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Abstract— This paper describes a new class of attacks specific
to cognitive radio networks. Wireless devices that can learn from
their environment can also be taught things by malicious elements
of their environment. By putting artificial intelligence in charge
of wireless network devices, we are allowing unanticipated,
emergent behavior, fitting a perhaps distorted or manipulated
level of optimality. The state space for a cognitive radio is made
up of a variety of learned beliefs and current sensor inputs. By
manipulating radio sensor inputs, an adversary can affect the
beliefs of a radio, and consequently its behavior.

In this paper we focus primarily on PHY-layer issues, describ-
ing several classes of attacks and giving specific examples for
dynamic spectrum access and adaptive radio scenarios. These
attacks demonstrate the capabilities of an attacker who can
manipulate the spectral environment when a radio is learning.
The most powerful of which is a self-propagating AI virus that
could interactively teach radios to become malicious. We then
describe some approaches for mitigating the effectiveness of these
attacks by instilling some level of “common sense” into radio
systems, and requiring learned beliefs to expire and be relearned.
Lastly we provide a road-map for extending these ideas to higher
layers in the network stack.

I. INTRODUCTION

Cognitive radio offers the promise of intelligent radios
that can learn from and adapt to their environment. Much
research is currently underway developing various reasoning
and learning algorithms that allow cognitive radios to operate
optimally in a large variety of different situations.

However, as with many new technologies, initial research
has not focused on security aspects of cognitive radio. Typi-
cally security is always “bolted on” after the fact by adding
some sort of link authentication and encryption. This typically
works well for data traversing a wireless network, but not
necessarily for things fundamental to the operation of the
wireless link itself.

Since cognitive radios can adapt to their environment and
change how they communicate, it’s crucial that they select
optimal, secure means of communications. Data integrity and
confidentiality can be handled by higher-layer cryptographic
security, so here we focus on attacks fundamental to the
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cognitive radio itself, and independent of its higher-layer
communications techniques.

By putting artificial intelligence (AI) engines in charge of
our wireless devices, we need to be aware that these engines
can be provided false sensory input by adversaries, and this
false input affects its beliefs and behavior (see figure 1). We
need to look at threats we would ordinarily see in social
networks, rather than computer networks. We define three
classes of attacks: sensory manipulation attacks against policy
radios, belief manipulation attacks against learning radios, and
self-propagating behavior leading to cognitive radio viruses.
All types of attacks manipulate the behavior of a cognitive
radio system such that it acts either suboptimally or even
maliciously.

Protecting against attacks like these cannot be done through
cryptographic means. It involves imparting some amount of
intuition and common sense into a cognitive radio that allows
it to debunk beliefs that don’t make sense. In this paper we
explore these ideas.

Very little research has examined new threats to cognitive
radio due to their intelligent behavior. Some specific work
has been conducted looking at attacks in dynamic spectrum
access [1], [2], and was broadened to look at a variety of
denial of service attacks against policy radios [3]. High-level
requirements for using cognitive radio sensing and intelligence
to address cross-layer security problems has been examined
[4].

In this paper, we focus primarily on the physical (PHY)
layer, and provide a general analysis of threats to different
types of cognitive radio (including both policy and learning ra-
dios). We then present a rough sketch at how such attacks can
be mitigated in cognitive radio implementations, and provide
a road-map for extending this analysis to the medium access
control (MAC) layers and higher. An ideal cognitive engine
would provide optimization across all layers, and the threat
model fundamentals would apply to those higher layers as
well; however, most of the current cognitive radio technologies
focus on the PHY, so we use attacks against the cognitive radio
PHY as exemplars.

In the rest of the paper we develop the following threats to
a cognitive radio network:

1) sensory input statistics can be altered;
2) faulty sensory input statistics can lead to belief manip-

ulation;
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Fig. 1. Relationship between sensor input, beliefs, and behavior in a cognitive
engine, showing how an adversary manipulating sensory input can change the
beliefs and behavior of a cognitive radio.

3) manipulated individual statistics and beliefs may be
distributed through a cognitive radio network; and

4) behavior algorithms based on manipulated statistics and
beliefs can result in suboptimal performance or mali-
cious behavior.

To mitigate the effectiveness of these attacks, cognitive
radios should:

1) always assume sensory input statistics are “noisy” and
subject to manipulation;

2) be programmed with some amount of “common sense”
to attempt to validate learned beliefs;

3) compare and validate learned beliefs with other devices
on the network;

4) expire learned beliefs to prevent long-term effects of
attackers; and

5) attempt to perform learning in known-good environ-
ments

Section 2 describes common threat models currently used
in security analysis, specifically the Internet threat model, and
extensions assumed in wireless networks. Section 3 discusses
threats to individual cognitive radio links. Section 4 extends
that analysis to networks of cognitive radios. Section 5 details
specific attacks against applications of cognitive radio being
studied in contemporary literature. Section 6 develops tech-
niques and strategies for mitigating these attacks. Section 7
provides a road-map for further study. Section 8 concludes.

II. WIRELESS THREAT MODEL

In this section we outline the threat model commonly
assumed for wireless networks, to provide a foundation on top
of which we can start talking about a cognitive radio threat
model.

In any communication networks, there are two major at-
tacker classifications: on-path versus off-path. An off-path
adversary can inject data into a stream, or spoof other devices
on the network, but cannot, in real time, see the traffic being
transmitted. As such, off-path adversaries can be thwarted by
using protocols in which devices can only participate if they
can see the traffic.

Fig. 2. Components within a single cognitive radio, showing reasoning and
learning engines that manipulate the SDR’s operating state

On-path adversaries are by far the most capable. They can
both observe and transmit data in real time. This gives them the
ability to simply observe traffic, but also spoof, inject, remove,
and alter it as well. Protection against denial-of-service (DoS)
attacks is difficult, as the adversary can degrade the link such
that communication between valid parties is impossible. To
protect against non-DoS attacks, a combination of mutual
authentication, data integrity protection, and data encryption
can be used.

Most security-related protocols design for the worst-case
scenario: the on-path adversary. Most transport protocols
design for off-path adversaries, and recommend usage of a
security sublayer if protection against on-path adversaries is
required.

Wireless networks offer additional challenges for protocol
designers because it makes being an on-path adversary signif-
icantly easier. The link from individual devices to the network
infrastructure is exposed much more so than in a traditional
wired, switched network. All devices can see all traffic from
all other devices within their radio-frequency (RF) range.

Additionally, as in any network, connections between clients
and servers typically traverse many physical links, each adding
latency. By being so close to one end of the connection,
attackers can much more easily spoof packets from devices
within the broader infrastructure. Attackers in close proximity
to their victim will see packets long before their intended
recipient, making it easier to spoof a valid response before
the server.

The properties of RF also make deletion and alteration of
packets much easier. By simply transmitting a jamming signal,
resulting interference will degrade the signal quality for a
packet, causing it to be lost. Once deleted, an altered packet
can then be spoofed. Also the ease of deletion facilitates denial
of service attacks.

With wireless networks, we must assume the presence of
on-path adversaries. Consequently, most wireless protocols in-
clude a built-in link-layer security protocol. For example, IEEE
802.11i [5] provides the necessary mutual authentication, data
integrity, and data confidentiality.

As we shall see in the next section, cognitive radio networks
further complicate the threat model, as they offer adversaries
the ability to interact with devices at an even more fundamental
level.
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III. THREATS TO COGNITIVE RADIO

In this section we first describe the components in a generic
cognitive radio and explain how they interoperate. We then
detail two specific classes of radios: policy radios and learning
radios. For these two classes we outline the types of attacks
possible to the radios themselves.

A. Cognitive Engine Architecture

A cognitive radio (see Figure 2) consists of four major
parts. First is the software-defined radio (SDR). This is a
highly-configurable wireless communications device, typically
capable of synthesizing a large number of communications
waveforms by composing processing graphs of different radio
components.

For example, an SDR typically has an adjustable front-end
allowing it to tune over different frequency ranges and an
amplifier that allows communication at many different power
levels. The modem components can implement many different
modulation types with different symbol rates. Similar flexibil-
ity is possible for additional layers, including forward error
correction and data framing, multiplexing, and scheduling.

The SDR typically also has a wide variety of sensors. These
sensors take digitized RF energy and produce a quantitative
result. For example, an energy detector could measure the
received power at the tuned frequency, in an effort to determine
whether or not that channel is occupied. Specific waveform
detectors can do similar tests to determine exactly what type
of communications system is occupying the channel. Other
sensors could characterize a noise or interference source by
measuring the autocorrelation and other useful statistics that
could help design an optimal transceiver. Receiver sensors
can determine things such as the current signal-to-noise ratio
(SNR), bit error rate, and frame error rate.

The SDR then has a programming interface that exposes
these configuration options and sensors to a controlling entity.
They are essentially a set of inputs and outputs. The controlling
entity needs to select the set of inputs that results in optimal
outputs, where optimality is often defined with an objective
or fitness function. Selecting the radio inputs is then simply a
multi-dimensional, discrete optimization problem.

To handle this optimization, a cognitive engine is intro-
duced. All these inputs and outputs show up in the cognitive
engine’s knowledge base as either read-only (statistics) or
read-write (configuration). The knowledge base is a set of
logical expressions representing the state of the radio system.
Within the cognitive engine, there are two mechanisms for
interacting with the knowledge base: the reasoning engine
and the learning engine. A policy radio only has a reasoning
engine, while a learning radio has both a reasoning and a
learning engine.

The reasoning engine is a set of logical inferencing rules,
sometimes called a case-based reasoner. It is provided with
a set of actions, the conditions under which those actions
are executable, and how those actions affect the state of the
knowledge base. The engine then proposes application of these
rules in various permutation, searching for a proposed set
of actions that will manipulate the knowledge base’s state

in an optimal way. Here we select a combination of radio
configuration values that will maximize some performance
metric.

Learning radios are far more flexible, because they include
a learning engine. This learning engine is capable of starting
with no preprogrammed policy and “trying out” various radio
configurations to see how the system performs. For example, a
radio can try out different modulation types to see which works
optimally in a particular RF environment. Learning radios
typically utilize a variety of classic AI learning algorithms,
including search algorithms, neural networks, and evolutionary
algorithms.

In his dissertation [6], Mitola describes the typical cognition
cycle of Observe → Orient → Plan → Decide → Act. If the
radio supports learning, whenever this loop results in a new
operating state for the radio, another stage called Learn is
injected into the cognition cycle that allows the radio to add
to its memory information about how the radio transitioned
to this new operating state—information that can be used by
Plan and Decide in future cognition cycles. In the context
of Mitola’s cognition cycle, the goal of our attacks is to
manipulate the Observe stage, and by doing so we can affect
all others. For policy radios, by affecting Observe we can
influence Act for that single cognition cycle. For learning
radios, by affecting Observe we can influence Learn and
thereby have a long-term impact on Act.

While these AI features allow the radio to be extremely
flexible and operate optimally in a large number of different
scenarios, they can also offer an avenue for attackers, as
described in the following sections.

B. Policy Radios Threats

In a policy radio, the main concern is an attacker spoofing
faulty sensor information, causing the radio to select a sub-
optimal configuration. Radio sensors take digitized RF and
extract useful statistics from it. By manipulating the RF the
radio sees, an attacker can cause faulty statistics to appear in
the knowledge base.

By understanding how a radio’s statistics are calculated, an
adversary can manipulate them. Since these statistics operate
on raw RF energy, there is no cryptographic means of securing
them, as is frequently done to prevent typical communications
threats.

We call this term of attacks sensory manipulation attacks
since they rely on understanding a complex set of logic, and
knowing what type of input to provide in order to coerce the
desired output.

C. Learning Radios Threats

Learning radios are vulnerable to the same threats as pol-
icy radios, where an adversary provides false sensory input.
However, a learning radio uses all its experiences to develop
long-term behavior, making the attacks much more powerful.

For example, an attacker can introduce a jamming signal
whenever a policy radio switches to a faster modulation rate,
forcing it to always operate at lower modulation rates, resulting
in lower link speeds. This will cause link degradation for
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Fig. 3. Process by which malicious, learned behavior, and the ability to teach
that behavior to others, can be propagated through a cognitive radio network

the duration of the attack. However a learning radio might
permanently associate higher modulation rates with lower data
rates, forcing it to always use lower data rates.

Since these attacks can have much longer-term effects on
learning radios we term them belief manipulation attacks. If
you can metaphorically convince a radio that “up is down”,
and “down is up”, and you can seriously impact how it behaves
and reacts to particular situations.

In the next sections we describe what effect these attacks
can have on a network of cognitive radios, and then describe
some technique for mitigating the attacks.

D. Self-Propagating Behavior

One of the most powerful types of attacks revolves around
the idea of self-propagating behavior. In such an attack, state
S on radio R0 will cause behavior that induces state S on
radio R1. Once radio R1 is in state S, it can induce that same
state on radio R2, and so on. Eventually state S will propagate
through all radios in a particular area.

More generally, it may not just be a single state S, but rather
a series of state transitions S1, ..., SN that induce the same
pattern of state transitions in neighboring radios.

The result is effectively a cognitive radio virus as shown in
figure 3, the severity of which will depend on possible side
effects of these states. A key feature of these types of attacks
is that they can spread between non-cooperative radios that
never have direct protocol interaction.

The possibility of such a set of states is not entirely implau-
sible. For example, if many devices are trying to optimally and
fairly share a distributed resource, often the optimal behavior
is for each device to use an equal fraction of the available
resource. When acting optimally, all devices are traversing
the same series of states and executing the same behavior.
An adversary may be able to influence this equilibrium such
that the asymptotic state is not optimal, and possibly even
malicious.

IV. COGNITIVE RADIO NETWORKS

From an artificial intelligence perspective, a network of
cognitive radio is a set of independent, logical agents, inter-

acting by each observing and changing their environment in
some way. These agents can be cooperative, in which case
they typically have a control channel for exchanging state
information, or non-cooperative, where they act independently.

A simple two-node cognitive radio network consisting of
a single, point-to-point, duplex link is a simple example of
a cooperative network. The two radios each configure them-
selves to optimally communicate, and share necessary channel
statistics in order to jointly come to the optimal configuration.
The transmitter is responsible for the configuration and must
communicate this to the receiver, and the receiver measures
the channel statistics and must communicate these to the
transmitter.

In larger networks, each node has its own sensors and
gathers its own statistics. Each pairwise communications link
must have a common configuration in order for data transfer
to be possible. A simple example of this is the proposed
IEEE 802.22 standard [7], where each client devices makes
channel measurements and sends them to the base station.
The base station then makes the determination on which
channel is optimal and least likely to be occupied by a legacy
communications system such as a television station.

In a non-cooperative network, an attack against one cogni-
tive radio will not affect any others, because other devices will
independently take their own sensor measurements and make
their own decisions.

In a cooperative network, attacks against a subset of nodes
can have further-reaching effects. For example, a conservative
implementation of IEEE 802.22 would have logic that causes
all devices to migrate to a new frequency if a single device
detected a television signal. Thus an adversary can spoof a
television signal to a single IEEE 802.22 device, and the
network will migrate everyone to a new frequency, allowing
the attacker contention-free access to the spectrum.

More security-conscious implementations will try to guard
against byzantine failures by more intelligently fusing con-
flicting statistics from a distributed sensor network. Some
strategies for doing this are discussed in later sections.

V. CLASSES OF ATTACKS

In this section we describe specific scenarios an attacker can
construct by manipulating knowledge base state on devices in
a cognitive radio network. We relate these attacks to some of
the common applications of cognitive radio currently under
study today.

A. Dynamic Spectrum Access Attacks

The first type of attack, which was introduced in [1], [2],
is called the Primary User Emulation (PUE) attack, and can
be effective in dynamic spectrum access (DSA) environments.
In such environments, a primary user owns a license to a
particular frequency band, and can use it whenever they wish.
When they are idle, secondary devices can opportunistically
use the available spectrum. Such secondary devices need
spectrum sensing algorithms to detect when the primary user
is active.
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All an attacker need do is create a waveform sufficiently
similar to that of the primary user to trigger a false positive in
the spectrum sensing algorithm. The secondary devices within
range will believe a primary user is active, and will cause
the system to vacate the channel. This gives the adversary
unrivaled access to the frequency band.

Fortunately the effects of this attack are transient, as it is
only a sensory-manipulation attack. Once the attacker vacates
the frequency, the secondary users notice the spectrum being
once again idle, and can resume using it.

Other DSA algorithms are more stateful, and accrue more
detailed statistics about primary users. For example, some
DSA algorithms gather channel access statistics for primary
users in an attempt to predict when the channel will be idle,
based on current and past behavior of the primary user [8].
Thus spoofing primary user waveforms can affect the long-
term behavior of a secondary user, turning this attack into a
belief-manipulation attack.

If an adversary wishes to deny service to a secondary user
operating in the presence of a time-division multiple access
(TDMA) primary user, the attacker needs to make the primary
user’s access pattern look random during the learning phase
of the secondary user, rather than periodic. As a result, a sec-
ondary user cannot derive very much information about when
they can transmit without interfering, significantly decreasing
their capacity if not completely preventing transmission. This
memory will persist after the attacker discontinues transmis-
sion.

B. Objective Function Attacks

In adaptive radio, the cognitive engine has a large number
of radio parameters under its control. The cognitive engine
manipulates these parameters over time in an effort to maxi-
mize its multi-goal objective functions. These attacks apply to
any learning algorithms that utilize objective functions, most
notably various forms of hill climbing and genetic algorithms.
Since these attacks apply to learning engines, they are belief-
manipulation attacks.

Some possible input parameters could be center frequency,
bandwidth, power, modulation type, coding rate, channel ac-
cess protocol, encryption type, and frame size. The radio might
then have three goals: low-power, high-rate, and secure com-
munication. Depending on the application, each of these goals
has a different weight. For example, if using the system for
instant messages or email, low-power and secure would have
higher weights than high-rate. For voice or video applications,
high-rate and secure would have higher weights than secure.

There are a few different types of attacks possible on a
system like this. When radios are in a learning phase, they
try different combinations of input parameters, measure the
observed statistics such as bit error rate, and then evaluate the
objective functions to see which inputs give the best results
for their application.

Of the three goals – low-power, high-rate, and secure –
only one is affected by the channel. Low-power and secure
are defined directly by inputs, while high-rate is defined by
system outputs. Thus by affecting the channel, and adversary

can manipulate whether or not high-rate communications is
achieved.

More concretely, imagine the following objective function

f = w1P + w2R + w3S (1)

where wi are the weights and P , R, and S represent the
three goals of power, rate, and security. Imagine an adversary
wishes to force a radio to use some security level s1 rather
than the more secure version s2, where s1 < s2. Whenever
the cognitive engine tries using s2, the adversary can jam the
channel, artificially decreasing R from r2 to r1 with r1 < r2.
In particular, an adversary would need to cause sufficient
interference such that

w1P + w2r2 + w3s1 > w1P + w2r1 + w3s2 (2)

or solving for r1:

r1 < r2 − w3

w2
(s2 − s1) (3)

The consequence of such an attack is that whenever a higher
security level is attempted, the system’s objective function
decreases, and that higher security level is never used.

This type of attack can already be successfully executed
on static systems that involve human configuration. For ex-
ample, consider an engineer trying to configure a point-to-
point wireless link to interconnect two networks. If every
time the network is activated with encryption enabled, an
adversary jams the network, the engineer may eventually give
up and believe there is a crypto-related impediment to using
encryption, and simply run the network without encryption.

Similarly, the IEEE 802.11u standards are defining
weaker security mechanisms for wireless local area networks
(WLANs) to support placing E911 phone calls via unauthenti-
cated WLANs in emergency situations. This represents a case
where the need for connectivity outweighs security, and the
logic behind this could be exploited if implemented with a
learning engine.

Additionally, similar attacks can be used to cause radios
to believe that certain frequencies, bandwidths, or modulation
types are less optimal and should be avoided. This would allow
an attacker to sculpt the waveforms used by a cognitive radio
to suit its goals, whatever they may be.

It is very important to note that this type of attack only
works when the radio is performing online learning, that is
the radio is performing some sort of online optimization of the
search space. Radios that perform offline learning observe the
environment once, and then perform an offline search to find
the optimal configuration; such radios assume independence
of their observations and configuration, and consequently are
immune to these attacks. It should also be noted that such
radios theoretically do not require a learning engine, and their
behavior can be reduced to the case-based reasoning of a
policy radio [9].

C. Malicious Behavior Attacks

In this section we discuss an extension of the objective func-
tion attacks, where we teach a radio to become unknowingly
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malicious. Here we examine a scenario that cause a cognitive
radio to become a jammer.

Consider a system where a primary user is intermittently
accessing a channel. Secondary users have channel sensing
algorithms that can detect primary and secondary users access
the channel. They have an objective function that balances
throughput T and interference I , and looks like

f = w1T − w2I (4)

The system seeks to maximize throughput while minimizing
interference.

The desired result is a secondary user will only com-
municate when the primary user is idle. However, if an
adversary uses a jamming waveform that cannot be detected
by the secondary user’s sensing algorithms, he can artificially
decrease T when the primary user is idle. As a result, the
cognitive radio will learn that the only time it can achieve
useful communications is when the primary user is active.
This effectively turns the cognitive radio into a jammer.

Accomplishing this should be fairly straight-forward using
common commercial waveforms. Imagine a primary user
uses some linear, narrow-band modulation scheme, and the
secondary radio uses Orthogonal Frequency Division Multi-
plexing (OFDM). Typically OFDM uses pilot tones on a few
of the subcarriers for receiver channel estimation and synchro-
nization. By transmitting a carrier wave on those pilot tones,
an adversary can prevent OFDM receiver synchronization and
consequently block any useful communication. Additionally,
these CW signals are unlikely to trigger the cognitive radio’s
spectrum sensing algorithms, which would prevent detection
of the attack.

VI. ATTACK MITIGATION

In this section we describe a variety of techniques for
mitigating the effectiveness of the attacks detailed in the
previous sections.

A. Robust Sensory Input

Improving sensor input can significantly help reduce the
gullibility of cognitive radios. For example, if radios could
carefully characterize the difference between interference and
noise, they could distinguish between natural and man-made
RF events. Such sensors could also feed specialized policy
engine subroutines that specifically look for hostile signals
that may be attempting to corrupt a radio’s beliefs.

In a distributed environment, a network of cognitive radios
can fuse sensor data to improve performance. For example
if multiple cognitive radios exchanged time-synchronized,
digitized RF, they could run cross-correlation algorithms to
more precisely determine the difference between an attacker
and noise.

All sensory input should be considered “noisy”, since even
without the presence of an attacker, statistics can occasionally
be incorrect. For each input, cognitive radio designers should
quantify the probability of detection failure in both benign
and hostile environments. In some scenarios, attackers may
be power-limited, allowing designers to compute theoretical
upper-bounds to their effectiveness.

B. Mitigation in Individual Radios

In order to mitigate attacks against individual radios, we
need to instill some amount of “common sense” into radio
systems.

Protecting individual policy radios from attack is difficult.
They look at the current environment and evaluate what course
of action to pursue subject to their policy. An adversary with
knowledge of the policy could provide false sensor inputs in
an effort to affect the radio’s behavior. Even without knowl-
edge of the policy, an adversary could use various fuzzing
techniques to infer the policy.

As a result, radio policies should be carefully evaluated to
protect against malicious sensor input. All possible states can
be enumerated as the product space of all possible knowledge
base values. The radio policy then defines a state transition
framework that can be overlaid on the state space. Formal
state-space validation, as is often done with cryptographic
network protocols, can then be applied to the resulting state
machine to ensure that a “bad state” is never reached.

However, in scenarios such as the PUE attack, no carefully-
engineered policy can protect a simple radio from detecting an
adversary as a primary user. Mitigating such attacks relies on
developing better sensing algorithms with lower false-positive
rates. A better-developed sensing algorithm may be able to
distinguish the legitimate primary user from the adversary.
Additionally, radios might compare their perception of their
environment with characteristics know a priori. For example,
in [2], the authors attempt to geolocate primary transmitters,
and compare their measured location to the locations of known
primary users.

Protecting individual learning radios is also difficult, but
there are some strategies for preventing attackers from indef-
initely altering a radio’s beliefs.

First, beliefs must always be under constant reevaluation.
A feedback loop should constantly be updating learned re-
lationships between cognitive radio inputs and outputs. For
example, coefficients in a neural network should be constantly
recomputed, using a moving average, such that previously-
learned behavior that may be incorrect can be expired.

If continuously-learning radios are impractical or not de-
sired for a particular scenario, then the learning phases must be
conducted in a truly controlled environment. Outside auditing
must take place to ensure that no adversarial signals are present
during the learning phase.

Another approach would be to build in logic that could
invalidate learned actions that were known to violate certain
principles. Writing such rules is difficult, because learned
actions can often be non-intuitive (hence why using artificial
intelligence can help us solve tough problems). For example,
a radio might discover that achieved capacity is inversely pro-
portional to bandwidth, which contradicts Shannon’s theorems.
However, this might be caused by inadvertent overlapping with
an adjacent-channel interferer.

C. Mitigation in Networks

In a network of cognitive radios, where we assume there is
some sort of control-channel connectivity between cognitive
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engines, mitigating possible threats becomes a very interesting
space. We now have a group of independent AI agents each
seeking to maximize their own performance, and possibly
global performance, depending on their level of cooperation
with the devices around them.

This new-found connectivity at the cognitive-engine level
between peers allows us to use various techniques from swarm
intelligence [10]. Swarm intelligence is a set of algorithms
that mimic various animal behaviors; a common example is
ant colony optimization that seeks to find a goal by sending
virtual ants off searching for the goal, and leaving pheromone
trails back to their starting point after finding intermediate
solutions.

One technique of specific applicability to security is particle
swarm optimization (PSO) [11]. Each cognitive radio in a
network represents a particle, each with it’s own hypothesis
about what the best behavior is in a particular situation. The
behavior it selects, however, is not wholly dependent on its
own hypothesis, but is actually a weighted average of all
hypotheses in the network.

An example application of PSO is to the PUE attack against
DSA systems. Here each device could make its own hypothesis
about whether a particular transmission was from a primary
user, and the group majority would then be the group decision.
Certainly a weighted majority could be taken, based on which
devices are most likely to have the most accurate hypothesis
(due to proximity, sensor capabilities, etc).

This approach could also be used in adaptive radio. For
example, in the scenarios we described earlier, radios used
various learning algorithms to determine how their inputs
affected their objective function. An attacker could manipulate
that process to cause altered behavior in the radio. If PSO
were used during this learning phase, radios would experience
something more akin to group learning, rather than individual
learning, making it more difficult for an attacker to influence
the system.

Note, however, that such approaches should be used with
care. By allowing this group learning and decision making, an
attacker with influence over a few devices may now be able
to affect the outcome of the entire group.

VII. ROAD-MAP FOR FUTURE RESEARCH

In this paper we primarily focused on PHY security. We
discussed scenarios where cognitive radios had control over
and sensory input from PHY-level components, such as energy
detectors, signal classifiers, modem components, and error
correcting codes. However, there’s no reason this cannot be
extended to the MAC, routing, transport, or even application
layers. The eventual goal of cognitive radio is to permeate the
entire network stack to allow intelligent control and security
to an entire system [4]. The emphasis on the PHY layer so far
is mostly because that’s as far as basic research into cognitive
radio has been formally defined.

A. Understanding Identity

The next concept necessary to extend cognitive radios’
security capabilities is to allow the cognitive engine to reason

about the identity of things in its environment. Currently cog-
nitive engines may understand that energy at some frequency
is another wireless device, and may even be able to tell
the difference between different classes of devices, such as
primary and secondary users, but the cognitive engine itself
cannot recognize and differentiate two different secondary
users.

Adding this recognition can be accomplished in two differ-
ent ways. First, more PHY-layer techniques could be used,
such as RF fingerprinting. This would extend the current
sensor capabilities to more fine-grained differentiation between
transmitters, and give them the ability to recognize trans-
mitter’s they’ve seen before. No detection rules are perfect,
however, and this approach may still allow an attacker to
manipulate their RF fingerprint to be detected as someone or
something else.

A better approach is to combine PHY-layer approaches with
MAC-layer processing. For devices within the cognitive ra-
dio’s network, the MAC layer can provide much more specific
and reliable information, especially if MAC-layer protocols
are cryptographically protected to prevent manipulation. By
feeding this information to the cognitive engine, a radio can
now reason about its neighbors, because it knows who they
are and when they’re communicating. This allows it to build
up learned statistics specific to each neighbor, rather than for
all neighbors.

B. Earning and Using Trust

Once a cognitive engine can reason about the identity of its
neighbors, it can start learning trust metrics, which would in
turn allow radios to reason about the trustworthiness of their
neighbors. Trust is a loaded word that means many different
things in many different applications. At the MAC layer, trust
typically involves some quantification of how fairly a device
is accessing the shared medium. If a device is greedily using
more than its fair share, or is maliciously trying to prevent
other devices from communicating, it could be seen as an
adversarial force in the network. Also its willingness to receive
packets is important.

In a MAC layer, cognitive radios use feedback from the
PHY and MAC layers to quantify how fair and reliable
different neighbors are. They can then use this information
to who can communicate to whom, and when (i.e. the essence
of medium access control).

One example scenario is a new device wishing to join a
cooperative cognitive radio network. Initially the devices in
this network have no knowledge of this new device or reason
to communicate with it. If, over time, this device proves itself
to be trustworthy, then other nodes in the network will grant
it more access to the shared spectrum.

This metric of MAC trust also could be used for distributed
rate control. More trusted devices can be granted more capac-
ity than they are entitled to for transient situations, however if
this is abused their trust rating with neighbors may decrease,
making it less likely that they’ll be given extra capacity in the
future.
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C. Trust in Networking and Routing

The next logical step is to extend reasoning about the
trustworthiness of neighbors in a MAC layer to reasoning
about devices further away in the network. To accomplish
this, a cognitive engine needs control over and feedback
from a system’s network layer. For example, the cognitive
engine needs statistics from each transmitted and received
packet, in addition to the ability to affect decisions about L3
communications and routing.

This would allow a cognitive radio to learn trust information
about the broader network and use it to develop policy about
routing and forwarding of traffic. Certainly trust metrics in ad
hoc routing is far from a new concept [12], [13], but allowing
a cognitive engine to control how that trust affects the system
could allow for new, emergent behavior implementing policies
never before considered.

As cognitive radio propagates up the network stack, new
challenges will arise. In particular, adversaries will have more
“sensors” they can attempt to fool. However one advantage
to MAC-layer and higher sensors is that in many cases the
data they are examining can be cryptographically protected to
prevent adversarial manipulation.

VIII. CONCLUSION

In this paper we examined the problems associated with
adversarial manipulation of cognitive radio sensory inputs,
in an effort to cause the victim cognitive radio to behave
suboptimally or maliciously. We showed how this ability
to manipulate sensors introduces new threats beyond those
typically associated with a wireless network.

Some of the most powerful attacks involve an adversary
manipulating the RF spectrum while a victim cognitive radio
is in its learning phase. By skewing the radio’s performance in
certain situations, the attacker can make a victim radio believe
things that are untrue, and consequently cause it to behave in
a suboptimal or malicious manner. Any radio that can learn
from its environment can also be taught by its environment.
We demonstrated several different attacks against dynamic
spectrum access and agile radios, and even described how self-
propagating behavior could lead to a cognitive radio virus.

Mitigating such attacks involves building checks and bal-
ances into a cognitive radio. First, learned beliefs should
never be permanent. Otherwise it could indefinitely induce
undesired behavior. Second, cognitive radios should always
assume sensors are noisy, whether its due to nature or a
malicious force. Lastly, cognitive radios could collaborate with
other cooperative radios on the network to coherently develop
beliefs that are less likely to be subject to manipulation.

Most of the attacks presented are specific to PHY-layer
cognition. Sensors and decisions at higher layers can often
be cryptographically protected, making them less vulnerable
to manipulatory attacks. We lay out a road-map for how a
cognitive engine could help provide additional security at the
higher layers, focusing primarily on extending cognition to
provide security at the MAC layer.

We’re a long way away from Mitola’s famous example
where a military radio can realize it’s been lost and been

picked up by an allied soldier, resulting in the deletion of
its keying material and immediately connecting the ally to the
appropriate liaison office [4]. However through incremental
advancements we can build cognition capabilities into the
entire network stack. Security is an important part of that
– both recognizing threats to cognitive radios, but also how
cognition can improve security – and this paper provides the
initial building blocks for such advancement.
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