
Security for Network Attached Storage Devices

Howard Gobioff Garth Gibson Doug Tygar

October 23, 1997
CMU-CS-97-185

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

This paper presents a novel cryptographic capability system addressing the security and performance needs of network
attached storage systems in which file management functions occur at a different location than the file storage device.
In our NASD system file managers issue capabilities to client machines, which can then directlyaccess files stored
on the network attached storage device without intervention by a file server. These capabilities may be reused by
the client, so that interaction with the file manager is kept to a minimum. Our system emphasizes performance and
scalability while separating the roles of decision maker (issuing capabilities) and verifier (validating a capability). We
have demonstrated our system with adaptations of both the NFS and AFS distributed file systems using a prototype
NASD implementation.

Sponsored by DARPA/ITO through ARPA Order D306, and issued by the Indian Head Division, NSWC under contract
N00174-96-K-0002, Wright Laboratory, Aeronautical Systems Center, Air Force Material Command, USAF, and DARPA under
grant F19628-96-C-0061, the US PostalService, and ToshibaCorporation. The project team is indebted to the generous contributions
from the member companies of the Parallel Data Consortium. At the time of this writing, these companies include Hewlett-Packard
Laboratories, Symbios Logic Inc., Data General, IBM Corporation, Seagate Technology, Storage Technology Corporation, and
Digital Equipment Corporation. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes,
notwithstanding any copyright notation thereon. Views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied, of any of the supporting organizations or
the U.S government.

Carnegie Mellon University Computer Science technical report CMU-CS-97-185, October 1997



Keywords: capabilities, NASD, network attached storage, security



1 Motivation

1.1 A new direction for storage

The rapidly developing technology of peripheral storage devices has opened new opportunities for security
technology [9, 19]. It is now possible to build a cost-effective disk drive that can directly communicate with
the network without a server machine acting as an intermediary. These drives have minimal uncommitted
computational power, so high-level file system functions (including access control) must still be handled
by a separate server machine (which we call afile manager) that can understand local environment security
needs [5, 10, 14, 11].

At Carnegie Mellon University, we are actively designingand building a system using disk drives directly
connected to the network. The primary motivation for the NASD architecture is cost-effective, scalable
performance. Directly attaching disks to the network can decrease the file server load [6] and increase the
aggregate bandwidth available beyond what is available from a single storage server [7, 10].

File management is different in NASD systems than in classical distributed file systems such as Andrew
File System [12], Sun’s Network File System [23], or Novell Netware. In classical distributed file systems,
a file server manages file storage on devices that are physically part of the file server machine (see Figure 1).
In NASD, the disk drives are connected to the unsecure network, so the file management functionality must
be partitioned between the drive and the file manager (see Figure 2) .

1.2 The Security Problem

But how can the file manager communicate access decisions to the drive in a scalable, secure, and efficient
manner? Our paper addresses this question with a compact and efficient, distributed-capability mechanism.
Briefly, a capability is a token which grants the bearer specifiedaccess rights. Unlike classical capability
mechanisms [13, 20, 28] we cannot depend on all kernels being trusted to maintain system security in the
face of a hostile network nor can we use a single machine with hardware support for capabilities. Our system
will operate in a potentially hostile environment, with adversaries able to eavesdrop on network traffic and
transmit arbitrary messages over the network. Even worse, we can not trust the client machine — since the
user has physical control over the machine, he can insert arbitrary software, including kernel software, onto
the machine. Thus, a client machine, under the control of a malicious user, may lie about its privileges.

We propose a novel representation for our capabilities; we use cryptographic capabilities issued by the
file manager and checked by drives with minimal hardware support. The separation between issuing and
verifying capabilities enables us to separate the file storage from file management — they may be done by
machines separated by distance and with only indirect communication; access rights control is managed
through the cryptographic information stored in the capabilities. These capabilities are presented by the
clients when they attempt to access the disk drives.

This architecture introduces a number of exciting opportunities. Here are two advanced applications:
permitting multiple file system to be built on top of the same drive interface; and storing drives in non-
physically secure environments.

1.3 Advanced features: file system independent drive interface

Classical distributed file systems are implemented through one or more file servers which presented a
particular distributed file system interface to users. NASD drives provide a fixed interface that is independent
of the filesystem on which a file system is built. The independence from the file systems of the interface
enables it to be used to build a stackable high-level file system which provides the interface and still use

1



Client

Client

FM

I/O Bus

Unsecure Network
Drives

Fileserver

Figure 1: Classical distributed file system structure

Client

Client

FM

Access Control Policy & Decisions
File Manager

NASD Drives

Unsecure Network

Enforces Access Control Decisions

Figure 2: NASD distributed file system structure

a variety of file systems above the interface. For example, we can build a striping server that exports the
NASD interface while striping data over a group of NASD drives. From the file system and user perspective,
they are interacting with a single NASD drive while they are actually interacting with a striping server and
a group of NASD drives.

Consider the options for an implementor of network attached storage devices. Existing storage and
distributed file systems come in a variety of flavors. However, all file systems have both strengths and
weaknesses that vary depending on the environment and the application. By enabling a variety of file
systems to be built on NASD, we enable the selection of the best file system for the job and permit future
development in the filesystem while using the same NASD drives.

1.4 Advanced features: disks without physical security

NASD presents us with an opportunity to use disk drives that can be stored in accessible or semi-accessible
locations; we can relax the requirement that disks always be locked in physically secure locations. In
classical distributed file systems, an adversary might attempt to steal information by first stealing the disk
drive, and then reading it at his leisure. We normally prevent this type of attack by demanding that our
distributed file systems be physically secure; with access only permitted to trusted individuals.

In modern working environments, for example small office or home environments; this requirement
seems hard to achieve. With the spread of small WWW sites, we are increasingly seeing html, ftp, and file

2



servers being located in home offices or other unsecure environments where hostile physicalaccess to the
disk drives may be possible.

For drives that are physically secure, we can use the NASD structure to implementend-to-end encryption
between the client and the drive. For the more challenging problem of drives that are not physically secure,
we propose the use of a small amount of tamper-resistant hardware in NASD drives. This hardware can
securely store keys used to encrypt files as they are stored and retrieved, without risk of exposure — even if
physically attacked. All encryption, decryption, and re-encryption at the drive is executed under the shield
of the tamper-resistant hardware. Moreover, because of our efficient capability mechanism, no file manager
intervention is required for most file access. So our system can be secure, scalable, and highly distributed.

2 Overview

2.1 What is Network Attached Storage?

In NASD the file manager retains responsibility for administering the name space andaccess control policy
of the file system but the file manager is bypassed in common case operations such as data transfer. The
file manager makes the access control decisions according to the policies of the high level file system.
When a common case operation, such as a data transfer, is requested by the client, the drive enforces
the access control decision previously specified by the file manager. NASD uses a capability mechanism
to communicate the file manager’s access control decisions to the disk drive. What makes the NASD
architecture significantly different from classical architectures is that policy decisions and enforcement are
are separated by an unsecure network that introduces new security risks to data stored on drives.

Drives present the file manager and clients with a flat name space referring to variable sized objects in
which to build the typically hierarchical file system users expect. Objects are the abstraction presented by
the NASD disk drive; a file is an abstraction presented to the user by the file manager and client machine. At
a minimum, a drive contains the components found in todays disks: a microprocessor, a network interface,
buffer memory, and a storage device. Some drive implementations may include other hardware such as
tamper-resistant hardware, cryptographic hardware support, or a (RAID) controller computer transparently
coupling a group of simpler (SCSI) drives. High security drives may contain an additional secure coprocessor
that is itself a general purpose processor and memory [29]. In some cases, drive designs will sacrifice some
security by omitting tamper resistant hardware and cryptographicaccelerators to reduce costs.

2.2 Options for security hardware

Different NASD drive configurations may provide users with different security guarantees. Here are some
examples:

� A drive may provide authentication only on the control portion of message and not protect the data
portion of requests. An adversary who is able to modify packets in transit could modify the data that
is seen by the client or drive by acting as “a man in the middle”.

� A drive may provide no privacy for user operations. Instead, the drive may only validate the integrity
of operations. With this approach, an adversary could observe data transmitted over the network but
would be unable to modify or forge requests. The distributed file system layered on top of NASD
could provide privacy by storing encrypted data on NASD and performing its own key management
to achieve sharing.

3



� Drives may encrypt data when it is sent over the network but store the data locally in unencrypted
form. An adversary may be able to access data if he has direct access to the storage media or internal
drive communication paths on the drive.

� By using a secure coprocessor, we can implement an encrypting filesystem and perform secure key
management. With this approach, we can build systems where data is never available to an adversary
as long as the coprocessor is uncompromised and the cryptographic systems are sound.

2.3 What does NASD require to be secure?

For a file system to run securely, the policy maker (file manager) and enforcer (drive) must exchange a
minimum amount of information. When a file manager grants access to a user, the file manager must
communicate the user’s access rights to the drive. The drive must check that the information came from
the file manager and is fresh. The goal of the NASD security system is to achieve this communication in a
safe, flexible, and efficient way. One approach is for the file manager to inform the drive directly of a user’s
rights [14], which the drive will enforce when it later identifies the named user’s requests. However, this
approach requires that the drive be aware of the user’s identity and implies a specific a user authentication
mechanism to the drive. If the authentication mechanism is bound to the drive, an important degree of
flexibility is removed from the design of the high level file system. Additionally, this requires the drive
maintain information on a per user basis, which requires more state than a capability system.

An alternative, which we use in NASD, is to pass access rights to the drive through a cryptographic
capability. The capability allows the authentication mechanism to be removed from NASD and a decision
of the file system implementor rather than being dictated by NASD. Instead of being aware of the user’s
identity, the drive is only aware of a user’saccess rights. The capability arguments, which describe a user’s
access rights, and a capability key, which is used by the user to prove they are entitled to the rights they
claim. They keys are derived from the capability arguments and a working key associated with the partition
on which the object resides. Further details of the capability definition are given in Section 6.

How can the file manager efficiently and safely control access to the contents of a network attached drive?
The file manager must be able to perform management functions on the drive and to control client access
to storage. NASD’s security infrastructure is designed to perform these functions while being resistant to
attacks by an adversary with full knowledge of the NASD protocol.

Since out hypothetical adversary knows our protocol, the ultimate security of the system rests on keeping
the keys private (ie. key management). The NASD key management hierarchy balances flexibility of use
and security. We support key management that can take advantage of tamper resistant hardware when it
exists, and in other cases effects key management through software control.

2.4 Brief description of the Key Hierarchy

NASD uses a hierarchy of four kinds of keys: a master key (MasterKey), a drive key (DriveKey), partition
keys (PartionKeyN where N denotes the partition), and working keys (blackKbN and goldKgN ). The
key management issues and key hierarchy is discussed in Section 7.

� MasterKey: An administrator uses the master key to control the key hierarchy and for other admin-
istrative tasks. TheMasterKeyis an immutable key so should be used infrequently and be protected.
Using theMasterKey, an administrator can set theDriveKey.

� DriveKey: TheDriveKeymanages the partioning of drive capacity and delegates authority for entire
partitions to a file manager by setting up partitions andPartitionKeys.

4



� PartitionKeyN: File managers use thePartitionKeys to manage a partition and to set theWorkingKeys
that are used for the most frequent operations between the file manager and drive.

� WorkingKey: The file manager usesWorkingKeys to generate capabilities. Each drive maintains two
working keys per partition. Section 7.4 explains why two working keys are necessary.

File managers enable client access to storage by providing clients with a capability to access a stored
object. By presenting the capability to the drive and generating a keyed message digest of the request, the
client can convince the drive that the operation is authorized (Section 6 discusses capabilities) because of
special properties of the capability key.

To check the freshness of messages and impose a finite lifetime on capabilities, NASD drives have
secure clocks which generate monotonically increasing timestamps at a constant rate. A drive’s secure clock
is protected by the physical security guarantees of the drive. The timestamps enable a drive to recognize
a message as either too old or dated in the future (Section 9 discusses clocks). A filesystem’s timekeeping
needs may or may not be also met using the secure clock. Our design allows for a real-time clock to be
maintained separately.

NASD’s keys and capability mechanism subsume file-drive authentication and client-drive authentica-
tion. Authentication is still necessary, but the exact method of doing it is left to file system designers. The
NASD design is not locked to a single authentication method.

This paper presents a design of a security system for use in network attached storage devices. We focus
on the portions of the system fixed by the design of the storage devices and leave higher level issues to file
system implementors.

3 Design Goals

We had the following goals when designing the security for NASD:

� The NASD security system should explicitly separate the policy enforcement mechanism from the
policy decision process (a similar goal was stated for Hydra [28]) so we the file manager must be able
to communicate policy decisions to the drive.

� The protocol should prevent unauthorized modification of client requests and capabilities along with
protecting privacy of requests if dictated by the policies of clients or file managers.

� To minimize interaction with the file manager, the drive should be able to validate client operations
without direct communication with the file manager.

� To allow for low memory drive implementations, there should be no long term state shared between
drive and client. Overall state requirements of the drive should be kept at a minimum, but additional
memory should enhance performance.

� The security protocol should add as little overhead as possible in terms of computation and the number
and size of messages.

5



4 Notation

� The user (U) may be a software agent, a person, a smart token, or anything else that can convince a
filemanager to provide access rights.

� The file manager (FM) is responsible for making policy decisions regulating access to objects stored
on NASD drives.

� EK(Msg) is message encrypted under keyK using symmetric cryptography.

� MD(Msg) is a message digest (cryptographically strong hash) ofMsg. Various secure hash algo-
rithms such as MD5 [22], SHA [18], or Tiger [1] may be viable options for NASD.

� MDK(Msg) is a keyed version of a message digest (also called a MAC or message authentication
code). Constructions such as HMAC [2] may be good candidates to construct a keyed digest based
on an unkeyed version. Karp-Rabin [21] may also be viable since it is inherently keyed.

� K(A;B) is a temporary (session) key shared between entities A and B.

� AV is a version identifier on the per-object access control information that the file manager controls.
The AV is the only security related information that a disk must maintain on a per object basis.
Section 8 discusses theAV.

5 NASD Requests

All common operations on a NASD drive, regardless of origin, have the same basic format. Requests are of
the form:

KeyType; ActualProtection; CapabilityArgs; RequestArgs; RequestData;Timestamp-Nonce; Digest

TheKeyTypefield specifies what key the request is being authorized under. This could be the master key,
the drive key, a partition key, a working key, or a capability. When a capability is being used, theKeyType
will indicate which working key was used to generate the capability; we call this the basis key. Section 7
discusses the key hierarchy and Section 6 discusses capabilities.

5.1 Protection options

TheActualProtectionfield describes the protection options used for this request. The protection options for
a request are a combination of flags indicating:

1. IntegrityArgs : The integrity ofRequestArgsandTimestamp-Nonceare protected byDigest.

2. IntegrityData : The integrity ofRequestDatais protected byDigest.

3. PrivacyArgs: The privacy of theRequestArgsis protected through encryption.

4. PrivacyData: The privacy of theRequestDatais protected through encryption.

5. PrivacyCapability : The privacy of theCapabilityArgsis protected through encryption.

6



Some combinations, such asIntegrityData without IntegrityArgs , do not make sense. If no options
are enabled, the drive will check that the capability arguments are valid for the request but will be unable
to detect modification of the request or a forged request (this is similar to NFS). WithIntegrityArgs
and IntegrityData enabled, the drive protects the request from any modification. Manipulation of drive
configuration information must be protected with at leastIntegrityArgs andIntegrityData to maintain the
integrity of the system. Key management operations requirePrivacyData as well.

Each drive partition specifies the minimumacceptable security options for its requests. If the minimum
acceptable security options do not includeIntegrityArgs , then anyone can generate a request by setting
ActualProtectionto no options; thereforeIntegrityArgs must be used if the file manager wants to implement
any security policy stronger than no security.

Section 6 discussesCapabilityArgsand how they are used.

5.2 Remaining fields in the request

The RequestArgsfield contains all the arguments being to specify a request (including operation type)
except for the variable length data payload used for read or write operations (stored inRequestDataor the
equivalent in the reply). TheTimestamp-Nonceis used to protect against replay or delay attacks.

A reply is similar to a request but omits theKeyType, ActualProtection, andCapabilityArgsbecause they
are assumed to be the same as in the request. The reply’sTimestamp-Noncemust match the request’s to
allow the receiver to properly correlate requests and replies (while the underlying RPC or messaging system
may also do this, lower level support is not protected by the security of NASD.)

TheKeyTypeandActual Protectionare not explicitly protected by any of the protection options. These
fields are used to select what key to use in processing the request and how to check the security of the
request. The integrity ofKeyTypeandActualProtectionis implicitly protected if eitherIntegrityArgs or
IntegrityData is used because the modification of either of the fields will result in an incorrect digest being
generated when the request is verified.

6 Capabilities

6.1 Construction

The heart of the NASD security system is the capability architecture governingaccess to NASD objects.
A NASD capability is the capability arguments and a capability key. The capability arguments are a tuple
containing:

� Drive identifier

� Partition

� Object identifier

� Region (byte range)

� Access rights

� Expiration time

� Minimum protection requirements

� Basis Key (black or gold)

7



� Audit identifier

The capability key is a cryptographic key used by a client to bind a specific NASD request to a capability
through used of a MAC. The MAC creates a relationship between the fields of the capability, the request,
and the digest. If the drive generates the same MAC that was included in the request, the drive can be
confident that the MAC, the capability arguments, and the request were all received without tampering.

The capability key isMDKx(CapabilityArguments; AV ) whereKx is either the black or gold key for
the partition. The dependence on theAV enables revocation and the the dependence onKx means only the
file manager or drive could generate the capability key.

The first four fields identify the set of bytes for which the capability is valid. Theaccess rightsand
expiration timelimit the operations and time range for which the capability is valid. The lifetime of a
capability can not exceed the lifetime of the working key under which it was issued, otherwise the validity
of the capability can not be verified. Thebasis keyindicates if this capability was issued with the black
working key or the gold working key which is used to generate the capability key. Theminimum protection
indicates a floor set of security options that the file manager requires of the client for all operations using
the capability. This permits the file manager to require a higher standard of security than is required by the
partition.

Finally, theaudit identifier is a field where the file manager can associate arbitrary values with the
capability. In auditing implementations of NASD, the drive will record theaudit identifierin a log record for
an operation performed with the capability. This allows a log-analyzer to later extract this information from
the logs on the drive. With theaudit identifier, we can easily integrate drive security with other applications
such as transaction management (by recording a transaction ID in theaudit identifier) or audit trails (by
recording the users identity in theaudit identifier).

NASD requires that the file system specific client-file manager protocol provide private transmission of
capability keys to the clients along with transmission of the capability arguments. We expect this will be
performed as part of a directory lookup process, but that is not a requirement for NASD. The capability
arguments are necessarily kept private. If an adversary can read the capability arguments, he still can not
access the object without a working key or the capability key. If an adversary modifies either the request or
the response, he will at best execute a denial of service attack. However, if the adversary can perform such
an attack, he can probably interfere with any network traffic — a more general denial of service attack.

A client can prove it has the right to access an object by using a capability key to encrypt and/or digest
a request. The capability keys are derived from the capability arguments and a working key for the partition
where the object resides. When the capability arguments are given to the drive, the drive can independently
compute the capability key and verify the critical parameters for anaccess check.

If the capability arguments and capability key don’t match, then the drive will be unable validate the
request. Since clients know neither of the working keys, clients are unable to generate a forged key. If
theAV or working key changes then the drive will also be unable to generate the expected capability key.
However, in this case, the changes correspond to expected invalidations of access rights.

6.2 Use

NASD drives may accept encrypted messages, messages with a MAC, or both. Encryption performance can
be drastically reduced by using hardware support [4] and the MAC can also be implemented in hardware.

The MACing or encryption of data is the basis for a generic signature functionSk(Msg) which is used
extensively in the NASD security system. In the case of clear-signing,

Sk(Msg) = (Msg;MDk(Msg))

8



while when using encryption and MAC:

Sk(Msg) = Ek(Msg;MDk(Msg))

Performing the message digest before encryption is important because this prevents an adversary from
modifyingActualProtectionto corrupt data by removing the privacy option when both privacy and integrity
are being used. If the message digest were performed second, an adversary could remove the privacy option
and cause the request to be accepted but have the encrypted data written out – effectively trashing stored
data.

A client’s request to a drive forOperation looks like the following (the format discussed in Section 5):

KeyType; ActualProtection; CapabilityArgs; SCapabilityKey(Operation;Timestamp-Nonce);

UnprotectedOperation

Note that part of the operation is unprotected by the generic signature. Some of the data may be
sent without a digest and unencrypted for performance reasons although this reduces the security of the
interaction. The NASD protocols support a variety of combinations.

6.3 Request Validation

To validate a request, the drive must obtain the capability key that generated the signature. The drive can
either recalculate the capability key or request it from an on drivecache of recently seen capabilities. To
maintain correctness, the cache should not return capabilities that are invalid such as ones dependent on
out-of-date data that has been updated by the file manager (e.g.AV or working keys). To recalculate the
capability key for a request, the drive needs all the fields used in the initial key construction. The drive has
the working keys associated with a partition and theAVassociated with the object but the client must provide
the capability arguments. The keys are maintained in key storage on the drive and theAV is part of the
object metadata information. Because of the dependency on the working keys and the capability arguments
as discussed in Section 6.1, any modification of the capability arguments will be detected because the wrong
capability key will be generated.

After the drive checks that the generic signature matches the request, the freshness and uniqueness of
the request must be checked. The drive should reject messages that have been delayed (or replayed) beyond
a certain timeout threshold. We address the replay problem by adding tags to message that are valid exactly
once. To reduce storage and messaging requirements, we use unique timestamps as nonces.

We require that theTimestamp-Noncebe approximately accurate (enough so that it will be within a fixed
tolerance� of the current time when it arrives at the drive) and that theTimestamp-Noncebe unique. We
maintain a counter of NASD messages sent within the current clock quantum and use the counter to set the
low bits of theTimestamp-Nonce. A Timestamp-Nonceis generated fresh for each request to guarantee the
uniqueness for the previously mentioned security check.

At this point, the drive has verified that the request is bound to the capability, the capability is valid, and
that the request is both fresh and unique. The final step is for the drive to verify that the operation is permitted
by the access rights described in the capability. The set of primitive operations and the representation of
access rights are not explicitly defined in the security protocol. At first approximation, theaccess rights
could be represented as a bit vector where each bit indicates a primitive NASD access mode (such as read
and write) is permitted. However, a more complex representation with more information is also possible.

9



6.4 Replys

The reply from the drive to the client will be of the form:

SCapabilityKey(ReplyBody;Timestamp-NonceRequest)

whereReplyBodyhas the status and results of the operation. The underlying RPC layer will relate the reply
back to the original request so that the requestor knows what key to use to verify the request.

Since the reply is signed with the capability key the client can verify that the message came from the
drive (assuming the file manager is behaving properly and there have been no security compromises). The
inclusion of theTimestamp-NonceRequestenables the client to correlate this response with correct request
and detect replay attacks. While the layers on which the requests and response are built, such as an RPC
mechanism, may provide the same functionality, the values will not have integrity guaranteed bySCapabilityKey

and are therefore subject to spoofing. It is important to note that theReplyBodyandOperationmust be
different to prevent an adversary from sending the signedOperation, Timestamp-Noncetuple as the reply.

7 Key Management

7.1 Initialization

When a drive is shipped from the factory, the owner needs some way of initializing it with key information,
so that only authorized users can subsequently exercise control over the drive. Initially, master and drive
keys are set to the serial number of the drive, no partitions exist, and the drive is in anuninitializedstate.
Immediately on receipt of a drive the owner should move the drive into aninitialized state by sending it
an Initialize message. AnInitialize message will set the maser and drive keys and move the drive from
an uninitializedstate to aninitialized state. Once a drive has been initialized,the master key can not be
changed.

We perform the initialization by sending the drive the following message:

Initialize ;NewMasterKey;NewDriveKey; CurrentT ime

TheInitialize message must be sent over a trusted channel, such as an isolated administrator’s network,
to avoid eavesdropping. While this could be cumbersome to administrators, the process could be automated
except for the physical connection/disconnection of the drive. The other keys are not set by theInitialize
message because they are associated with specific partitions and no partitions exist when the drive is
initialized.

The trusted channel could be as simple as a single network link from an administrator’s machine to
the drive. If an adversary can eavesdrop on theInitialize message, they would have the master key and
unrestricted access to the drive so we recommend that the drive be initialized while it is under the physical
control of the administrator — for example, while the administrator can physically observe the integrity of
the cable going from the drive to the administrator’s notebook computer. No encryption or message digests
are used; access to the drive in theuninitializedstate is proof we are permitted to perform the initialization
procedure. When the drive is in anuninitializedstate, the drive assumes thatInitialize messages are valid.
Once the drive receives anInitialize message, it rejects all subsequentInitialize requests. (TheInitialize
message does not follow the standard convention for NASD messages discussed in Section 5).

10



7.2 Master Key

Since the master key is, by assumption, immutable, we must be very careful to limit the exposure of the key.
The master key should not be kept online and it should never be exposed to the file manager. We must also
limit the amount of text encrypted or digested under the master key; the master key is used to change the
(mutable) drive key.

The master key is used to set the drive key when:

� The drive key is known or suspected to be compromised.

� Failures cause the file manager and drive to have different drive key values.

� A regular (infrequent) key change is scheduled to maintain security.

To change the drive key the followingSetDriveKeymessage is sent:

UseMasterKey; ProtectionOptions; fg; SetDriveKey;NewKey;RequestNonce; RequestDigest

whereProtectionOptions � fIntegrityArgs; IntegrityData;PrivacyDatag.
This message enables someone holding the master key to change the drive key. The message will only be

accepted if at least the protection options offIntegrityArgs; IntegrityData;PrivacyDatag are used
in the request and the key type isUseMasterKey. Similar operations exist for other keys in the hierarchy
except theMasterKey. A key change request must be authorized by the key immediately above the key
being changed (see Figure 3).

7.3 Partition Keys

The partition keys are regularly used to change the working keys and will likely be kept on the file manager
so they are exposed to potential compromise. A compromise of the file manager would expose resources
on the drive protected by the partition key. However, depending on the implementation hardware, we can
minimize the risk to the keys by utilizing a secure coprocessor on the file manager to protect the partition
keys.

7.4 Working Keys

The drive key is usually not on a file manager to help isolate the security concerns of different file managers
managing different partitions on a drive. The inability toaccess the drive key implies that that file manager
can not change the partition key for regular updates.

However, NASD capability system requires a key to generate capabilities. This key must be regularly
changed to limit exposure of the key. The need to regularly change the key motivates the addition of the
working keys to the key hierarchy. The working keys for partitionNare the black key (KblN ) and the gold key
(KgN ). The black and gold keys are changed by theSetBlackWorkingKeyN andSetGoldWorkingKeyN
message (similar to theSetDriveKey message) at whatever interval the file manager requires (we suggest
at least a daily update).

If we maintained only a single working key, the update of the key would automatically invalidate all
outstanding capabilities. Two working keys avoids this bulk invalidation (and prevents the subsequent
storm of requests for new capabilities) because a file manager can phase out an oldWorkingKeyby issuing
capabilities with the new working key while capabilities in the old working key gracefully expire.

The construction of a capability is directly dependent on the value of either the black or gold key (see
Section 6). If a file manager wishes to invalidate all issued capabilities, the file manager needs to change
both the black and gold key.

11



Can Update

Value may be directly dependent on

Master Key

Capability Keys

Black Key Gold Key

Partition Keys

Drive Key

Figure 3: Key Hierarchy Relationships

7.5 Key Protection

Clearly, protecting keys is central to maintaining security of our system. A limited level of protection
can be achieved by locating the drives and the file managers in physically secure facilities with controlled
access. Security can be further enhanced by using secure (tamper resistant) coprocessors on the file manager
and drive to perform key management. Encapsulating the key management in tamper resistant hardware
complicates the task of an adversary attempting to search the internals of the drive for secret keys contained.
If operations involving keys are performed underneath the tamper resistant hardware shield, keys need never
be exposed.

7.6 Drive Management

When a drive is transferred to a new owner, it must be reinitialized. If a user sends aResetmessage to the
drive authorized by theMasterKey. TheResetmessage causes the drive to return all keys to the factory
setting and destroy all data stored on the drive. We note that some critics claim that because of magnetic
memory effects, magnetic media can be subject to data recovery by skilled adversaries even when the data
is erased and written over. If the data is stored in unencrypted form, the data may always be recoverable
until the media is physically destroyed.

In the event that theMasterKeyis compromised, we treat this as a disaster scenario and consider the
contents of a drive as lost. The drive must beResetand data recovered via RAID or a backup mechanism.

8 Access Control Version Numbers

The access control version number (AV) is maintained both at the file manager and the drive. TheAV
enables the file manager to invalidate outstanding capabilities whenaccess control information for an object
changes. Of course changing theAV invalidates all outstanding capabilities for an object, so it is a coarse
tool. We expect capabilities will be invalidated primarily when theaccess control information changes to
become more restrictive.

The drive must differentiate between valid and invalid capabilities but the drive lacks sufficient resources
to maintain a record of currently valid and invalid capabilities. Another option is to maintain a blacklist of

12



invalidated capabilities, but this list could be large if many capabilities are revoked. Therefore we use an
AV to allow revocation of capabilities by notifying the drive thataccess control information has changed.

9 Time

In order to detect replays as described earlier, the client and drive must share a value for the current time.
Since timestamps must be unique, we require that this time always be monotonically increasing. In a real
world environment, the NASD object system will also need a real-time clock that can be adjusted for skew,
system failures, daylight savings time, or time zone changes. We recommend that a drive should have a
physically secure clock that is monotonically increasing and separate from a more flexible real-time clock.

The real-time clock is used for file system semantics such as file modification times. The real-time clock
can be maintained as an offset from the secure clock or may be maintained differently depending on the
implementation.

When a client communicates with a drive or file manager, the client must know the proper (secure) time
value for generating timestamps. In the case of client-drive communication, the client does not share any
long term shared state that can be used to authenticate time requests. NASD requires that the file manager
know the current value of the drives clock. This could be achieved by an authenticated clock synchronization
protocol (perhaps similar to SNTP [16] or NTP [15]). Similarly, the client should synchronize with the file
manager on the secure clock value of the drive. The file manager-drive time synchronization can use the
daily key; the client- file manager can use the session key.

10 Prototype

10.1 Experimental Testbed

We have built a NASD prototype implementation of a drive and adapted NFS and AFS to run with NASD
drives. Our prototypes run on DEC Alphas running Digital Unix 3.2. The file system clients and the
drive prototype all run inside the kernel while the file managers run at user level. All communication with
the drive uses DEC’s DCE RPC package. In the NFS prototype, the client-file manager communication
also uses DCE because NFS’s simple file manager was written from scratch. In the AFS prototype, the
client-file manager communication uses RX, which is the normal AFS protocol, because the more complex
file manager needs to communicate with other unmodified AFS servers1. Our experimental security results
are for the NFS prototype, although the drive prototype is identical for both the AFS and NFS prototypes.

For our experiments, we used a DEC Alpha 3000/400 with a HP 2247 drive as our NASD drive. The
file manager ran on a DEC Alpha 3000/400 and the client was a DEC Alpha 255. All the machines were
connected by ATM through a DEC 155 Mbps (OC3) ATM Gigaswitch.

The prototype supports theIntegrityArgs andIntegrityData protection options. We implemented the
security as a wrappers around the NFS client RPC stubs and drive functions. Our use of keyed message
digests for key generation and authorization requires that the security layer of the system be able to access
RPC arguments and data in unmarshalled form, so the fields may be constructed and processed, and
marshalled form, so the data is in a canonical form and will generate the same digest at either end. This
requirement complicated our use of DCE and forced us to write our own marshaling code instead of utilizing
the marshaling available through DCE.

1An AFS cell is actually several servers working together to manage protection, volumes, and other functions. All these servers
communicate using RX.

13



We use a software implementation of HMAC-MD5 as our keyed message digest. Our MD5 implemen-
tation is derived from the cryptolib implementation from AT&T Labs. The MD5 code was modified to use
many of the optimizations described in [26] to avoid unnecessary byte swapping or copy operations. The
HMAC layer above MD5 is the reference implementation of HMAC.

10.2 Description and result of experiment

Our basic experiments helped us under the performance cost of using the security in NASD. Our experiment
was to read 67MB of data in 8192 byte blocks off the drive to measure sustained bandwidth. All caches
were flushed before the experiments began. This experiments provides an indicator of the cost of security
when using NFS (since NFS is restricted to 8192 byte requests). All numbers reported are the average of 5
runs.

Initially, we performed the experiment without any of the security options enabled and achieved an
average bandwidth of 27.5 Mbits/second. WhenIntegrityArgs was turned on, our bandwidth reduced by
18 percent to 22.5 Mbits/sec. By also turning onIntegrityData , the bandwidth dropped more dramatically
by another 19 percent to 17.4 Mbits/sec. The expense of even doing a HMAC-MD5 on part of the data had
a noticeable impact on performance which motivates our interest in hardware support for security. These
numbers were with a capabilitycache enabled so the capability key was only computed on the first request
from the client in each experiment. Subsequent requests were able to use the cached capability key.

11 Related Work

Historically, capability systems have used hardware support to prevent client modification of capabilities [3,
27] or depended on trusted operating system kernels [24, 28]. NASD capabilities differ because we use
a fully distributed system where we do not trust the holders of the capabilities. While the basic idea of
a capability in these examples and NASD is essentially the same, our inability to trust the holder of the
capability and the distributed nature of NASD differentiates our problem from past systems. Instead NASD
generates and verifies capabilities using a known protocol and secret keys shared between the issuer and
validator of capabilities.

Both ICAP [8] and Amoeba [25] utilize one way functions in capability construction. However, neither
ICAP nor Amoeba explicitly separate the issuer of a capability from the validator of a capability.

The proxy model [17] is a more powerful abstraction than capabilities. The emphasis in the proxy model
work has been the power of the abstraction and integration with Kerberos rather than an explicit emphasis
on performance. However, Neuman advocates that the mechanism be built on top of the authentication
mechanism. Since NASD file systems may use a variety of authentication systems all using a single drive
protocol, NASD requires that the authentication mechanism be separate from the drive authorization to
enable different file system implementations.

The NetStation project [14] is another network attached storage system. NetStation’s storage model is
a block device attached to the network. Since the storage only provides a block model, the meta-data to
provide a file abstraction must be shipped to the drive for each file that is opened. The file manager sends a
message to the drive that explicitly “grants” a useraccess to an object (see Figure 4) and provides the drive
the the file metadata. A pre-access permission request from the client to the file manager causes the file
manager to engage in a “grant” message exchange with the drive. Unfortunately, this requires the drive to
maintain more state in terms of outstanding grants, adds to the drive-manager messaging, and increases the
total messaging done by the NASD system.

14



FM

File Manager

Client

6)Response

NASD Drive

1)Request Access

2)Grant Client Access

4)Provide client access information

3)Acknowledge Grant

5)Request

Figure 4: Message flow using grant-style approach

FM

File Manager

Client

3)Request

NASD Drive

1)Request Access

2) Capability

4)Response

Figure 5: Message flow without grants

The NASD infrastructure discussed in this document eliminates the “grant” message exchange (see
Figure 5) by using the capability system described in this paper. By including all the authorization
information in each request, we eliminate the need for the file manager to explicitly inform the drive
of privileges granted to a client. In both the NetStation and NASD the, the same information is being
communicated to the drive but the path of the information differs. Where the grant model (NetStation)
has the file manager informing the drive of user access rights, the capability model (NASD) passes this
information back through the client. By removing the grant message and reply, we reduce the message
count on an initialaccess by two messages resulting in lower latency to the client.

Both NetStation and NASD require the file manager to interact with the drive when access control infor-
mation is changed. With the grant model (NetStation), the file manager must explicitly revoke previously
granted access rights to meet the new access control restrictions. In the capability model (NASD), the file
manager informs the drive that an object’s access control information,AV, has changed. This effectively
revokes all outstanding capabilities. So, NetStation permits a finer degree of revocation than is available in
NASD. Therefore, the grant/revoke model may be more efficient when frequent and fine grained revocation
is performed.

15



12 Conclusion

The NASD architecture is an innovative approach to the problems of high performance and cost effective I/O
based on network attached storage systems. By providing security to network attached storage, we enable
clients to utilize the potential performance and scalability benefits inherent in network attached storage
without compromising their data security.

The essence of our capability scheme is the encapsulation of the bearer’saccess rights on a particular
version of a storage object using a secret key shared between capability issuer (file manager) and capability
enforcer (NASD drive). In fact, the secret key is one permanent and 4 periodically changing keys forming
a key hierarchy. While changing keys can be used for capability revocation, a finer grain of selective
revocation is possible through changing the access control version number on a NASD object. Because the
encapsulated rights in a capability are also disclosed to clients, they can be delivered to the NASD drive with
each request allowing capability verification without per client state ineach drive. For higher performance,
a drive can cache computed capabilities.

On top of the protocol given in this paper, an arbitrary distributed file system access control model
can be imposed. With the file manager making policy decisions, the fact that the file manager and disk
communicate via capabilities does not prevent the file manager from supporting a UFS user-group-world
model, a AFS ACL model, a NFS UID/GID model, or another model.

In order to permit the implementation of arbitrary distributed file systems, NASD system separates the
policy decision role, the file manager (which embodies the distributed file system personality), from the
policy enforcement, the NASD drive. To support this separation of roles, the NASD capability system
similarly separates the issuing of a capability from validating a capabilty. Using the capabilities in NASD,
a file manager can securely communicate authorization decisions to a NASD drive.

12.1 Future Work

Our immediate future work is focused on increasing the performance of NASD while reducing file manager
load. Caching previously computed message digests to speed up later reads and asynchronous security error
notification for writes are promising directions.

Additional work is being done in redefining what a capability refers to. Currently, a capability refers to
a single object but we expect to get performance benefits out of a more powerful naming mechanism that
allows NASD capabilities to refer to sets of objects.

We are also investigating the use of different types hardware support for security to improve both
functionality and performance. In high-security, high-performance environments, hardware assistance for
the cryptographic functions will prove invaluable. However, drives are cost sensitive and the cost of such
security will not be appropriate for all environments.

Looking further out, we believe that our architecture will find applications beyond file storage. For
example, it is interesting to consider extending the NASD capability system to other network appliances,
such as cameras or remote displays, in a distributed system. The capabilities could also be used to protect
other network resources such as databases or video servers. This has applications in mobile code applications
— for example, an instructor may want to gain temporary access to a large classroom display during her
class. We believe that it is possible to adapt NASD protocols to realize such an application.

Another long-term extension of the NASD security system is to consider the use of smart tokens with
tamper resistance (such as smart cards) that implement the the NASD protocols. Such a system would allow
a user to easily allow a fixed client machine (such as workstation in a hotel room or a temporary office) to
gain access to the user’s files; later, when the smart token is removed, the capabilities and rights are also
removed. While a client machine with Trojan horse software would be able to potentially keep a record

16



of data sent to that machine, the machine would never have any long term security information that would
permit continued access. These smart cards would be most useful if they could access multiple file systems
and multiple client operating systems. Designing a generic interface that works securely and efficiently with
all combinations of client OS and distributed file system structure is a significant challenge.

References

[1] Ross Anderson and Eli Biham. Tiger: A Fast New Hash Function. InProceedings of the Third Workshop
on Fast Software Encryption, number 1039 in Lecture Notes in Computer Science. Springer-Verlag,
1996.

[2] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for Message Authentication.
In Advances in Cryptology: Crypto ’96 Proceedings. Springer-Verlag, 1996.

[3] Jack B. Dennis and Earl C. Van Horn. Programming Semantics for Multiprogramed Computations.
Communications of the ACM, 9(3):143–155, March 1966.

[4] Hans Eberle. A High-speed DES Implementation for Network Applications. Technical Report 90,
DEC System Research Center, September 1992.

[5] Garth Gibson. Secure distributed and parallel file systems based on network-attached autonomous disk
drives - White Paper, September 1995.

[6] Garth A. Gibson, David F. Nagle, Khalil Amiri, Fay W. Chang, Eugene M. Feinberg, Howard Gobioff,
Chen Lee, Berend Ozceri, Erik Riedel, David Rochberg, and Jim Zelenka. File Server Scaling with
Network-Attached Secure Disks. InProceedings of the ACM International Conference on Measurement
and Modeling of Computer Systems 1997, June 1997. To Appear.

[7] Garth A. Gibson, David F. Nagle, Khalil Amiri, Fay W. Chang, Howard Gobioff, Erik Riedel, David
Rochberg, and Jim Zelenka. Filesystems for Network-Attached Secure Disks. Technical Report
CMU-CS-97-118, Carnegie Mellon University, March 1997.

[8] Li Gong. A Secure Identity-Based Capability System. InProceedings of the IEEE Symposium on
Security and Privacy, pages 56–64, May 1989.

[9] National Storage Industry Consortium NASD Working Group. http://www.hpl.hp.com/SSP/NASD/.

[10] John H. Hartman and John K. Ousterhout. The Zebra Striped Network File System. InProceedings of
the Fourteenth ACM Symposium on Operating Systems Principles, pages 29–43, 1993.

[11] Mark Hayter and Derek McAuley. The Desk Area Network.ACM Transactions on Operating Systems,
pages 14–21, October 1991.

[12] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and M. West.
Scale and Performance in a Distributed File System.ACM Transactions on Computer Systems, 6(1),
February 1988.

[13] Henry M. Levy.Capability-based Computer Systems. Digital Press, Bedford, Mass., 1984.

17



[14] Rodney Van Meter, Steve Hotz, and Gregory Finn. Derived Virtual Devices: A Secure Distributed
File System Mechanism. InProceedings of the Fifth NASA Goddard Space Flight Center Conference
on Mass Storage Systems and Technologies, September 1996.

[15] D. Mills. Network Time Protocol (v3). Technical Report RFC 1305, Network Working Group, April
1992.

[16] D. Mills. Simple Network Time Protocol (SNTP). Technical Report RFC 1768, Network Working
Group, March 1995.

[17] B. Clifford Neuman. Proxy-Based Authorization and Accounting for Distributed Systems. InProceed-
ings of the 13th International Conference on Distributed Computing Systems, pages 283–291, May
1993.

[18] U. S. National Institute of Standards and Technology. Federal Information Processing Standards
Publication 186: Digital Signature Standard, May 1994.

[19] Hawaii International Conference on System Science 30 Taskforce on Network Storage Architecture.
http://www.pdl.cs.cmu.edu/NASD/HICSS.html.

[20] E. Organick. A Programmer’s View of the Intel 432 System. McGraw-Hill, New York, New York,
1983.

[21] Michael Rabin. Fingerprinting by Random Polynomials. Technical Report TR-81-15, Center for
Research in Computing Technology, Aiken Laboratory, Harvard University, May 1981.

[22] R. Rivest. The MD5 Message-Digest Algorithm. Technical Report RFC 1321, IETF Network Working
Group, April 1992.

[23] R Sandberg. Design and Implementation of the Sun Network Filesystem. InProceedings of the
Summer 1985 USENIX Technical Conference, pages 119 – 130. USENIX, June 1985.

[24] Robert D. Sansom, Daniel P. Julin, and Richard F. Rashid. Extending a Capability Based System into
a Network Environment. InSIGCOMM ’86: Futures in Communications, August 1986.

[25] Andrew S. Tanenbaum, Sape J. Mullender, and Robbert van Renesse. Using Sparse Capabilities in a
Distributed System. InProceedings of the Sixth International Conference on Distributed Commputing,
pages 558–563, 1986.

[26] Joseph Touch. Performance Analysis of MD5. InProceedings of SIGCOMM 1995, pages 77–86,
1995.

[27] M. V. Wilkes and R. M. Needham.The Cambridge CAP Computer and Its Operating System. Nort
Holland, 1979.

[28] W. A. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. HYDRA: The
Kernel of a Multiprocessor Operating System.Communications of the ACM, 17(6):337–345, June
1974.

[29] Bennet Yee and Doug Tygar. Secure Coprocessors in Electronic Commerce Applications. InProceed-
ings of the First USENIX Workshop on Electronic Commerce, New York, New York, July 1995.

18


