebec, Canada. He holds an M.Sc. degree
from Constantine University, Algeria. He is pursuing a Ph.D. thesis on the secu-
rity of embedded Java platforms. He is interested in characterizing enforceable
security policies in resource-constrained platforms. In the past years, he worked
on formal specification and verification of telecommunication services. He par-
ticipated in the design and the implementation of a Java optimizing compiler
for J2ME/CLDC. He can be reached at talhi@ciise.concordia.ca.

Sami Zhioua was a researcher at CSL (Computer Security Laboratory) re-
search group at Concordia Institute for Information Systems Engineering, Con-
cordia University, Montreal, Quebec, Canada. The main topic of his research ac-
tivities is the acceleration of Java in the context of embedded systems. The goal
of his research is to design and implement new techniques in order to improve
the performance of embedded Java virtual machines. He participated in the
design and implementation of a dynamic optimizing compiler for J2ME/CLDC.
He can be reached at zhioua@ciise.concordia.ca.

154 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 2

mailto:debbabi@ciise.concordia.ca
http://www.ciise.concordia.ca/~debbabi
mailto:m_saleh@ece.concordia.ca
mailto:talhi@ciise.concordia.ca
mailto:zhioua@ciise.concordia.ca

