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Abstract

In this paper, the security-guaranteed filtering problem isstudied for a class of nonlinear stochastic discrete

time-delay systems with randomly occurring sensor saturations (ROSSs) and randomly occurring deception attacks

(RODAs). The nonlinearities in systems satisfy the sector-bounded conditions and the time-varying delays are

unknown with given lower and upper bounds. A novel measurement output model is proposed to reflect both the

ROSSs and the RODAs. A new definition is put forward on the security level with respect to the noise intensity,

the energy bound of the false signals, the energy of the initial system state and the desired security degree. We

aim at designing a filter such that, in the presence of ROSSs and RODAs, the filtering error dynamics achieves

the prescribed level of security. By using the stochastic analysis techniques, a sufficient condition is first derived

under which the filtering error system is guaranteed to have the desired security level, and then the filter gain is

designed by solving a linear matrix inequality with nonlinear constraints. Finally, a numerical example is provided

to demonstrate the feasibility of the proposed filtering scheme.

Index Terms

Security-guaranteed filtering, nonlinear stochastic systems, discrete time-delay systems, randomly occurring

sensor saturations, randomly occurring deception attacks.

I. INTRODUCTION

In reality, most physical systems are inherently nonlinearand the nonlinearity results in considerable system

complexity. In engineering practice such as maneuverable target tracking and mobile robot navigation, one often

needs to estimate the true value of states of the nonlinear systems based on some potentially noisy measurement

outputs, and such nonlinear filtering problems have been attracting considerable research interest in the past few

decades due to their wide application potentials. A number of efficient algorithms have been developed to solve

the nonlinear filtering problems, among which the most renowned one is arguably the extended Kalman filtering

approach that is applicable to linearized systems with Gaussian noises of known statistics. In addition, theH∞

and robust filters for nonlinear systems have been paid much attention due to their excellent robustness against
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the exogenous disturbances and parameter uncertainties. For example, the extended Kalman filtering problems

for nonlinear system have been investigated in [16], [17]. The H∞ filter has been designed for systems with

affine nonlinearities [1], sector-bounded nonlinearities[25], nonlinear fractional transformations [37] and randomly

occurring nonlinear disturbances [10]. In [28], the robustfiltering problem has been investigated for a class of

discrete-time uncertain stochastic nonlinear time-delaysystems with both the probabilistic missing measurements

and external stochastic disturbances.

In practice, due to a variety of reasons such as the unmodeledinertia of system components and the finite speeds

of the transmitting signals, the time delay has proven to be apervasive phenomenon with many dynamic systems.

In recent years, the study of time-delay systems has attracted much attention and a large number of research results

have been reported in the literature, see e.g. [5], [13], [14], [29], [30], [33], [34]. Different types of time-delays (e.g.

constant delays, time-varying delays, discrete delays anddistributed delays) have been thoroughly investigated in

the analysis and control problems by using a variety of methods such as the linear matrix inequality approach, the

Lyapunov functional method, theM -matrix theory, the topological degree theory as well as thegeneral inequality

techniques. For instance, in [29], time-varying mode-dependent delays have been considered in the robustH∞

filtering problem. In [13], a robustH∞ filter has been designed for linear discrete-time uncertainsystems with

multiple delays in the states by using a delay-dependent approach. Very recently, a reliable filter has been designed

in [27] for a class of discrete-time piecewise linear systems with both sensor failures and infinite distributed delays.

As is well known, the filtering performance is highly dependent on the information knowna priori on the available

measurements and the sensors responsible for collecting/transmitting signals play a vitally important role in the

filtering process. A particular phenomenon that occurs often to the sensors is the so-called saturation resulting from

physical, safety or technological constraints on the components of the system such as battery capacity, power limit

and intermittent failures. Sensor saturations are essentially a nonlinear behavior that could lead to poor performances

or even instability of the system. In the context of nonlinear filtering, much work has recently been done to attenuate

the effects from the sensor saturation phenomenon or packetlosses on the overall filtering performance, see. e.g.

[15], [22], [26], [31], [32], [35], [36]. For example, theH∞ filter has been designed in [26] for systems with

both sensor saturations and missing measurements. In [15],the probability-guaranteedH∞ finite-horizon filtering

problem has been investigated for a class of nonlinear time-varying systems with sensor saturations.

With rapid development of communication networks, many components of physical systems (e.g. actuators,

sensors and state estimators) are required to share a commoncommunication link [6]–[9], [11], [19], [20]. Due to

the strong opening-up property of a shared network, the datareceived by sensors may be transmitted over the network

without security protections. As such, attackers can arbitrarily intercept, tamper or retransmit the data transmitted

in the network and hence destabilize the plant or steer the plant to their desired operating points. Therefore, the

attack behaviours for physical systems have attracted muchattention in recent years, and some preliminary results

related to this emerging topic of research have been reported in the literature, see e.g. [2], [3], [12], [21], [24],

[38]. It should be pointed out that, deception attacks (or false data injection attacks) are considered to be the most

dangerous attack behaviours since attackers can inject themalicious data in order to degrade or even deteriorate

the performance of systems. For example, in [2], a defendingmechanism against false data injection attacks has

been proposed for state estimation of power system in terms of graphical methods and the main results have then

been extended in [3]. Nevertheless, when the system is subject to both sensor saturations and deception attacks in

a possibly random way, the corresponding security-guaranteed filtering problem has not been investigated yet, not

to mention the case when nonlinearities and time-delays arealso present. It is, therefore, the main motivation of

this paper to shorten such a gap.

The contributions of the paper are summarized as follows. 1)A new research problem of security-guaranteed filter
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design is proposed for nonlinear stochastic discrete time-delay systems with randomly occurring sensor saturations

as well as deception attacks. 2) A novel model for measurement outputs is put forward to account for the sensor

saturations and the deception attacks that are randomly occurring according to two sets of Bernoulli distributed

white sequences. 3) In order to quantify the security degree, we introduce a new concept of mean square security

domain. 4) A sufficient condition is derived under which the filtering error dynamics achieves the desired degree of

security and then the desired filter gain is obtained by solving a linear matrix inequality with nonlinear constraints.

This paper is organized as follows. Security-guaranteed filtering problem for nonlinear stochastic discrete time-

delay systems with randomly occurring sensor saturations as well as deception attacks is presented in Section II,

where we propose a novel model for measurement outputs and a new concept of mean-square security domain to

describe this issue. Then, in Section III, with the help of the stochastic analysis techniques, a sufficient condition is

derived to make the filtering error dynamics to achieve the desired degree of security and the desired filter gain is

obtained subsequently. Finally, an illustrative example is presented to show the effectiveness of the filtering scheme

proposed in Section IV.

Notation The notation used here is fairly standard except where otherwise stated.Rn and R
n×m denote,

respectively, then dimensional Euclidean space and the set of alln × m real matrices. The notationX ≥ Y

(respectively,X > Y ), whereX andY are real symmetric matrices, means thatX − Y is positive semi-definite

(respectively, positive definite).MT represents the transpose of the matrixM . I denotes the identity matrix of

compatible dimension. diag{· · · } stands for a block-diagonal matrix.N+ indicates the positive integer set.λmax(A)

andλmin(A) denote the maximum and minimum eigenvalue ofA, respectively.E{x} stands for the expectation

of the stochastic variablex. ‖x‖ describes the Euclidean norm of a vectorx. In symmetric block matrices, “∗”

is used to denote a term induced by symmetry. Matrices, if they are not explicitly specified, are assumed to have

compatible dimensions.

II. PROBLEM FORMULATION

Consider the following discrete-time nonlinear stochastic system with time delays

x(k + 1) =Ax(k) +Adx(k − d(k)) +Bf(x(k)) +Bdfd(x(k − d(k))) +D1w(k),

x(j) =ϕ(j), j = −dM ,−dM + 1, . . . ,−1, 0,
(1)

wherex(k) ∈ R
nx is the state vector,w(k) ∈ R is a zero-mean Gaussian white noise sequence withEw2(k) ≤ δ2,

A, Ad, B, Bd, andD1 are known real constant matrices with appropriate dimensions.ϕ(j) (j = −dM ,−dM +

1, . . . ,−1, 0) are the initial conditions, which are assumed to be independent of the process{w(k)}k∈N+ .

The nonlinear functionsf : Rnx → R
nx andfd : Rnx → R

nx satisfy the following sector-bounded conditions:

[f(x)−K1x]
T [f(x)−K2x] ≤0,

[fd(x)− T1x]
T [fd(x)− T2x] ≤0,

(2)

whereK1, K2, T1 andT2 are known real matrices of appropriate dimensions.K = K1 −K2 andT = T1 −T2 are

symmetric positive definite matrices.

For the system (1), the positive integerd(k) denotes the time-varying delay satisfying

dm ≤ d(k) ≤ dM , k ∈ N
+, (3)

where the lower bounddm and the upper bounddM are known positive integers.
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The sensor measurement model with randomly occurring saturations and deception attacks is described by

ỹ(k) =α(k)σ(Cx(k)) + (1− α(k))Cx(k) +D2w(k),

y(k) =ỹ(k) + β(k)v(k),

v(k) =− ỹ(k) + ξ(k),

(4)

where ỹ(k) ∈ R
ny is the measurement outputs with randomly occurring sensor saturations (ROSSs),y(k) ∈ R

ny

is the received measurement outputs with randomly occurring deception attacks (RODAs),v(k) ∈ R
ny stands for

the signal sent by adversaries with the non-zeroξ(k) ∈ R
ny satisfying

‖ ξ(k) ‖≤ δ1. (5)

for a given positive scalarδ1. C andD2 are known real constant matrices with appropriate dimensions.

Remark 1:When launching deception attacks, the attackers inject malicious data in order to degrade or deteriorate

the system performances. In (4), the external signals (injected false data) sent by the adversaries are justv(k)

and the attackers do not need to know the exact information about ỹ(t). The reason for us to rewritev(k) as

v(k) = −ỹ(k) + ξ(k) is just for the analysis convenience. Note that the “deception function” ξ(k) is assumed to

satisfy the boundedness condition (5) for the specific classof deception attacks considered in this paper.

The saturation functionσ(·) is defined as

σ(u) =
[

σ(u1) σ(u2) . . . σ(uny
)
]T

, ∀u ∈ R
ny (6)

whereσ(ui) = sign(ui)min{ui, |ui|} for i = 1, 2, · · · , ny. Here, sign(·) denotes the signum function andui is

the saturation level. From the definition of saturation function σ(·), there exists a diagonal matrixΛ satisfying

0 ≤ Λ < I and

[σ(u)− Λu]T [σ(u)− u] ≤ 0. (7)

The stochastic variablesα(k) and β(k) are two mutually independent Bernoulli distributed white sequences

taking values on0 or 1 with the following probabilities

Prob{α(k) = 0} =1− ᾱ, Prob{α(k) = 1} = ᾱ,

Prob{β(k) = 0} =1− β̄, Prob{β(k) = 1} = β̄,
(8)

whereᾱ ∈ [0, 1) and β̄ ∈ [0, 1) are two known constants.

Remark 2: In reality, the physical parameters of a networked environment (e.g. network load, network congestion,

network transmission rate) are typically randomly fluctuated and, from the defenders’ perspective, the attacks

successfully passing through the detectors may occur intermittently or randomly. In other words, the successes of

the attacks are largely dependent on the randomly changing network conditions and the given value ofβ̄ represents

the success rate for launched attacks that can be estimated through statistical tests or specified according to the

security requirements.

Based on the measurements mentioned before, the following filter structure is adopted

x̂(k + 1) = Fx̂(k) +Ny(k),

x̂(j) = 0, j = −dM ,−dM + 1, . . . ,−1, 0,
(9)

wherex̂(k) ∈ R
nx is the state estimate,F andN are the filter parameters to be determined.x̂(j) (j = −dM ,−dM+

1, . . . ,−1, 0) are the estimates of initial states.
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By letting the filtering errore(k) = x(k)− x̂(k), it follows from (1), (4) and (9) that

e(k + 1) =Fe(k) + [A− (1− α(k))(1 − β(k))NC − F ]x(k) +Adx(k − d(k))

− [α(k)(1 − β(k))N ]σ(Cx(k)) + [D1 − (1− β(k))ND2]w(k)

+Bf(x(k)) +Bdfd(x(k − d(k))) − β(k)Nξ(k).

(10)

It is easily seen that the initial errors satisfye(j) = x(j) = ϕ(j) (j = −dM ,−dM + 1, . . . ,−1, 0).

We introduce the following definition.

Definition 1: Let the positive constant scalarsδ, δ1, δ2 andδ3 be given. The filtering error system (10) is said to

be (δ, δ1, δ2, δ3)-secureif, when Ew2(k) ≤ δ2, ‖ξ(k)‖ ≤ δ1 and sup
−dM≤i≤0

E‖ϕ(i)‖2 ≤ δ22 , one hasE‖e(k)‖2 ≤ δ23

for all k ≥ dM + 1.

In this paper, our main purpose is to design a filter for system(1) with measurement outputs described by (4)

such that the filtering error system (10) is(δ, δ1, δ2, δ3)-secure.

Remark 3: In the framework ofH∞ filtering, the exogenous disturbances are usually assumed to satisfy the

energy-bounded conditions. In other words, the signals intensity from the outside will decrease gradually to zero as

time tends to infinity. Such an assumption is, however, unsuitable for the deception attacks because the adversaries

would launch uninterrupted attacks with non-zero intensities. In the presence of persistent attacks with non-zero

intensities, it is only possible to ensure the boundedness (as opposed to the conventional zero-equilibrium inH∞

filtering) of the filtering error which is essentially the requirement of the so-called security-guaranteed filtering. As

such, instead of the energy-bounded condition, a norm-bounded condition is imposed on the external attack signals

so as to make it possible to guarantee the boundedness (security) of the filtering errors.

III. M AIN RESULTS

In this section, we first derive a sufficient condition under which the filtering error system (10) is(δ, δ1, δ2, δ3)-

secure in the presence of both ROSSs and RODAs. Based on the obtained condition, the design method of the

desired filter is then given.

For the convenience of the manipulation, we setη(k) =
[

xT (k) eT (k)
]T

, and then the dynamic system (1)

and the filtering error system (10) can be combined into an augmented system as follows:

η(k + 1) =Āη(k) + Ãdη(k − d(k)) + B̃f(H1η(k)) + B̃dfd(H1η(k − d(k)))

+ D̄w(k) + Ēσ(CH1η(k)) − β(k)H2Nξ(k)
(11)

where

Ā =

[

A 0

A− (1− α(k))(1 − β(k))NC − F F

]

, H1 =
[

I 0
]

,

Ãd =

[

Ad 0

Ad 0

]

, B̃ =

[

B

B

]

, B̃d =

[

Bd

Bd

]

, H2 =

[

0

I

]

,

D̄ =

[

D1

D1 − (1− β(k))ND2

]

, Ē =

[

0

−α(k)(1 − β(k))N

]

.

The following lemma will be used in the proof of our main result in this paper.

Lemma 1: [4] Given constant matricesS1, S2 andS3, whereS1 = ST
1 andS2 = ST

2 > 0, thenS1+S3S
−1
2 ST

3 < 0

if and only if
[

S1 S3

ST
3 −S2

]

< 0 or

[

−S2 ST
3

S3 S1

]

< 0. (12)
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In the following theorem, a sufficient condition is providedunder which the filtering error system (10) is

(δ, δ1, δ2, δ3)-secure.

Theorem 1:Let the positive scalarsδ, δ1, δ2, δ3 and the filter gainsF , N be given. The filtering error system

(10) is (δ, δ1, δ2, δ3)-secure if there exist positive definite matricesP1, P2 and positive scalarsε1, ε2, ε3, ε4, ε5
satisfying the following inequalities











Ξ = Φ11 +Φ12Φ22Φ
T
12 < 0

max

{

ζ(r0)

λmin(P1)
,

θ2r0
λmin(P1)(r0 − 1)

}

≤ δ23
(13)

where

Φ11 =



























(dM − dm + 1)P2 − P1 +Ω 0 −ε3R2 0 −ε2Q2 0 0

∗ −P2 − ε5S1 0 0 0 −ε5S2 0

∗ ∗ −ε3I 0 0 0 0

∗ ∗ ∗ −ε4I 0 0 0

∗ ∗ ∗ ∗ −ε2I 0 0

∗ ∗ ∗ ∗ ∗ −ε5I 0

∗ ∗ ∗ ∗ ∗ ∗ −ε1I



























,

Φ12 =

[

Ã Ãd Ẽ 0 B̃ B̃d −β̄H2N

0 0 0 D̃ 0 0 0

]T

,

Ã =

[

A 0

A− (1− ᾱ)(1 − β̄)NC − F F

]

,

D̃ =

[

D1

D1 − (1− β̄)ND2

]

, Ẽ =

[

0

−ᾱ(1− β̄)N

]

,

Q1 =(HT
1 K

T
1 K2H1 +HT

1 K
T
2 K1H1)/2, Q2 = −HT

1 (K
T
1 +KT

2 )/2,

S1 =(HT
1 T

T
1 T2H1 +HT

1 T
T
2 T1H1)/2, S2 = −HT

1 (T
T
1 + T T

2 )/2,

R1 =HT
1 C

TΛCH1, R2 = −HT
1 C

T (Λ + I)/2,

Ω =− ε3R1 − ε2Q1, Φ22 = diag {P1, P1}, θ =
√

ε1δ21 + ε4δ2,

and the constantr0 > 1 in (13) is the solution to the following equation

−λmin(−Ξ)r0 + (r0 − 1)λmax(P1) + 2r0(dM − dm + 1)λmax(P2)(r
dM

0 − 1) = 0, (14)

andζ(r0) is given as follows

ζ(r0) = 2 (µ+ ν) δ22 , (15)

where

µ = dMλmax(P2)(r
dM

0 − 1)(dM − dm + 1),

ν = dMmax(λmax(P1), (dM − dm + 1)λmax(P2)).
(16)

Proof: Construct the following energy-like functional

V (k) = V1(k) + V2(k) + V3(k), (17)
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where

V1(k) =ηT (k)P1η(k),

V2(k) =

k−1
∑

i=k−d(k)

ηT (i)P2η(i),

V3(k) =

k−dm
∑

j=k−dM+1

k−1
∑

i=j

ηT (i)P2η(i).

(18)

The mathematical expectation of the difference of the energy-like functional along the system (11) is calculated

as follows:

E{∆V (k)}

=E{∆V1(k)} + E{∆V2(k)} + E{∆V3(k)}

=E
{

ηT (k + 1)P1η(k + 1)− ηT (k)P1η(k) + (dM − dm + 1)ηT (k)P2η(k)− ηT (k − d(k))P2η(k − d(k))
}

=E{ηT (k)(ÃTP1Ã+ (dM − dm + 1)P2 − P1)η(k) + ηT (k − d(k))(ÃT
d P1Ãd − P2)η(k − d(k))

+ fT (H1η(k))B̃
TP1B̃f(H1η(k)) + fT

d (H1η(k − d(k)))B̃T
d P1B̃dfd(H1η(k − d(k))) + wT (k)D̃TP1D̃w(k)

+ σT (CH1η(k))Ẽ
TP1Ẽσ(CH1η(k)) + β̄2ξT (k)NTHT

2 P1H2Nξ(k) + 2ηT (k)ÃTP1Ãdη(k − d(k))

+ 2ηT (k)ÃTP1B̃f(H1η(k)) + 2ηT (k)ÃTP1B̃dfd(H1η(k − d(k))) + 2ηT (k)ÃTP1D̃w(k)

+ 2ηT (k)ÃTP1Ẽσ(CH1η(k)) − 2β̄ηT (k)ÃTP1H2Nξ(k) + 2ηT (k − d(k))ÃT
d P1B̃f(H1η(k))

+ 2ηT (k − d(k))ÃT
d P1B̃dfd(H1η(k − d(k))) + 2ηT (k − d(k))ÃT

d P1D̃w(k) + 2ηT (k − d(k))ÃT
d P1Ẽσ(CH1η(k))

− 2β̄ηT (k − d(k))ÃT
d P1H2Nξ(k) + 2fT (H1η(k))B̃

TP1B̃dfd(H1η(k − d(k))) + 2fT (H1η(k))B̃
TP1D̃w(k)

+ 2fT (H1η(k))B̃
TP1Ẽσ(CH1η(k)) − 2β̄fT (H1η(k))B̃

TP1H2Nξ(k) + 2fT
d (H1η(k − d(k)))B̃T

d P1D̃w(k)

+ 2fT
d (H1η(k − d(k)))B̃T

d P1Ẽσ(CH1η(k)) − 2β̄fT
d (H1η(k − d(k)))B̃T

d P1H2Nξ(k)

+ 2wT (k)D̃TP1Ẽσ(CH1η(k)) − 2β̄wT (k)D̃TP1H2Nξ(k)− 2β̄ẼTσT (CH1η(k))P1H2Nξ(k)}

(19)
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By noting (2), (5), (7), (10) andEw2(k) ≤ δ2, it can be obtained further that

E{∆V (k)}

≤E{ηT (k)(ÃTP1Ã+ (dM − dm + 1)P2 − P1)η(k) + ηT (k − d(k))(ÃT
d P1Ãd − P2)η(k − d(k))

+ fT (H1η(k))B̃
TP1B̃f(H1η(k)) + fT

d (H1η(k − d(k)))B̃T
d P1B̃dfd(H1η(k − d(k))) + wT (k)D̃TP1D̃w(k)

+ σT (CH1η(k))Ẽ
TP1Ẽσ(CH1η(k)) + β̄2ξT (k)NTHT

2 P1H2Nξ(k) + 2ηT (k)ÃTP1Ãdη(k − d(k))

+ 2ηT (k)ÃTP1B̃f(H1η(k)) + 2ηT (k)ÃTP1B̃dfd(H1η(k − d(k))) + 2ηT (k)ÃTP1D̃w(k)

+ 2ηT (k)ÃTP1Ẽσ(CH1η(k)) − 2β̄ηT (k)ÃTP1H2Nξ(k) + 2ηT (k − d(k))ÃT
d P1B̃f(H1η(k))

+ 2ηT (k − d(k))ÃT
d P1B̃dfd(H1η(k − d(k))) + 2ηT (k − d(k))ÃT

d P1D̃w(k) + 2ηT (k − d(k))ÃT
d P1Ẽσ(CH1η(k))

− 2β̄ηT (k − d(k))ÃT
d P1H2Nξ(k) + 2fT (H1η(k))B̃

TP1B̃dfd(H1η(k − d(k))) + 2fT (H1η(k))B̃
TP1D̃w(k)

+ 2fT (H1η(k))B̃
TP1Ẽσ(CH1η(k)) − 2β̄fT (H1η(k))B̃

TP1H2Nξ(k) + 2fT
d (H1η(k − d(k)))B̃T

d P1D̃w(k)

+ 2fT
d (H1η(k − d(k)))B̃T

d P1Ẽσ(CH1η(k)) − 2β̄fT
d (H1η(k − d(k)))B̃T

d P1H2Nξ(k)

+ 2wT (k)D̃TP1Ẽσ(CH1η(k)) − 2β̄wT (k)D̃TP1H2Nξ(k)− 2β̄ẼTσT (CH1η(k))P1H2Nξ(k)}

+ ε1(δ
2
1 − ξT (k)ξ(k)) − ε2[f(H1η(k)) −K1H1η(k)]

T [f(H1η(k)) −K2H1η(k)]

− ε3[σ(CH1η(k)) − ΛCH1η(k)]
T [σ(CH1η(k)) − CH1η(k)] + ε4(δ

2 − wT (k)w(k))

− ε5[fd(H1η(k − d(k))) − T1H1η(k − d(k))]T [fd(H1η(k − d(k))) − T2H1η(k − d(k))]}

=E
{

φT (k)Ξφ(k) + θ2
}

,

(20)

where

φ(k) =
[

ηT (k) ηT (k − d(k)) σT (CH1η(k)) wT (k) fT (H1η(k)) fT
d (H1η(k − d(k))) ξT (k)

]T

.

By considering (13), it is easily known that

E{∆V (k)} ≤ − λmin(−Ξ)E{‖η(k)‖2}+ θ2. (21)

On the other hand, according to the definition of the energy-like functionalV (k), it is seen that

V (k) ≤ λmax(P1)E{‖η(k)‖
2}+ λmax(P2)(dM − dm + 1)

k−1
∑

i=k−dM

E{‖η(i)‖2}. (22)

Now we introduce a scalarr > 1 and it follows from (21) and (22) that

E{rk+1V (k + 1)} − E{rkV (k)}

=rk+1
E{∆V (k)} + rk+1

E{V (k)} − rkE{V (k)}

≤rk+1[−λmin(−Ξ)E{‖η(k)‖2}+ θ2] + rk(r − 1)E{V (k)}

≤a(r)rkE{‖η(k)‖2}+ b(r)

k−1
∑

i=k−dM

rkE{‖η(i)‖2}+ rk+1θ2

(23)

where

a(r) = −λmin(−Ξ)r + (r − 1)λmax(P1),

b(r) = (dM − dm + 1)(r − 1)λmax(P2).
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For any integerT ≥ dM + 1, summing up both sides of (23) from0 to T − 1 with respect tok yields

E{rTV (T )} − E{V (0)}

≤a(r)

T−1
∑

k=0

rkE{‖η(k)‖2}+
r(1− rT )

1− r
θ2 + b(r)

T−1
∑

k=0

k−1
∑

i=k−dM

rkE{‖η(i)‖2}.
(24)

The last term in (24) can be computed as

T−1
∑

k=0

k−1
∑

i=k−dM

rkE{‖η(i)‖2}

≤

(

−1
∑

i=−dM

i+dM
∑

k=0

+

T−dM−1
∑

i=0

i+dM
∑

k=i+1

+

T−1
∑

i=T−dM

T−1
∑

k=i+1

)

rkE{‖η(i)‖2}

≤
rdM − 1

r − 1

−1
∑

i=−dM

E{‖η(i)‖2}+
r(rdM − 1)

r − 1

T−1
∑

i=0

riE{‖η(i)‖2}

+
r(rdM−1 − 1)

r − 1

T−1
∑

i=0

riE{‖η(i)‖2}.

(25)

Substituting (24) and (25), we have

E{rTV (T )} − E{V (0)}

≤
r(1− rT )

1− r
θ2 +

b(r)(rdM − 1)dM
r − 1

sup
−dM≤i≤0

E{‖η(i)‖2}

+ ξ(r)

T−1
∑

k=0

rkE{‖η(k)‖2},

(26)

where

ξ(r) = a(r) +
2rb(r)(rdM − 1)

r − 1
.

Sinceξ(1) = −λmin(−Ξ) < 0 andlimr→∞ ξ(r) = +∞, there exists a scalarr0 > 1 such thatξ(r0) = 0. Hence,

we find a scalarr0 > 1 such that

E{rT0 V (T )} − E{V (0)}

≤
r0(1− rT0 )

1− r0
θ2 +

b(r0)(r
dM

0 − 1)dM
r0 − 1

sup
−dM≤i≤0

E{‖η(i)‖2}.
(27)

Noting

sup
−dM≤i≤0

E{‖η(i)‖2}

= sup
−dM≤i≤0

E{‖x(i)‖2 + ‖e(i)‖2}

≤ sup
−dM≤i≤0

E{‖x(i)‖2}+ sup
−dM≤i≤0

E{‖e(i)‖2} ≤ 2δ22 ,

(28)

E{rT0 V (T )} ≥ λmin(P1)r
T
0 E{‖η(T )‖

2} ≥ λmin(P1)r
T
0 E{‖e(T )‖

2}, (29)

and

E{V (0)} ≤ dMmax(λmax(P1), (dM − dm + 1)λmax(P2)) sup
−dM≤i≤0

E{‖η(i)‖2}, (30)
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we have

E{‖e(T )‖2} ≤
(rT0 − 1)θ2

rT−1
0 (r0 − 1)λmin(P1)

+
ζ(r0)

rT0 λmin(P1)

= r−T
0

[

ζ(r0)

λmin(P1)
−

θ2r0
λmin(P1)(r0 − 1)

]

+
θ2r0

λmin(P1)(r0 − 1)

≤ max

{

ζ(r0)

λmin(P1)
,

θ2r0
λmin(P1)(r0 − 1)

}

.

(31)

By noting (13), it can be obtained thatE{‖e(T )‖2} ≤ δ23 which, from Definition 1, implies that the filtering error

system (10) is(δ, δ1, δ2, δ3)-secure and therefore the proof of Theorem 1 is complete.

Remark 4: It should be mentioned that, the aim of constructing a Lyapunov functional is to analyze the stability

for systems according to the traditional Lyapunov stability theory. In Theorem 1, however, we are interested in the

boundedness (rather than the stability) of the filter errorsand the proposed energy-like functional is employed to

deduce the boundedness conditions.

According to the analysis conducted in Theorem 1, a solutionto the secure filtering problem with ROSSs and

RODAs is obtained in the following theorem. For the convenience of design, the positive definite matrixP1 is taken

asP1 = diag {P11, P22} whereP11 andP22 are positive definite matrices.

Theorem 2:Let the positive scalarsδ, δ1, δ2, δ3 be given. If there exist positive definite matricesP1 = diag {P11, P22},

P2, matricesX, Y and positive scalarsε1, ε2, ε3, ε4, ε5 satisfying the following inequalities


















Π =

[

Π11 Π12

∗ Π22

]

< 0

max

{

ζ(r0)

λmin(P1)
,

θ2r0
λmin(P1)(r0 − 1)

}

≤ δ23

(32)

where

Π11 =



























(dM − dm + 1)P2 − P1 +Ω 0 −ε3R2 0 −ε2Q2 0 0

∗ −P2 − ε5S1 0 0 0 −ε5S2 0

∗ ∗ −ε3I 0 0 0 0

∗ ∗ ∗ −ε4I 0 0 0

∗ ∗ ∗ ∗ −ε2I 0 0

∗ ∗ ∗ ∗ ∗ −ε5I 0

∗ ∗ ∗ ∗ ∗ ∗ −ε1I



























,

Π12 =

[

Â P1Ãd Ê 0 P1B̃ P1B̃d −β̄H2Y

0 0 0 D̂ 0 0 0

]T

, Π22 = diag {−P1,−P1},

Â =

[

P11A 0

P22A− (1− ᾱ)(1− β̄)Y C −X X

]

,

D̂ =

[

P11D1

P22D1 − (1− β̄)Y D2

]

, Ê =

[

0

−ᾱ(1− β̄)Y

]

,

and the constantr0 > 1 in (32) becomes the solution to the following equation

−λmin(−Π)r0 + (r0 − 1)λmax(P1) + 2r0(dM − dm + 1)λmax(P2)(r
dM

0 − 1) = 0, (33)

then, the filtering error system (10) is(δ, δ1, δ2, δ3)-secure. In this case, the filter gain matrices are given by

F = P−1
22 X,

N = P−1
22 Y.

(34)
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Proof: From Lemma 1, it is known thatΞ < 0 is equivalent to

Φ =

[

Φ11 Φ12

∗ −Φ−1
22

]

< 0. (35)

Pre- and post-multiplying the inequality (35) bydiag {I,Φ22}, we can obtain

Φ̂ =

[

Φ11 Φ̂12

∗ Φ̂22

]

< 0, (36)

where

Φ̂12 =

[

P1Ã P1Ãd P1Ẽ 0 P1B̃ P1B̃d −β̄P1H2N

0 0 0 P1D̃ 0 0 0

]T

,

Φ̂22 =diag {−P1,−P1}.

(37)

By settingX = P22F andY = P22N , it is easily seen thatΠ < 0 is exactly as the same as inequality (36) which

means that the conditions in Theorem 1 are satisfied and the rest of the proof of Theorem 2 follows Theorem 1

directly.

Until now, we have analyzed security issue for the filtering error system with randomly occurring both sensor

saturations and deception attacks, and obtained a sufficient condition which ensures the(δ, δ1, δ2, δ3)-security of

the filtering error system. In Theorem 2, the design method ofthe desired filter has been given.

Remark 5: In Theorems 1-2, the security-guaranteed filtering problemis solved for a class of nonlinear stochastic

discrete time-delay systems with ROSSs and RODAs. The new concept of(δ, δ1, δ2, δ3)-security is proposed to reflect

the degree of security against the noise intensity, the energy bound of the false signals and the energy of the initial

system state, all of which are included in the main results inaddition to the sector-bound of the nonlinearities

as well as the bounds of the time-delays. An energy-like functional is constructed to derive the delay-dependent

security criteria and the corresponding solvability conditions for the desired filter gains are expressed in terms of

the feasibility of few linear matrix inequalities (LMIs) that can be solved using available software package.

Remark 6: It is worth mentioning that this paper is not concerned with the attack detection issue. However, no

matter how strong the attack is, a security-guaranteed filter can be always obtained by using the proposed design

approach.

IV. I LLUSTRATIVE EXAMPLES

In this section, a numerical simulation example is given to show the effectiveness of the filtering methods proposed

in this paper. The parameters of the nonlinear stochastic discrete time-delay system (1) are given as follows

A =

[

0.5 0.02

0.01 0.6

]

, Ad =

[

0.05 0

0 0.03

]

, B =

[

0.02 0.1

0 0.05

]

,

Bd =

[

0.01 0

0 0.02

]

, D1 =

[

1

1

]

, dm = 1, dM = 5.

The nonlinear functions are chosen to be

f(x(k)) = sign(x(k))log(sign(x(k))x(k) + 1),

fd(x(k − d(k))) = sign(x(k − d(k)))log(sign(x(k − d(k)))x(k − d(k)) + 1).

It is easy to see that functionsf andfd satisfy the sector-bounded conditions (2) with parameters

K1 = T1 =

[

0 0

0 0

]

, K2 = T2 =

[

1 0

0 1

]

.
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The parameters of the measurement output model are taken as

C =
[

1 0
]

, D2 = 1.

Moreover, the sensor saturation parameter is set asΛ = 0.5 and the probabilities of saturations and deception

attacks are assumed to beᾱ = 0.2 and β̄ = 0.3. The parametersδ, δ1, δ2 andδ3 are taken as0.3, 0.2, 0.3 and1.2,

respectively.

With the above parameters, the inequality in (32) is solved by using the Matlab software (with the YALMIP 3.0)

and, according to (34), the desired filter gainsF andN can be obtained as follows

F =

[

−0.0592 0.0435

−0.2187 0.3780

]

, N =

[

1.0130

0.6939

]

.

In the simulation, the disturbance from attackers is selected asξ(k) = δ1 and the initial values of the state

are chosen asx(−5) = x(−4) = x(−3) = x(−2) = x(−1) = x(0) =
[

0.2 0.2
]T

. The simulation results are

shown in Figs. 1-6. Figs. 1-2 plot the actually occurring time instants of sensor saturations and deception attacks,

respectively. Figs. 3-4 depict the state trajectories and their estimates. The norm of filtering errors in the presence

of sensor saturations and deception attacks is shown in Fig.5, from which we can see that the norm is always

below the given boundδ3. Also, the relation between the norm of filtering error and the attack bound is shown in

Fig. 6. It can be seen from Fig. 6 that the norm of the filtering error will increase when the attack bound becomes

large. The simulation results have demonstrated the effectiveness of the designed filter.

V. CONCLUSIONS

In this paper, we have discussed the secure filtering problemfor a class of nonlinear stochastic discrete time-delay

systems with both ROSSs and RODAs. A novel measurement output model has been provided to describe the ROSSs

and RODAs within a unified framework. Then, by using the stochastic analysis techniques, a sufficient condition

has been obtained to guarantee the security requirement of the addressed systems. Furthermore, the design method

of the desired secure filter gain has been obtained by solvinga linear matrix inequality with nonlinear constraints.

Finally, a numerical example has been exploited to show the usefulness of the filtering scheme derived in this paper.

One of the future research topics would be the extension of our main results to the distributed filtering problems

over wireless sensor networks [23].
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Fig. 1: Occurring of sensor saturations.
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Fig. 2: Occurring of deception attacks.
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Fig. 3: Statex1(k) and its estimatêx1(k).
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Fig. 4: Statex2(k) and its estimatêx2(k).
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Fig. 5: The norm of filtering errors with both sensor

saturations and deception attacks.
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Fig. 6: The average norm of filtering errors.
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