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Security-Guaranteed Filtering for Discrete-Time
Stochastic Delayed Systems with Randomly
Occurring Sensor Saturations and Deception Attacks

Dong Wang, Zidong Wang®, Bo Shefi* and Fuad E. Alsaati

Abstract

In this paper, the security-guaranteed filtering problenstigdied for a class of nonlinear stochastic discrete
time-delay systems with randomly occurring sensor satmat(ROSSs) and randomly occurring deception attacks
(RODAs). The nonlinearities in systems satisfy the sebtarnded conditions and the time-varying delays are
unknown with given lower and upper bounds. A novel measuntraatput model is proposed to reflect both the
ROSSs and the RODAs. A new definition is put forward on the sgclevel with respect to the noise intensity,
the energy bound of the false signals, the energy of thealirsystem state and the desired security degree. We
aim at designing a filter such that, in the presence of ROS8sRODAS, the filtering error dynamics achieves
the prescribed level of security. By using the stochastiglyamis techniques, a sufficient condition is first derived
under which the filtering error system is guaranteed to hbheedesired security level, and then the filter gain is
designed by solving a linear matrix inequality with nonAneonstraints. Finally, a numerical example is provided
to demonstrate the feasibility of the proposed filteringesob.

Index Terms

Security-guaranteed filtering, nonlinear stochastic esyst discrete time-delay systems, randomly occurring
sensor saturations, randomly occurring deception attacks

. INTRODUCTION

In reality, most physical systems are inherently nonlingad the nonlinearity results in considerable system
complexity. In engineering practice such as maneuverabget tracking and mobile robot navigation, one often
needs to estimate the true value of states of the nonlineiersg based on some potentially noisy measurement
outputs, and such nonlinear filtering problems have beeactitig considerable research interest in the past few
decades due to their wide application potentials. A numlbesfficient algorithms have been developed to solve
the nonlinear filtering problems, among which the most rammvone is arguably the extended Kalman filtering
approach that is applicable to linearized systems with &ansnoises of known statistics. In addition, the,
and robust filters for nonlinear systems have been paid mtiehtion due to their excellent robustness against
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the exogenous disturbances and parameter uncertainbesexample, the extended Kalman filtering problems
for nonlinear system have been investigated in [16], [LHe H,, filter has been designed for systems with
affine nonlinearities [1], sector-bounded nonlinearif@s], nonlinear fractional transformations [37] and randyp
occurring nonlinear disturbances [10]. In [28], the robfikering problem has been investigated for a class of
discrete-time uncertain stochastic nonlinear time-delgstems with both the probabilistic missing measurements
and external stochastic disturbances.

In practice, due to a variety of reasons such as the unmodedeiih of system components and the finite speeds
of the transmitting signals, the time delay has proven to peraasive phenomenon with many dynamic systems.
In recent years, the study of time-delay systems has attantich attention and a large number of research results
have been reported in the literature, see e.qg. [5], [13], [29], [30], [33], [34]. Different types of time-delays .@
constant delays, time-varying delays, discrete delaysdistdbuted delays) have been thoroughly investigated in
the analysis and control problems by using a variety of nmaghauch as the linear matrix inequality approach, the
Lyapunov functional method, th&/-matrix theory, the topological degree theory as well asgbeeral inequality
techniques. For instance, in [29], time-varying mode-teleait delays have been considered in the rolfigst
filtering problem. In [13], a robusH ., filter has been designed for linear discrete-time uncersgistiems with
multiple delays in the states by using a delay-dependenbaph. Very recently, a reliable filter has been designed
in [27] for a class of discrete-time piecewise linear systamith both sensor failures and infinite distributed delays.

As is well known, the filtering performance is highly depentden the information knowa priori on the available
measurements and the sensors responsible for collectingpitting signals play a vitally important role in the
filtering process. A particular phenomenon that occursnaitethe sensors is the so-called saturation resulting from
physical, safety or technological constraints on the camepts of the system such as battery capacity, power limit
and intermittent failures. Sensor saturations are esdlgrdi nonlinear behavior that could lead to poor perfornesnc
or even instability of the system. In the context of nonlini@gering, much work has recently been done to attenuate
the effects from the sensor saturation phenomenon or péxssts on the overall filtering performance, see. e.g.
[15], [22], [26], [31], [32], [35], [36]. For example, thél, filter has been designed in [26] for systems with
both sensor saturations and missing measurements. Intfisprobability-guaranteeff, finite-horizon filtering
problem has been investigated for a class of nonlinear iamging systems with sensor saturations.

With rapid development of communication networks, many ponents of physical systems (e.g. actuators,
sensors and state estimators) are required to share a cosononunication link [6]-[9], [11], [19], [20]. Due to
the strong opening-up property of a shared network, therdatived by sensors may be transmitted over the network
without security protections. As such, attackers can iaily intercept, tamper or retransmit the data transmitte
in the network and hence destabilize the plant or steer thapet pb their desired operating points. Therefore, the
attack behaviours for physical systems have attracted ratiehtion in recent years, and some preliminary results
related to this emerging topic of research have been repant¢he literature, see e.g. [2], [3], [12], [21], [24],
[38]. It should be pointed out that, deception attacks (tsefalata injection attacks) are considered to be the most
dangerous attack behaviours since attackers can injean#tieious data in order to degrade or even deteriorate
the performance of systems. For example, in [2], a defendieghanism against false data injection attacks has
been proposed for state estimation of power system in tefrasaphical methods and the main results have then
been extended in [3]. Nevertheless, when the system is &ulojdoth sensor saturations and deception attacks in
a possibly random way, the corresponding security-guaeghfiltering problem has not been investigated yet, not
to mention the case when nonlinearities and time-delaysas@ present. It is, therefore, the main motivation of
this paper to shorten such a gap.

The contributions of the paper are summarized as followé. ig¢w research problem of security-guaranteed filter
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design is proposed for nonlinear stochastic discrete tiglay systems with randomly occurring sensor saturations
as well as deception attacks. 2) A novel model for measuremaputs is put forward to account for the sensor
saturations and the deception attacks that are randomiyriireg according to two sets of Bernoulli distributed
white sequences. 3) In order to quantify the security degeeeintroduce a new concept of mean square security
domain. 4) A sufficient condition is derived under which tHeefing error dynamics achieves the desired degree of
security and then the desired filter gain is obtained by agld linear matrix inequality with nonlinear constraints.

This paper is organized as follows. Security-guaranteéstifig problem for nonlinear stochastic discrete time-
delay systems with randomly occurring sensor saturatisnaell as deception attacks is presented in Section Il,
where we propose a hovel model for measurement outputs aed &oncept of mean-square security domain to
describe this issue. Then, in Section lll, with the help & #tochastic analysis techniques, a sufficient condition is
derived to make the filtering error dynamics to achieve thsirdd degree of security and the desired filter gain is
obtained subsequently. Finally, an illustrative examplpriesented to show the effectiveness of the filtering scheme
proposed in Section IV.

Notation The notation used here is fairly standard except where wtkerstated.R™ and R"*™ denote,
respectively, then dimensional Euclidean space and the set ofnalk m real matrices. The notatioX > Y
(respectively, X > Y), whereX andY are real symmetric matrices, means that- Y is positive semi-definite
(respectively, positive definite)l/” represents the transpose of the matkik I denotes the identity matrix of
compatible dimension. didg- - } stands for a block-diagonal matriX™ indicates the positive integer sefnax(A)
and Amin(A) denote the maximum and minimum eigenvalueAfrespectivelyE{x} stands for the expectation
of the stochastic variable. ||z|| describes the Euclidean norm of a vectorin symmetric block matrices,«”
is used to denote a term induced by symmetry. Matrices, if tre not explicitly specified, are assumed to have
compatible dimensions.

[I. PROBLEM FORMULATION

Consider the following discrete-time nonlinear stochastistem with time delays

x(k+1) =Ax(k) + Aqz(k — d(k)) + Bf(x(k)) + Bafa(x(k — d(k))) + Diw(k),

. N 1)
(L'(]) :SO(])a j:_dMa_dM+177_1707
wherex(k) € R™ is the state vectory(k) € R is a zero-mean Gaussian white noise sequenceRith(k) < §2,
A, Ay, B, By, and Dy are known real constant matrices with appropriate dimewssip(j) (j = —da, —dy +
1,...,—1,0) are the initial conditions, which are assumed to be inddpenof the proceséw(k)}ren+.

The nonlinear functiong : R — R"™ and f; : R"» — R"= satisfy the following sector-bounded conditions:
[f(z) — Ky2]" [f(x) — Kaa] <0,

[fa(z) — Tia]" [fa(x) — Toa] <O,

where K1, K5, T1 andT, are known real matrices of appropriate dimensiddis= K; — Ky andT =T — T; are

symmetric positive definite matrices.
For the system (1), the positive integé(k) denotes the time-varying delay satisfying

)

dm < d(k) < de ke N+7 (3)

where the lower bound,,, and the upper bound,; are known positive integers.
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The sensor measurement model with randomly occurring aedus and deception attacks is described by
y(k) =a(k)o(Cx(k)) + (1 — a(k))Cx(k) + Daw(k),
y(k) =y(k) + B(k)v(k), (4)
v(k) = —y(k) +&(k),
whereg(k) € R™ is the measurement outputs with randomly occurring serestorations (ROSSs)y (k) € R™

is the received measurement outputs with randomly ocaudgception attacks (RODAs)(k) € R™ stands for
the signal sent by adversaries with the non-zgio) € R™» satisfying

I £(k) [|< 01 ®)

for a given positive scalaf,. C and D, are known real constant matrices with appropriate dimessio

Remark 1:When launching deception attacks, the attackers injedtimat data in order to degrade or deteriorate
the system performances. In (4), the external signalsctiefefalse data) sent by the adversaries are 4@k}
and the attackers do not need to know the exact informati@utafyt). The reason for us to rewrite(k) as
v(k) = —gy(k) + &(k) is just for the analysis convenience. Note that the “deoepfiinction” (k) is assumed to
satisfy the boundedness condition (5) for the specific adisieception attacks considered in this paper.

The saturation functiow (-) is defined as

T
o(u) = |o(uy) o(uz) ... U(uny)} , YueR™ (6)

where o(u;) = sign(u;)min{u;, |u;|} for i = 1,2,--- ,n,. Here, sig-) denotes the signum function andg is
the saturation level. From the definition of saturation fiorc o(-), there exists a diagonal matrix satisfying
0<A<Iand

[o(u) — Au)" [o(u) —u] < 0. 7)

The stochastic variables(k) and (k) are two mutually independent Bernoulli distributed whisgsences
taking values ord or 1 with the following probabilities

Prob{a(k) =0} =1 —a, Prob{a(k) =1}

Prob{B(k) = 0} =1 — 3, Prob{B(k) =1}

I
Qi

)

_ (8)
/87

wherea € [0,1) andj3 € [0,1) are two known constants.

Remark 2:In reality, the physical parameters of a networked envirenine.g. network load, network congestion,
network transmission rate) are typically randomly fluotgatand, from the defenders’ perspective, the attacks
successfully passing through the detectors may occummittently or randomly. In other words, the successes of
the attacks are largely dependent on the randomly changitvgprk conditions and the given value @frepresents
the success rate for launched attacks that can be estintatathh statistical tests or specified according to the
security requirements.

Based on the measurements mentioned before, the followtag siructure is adopted
#(k+1) = Fz(k) + Ny(k), ©)
;i'(]):()’ j:_dMy_dJ\/["i'la"'v_lvO?

wherez (k) € R™ is the state estimaté; and N are the filter parameters to be determingd,) (j = —dar, —da+
1,...,—1,0) are the estimates of initial states.
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By letting the filtering errore(k) = x(k) — &(k), it follows from (1), (4) and (9) that
e(k+1) =Fe(k) + [A — (1 - a(k))(1 — B(k))NC — Fla(k) + Agz(k — d(k))
— [a(k)(1 = B(k))N]o(Cx(k)) + [D1 — (1 = B(k)) N Do]w(k) (10)
+ Bf(x(k)) + Bafa(x(k — d(k))) — B(k)NE(K

It is easily seen that the initial errors satisfly) = «(j) = ¢(j) (G = —dap, —dp + 1,...,—1,0).

We introduce the following definition.

Definition 1: Let the positive constant scalafsd,, 42 andds be given. The filtering error system (10) is said to
be (4,01, 62, 83)-secureif, when Ew?(k) < 62, ||€(k)|| < 61 and  sup  Eljp(i)||? < 63, one hasE|e(k)|* < 63

—dp<1<0

(
)-

for all £ > dps + 1.

In this paper, our main purpose is to design a filter for sys{gwith measurement outputs described by (4)
such that the filtering error system (10)(i§ d1, 02, d3)-Secure.

Remark 3:In the framework ofH,, filtering, the exogenous disturbances are usually assumesatisfy the
energy-bounded conditions. In other words, the signaéngity from the outside will decrease gradually to zero as
time tends to infinity. Such an assumption is, however, uablé for the deception attacks because the adversaries
would launch uninterrupted attacks with non-zero intéesitin the presence of persistent attacks with non-zero
intensities, it is only possible to ensure the boundednes®pposed to the conventional zero-equilibriumfig,
filtering) of the filtering error which is essentially the tégement of the so-called security-guaranteed filtering. A
such, instead of the energy-bounded condition, a norm-tedicondition is imposed on the external attack signals
SO as to make it possible to guarantee the boundednessifgeotithe filtering errors.

I1l. M AIN RESULTS

In this section, we first derive a sufficient condition undérieh the filtering error system (10) (9, 01, d2, d3)-
secure in the presence of both ROSSs and RODAs. Based on thi@esbcondition, the design method of the
desired filter is then given.

For the convenience of the manipulation, we g@t) = |27 (k) eT(k)]T, and then the dynamic system (1)
and the filtering error system (10) can be combined into ameunded system as follows:

n(k +1) =An(k) + Agn(k — d(k)) + Bf (Hin(k)) + Bafa(Hin(k — d(k)))

11
+ Dw(k) + Eo(CHin(k)) — B(k)H2N&(k) -
where
_ A 0
" [A-(1-ak)1-Bk)NC-F F|’ Hl:{l 0}7
~ Ad 0 o B 2 Bd = 0
= lag o) Pl P B HQ—H7

o AT P I
Dy — (1= B(k)NDy |’ —a(k)(1 - B(k))N

The following lemma will be used in the proof of our main resul this paper.

Lemma 1: [4] Given constant matriceS;, Se and.Ss, whereS; = ST andS; = SQT > 0, then51+53S2‘15§ <0
if and only if

_ T
S; 53 <0 or 52 S < 0. (12)
S3 _S2 53 Sl
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In the following theorem, a sufficient condition is providedider which the filtering error system (10) is
(6,01, 02, d3)-secure.

Theorem 1:Let the positive scalarg, 61, d2, 3 and the filter gaing”, N be given. The filtering error system
(10) is (6,01, 92, d3)-secure if there exist positive definite matricBs, P, and positive scalars;, ¢s, €3, €4, €5
satisfying the following inequalities

E =0y + P1pPpp®], <0

((ro) 6o 2 (13)
max{ /\min(Pl)7 )\min(Pl)(TO - 1) } = 53

where
_(dM —d,, + 1)P2 —Pi+Q 0 —e3Ry 0 —e9Q9 0 0 ]
* —Pg — 6551 0 0 0 —6552 0
* * —e3l 0 0 0 0
Py = * * * —eql 0 0 0 ,
* * * * —eol 0 0
* * * * * —esl 0
* * * * * * —e1
- _ T
Ay 0 B By —[BH.N
@12 - ~ ’
0O 0 0 D 0 O 0
il A 0
|[A-(1-a)(@-BNC-F F|’
o D _
b= LR DU - R
Dy~ (1 - B)ND; ~a(1-B)N
Q1 =(H{ K{ Ko Hy + H{ K3 K1Hy)/2, Q= —Hj (K{ + K3)/2,
Sy =(H{ TIToH, + HI TY Ty Hy) /2, Sy = —H{ (T +1T4)/2,
Ry =H{CTACH,, Ry=-HICT(A+1)/2,
Q=—e3R) —e2Q1, Pop =diag{P1, 1}, 6= /e10] + 462,
and the constant, > 1 in (13) is the solution to the following equation
“Amin(—Z)70 + (10 — Dmax(P1) + 2r0(das — dip + 1) Amax (Po) (r8™ —1) =0, (14)
and((rp) is given as follows
((ro) = 2 (u+v) &, (15)

where
1t = dprdmax(Po) (r& — 1)(dps — dim + 1),
v = dymaxAmaxd(PL), (dyr — dm + DAmax(P2))-
Proof: Construct the following energy-like functional

(16)

V(k) = Vi(k) + Va(k) + Vs(k), (17)
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where

i—k—d(k) (18)

Vs(k) = Z Zn (i) Py (i)

j=k—dn+1i=j
The mathematical expectation of the difference of the gntikg functional along the system (11) is calculated
as follows:

E{AV(k)}
=E{AV1(k)} + E{AVa(k)} + E{AV5(k)}
=E {n” (k + 1)Pin(k + 1) — n" (k) Pin(k) + (das — dim + 10" (k) Pan(k) — 0" (k — d(k)) Pan(k — d(k)) }
=E{n" (k)(A" PLA + (dys — dyp + 1) Py — P)n(k) + 0" (k — d(k)) (AT PrAq — Po)n(k — d(k))
+ fT(Hin(k)) BT PLB f(Hin(k)) + fi (Hin(k — d(k)))Bj PBafa(Hin(k — d(k))) + w” (k) DT P Dw(k)
+ 0" (CHin(k)E" PLEo(CHin(k)) + 82T (k)NT Hy P HaNE(K) + 20" (k) AT PLAgn(k — d(k))
+ 20" (k) AT PLBf (Hin(k)) + 20" (k) AT Py By fa(Hin(k — d(k))) + 207 (k) AT Py Dw(k)
+ 20" (k) AT Py Eo(CHin(k)) — 280" (k) AT PLH,NE(k) + 20" (k — d(k)) AG PLB f (Hin(k))
+ 20" (k — d(k)) AT PLBafa(Hin(k — d(k))) + 20" (k — d(k))Aj PLDw(k) + 20" (k — d(k))Aj PLEo(C Hin(k))
— 280" (k — d(k)) A} PLHyNE(k) + 2f T (Hin(k)) BT P By fo(Hin(k — d(k))) + 2fT (Hin(k)) B" P Dw(k)
+2fT(Hin(k))B" PLEo(CHyn(k)) — 28f7 (Hin(k)) BT PLHyN&(k) + 2f1 (Hin(k — d(k))) B PrDw(k)
+ 2 (Hin(k — d(k))Bj PLEo(CHin(k)) — 28 f1 (Hin(k — d(k)))Bj PLHyN&(k)
+ 20T (k)DT PLEo(CHn(k)) — 2Bw” (k)DT Py HyN¢ (k) — 2BET o (CHyn(k))PLHyNE(K) Y
(19)
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By noting (2), (5), (7), (10) andw?(k) < &2, it can be obtained further that
E{AV (k)}
<E{n" (k)(AT PLA + (dar — dm + 1) Py — Pr)n(k) + " (k — d(k)) (A7 PLAg — Po)n(k — d(k))
+ fT(Hin(k) BT PLBf(Hin(k)) + fq (Hin(k — d(k)))Bi PrBafa(Hin(k — d(k))) + w” (k) D" P Dw(k)
+ 0" (CHin(k))ET PLEa(CHin(k)) + B¢ (k)N Hy PiHoNE(K) + 207 (k) AT P Agn(k — d(k))
+ 20" (k)AT PLBf(Hin(k)) + 2n" (k) A" P By fo(Hin(k — d(k))) + 20" (k) A" Py Dw(k)
+ 21" (k) A" PLEo(CHyn(k)) — 280" (k) A" PLHoNE() + 20" (k — d(k)) Aj PLB f(Hin(k))
+ 21" (k — d(k)) A} PLBafa(Hin(k — d(k))) + 20" (k — d(k)) Aj PrDw(k) + 20" (k — d(k)) A PiEo(C Hin(k))
— 280" (k — d(k))A] PLHaNE(k) + 2T (Hin(k)) BT P B fo(Hin(k — d(k))) + 2f T (Hin(k)) B" P Dw(k)
+2fT(Hin(k)) BT PiEo(CHyn(k)) — 28 f7 (Hin(k)) BT PLHaNE(K) + 2f1 (Hin(k — d(k))) B P Dw(k)
+2f7 (Hin(k — d(k)))Bj PrEo(CHin(k)) — 28f (Hin(k — d(k))) By PH2N&(k)
+2w” (k) DT PLE(CHin(k)) — 2Bw” (k) D" PLHyNE (k) — 2BET o™ (CHin(k))Pr HyNE(R)}
+e1(67 — T (k)E(k)) — el f(Hin(k)) — K1 Hin(k)]" [f (Hin(k)) — KoHin(k)]
— e3[o(CHin(k)) — ACHn(k))" [o(CHin(k)) — CHin(k)] + £4(6% — w” (k)w(k))
— sl fa(Hin(k — d(k))) — TyHin(k — d(k)]" [fa(Hin(k — d(k))) — ToHin(k — d(k))]}
=E {¢" (k)Z¢(k) + 67},

(20)
where
o(k) = [nT(k) n"(k—d(k)) o"(CHin(k)) w"(k) fT(Hin(k)) fi(Hin(k—dFk)) &(k) '
By considering (13), it is easily known that
E{AV (K)} < = Amin(~E)E{|In(K)|*} + 6*. (21)
On the other hand, according to the definition of the eneilgyfunctional V' (k), it is seen that
k—1
V (k) < Amax(POE{I0(R) 1P} + Amax (P2)(dar — din +1) Y E{In()]*}. (22)
i=k—dnm
Now we introduce a scalar > 1 and it follows from (21) and (22) that
E{r* WV (k4 1)} — E{r*V (k)}
=r*HE{AV (k)} + PHTE{V ()} — rFE{V (k)}
<P i (“E)E{In(k) 7} + 6%] + r* (r — VE{V (k)} (23)
k—1
<a(r)r*B{In()[7} +b(r) D rFE{In()|*} + rFe?
i=k—d

where
CL(T) = _)\min(_E)T + (7" — 1))‘max(P1)7
b(r) = (dyr — dp, + 1)(r — 1) Aax (P2).
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For any integefl’ > d; + 1, summing up both sides of (23) fromto 7" — 1 with respect tok yields
E{r"V(T)} - E{V(0)}

T-1 ( T—-1 k-1 (24)
<a(r) Y r*E{||n(k)| }+792+b )Y > PE{InG))1?
k=0 k=0 i=k— d}u
The last term in (24) can be computed as
T—1 k-
> Z r*E{|In(i)]1*}
k) 01= k‘ d]u
—1 Z-‘rd]\/[ T— dM—l Z-‘rd]\/[ T-1 T—
(z SR SRS S Z)kE{Iln )
i=—dy k=0 i=0  k=i+l i=T—dy k=i+1 (25)
dM )T_
Z E{|In(i)|I” }+ Z E{|In(i)]*}
’l——dju =0
( d]\/[ 1
+7ZWE{H?7 )P}

Substituting (24) and (25), we have

E{r"V(T)} — E{V(0)}
r(l— TT) 9 b(r)(rdM — 1)dm
=71 ot -1 —difu<€<0E{”n( oI} (26)

Z r*E{[In(k)[?},

where

£(r) = a(r) + 2Tb(ri(id1: —1.

Since¢(1) = —Amin(—Z) < 0 andlim,_, &(r) = +o0, there exists a scalap > 1 such that(ry) = 0. Hence,
we find a scalarg > 1 such that

E{rg V(T)} — E{V(0)}

r _ T r dv (27)
<Pl MO DB wp (o))
Noting
sup  E{[|n(i)]?}
—dn<i<0
= sup E{||z(d)[]* + [le(i)]*} (28)
—dp<i<0
< sup E{llz(d)[} + sup E{H (i)|*} < 263,
—dpn <i<0 —dp<i<
E{rg V(T)} > Amin(P1)rg E{In(T)1*} > Amin(Pr)rg E{|e(T)]|*}, (29)
and
E{V(0)} < dymax(Amax(P1), (dar — dim + 1)Amax(P2))  sup  E{|[n(i)|*}, (30)

—d]\/[ 7 0
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we have o
E{le(T)|%} < Tg_l(ff__liliﬂ ) rgif:noan
0" [t~ o) AT "
= ma"{ Ar::éole )’ Amin(Piz;Zio —1) } '

By noting (13), it can be obtained th&{||e(7)||?} < 42 which, from Definition 1, implies that the filtering error
system (10) ig, d1, d2, d3)-secure and therefore the proof of Theorem 1 is complete. |

Remark 4:1t should be mentioned that, the aim of constructing a Lyapunnctional is to analyze the stability
for systems according to the traditional Lyapunov stapifiteory. In Theorem 1, however, we are interested in the
boundedness (rather than the stability) of the filter ereord the proposed energy-like functional is employed to
deduce the boundedness conditions.

According to the analysis conducted in Theorem 1, a solutbothe secure filtering problem with ROSSs and
RODAs is obtained in the following theorem. For the convan&of design, the positive definite matii is taken
as P, = diag { P11, P2} where P;; and P, are positive definite matrices.

Theorem 2:Let the positive scalar§ 1, 02, d3 be given. If there exist positive definite matrices= diag { P11, P22},
P, matricesX, Y and positive scalars,, <9, 3, &4, €5 satisfying the following inequalities

I, 1II
mo | le <0
* 22 ; (32)
¢(ro) 6ro } 2
max , <4
{)\min(Pl) )\min(Pl)(TO - 1) 3
where
_(dM —dy, + 1)P2 — P +Q 0 —e3Ry 0 —e9()9 0 0 1
* —P2 — 6551 0 0 0 —6552 0
* * —esl 0 0 0 0
II; = * * * —eql 0 0 0 |,
* * * * —eqol 0 0
* * * * * —55[ 0
* * * * * * —e1l
- - - ~ _ T
A PA; E 0 P B PB; —pH)Y .
II5 = . , Iy =diag{—P,—P},
"“lo 0o oD 0 o0 0 2 g (=P =P}
i | P A 0
| PpA-(1-a)1-BYC-X X|’
| P D . 0
D= b . b= i B ’
_P22D1 — (1 — /B)YDQ —a(l — 5)Y
and the constanty > 1 in (32) becomes the solution to the following equation
_/\min(_H)TO + (TO - I)Amax(Pl) + 27"O(dM —dpy + 1)/\max(P2)(T(C)lM - 1) =0, (33)

then, the filtering error system (10) {8, 01, d2, 03)-secure. In this case, the filter gain matrices are given by
F = Py,'X,

(34)
N = Py'Y.
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Proof: From Lemma 1, it is known thaE < 0 is equivalent to

o P
o=| " " |<o (35)
* =Dy
Pre- and post-multiplying the inequality (35) layag {I, 22}, we can obtain
. Py @
$ = [ 1 f?] <0, (36)
x Doy

where

P A PA; PE 0 PB PB; —BPHN g
0 0 0 PD 0 0 0 ’ (37)
Doy =diag {—Py, — P, }.

By settingX = Py F andY = Py N, itis easily seen thdil < 0 is exactly as the same as inequality (36) which
means that the conditions in Theorem 1 are satisfied and gteofeéhe proof of Theorem 2 follows Theorem 1
directly. [ |

Until now, we have analyzed security issue for the filterimgpesystem with randomly occurring both sensor
saturations and deception attacks, and obtained a suffic@rdition which ensures th@, d,, d2, d3)-security of
the filtering error system. In Theorem 2, the design methothefdesired filter has been given.

Remark 5:1n Theorems 1-2, the security-guaranteed filtering prokitesolved for a class of nonlinear stochastic
discrete time-delay systems with ROSSs and RODAs. The nawegt of(d, 41, d2, d3)-security is proposed to reflect
the degree of security against the noise intensity, theggrigsund of the false signals and the energy of the initial
system state, all of which are included in the main resultaddition to the sector-bound of the nonlinearities
as well as the bounds of the time-delays. An energy-like tianal is constructed to derive the delay-dependent
security criteria and the corresponding solvability coiodss for the desired filter gains are expressed in terms of
the feasibility of few linear matrix inequalities (LMIs) d@lb can be solved using available software package.

Remark 6:1t is worth mentioning that this paper is not concerned witb attack detection issue. However, no
matter how strong the attack is, a security-guaranteed Glie be always obtained by using the proposed design
approach.

Do =

IV. ILLUSTRATIVE EXAMPLES

In this section, a numerical simulation example is giverhiovethe effectiveness of the filtering methods proposed
in this paper. The parameters of the nonlinear stochastiretie time-delay system (1) are given as follows

A 0.5 0.02’ Ay = 0.05 0 . B- 0.02 0.1 ’
0.01 0.6 0 0.03 0 0.05

0.01 0 1
]7 DlZ[], dm =1, dy =5.

B, =
d 0 0.02 1

The nonlinear functions are chosen to be
F(a(k)) = sign(z(k))log(sign(z (k) )z (k) + 1),
Fa(x(k — d(k))) = sign(z(k — d(k)))log(sign(z(k — d(k)))z(k — d(k)) + 1).
It is easy to see that functionsand f,; satisfy the sector-bounded conditions (2) with parameters

0 0 10
. Ko=Ty= .
] 2201]

K =T =
1 1 00
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The parameters of the measurement output model are taken as
C= [1 o}, Dy = 1.

Moreover, the sensor saturation parameter is sek as 0.5 and the probabilities of saturations and deception
attacks are assumed to be= 0.2 and3 = 0.3. The parameter§, 4,1, 6o andos are taken a$.3, 0.2, 0.3 and1.2,
respectively.

With the above parameters, the inequality in (32) is solwedding the Matlab software (with the YALMIP 3.0)
and, according to (34), the desired filter gaifisand N can be obtained as follows

b [—0.0592 0.0435] N [1.0130] |
—0.2187 0.3780 0.6939

In the simulation, the disturbance from attackers is sete@s¢(k) = J; and the initial values of the state
are chosen as(—5) = z(—4) = 2(-3) = z(-2) = z(—1) = z(0) = [0.2 0.2]T. The simulation results are
shown in Figs. 1-6. Figs. 1-2 plot the actually occurringdiinstants of sensor saturations and deception attacks,
respectively. Figs. 3-4 depict the state trajectories &edt £stimates. The norm of filtering errors in the presence
of sensor saturations and deception attacks is shown in5rifom which we can see that the norm is always
below the given bounds. Also, the relation between the norm of filtering error and #ttack bound is shown in

Fig. 6. It can be seen from Fig. 6 that the norm of the filteringrewill increase when the attack bound becomes
large. The simulation results have demonstrated the afferss of the designed filter.

V. CONCLUSIONS

In this paper, we have discussed the secure filtering profieia class of nonlinear stochastic discrete time-delay
systems with both ROSSs and RODAs. A novel measurementioutpdel has been provided to describe the ROSSs
and RODAs within a unified framework. Then, by using the s&stic analysis techniques, a sufficient condition
has been obtained to guarantee the security requiremehe @&ddressed systems. Furthermore, the design method
of the desired secure filter gain has been obtained by solvillgear matrix inequality with nonlinear constraints.
Finally, a numerical example has been exploited to show sleéulness of the filtering scheme derived in this paper.
One of the future research topics would be the extension pir@in results to the distributed filtering problems
over wireless sensor networks [23].

2 T 2
1.8f q 1.8f
1.6 q 1.6
1.4F q 14}F
1.2F q 1.2F
1F - 1
0.8 q 0.8
0.6 q 0.6
0.4r q 0.4r
0.2 q 0.2
o0 26 AJO éO BJO 100 o0 2‘0 4‘0 éO 8‘0 100
time(k) time(k)

Fig. 1: Occurring of sensor saturations. Fig. 2: Occurring of deception attacks.
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Fig. 3: Stater; (k) and its estimate:; (k). Fig. 4: Statery(k) and its estimatea (k).
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Fig. 5: The norm of filtering errors with both sensor
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Fig. 6: The average norm of filtering errors.
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