
Linköping Studies in Science and Technology

Dissertations. No. 1715

Security in Embedded Systems

A Model-Based Approach with Risk Metrics

by

Maria Vasilevskaya

Department of Computer and Information Science
Linköping University

SE-581 83 Linköping, Sweden

Linköping 2015

c© 2015 Maria Vasilevskaya

ISBN 978-91-7685-917-9
ISSN 0345–7524

Cover art together with Dmitry Shipilov and Ivan Ukhov

Circuit Tree Vector by MacKenzie (http://www.freevector.com/circuit-tree-vector/) is
licensed under Creative Commons 3.0 Attribution / Derivative from original

Printed by LiU Tryck 2015

URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-122149

To my family

Abstract

The increasing prevalence of embedded devices and a boost in sophisticated
attacks against them make embedded system security an intricate and press-
ing issue. New approaches to support the development of security-enhanced
systems need to be explored. We realise that efficient transfer of knowledge
from security experts to embedded system engineers is vitally important,
but hardly achievable in current practice. This thesis proposes a Security-
Enhanced Embedded system Design (SEED) approach, which is a set of
concepts, methods, and processes that together aim at addressing this chal-
lenge of bridging the gap between the two areas of expertise.

We introduce the concept of a Domain-Specific Security Model (DSSM)
as a suitable abstraction to capture the knowledge of security experts in
a way that this knowledge can be later reused by embedded system engi-
neers. Each DSSM characterises common security issues of a specific appli-
cation domain in a form of security properties linked to a range of solutions.
Next, we complement a DSSM with the concept of a Performance Evaluation
Record (PER) to account for the resource-constrained nature of embedded
systems. Each PER characterises the resource overhead created by a secu-
rity solution, a provided level of security, and other relevant information.

We define a process that assists an embedded system engineer in select-
ing a suitable set of security solutions. The process couples together (i)
the use of the security knowledge accumulated in DSSMs and PERs, (ii)
the identification of security issues in a system design, (iii) the analysis of
resource constraints of a system and available security solutions, and (iv)
model-based quantification of security risks to data assets associated with
a design model. The approach is supported by a set of tools that automate
certain steps.

We use scenarios from a smart metering domain to demonstrate how
the SEED approach can be applied. We show that our artefacts are rich
enough to support security experts in description of knowledge about se-
curity solutions, and to support embedded system engineers in integration
of an appropriate set of security solutions based on that knowledge. We
demonstrate the effectiveness of the proposed method for quantification of
security risks by applying it to a metering device. This shows its usage for
visualising of and reasoning about security risks inherent in a system design.

This work was supported by the Swedish National Graduate School of
Computer Science (CUGS), the EU FP7 SecFutur project, and the RICS
research centre on Resilient Information and Control Systems.

v

Populärvetenskaplig sammanfattning

För varje dag som g̊ar blir samhället mer beroende av informationsteknolo-
gin och betydelsen av inbyggda system i dessa kritiska infrastrukturer ökar.
Inbyggda system kan hittas inom en mängd olika domäner. Dessa rela-
tivt små system finns i bl. a. hemelektronik, fordon, medicinsk utrustning
och industriella styrsystem. I takt med en allt större närvaro av inbyggda
system inom olika tillämpningsomr̊aden kan vi ocks̊a se hur s̊adana system
kopplas upp till nätet. Denna utveckling möjliggör skapandet av ytterli-
gare användbara tjänster som ökar tryggheten i v̊art samhälle. Tack vare
nätanslutning kan exempelvis fordon f̊a assistans vid stora vägkorsningar
för att minska risken för olycksfall och en internetuppkopplad pacemaker
ger läkarna möjlighet att kontinuerligt kontrollera patienters hälsa.

Den ökande förekomsten av nätverkande inbyggda system ökar dessutom
betydelsen av säkerhet för dessa system. Idag är inbyggda system dessvärre
öppna för attacker som kan skada andra delar av infrastrukturen. Ett bra
exempel p̊a detta är den välkända Stuxnet-attacken år 2010 som p̊averkade
kärntekniska anläggningar i flera länder. Användningen av inbyggda system
som är osäkra ökar allts̊a risken för allvarlig IT-brottslighet som kan leda
till betydande risker för samhället.

Den moderna praxisen att lägga till säkerhets̊atgärder sent i utveck-
lingsprocessen ger inte önskvärt resultat. Detta blir ännu allvarligare när
det gäller inbyggda system. Det är ofta sv̊art eller till och med omöjligt att
uppdatera ett inbyggt system när det är redan i bruk. Exempelvis kan det
inbyggda systemet ha en kritisk funktion och därför f̊ar det inte stoppas för
uppdateringen. En annan allvarlig orsak är att inbyggda system är resurs-
begränsade enheter och därför har de inte n̊agon extra kapacitet att utföra
säkerhets̊atgärder när de redan är tillverkade.

I detta sammanhang behövs ett nytt förh̊allningssätt för att stödja utveck-
lingen av säkra system. Effektiv överföring av kunskap fr̊an säkerhetsspe-
cialisterna till de ingenjörer som bygger de inbyggda systemen, är avgörande
men knappast uppn̊aelig i dagsläget. Denna avhandling föresl̊ar en ansats,
benämnd SEED (Security-Enhanced Embedded system Design), som best̊ar
av en mängd koncept, metoder, och verktyg för att möta utmaningen att
bygga en bro mellan de tv̊a expertomr̊adena. SEED stödjer säkerhetsspe-
cialisterna genom att tillhandah̊alla medel för att forma och lagra kun-
skap om säkerhet, och stödjer ingenjörerna genom metoder att använda
och återanvända den lagrade kunskapen vid design av systemen.

vii

Acknowledgement

I would like to express my gratitude to my supervisor Simin Nadjm-Tehrani
for the support that she provided to me over these years. Her tireless assis-
tance and guidance have helped me to learn and progress with my research.

I gratefully acknowledge Linda Ariani Gunawan, Peter Herrmann, David
Broman, Kristian Sandahl, Ahmed Rezine, and Oleg Sysoev with whom I
had many fruitful discussions regarding my research and teaching. Special
thanks go to David Broman for his unlimited support and inspiration as my
mentor. Thanks to my secondary advisors Nahid Shahmehri and Kristian
Sandahl for their feedback given at our meetings and when proofreading this
thesis.

I wholeheartedly thank all current and former members of RTSLab for
their friendship, support, and all the valuable comments during numerous
RTSLab meetings. My appreciation extends also to members of other divi-
sions of IDA with whom I happened to interact regarding my research and
teaching.

I would like to thank all administrative personnel who make our working
environment very pleasant. Special thanks go to Anne Moe, Eva Pelayo
Danils, and Åsa Kärrman. It would have been much more difficult to work
effectively without their professional support and patience.

I cannot help but express my gratitude to members of the Karate club
from Linköpings budoklubb. We spent an enormous amount of hours train-
ing together and making our club a great place to practise Kyokushin.

Last but not least, I am thankful to my family for their support through-
out these years. The encouragement and valuable assistance provided by
Anatoly and Dmitry helped a lot during these years. I am sincerely thank-
ful to my parents Elena and Viktor as well as to others for their care.

Undoubtedly, there were many other people who contributed to my work
with their support, advice or rewarding moments spent together. Unfortu-
nately, it is not feasible to name everyone. Therefore, I anonymously thank
all of you who did not find their name here but has contributed with their
effort and time at any point of this journey.

Maria Vasilevskaya
Linköping, Sweden

November, 2015

ix

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Formulation . 3
1.3 Contributions . 4
1.4 Research Method . 6
1.5 List of Publications . 7
1.6 Outline . 9

2 Background 11
2.1 Embedded Systems Engineering 11
2.2 Modelware Zoo . 14

2.2.1 Main Concepts . 14
2.2.2 UML . 19
2.2.3 MARTE . 21
2.2.4 SPACE . 22
2.2.5 Tools . 25

2.3 Ontology Technologies . 26
2.4 Semi-Markov Chains . 28
2.5 Metering Infrastructure . 29

3 SEED: Bird’s Eye View 31
3.1 Introduction to SEED . 31
3.2 The SEED Foundation . 32

3.2.1 Creation of a System Model 33
3.2.2 Capturing the Domain-specific Security Knowledge . . 33
3.2.3 Role of an Application Domain 35
3.2.4 Development of a Security-enhanced Embedded System 36

4 Capturing of the Domain-specific Security Knowledge 39
4.1 Developed Concepts and Artefacts 39

4.1.1 Domain-specific Security Model 40
4.1.2 Performance Evaluation Record 46

4.2 Capturing Security Knowledge 54

xi

xii CONTENTS

5 Application of the Domain-specific Security Knowledge 59
5.1 System Model . 61

5.1.1 Modelling a Functional Behaviour of a System 61
5.1.2 Modelling an Execution Platform 63

5.2 Association with DSSMs . 64
5.3 Asset Elicitation and Search for Security Properties 65

5.3.1 Asset Elicitation on a Functional Model 65
5.3.2 Search for Security Properties 70
5.3.3 Asset Elicitation Utilising a Platform Model 71

5.4 Search for Concrete SBBs . 74
5.5 Compatibility-based Selection of SBBs 77

5.5.1 Introduction into the Compatibility Analysis 78
5.5.2 Ontologies for Compatibility Analysis 79
5.5.3 Model-based Compatibility Analysis 83
5.5.4 Scalability and Performance 86

5.6 Extended Form of the Process 88
5.7 Discussions . 89

6 Quantifying Risks to Data Assets 95
6.1 Overview . 95

6.1.1 Introducing Risks . 95
6.1.2 Security Goals and Risks to Data Assets 97
6.1.3 Application Scenarios 100

6.2 Proposed Metrics . 102
6.2.1 Confidentiality Loss and Integrity Loss 103
6.2.2 Basic Terms: Domain, Attack, and System 104
6.2.3 Metrics and Their Derivation 106

6.3 Application to Smart Meter 111
6.3.1 System Modelling . 112
6.3.2 Attack Modelling . 114
6.3.3 Calculating Metrics 115

6.4 Extending Losses to System Level 117
6.5 Discussions . 121

7 Related Work 125
7.1 Composing a System from Reusable Blocks 126

7.1.1 Component-based Development 126
7.1.2 Aspect-oriented Development 127
7.1.3 SEED and Reusable Blocks 129

7.2 Performance Analysis at Design Phase 130
7.2.1 Obtaining Estimates from System Models 130
7.2.2 Using Estimates in System Models 132

7.3 Marrying Ontologies and Models 133
7.4 Modelling Security Knowledge 133
7.5 Security-enhanced System Design 134

7.5.1 General Methods to Deal with Security 135

CONTENTS xiii

7.5.2 Ontology-based Approaches 138
7.5.3 Selection of Security Countermeasures 139
7.5.4 Methods to Deal with Security for Embedded Systems 140

7.6 Risks and Attacks . 141
7.6.1 Risk Analysis . 141
7.6.2 Attack Modelling . 145

8 Conclusions and Future Work 149
8.1 Conclusions . 149
8.2 Future Work . 152

8.2.1 Enhancing SEED . 152
8.2.2 Strengthening Security Metrics 154

A Semi-markov Chain Approximation 157

B Scenario Setup 165

C From Engineering Artefacts to Formal Models 167

D Experiment Details 175

List of Figures

1.1 Structure of the thesis . 9

2.1 Life cycle process models . 13
2.2 Two life cycle models for embedded system development . . . 14
2.3 Models, meta-models, and meta-meta-models – the layered

organisation . 15
2.4 Model transformation: concepts and their relations 16
2.5 Relations between domains and languages, adapted from [1] . 18
2.6 Example of the stereotype definition and usage 20
2.7 Structure of the MARTE profile 22
2.8 Structure of the MARTE analysis packages 22
2.9 SPACE model-based engineering method, adapted from [2] . 23
2.10 Model of a simple e-consultation application in SPACE . . . 24
2.11 An example of a semi-Markov chain 28
2.12 Overview of the smart metering infrastructure [3] 29

3.1 Generic process – the SEED foundation 32
3.2 Fragments of simplified design flows 35
3.3 Partial relations between a domain, a system, and a security

mechanism . 36

4.1 DSSM concept and related artefacts 40
4.2 Illustration of the core security ontology 41
4.3 UML representation of the core security ontology 43
4.4 Metering DSSM . 44
4.5 Enriched security ontology . 45
4.6 PER concept and related artefacts 47
4.7 Core evaluation ontology . 47
4.8 Generic evaluation model UML profile 49
4.9 The refinement of the GEM profile for the security domain . 52
4.10 Security evaluation record for the DES RBB 53
4.11 Enriched evaluation ontology 54
4.12 The process for creation of DSSMs 55
4.13 Relations between the core security and evaluation ontologies,

and domain . 56
4.14 Registration of concrete SBBs (the user interface) 57

xv

xvi LIST OF FIGURES

5.1 Application of the domain-specific security knowledge 59
5.2 Functional model of the measurement transfer scenario 61
5.3 Detailed behaviour of the transfer handler block 62
5.4 Platform model for a TSMC device 63
5.5 Association of the selected DSSM with the system elements

(the user interface) . 64
5.6 Rules for asset identification 67
5.7 Illustration of the rules . 68
5.8 Functions to traverse a functional system model 69
5.9 Asset analyser (the user interface) 70
5.10 Asset elicitation technique utilising a platform model 71
5.11 Integration of a threat ontology 73
5.12 Adapted model protecting the transfer of measurement data . 76
5.13 Concrete SBB searcher (the user interface) 77
5.14 Ontologies for compatibility analysis 79
5.15 Classification levels for the developed ontologies (excerpts) . . 81
5.16 Model-based compatibility analysis (the user interfaces) . . . 86
5.17 Extended form of the proposed process 88

6.1 Focusing on relevant assets and security goals 97
6.2 Stakeholder security profile view 101
6.3 Reduction effect of SBBs on stakeholder profiles 101
6.4 Comparison of alternative designs 102
6.5 The metering device functional model 113
6.6 System model for the metering device 114
6.7 Two attacks against measurements 115
6.8 Visualisation of calculated CL and IL for stakeholders 116
6.9 Alternative view on calculated CL and IL 117
6.10 An example of cost for compromised assets in the context of

other assets . 120

7.1 Research areas involved in this thesis 125

A.1 Overview of the proposed approximation 158
A.2 Illustration of the proposed approximation 159
A.3 Preliminary results . 161

B.1 Scenario setup used for the prototype 166

C.1 Transformation rules for control nodes 169
C.2 Application of the semantic function to a UML system model 173

D.1 Illustration of input and output data 176
D.2 Visualisation of calculated CL and IL 176

List of Tables

4.1 Correspondence between the GEM and MARTE GQAM profiles 51

5.1 Results of eliciting assets from the functional model 69
5.2 Association of the assets with the platform components . . . 73
5.3 Threats and violated security goals 74
5.4 Scalability and performance estimations 87

6.1 Confidentiality, integrity, or availability 99
6.2 Summary of the used notation 107
6.3 Stakeholder costs expressed for measurements 112

A.1 Transition probabilities and holding time distributions 159
A.2 Transition probabilities for a resulting DTMC 160
A.3 Transition probabilities for an example system 160
A.4 Holding time distributions for an example system 161

D.1 Stakeholder cost estimates (I – Integrity and C – Confiden-
tiality) . 177

xvii

List of Acronyms

CL Confidentiality Loss.
IL Integrity Loss.

AES Advanced Encryption Standard.

DES Data Encryption Standard.
DSSM Domain-Specific Security Model.

EMF Eclipse Modelling Framework.

GCM Generic Component Model.
GEM General Evaluation Model.
GQAM Generic Quantitative Analysis Modeling.
GRM Generic Resource Modeling.

HLAM High-Level Application Modeling.
HRM Hardware Resource Modeling.

MARTE Modelling and Analysis of Real-Time Embed-
ded systems.

NFP Non-Functional Property.

OWL Web Ontology Language.

PAM Performance Analysis Model.
PER Performance Evaluation Record.

RBB Reusable Building Block.

SAM Schedulability Analysis Model.
SBB Security Building Block.
SecFutur Design of Secure and Energy-efficient Embed-

ded Systems for Future Internet Applications.
SEED Security-Enhanced Embedded system Design.
SMC Semi-Markov Chain.

xix

xx Acronyms

SPACE SPecification by Activities, Collaborations and
External state machines.

SRM Software Resource Modeling.

TSM Trusted Sensor Modules.
TSMC Trusted Sensor Module Collector.
TSN Trusted Sensor Network.

UML Unified Modeling Language.

1
Introduction

The ubiquitous presence of networked embedded devices comes as no sur-
prise. Large computing infrastructures that bring automation in our daily
lives exist due to support of such devices interconnected through networks.
Being a part of such infrastructures, embedded devices carry and process
sensitive information. Thus, both their exposure to open networks and their
critical role in storing, processing, and transmission of information makes
embedded devices a target of sophisticated attacks. The interest of attack-
ers is stimulated by the fact that modern embedded systems are often easily
accessible (e.g. deployed in a public and untrusted environment) and the
consequences of compromising such devices can be very large. If an attacker
hacks a device of one type, the attack can be quickly replicated to all other
devices of the same type possibly in thousands or millions. If attackers take
control over one of the devices of a large network, they can gain access to
other devices of the network. For example, a computer scientist at Colombia
University, Ang Cui, has developed a technique that allows taking complete
control of a Cisco IP phone, that in turn allows affecting other parts of a
connected system (other phones in a network, computers, printers, etc.) [4].
These facts impose high requirements on security standards for embedded
systems that are often neglected. To emphasise the point, McClure esti-
mates [5] that there are already 10 billion embedded devices in operation
that were designed without much thought about security.

Thus, it goes without saying that security issues should be considered
during embedded system development since insufficient security can create
a substantial risk for society and significant loss of profits for embedded
system producers, owners, and end users.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Although security is an essential aspect of networked embedded systems,
it is still approached as an add-on late in the development process. This
can hardly be effective due to the complexity of embedded systems, their
resource-constrained nature, and non-functional requirements. For instance,
Ravi et al. [6] discuss the main consequences of incorporating security so-
lutions into embedded systems at the late development phases. Resources
planned during the initial development phase do not account for security
functions. These insufficient resource allocations dramatically limit the
number of security solutions available for a system engineer or even put
this number to zero. The authors identify a set of bottlenecks that system
designers consequently have to deal with. These include, but not limited to,
the energy consumption overheads (the battery gap) and the computational
demands (the processing gap). Ravi et al. argue for a shift to an appropriate
design methodology to address these challenges.

There is a number of factors that make attacks on embedded systems
successful. An unthoughtful system design is one of the sources of potential
breaches. Vulnerabilities introduced during the implementation phase are
another one. Human factors such as an intentional and unintentional misuse
of system components are major problems during the usage phase. While
all factors are significant, this thesis focuses on resolving security issues at
the design phase of the system development. The underlying reason for
such a focus is that the consequences of an unthoughtful design influence
all later phases of the system life cycle. At the same time, integration of
security mechanisms already at the design phase allows early exploration of
performance, power consumption, cost and other trade-offs. Practitioners
recognise that including security into embedded devices should be a crit-
ical design task, and that building security at the early phase into these
systems will provide protection that reduces the need for additional secu-
rity appliances [7]. This motivates adopting the principles of model-based
engineering [8] as a vehicle to bring security consideration to a design phase.

A mere focus on the design phase is not enough to efficiently tackle se-
curity issues. The challenge is amplified by the diversity and complexity of
both security solutions and embedded systems as such. Embedded systems
design requires in-depth understanding of an application domain, usage sce-
narios, and deployment environment. Security threats, in turn, vary from
application to application and are more or less prevalent in an application
domain. Due to these concerns, Kocher et al. [9] stress the need of sys-
tem engineers (who are not necessarily experts in security) to understand
both required level of security assurance and the overhead caused by inte-
grating security solutions into a system design; while practitioners confirm
that engineers are typically not experts in both security and application
domains [10].

Security mechanisms should be developed and thoroughly studied by

1.2. PROBLEM FORMULATION 3

security experts, whereas the resulting knowledge should be available for
embedded system engineers. Generic security solutions are not suitable for
the limited resources of embedded systems. A security solution for embed-
ded systems should be specific for a particular application domain in order to
provide the required efficiency at the cost of acceptable performance. Last
but not least, there are far fewer security experts than embedded system
engineers. These factors together motivate two principles that we exploit in
this thesis towards improving practices of security-enhanced embedded sys-
tem development, namely the separation of roles (i.e. an embedded system
engineer and security expert) and domain specialisation (i.e. application-
driven security) principles.

Very often security is in conflict with other complex requirements on
the functionality and performance of an embedded system. Dealing with
security is also hard because there are a lot of actors and phenomena affect-
ing security of a system and that cannot be fully controlled and accounted
for. One example is incomplete knowledge about adversary behaviour [11].
Therefore, providing perfect security is far beyond our reach and almost
an unattainable goal [12]. This dictates that security is not a binary prop-
erty. Instead, security should be approached as a measurable quantitative
property. A quantitative notion of security can indicate a degree of protec-
tion, and thus, decision makers can be equipped with tools for reasoning
about the trade-off between security and other constraints (functional re-
quirements, system resources, economic factors, etc.).

Measured security can help answering different questions and in this
thesis we are mostly concerned with questions like: Given particular design
alternatives which of them provides higher level of security? Given several
security countermeasures each with associated integration costs which one
is the most beneficial to implement? Answering the former question can
support system engineers to systematically improve a system design and to
reduce associated security risks. The latter question has a special impor-
tance for parties affected by a designed embedded system (stakeholders). In
particular, answering the second question enables conducting cost-benefit
analysis that provides input information for distributing additional costs as-
sociated with integration of security features. A part of the work in this
thesis is concerned with exploring ways to quantify security of embedded
systems at the design phase.

1.2 Problem Formulation

The objective of this thesis is to provide concepts and tools for addressing
security issues of embedded systems already at the design phase. We aim to
reach this by defining an approach which targets two categories of profes-
sionals. With the help of the developed approach, security experts should
have an opportunity to describe developed security solutions in a reusable
manner. This, in turn, should enable embedded system engineers to select

4 CHAPTER 1. INTRODUCTION

a suitable set of security solutions based on the analysis of both system’s
security needs and system resource constraints. The approach explores the
following principles:

• Model-orientation: which allows dealing with security concerns al-
ready at the early development phase.

• Domain specialisation: which increases the quality and efficiency of
eventual solutions by narrowing down the focus to a specific domain.

• Separation of responsibilities and concerns: which supports reuse of
security solutions by promoting separation of the security expert and
embedded system engineer roles.

Adopting the basic principles stated above, we contribute to tackling
the challenge of providing support for a security expert and an embedded
system engineer by answering the following research questions:

1. What abstractions are suitable for a security expert to assist in creating
a useful description of a security mechanism? To enable reuse of secu-
rity knowledge, first it is necessary to define a suitable set of concepts
to capture relevant information. Usefulness of this description means
that it should provide sufficient information for system engineers to
make informative decisions.

2. What technologies and processes can be employed to assist a security
expert in capturing this knowledge? Adequate support is an important
factor that enables use of the developed concepts. This support should
be provided by appropriate modelling structures and a process for
security experts that will assist these specialists in capturing security
knowledge by using these modelling structures.

3. What are methods and tools that should equip an embedded system en-
gineer to enable the use of the provided security knowledge? These
methods and tools should assist a system engineer in exploring alter-
native ways and selecting a set of security solutions to secure a system
under development by using the security knowledge provided by se-
curity experts. Complementary to evolving best practices, and devel-
opment of new countermeasures, our work aims at analysing possible
alternatives with respect to a certain system design.

1.3 Contributions

The main contribution of this work is the definition of a Security-Enhanced
Embedded system Design (SEED) approach with the associated tools and
methods. The contributions of this work are described more specifically
below.

1.3. CONTRIBUTIONS 5

1. Two concepts that represent the domain-specific security knowledge.

SEED rests on two concepts that encapsulate a rich set of information
about security solutions. These are Domain-Specific Security Model
(DSSM) and Performance Evaluation Record (PER). DSSM allows
capturing the functional specifications of a security solution to the ex-
tent it is needed for integration of these solutions into a system model.
Besides, each solution is annotated with the information about what
security issues this solution solves and its relation to other security
mechanisms. PER serves to associate information about performance
characteristics and indicators with a security mechanism. Together
DSSM and PER contain the rich information about capabilities and
demands of a security solution that are important to consider when a
system engineer makes decisions on needed protection.

2. Ontology- and model-based framework that implements the introduced
concepts.

Having introduced the two concepts (DSSM and PER), we face the
need to provide a means to support their usage. We achieve this by
representing DSSM and PER as UML models. Thus, for capturing
security knowledge a security expert simply needs to instantiate cor-
responding UML models. As we mentioned, these concepts contain
rich information of a diverse sort about security countermeasures. To
operate with this information, we utilise the ontology technology as
a viable technology for storing and managing the captured security
knowledge.

3. A process elaborated for a security expert to capture security knowledge
specific for a certain application domain.

As part of this contribution, we elaborate a process that guides a
security expert on how to use the developed concepts. Each step of
this process in SEED is supported by the developed MagicDraw [13]
plug-in.

4. A process elaborated for a system engineer to select security counter-
measures.

Similarly, we define a process to be followed by a system engineer when
incorporating security countermeasures into a system design. The pro-
cess is elaborated using three methods: asset elicitation technique,
model-based compatibility analysis, and a method for quantification
of security risks to data assets.

• Asset elicitation technique

This method allows analysing a system design for identification
of security needs of a system.

6 CHAPTER 1. INTRODUCTION

• Model-based compatibility analysis

This method contributes in matching resource constraints of an
embedded system under development with demands of different
security solutions.

• Quantification of risks to data assets

This method provides two probabilistic risk-based metrics, i.e.
confidentiality loss and integrity loss, to quantify security of a
system with respect to data assets in the context of a given de-
sign model. This includes development of a formal method for
derivation of these metrics using three types of models as inputs:
functional model of a system, its execution platform model, and
attack models. This method is an integral part of SEED, how-
ever, its application goes beyond SEED.

These methods building the system engineer process of SEED are also
supported by a set of tools integrated into the MagicDraw environ-
ment. Besides, the method for quantification of risks to data assets is
supported by a Python-based tool.

5. Application of the developed concepts, methods, and processes on sce-
narios from the metering infrastructure domain.

Throughout the thesis we use scenarios from the smart metering in-
frastructure application to instantiate and demonstrate the introduced
concepts and methods. Consequently, we have demonstrated that
SEED is able to support an embedded system engineer to integrate a
suitable set of security solutions exploring the captured security knowl-
edge. Moreover, we have implemented a smart meter prototype that
we use as an illustrative example for analysing risks to data assets.

1.4 Research Method

A fundamental question underlying computer science is “What can be (ef-
ficiently) automated?” [14]. The research conducted in this thesis can be
classified as technology research [15] that is concerned with creating new
or improving existing artefacts. Solheim and Stølen [15] summarise the
technology research as an iterative process built of three steps: problem
analysis, innovation, and evaluation. The problem analysis step is con-
cerned with identifying the potential need for an improved or new artefact.
Consequently, the innovation step deals with invention and creation (im-
provement) of an artefact satisfying the needs. At the evaluation step, a
researcher tries to find out whether the produced artefact satisfies the for-
mulated needs.

McGrath [16] distinguishes eight evaluation strategies. These are field
study, field experiment, experimental simulation, laboratory experiment,

1.5. LIST OF PUBLICATIONS 7

qualitative interview, survey, non-empirical evidence, and computer simu-
lations. Among other discussions, each strategy is analysed with respect
to three desired properties. These are: precision (that the conclusions are
precise), generalisability (that the results are valid across a population), and
realism (that the evaluation is performed in an environment similar to re-
ality). Ideally one would prefer to apply such an evaluation strategy that
provides the highest precision, the highest generalisability, and the highest
realism. However, the author [16] concludes that none of the strategies can
score the highest with respect to these three properties in practice. For
example, a laboratory experiment has high precision, but may lack realism
and generalisability. A survey scores high on generalisability, but less on
precision and realism.

We adopt the research method outlined above iterating over problem
analysis, innovation, and evaluation. The problem is formulated as a re-
sult of analysing the scientific literature and investigating three industrial
case studies together with industrial and academic partners within the EU
SecFutur project [17]. Our evaluation is based on three studies:

• Study 1: Application of the SEED constituents on scenarios from the
metering infrastructure domain provided by industrial partners from
the EU SecFutur project.

• Study 2: Application of the SEED constituents on a smart meter pro-
totype developed based on the design from the EU SecFutur project.

• Study 3: Analytical evaluations of the suitability of SEED for its in-
tended use.

Study 1 and Study 2 can be considered as variants of the laboratory
experiment approach described by McGrath [16]. Study 1 is reported in
Chapters 4 – 5, and Study 2 is applied in Chapter 6. Study 3 used in Chap-
ter 5 is a variant of the non-empirical evidences approach that scores the
most on generalisability. Moreover, each piece of work has been evaluated
with respect to the scientific literature (see Chapter 7). These studies are
complemented by evaluations through discussions and workshops with senior
colleagues, academic and industrial partners within the European SecFuture
project [17], and by obtaining reviews from the research community when
publishing the results of this work.

1.5 List of Publications

The work presented in this thesis is based on the following publications:

• Maria Vasilevskaya, Linda Ariani Gunawan, Simin Nadjm-Tehrani,
and Peter Herrmann, Security Asset Elicitation for Collaborative Mod-
els, in Model-Driven Security Workshop (MDSec) in conjunction with
MoDELS, ACM, Innsbruck, Austria, pp 7:1–7:6, October 2012.

8 CHAPTER 1. INTRODUCTION

• Maria Vasilevskaya, Linda Ariani Gunawan, Simin Nadjm-Tehrani,
and Peter Herrmann, Integrating Security Mechanisms into Embed-
ded Systems by Domain-specific Modelling, Journal of Security and
Communication Networks 7(12): 2815–2832 (2014), Wiley, 2014.

• Maria Vasilevskaya and Simin Nadjm-Tehrani, Model-based Security
Risk Analysis for Networked Embedded Systems, in the International
Conference on Critical Information Infrastructures Security (CRITIS),
Springer, Limassol, Cyprus, October 2014.

• Maria Vasilevskaya and Simin Nadjm-Tehrani, Support for Cross-
domain Composition of Embedded Systems Using MARTE Models,
ACM SIGBED Review – Special Issue 12(1): 37-45, 2015.

This article is an adaptation of an earlier version presented in the
workshop on Compositional Theory and Technology for Real-Time
Embedded Systems (CRTS) at RTSS, Vancouver, Canada, December
2013.

• Maria Vasilevskaya and Simin Nadjm-Tehrani, Quantifying Risks to
Data Assets Using Formal Metrics in Embedded System Design, in
the International Conference on Computer Safety, Reliability and Se-
curity (SAFECOMP), Springer, Delft, the Netherlands, pp 347 – 361,
September 2015.

Some content of this thesis has been published as parts of deliverables
3.1, 4.1, 4.2, and 4.3 of the EU FP7 SecFutur project [17].

The following papers co-authored in parallel with the presented work are
not included in this thesis:

• Simin Nadjm-Tehrani and Maria Vasilevskaya, Towards a Security Do-
main Model for Embedded Systems, in the IEEE International Sympo-
sium on High Assurance Systems Engineering (HASE), poster session,
Boca Raton, FL, USA, pp 180 – 181, November 2011.

• Maria Vasilevskaya, David Broman, and Kristian Sandahl, An Assess-
ment Model for Large Project Courses, ACM Technical Symposium on
Computer Science Education (SIGCSE), Atlanta, GA, USA, pp 253 –
258, March 2014.

• Maria Vasilevskaya, David Broman, and Kristian Sandahl, Assessing
Large Project Courses: Model, Activities, and Lessons Learned, ACM
Transactions on Computing Education, 2015.

• Klervie Toczé, Maria Vasilevskaya, Simin Nadjm-Tehrani, Patrik San-
dahl, Maintainability of Functional Reactive Programs in a Telecom
Server Software. Submitted.

1.6. OUTLINE 9

1.6 Outline

This thesis is composed of eight chapters where Chapters 3 – 6 contain the
core of this work. We provide the necessary background to our work in
Chapter 2. Chapter 3 explains the idea and structure of SEED in general
terms that are detailed in the following chapters. In particular, Chapter 4
defines the process for capturing of the domain-specific security knowledge.
Chapter 5 explains methods and tools that support the use of the captured
knowledge for integration of security countermeasures into an embedded
system design. We focus on presenting two metrics for quantifying security
risks associated with a system design in Chapter 6. A reader may turn to
Chapter 7 to see the relation of our work to other works in the areas of
system engineering, security engineering, and embedded systems. Finally,
Chapter 8 concludes this thesis and gives some pointers for future work.
Figure 1.1 summarises how the problem formulated in Section 1.2 is covered
by the contributions and the structure of this thesis.

Research question 1
(Abstractions)

Research question 2
(Support for security experts)

Research question 3
(Support for system engineers)

Problem

formulation

Contributions

Structure of

the thesis

Chapter 3

Chapter 4 Chapter 5

Chapter 6

Contribution 1 Contribution 2

Contribution 3 Contribution 4

Contribution 5

Figure 1.1: Structure of the thesis

2
Background

This chapter provides the necessary background needed in the context of
this work. Section 2.1 gives an overview of the basic process models for em-
bedded system engineering. Then, the basic concepts, tools, and methods
of model-based engineering are introduced in Section 2.2 followed by a brief
introduction to ontology technologies given in Section 2.3. Section 2.4 intro-
duces semi-Markov chains. Finally, we conclude this chapter with Section 2.5
by presenting a case from the smart metering domain used for application of
the concepts, methods, and processes developed in SEED. We also use this
case as a running example throughout this thesis to illustrate the introduced
artefacts.

2.1 Embedded Systems Engineering

Development of embedded systems is a complex task. Therefore, a set of
process models exist that support engineers in tackling this complexity. In a
broad sense, a process defines a set of activities, their input/output artefacts,
roles with responsibilities, time frames, and costs. In our work, we are
mainly concerned about activities and input/output artefacts.

At the level of main activities, life cycle models (i.e. process models)
for development of embedded systems are very similar to life cycle mod-
els proposed for general software engineering. In particular, there are five
basic steps that span across the whole life cycle of a system: requirements
definition, system specification, functional design, architectural design, and
prototyping/implementation [18]. The first step intends to capture the cus-
tomer’s true needs in terms of what a system shall do. The following step,

11

12 CHAPTER 2. BACKGROUND

i.e. system specification, refines the customer description in a more concise
and precise form. The next two steps go deeper and turn specifications into
a set of functional blocks that are later mapped into architectural elements.
These elements are combinations of hardware and software resources. Fi-
nally, a system is implemented that results in a prototype. The extended
life cycle models instrument these basic five steps with extra activities, such
as testing, validation, verification, and maintenance. In the following, we
outline three widely known life cycle models, namely waterfall, spiral, and
V models.

• The waterfall [19] model depicted in Figure 2.1(a) represents a de-
velopment cycle as a sequence of the steps above. According to this
model, an engineer should proceed to the next step when the current
phase is completed. Additionally, there is a feedback loop (depicted by
the backward arrows) to the previous phase that ensures conformance
of artefacts created on the current phase to the artefacts produced
on the previous step. The presence of this feedback loop differs the
waterfall model from a simple sequential process.

• The V model [20] depicted in Figure 2.1(b) is similar to the waterfall
model, but it emphasises the verification and validation (V&V) activ-
ities. A system development follows the top-down approach (the left-
hand side), while the verification and validation activities go from the
bottom to the up (the right-hand side). Thus, the implemented system
is verified against each produced artefact, namely implementation, ar-
chitectural design, functional design, specification, and requirements.
Unit and integration testing verifies a system against the artefacts cre-
ated at the prototyping/implementation phase, e.g. program design.
Thus, in this process model each activity in the development leg (the
left side in Figure 2.1(b)) has a counterpart on the same abstraction
level in the V&V leg (the right side in Figure 2.1(b)).

• The spiral model [21] depicted in Figure 2.1(c) promotes an iterative
style for development of a system. Thus, the main difference of the
spiral model and the above mentioned models is that it emphasises
iterative emergence of several versions of the same system. First, a
very restrictive version of a system is developed to understand if the
requirements are correctly and adequately formulated. Then, the sys-
tem evolves into more complex and complete versions, e.g. prototype,
initial design, and enhanced design. The corresponding artefacts, e.g.
requirement specifications, functional and architectural designs, imple-
mentation, also evolve. The radius of the spiral can reflect the amount
of time spent on each cycle.

Different variations, modifications, and combinations of the presented
process models exist. For example, Douglass [22] proposes a so called har-

2.1. EMBEDDED SYSTEMS ENGINEERING 13

(a) Waterfall model (b) V model

(c) Spiral model (d) Harmony model

Figure 2.1: Life cycle process models

mony development process (see Figure 2.1(d)) where the V and spiral models
are combined.

Hardware/software partitioning is a important task of the embedded sys-
tem development that differentiates these systems from software-centric sys-
tems. System partitioning can rely on the Y-chart approach [23, 24] depicted
in Figure 2.2(b). This approach is built of three main elements: application
modelling (the description of system functions), architecture modelling (the
description of potential execution platforms), and mapping of the applica-
tion on modelled architectures (allocation).

There is also a process [25] used in embedded system development that
differentiates two distinct levels. They are system and lower levels. In this
approach, verification, validation, testing, estimation, and analysis steps are
tightly woven into a process. The system level concerns defining a system
model and selecting a suitable architecture. These artefacts are further
evolved into different parts of code (RTOS and application code) and ele-

14 CHAPTER 2. BACKGROUND

ments of hardware at the lower level.

(a) Simplified design flow [26]

Application

modelling
Architecture

modelling

Mapping

(b) Y-chart

Figure 2.2: Two life cycle models for embedded system development

The last model for the life cycle development that we visualise in this sec-
tion is the simplified design flow presented by Marwedel [26]. Figure 2.2(a)
depicts this process. This model does not radically differ from the mod-
els presented above. The design starts from some application knowledge
that is transformed into specification, and hardware/software components.
However, Marwedel explicitly brings the design repository into the process.
According to Marwedel, this repository serves to keep track of design models
evolution. However, we envisage a wider use of this component, namely as
a point to extend and refine the initial design. The evolution of this idea is
further exploited and evolved in Chapters 3 – 6.

2.2 Modelware Zoo

In this section, we briefly introduce the reader to the area of model-based
engineering. First, we cover main concepts of the modelling theory. There-
after, we describe two modelling languages used in our work, namely UML
and MARTE, and an employed system modelling approach called SPACE
together with its modelling language. We conclude this section outlining
tools that support principles of model-based engineering.

2.2.1 Main Concepts

We begin with introducing terms of models, meta-models, transformation,
and basics of the language engineering, followed by brief discussions on topics
such as domain-specific compared to general modelling, and model-based
compared to model-driven engineering.

Models and Meta-models

In general, models allow to raise the abstraction level to deal with growing
complexity of artefacts (e.g. embedded system design) [27]. Abstraction
improves understanding of complex artefacts and allows their efficient anal-
ysis through hiding some irrelevant information. In other words, a model
represents a real system highlighting its properties of interest.

2.2. MODELWARE ZOO 15

Any model conforms to some meta-model that defines its properties.
Thus, a meta-model defines a modelling language used to create a model
of a certain type for a system. Depending on the type of properties that a
model should describe an employed meta-model will change. Consequently,
a meta-model conforms to some language used to define properties of this
meta-model, i.e. a meta-meta-model. In theory, an infinite hierarchy of
model-meta-model relations can be specified. However, in practice, meta-
meta-model is abstract and general enough to define itself wrapping the
layered organisation of modelware (see the left side of Figure 2.3). Such
organisation is sometimes referred to as the four-layered architecture (M0-
M3) [28] or 3+1 organisation [29].

The right side of Figure 2.3 depicts a classical example that demonstrates
an instantiation of the layered organisation introduced above. A real-world
object (car) is shown at level M0. A model of the car is shown at level M1.
This model describes a car as a Car class with one “colour” attribute. The
meta-model located at M2 explains how to understand this model, namely
what elements are classes and what elements are attributes. Finally, level
M3 defines concepts used at level M2. Thus, both Attribute and Class are
represented as classes at M3.

Figure 2.3: Models, meta-models, and meta-meta-models – the layered or-
ganisation

The Object Management Group (OMG) [30] implements the M3 level as
the Meta-Object Facilities (MOF) standard [31]. MOF is used to define the
Unified Modelling Language (UML) [28] located at the M2 level.

Transformation

Model transformation is a technique that allows defining a mapping be-
tween different models, i.e. source and target models, that are different

16 CHAPTER 2. BACKGROUND

representations of the same system. Figure 2.4 depicts a classical scheme
that explains concepts of model transformation and their relations. Any
model transformation is applied to source and target models, but the actual
transformation is defined at the meta-model level, i.e. a model transforma-
tion definition refers to elements of the meta-models of the source and target
models. Thus, model transformation receives input and output models that
conform to their respective source and target meta-models. At the same
time, a model transformation definition is a model by itself that conforms
to some meta-model, i.e. to a transformation language [29, 8].

Figure 2.4: Model transformation: concepts and their relations

Transformation languages can be classified as declarative, imperative,
and hybrid. Declarative languages require an engineer to specify relations
between source and target meta-models, e.g. in terms of functions. In
contrast, one needs to specify such details as execution order (sequence of
steps) when imperative languages are used. A hybrid type of languages is
an intermediate category that mixes constructs and principles from both
declarative and imperative languages.

Depending on the nature of target and source meta-models, transforma-
tion languages can be classified as model-to-model (M2M) and model-to-text
(M2T) transformations [32]. Naturally, the former type of transformations
input a model conforming to a certain meta-model (e.g. UML) and pro-
duce another model that conforms to a different meta-model (e.g. Entity-
Relation Diagram), while the latter type of transformation results in some
textual representation (e.g. Java code). Recently, a third type of transfor-
mation called text-to-model (T2M) has been introduced. Additionally, one
can classify a transformation as endogenous or exogenous. A transformation
is considered to be endogenous if source and target models conform to the
same meta-model. In contrast, an exogenous transformation is used when
source and target models conform to different meta-models.

2.2. MODELWARE ZOO 17

Model transformation is a powerful concept that is used to automate dif-
ferent tasks of model-based engineering [33]. For example, code generation
is a special type of model transformation where the target model is code.
Model composition, model refactoring, verification, and reverse engineering
are other examples of scenarios where model transformation can be applied.

Abstract Syntax, Concrete Syntax, and Semantics

To enable sophisticated operations with models (e.g. transformation), they
must have a well-defined structure. Therefore, techniques for systematic
definition of meta-models should be used. The research area that concerns
proper definition of complex modelling languages is sometimes referred to
as modelling language engineering [34].

The main elements that define a language are its syntax (i.e. a language’s
notation) and semantics (i.e. a language’s meaning). There are two types
of syntax that serve for different purposes, namely an abstract syntax and a
concrete syntax [35]. An abstract syntax defines all valid models of modelling
languages. For example, an abstract syntax defines what are concepts of a
modelling language (e.g. classes and their attributes) and what are their
valid relations (e.g. associations). Meta-modelling (see Figure 2.3) is a
technique for defining an abstract syntax. A concrete syntax defines how an
abstract syntax appears for an engineer (i.e. for its users). Thus, a concrete
syntax deals with representation of a modelling language. A concrete syntax
can be represented in textual or visual (e.g. boxes and arrows) notations.

Semantics defines the meaning of a language notation (i.e. syntax).
In general, there are two steps to define semantics for a language. First, a
semantic domain should be defined that provides a meaning for each expres-
sion. This meaning must be an element of another well-understood domain,
e.g. real numbers. Afterwards, a semantic mapping should be created to
bound elements of an abstract syntax to a defined semantic domain. GPML

Domain-specific vs. General-purpose Modelling

Model-based engineering methods distinguish two big categories of mod-
elling languages, namely Domain-Specific Modelling Languages (DSMLs)
and General-Purpose Modelling Languages (GPMLs). DSMLs are languages
that are designed for a certain domain [36]. Such languages are usually de-
signed by a group of experts to be used in a specific context or company
to facilitate a particular task (e.g. the task of describing things in that do-
main). In other words, a DSML allows the user to specify a solution using
terms of a problem domain that are built in this DSML. Besides, DSMLs
are intended to support a better reuse of functionality recurring in a set
of modelling tasks. A DSML is optimised for a certain class of problems
within a domain. In contrast, a GPML does not target a specific domain,
but rather is intended to be applied in any domain.

18 CHAPTER 2. BACKGROUND

Since expressiveness of DSMLs is bound to a particular domain, they can
be used only for a predefined set of problems; whereas GPMLs are advertised
to be suitable for a wide range of modelling tasks. However, DSMLs bring
higher productivity and conciseness in modelling since an engineer operates
with a limited set of concepts that are familiar and intuitive for a considered
domain.

There are a lot of discussions on the topic of “DSML vs. GPML”. Both
classes of languages are suitable for different purposes and scenarios. There-
fore, it is rational to be aware of their advantages and disadvantages through
their systematic comparison. Boundaries between domain-specialisation are
not obvious: any language is more or less domain-specific [1]. In this sec-
tion, we outline some characteristics that are typical for a pure DSML and
GPML.

A pure DSML can be characterised by the following set of peculiarities:
it is designed for a narrow and well-defined domain; it has a relatively small
size with a limited set of user-defined abstractions; its development takes
months to years; it is designed by a few domain experts; its user community
is a narrow and accessible group. In contrast, a pure GPML is designed for a
large and complex domain; it has a large language size with a sophisticated
set of general abstractions; its development usually spans over years and
decades; it is designed by gurus and large communities.

To conclude our discussions about DSMLs and GPMLs, Figure 2.5 (pre-
sented by Voelter [1]) illustrates views on relations between domains and
languages. Figure 2.5(a) shows the relations between domains as a hierar-
chical structure where a domain of a pure GPML is the lowest level. An
example of a language order based on their domain-specificity is depicted in
Figure 2.5(b). We believe that these figures give a good intuition on bound-
aries between domain-specific and general-purpose modelling languages.

(a) Domain hierarchy

General purpose

Domain-specific

UML

Communication

Sensor access

LEGO Robot control

(b) Language order

Figure 2.5: Relations between domains and languages, adapted from [1]

Model-based vs. Model-driven Engineering

A set of development paradigms that rely on models as a key artefact have re-
cently emerged. For example, Liebel et al. [37] recently report in their state-

2.2. MODELWARE ZOO 19

of-practice survey that use of models is widespread in the embedded domain.
These paradigms are Model-Based Engineering (MBE), Model-Driven De-
velopment (MDD), Model-Driven Engineering (MDE), and Model-Driven
Architecture (MDA) that can be distinguished based on the role of models.

To begin with, we briefly explain the difference between “model-driven”
and “model-based” prefixes. Intuitively, the latter is a softer version of the
former: the former prefix says that models drive the process, while in the
latter case models play an important role, but are not key artefacts. In
case of “model-driven”, it is often expected that a model is used to generate
the final implementation. In contrast, for the “model-based” techniques, a
model can be used for various kinds of analysis and even test generation,
but the actual implementation can be done by developers. Thus, MDE can
be considered as a subset of MBE [8]. Similarly, MDD is a subset of MDE,
since the letter “D” stands for “Development” that is one type of activity
in system engineering. Finally, MDA is a realisation of MDD proposed by
Open Management Group (OMG) [30] that is inherently based on OMG
standards.

2.2.2 UML

Unified Modelling Language (UML) is a widely accepted general purpose
modelling language. Modelling concepts defined by UML are organised in
different types of diagrams. The current version of UML (v2.4.1) [28] dif-
ferentiates 14 types of diagrams. These diagrams are classified in two cat-
egories: those that are intended to model structural and behaviour parts
of a system. Each type of diagram uses different modelling concepts that
together allow describing diverse aspects of a system.

There are seven types of structural diagrams. A class diagram shows
system’s classes, their attributes, their operations, and the relations among
classes. A component diagram shows the components of a system and their
relations. A composite structure diagram shows the internal structure of
a class and the interaction (collaboration) that this structure enables. A
deployment diagram can be used to show the hardware/software parts of
a system and artefacts deployed on this execution environment. An ob-
ject diagram shows instantiation of the system classes. A package diagram
shows the logical organisation of a system as a set of packages and their de-
pendencies. Finally, a profile diagram encapsulates custom domain-specific
extensions of the standard UML constructs (see below).

The remained seven types of UML diagrams allows describing behaviour
of a system. An activity diagram can be used to show a workflow (both
control and data) of a system. A state machine diagram shows the system’s
states and their transitions. A use case diagram is used to give a high-level
description of a system in terms of actors, their goals, and dependencies
between actors and goals. Communication and sequence diagrams are used
to describe the interaction and communication between objects as sequences

20 CHAPTER 2. BACKGROUND

of messages using different syntaxes. The last two types of diagrams are
interaction overview and timing diagrams that enable creation of an overview
of a system and specifying some timing constraints of operations respectively.

This rich set of diagrams have a complex and diverse syntax, but their
semantics is rather weak. As a result, UML diagrams are used for modelling
tasks in many different domains, but these models are not comparable due
to the absence of a commonly agreed semantic domain. Therefore, usually
a small subset of UML (i.e. some syntactical constructs such as a subset
of UML class diagrams) is used and is further supported by a user-defined
semantics bound to a considered domain.

In addition, the UML standard defines extensibility mechanisms that
can be used to add domain-specificity to UML. They are profiles, stereo-
types and tag definitions. A profile is a special type of package that contains
stereotypes. A visual representation of a profile is referred to as a profile
diagram. A stereotype allows adding a set of specific properties (suitable
for a particular domain) into existing UML concepts (e.g. class, activity,
component). Thus, a stereotype can be considered as a mechanism to re-
fine existing UML concepts with required non-standard semantics. Each
stereotype extends (refines) some UML base meta-class (e.g. class, prop-
erty, named element). Therefore, a stereotype can be used to annotate only
those concepts that extend the same meta-class. A stereotype can introduce
additional domain-specific properties. These properties are defined through
so-called tag definitions. Figure 2.6 depicts a small example of a stereotype
definition and its usage. Figure 2.6(a) shows a stereotype called Car that
has two tag definitions, namely colour and brand. Thereafter, we have ap-
plied the stereotype Car to specialise the class BondCar (see Figure 2.6(b)).
Hence, BondCar has all the properties declared for the Car stereotype. The
colour and brand properties can be assigned to some values. For our example
in Figure 2.6(b), they are silver and Aston Martin respectively.

(a) Definition of a stereo-
type

‹‹Car››

BondCar

gadget: String

{colour="silver",

brand="Aston Martin"}

(b) Usage of a stereotype
and tag

Figure 2.6: Example of the stereotype definition and usage

Note, that a stereotype should not be confused with the inheritance
relation. Annotation of entities with a certain stereotype does not bring
the classical child-parent dependency. In our example, if we remove the

2.2. MODELWARE ZOO 21

stereotype Car from the model, the class BondCar will still exist but without
the colour and brand properties that belong to the stereotype Car. In
contrast, a child can not exist without a parent when the inheritance relation
is established.

When modelling a complex system, an engineer may need to use sev-
eral UML profiles for covering diverse domain-specific characteristics in one
model. However, this can create inconsistencies when the used profiles con-
tain concepts that overlap and contradict to each other. Noyrit et al. [38]
discusses the issues of using multiple UML profiles and also suggest an ap-
proach for resolving identified issues.

One can distinguish two main approaches to defining a UML profile [39].
The first approach starts directly by defining a set of stereotypes that extend
the UML meta-model. The second approach introduces a more systematic
two-stage process. According to the latter approach, an engineer first needs
to create a conceptual model for a domain. A conceptual model describes
all (relevant) concepts of a selected domain and their relations. In the sec-
ond stage, the actual set of stereotypes together with their attributes and
constraints is derived from a conceptual model. This process is sometimes
referred to as mapping [40]. Lagarde et al. [39] suggest to automate this
step to avoid errors and to enable relevant verifications ensuring consis-
tency of the resulting profile with its conceptual model. In the context of
the modelling language engineering explained in Section 2.2, the mentioned
conceptual model can be referred to as an abstract syntax and a profile as
a concrete syntax.

2.2.3 MARTE

MARTE [41] is a standardised UML profile designed for Modelling and Anal-
ysis of Real-Time Embedded systems. It contains a rich set of concepts to
support design and analysis of embedded systems. The structure of this pro-
file is outlined in Figure 2.7. The MARTE foundations package provides a
set of concepts required to model non-functional properties (NFP package),
time properties (Time package), generic resources of an execution platform
(GRM package), and resource allocation (Alloc package). These foundations
serve as basics for the MARTE design and analysis models.

The design package contains sub-packages to describe the hardware and
software resources, namely Hardware Resource Modeling (HRM) and Soft-
ware Resource Modeling (SRM). Additionally, the design modelling packages
contain concepts to model a component structure and application features.
These concepts are encapsulated into the Generic Component Model pack-
age (GCM) and High-Level Application Modeling (HLAM) packages. The
MARTE analysis package provides facilities to model the context required
to perform analysis of real-time and performance characteristics of embed-
ded systems. In particular, the Generic Quantitative Analysis Modeling
(GQAM) package defines a set of general terms while its extensions refine

22 CHAPTER 2. BACKGROUND

them to support schedulability (SAM) and performance analysis (PAM).

Figure 2.7: Structure of the MARTE profile

Figure 2.8 shows the basic elements of the GQAM package. Its central
concept is the Analysis Context. This concept aggregates all relevant infor-
mation needed to describe the constitutents of any type of analysis. In par-
ticular, the analysis context concept relates resource platform and workload
behaviour elements. A workload behaviour defines a set of system operations
that are triggered over time by a set of workload events. A resource platform
is a container for resources, i.e. hardware/software execution platform, that
are used by the system operations mentioned above.

Figure 2.8: Structure of the MARTE analysis packages

2.2.4 SPACE

SPACE is a model-based engineering method [2] supported by the Arc-
tis tool-set [42]. When this method is used, applications are composed of
building blocks that can specify local behaviour as well as the interaction
between several distributed entities. This specification style enables a rapid
application development since, on average, more than 70% of a system spec-
ification comes from reusable building blocks provided in domain-specific
libraries [43]. In turn, this strategy helps to reduce the expertise required
in developing cross-domain applications. An additional benefit is the formal
semantics of the specification defined by Kraemer and Herrmann [44], which
makes it possible to verify system properties, e.g. that the building blocks
are correctly integrated into activities [42].

2.2. MODELWARE ZOO 23

Figure 2.9 gives an overview of the SPACE method [44]. An engineer
starts studying a library of reusable building blocks. In case a needed build-
ing block does not exist in the library, an engineer can start creating a new
one and add it into the library for its further reuse. Each building block
can cover the behaviour of a single component as well as collaborative be-
haviour among several components. Building blocks can be domain-specific
or quite general that can be integrated into several systems. Each building
block is described as a combination of UML collaborations (an element of
a UML composite structure diagram), activities (an element of a UML ac-
tivity diagram), and so-called external state machines (ESMs) that specify
externally visible behaviour of building blocks. Several building blocks are
composed into a system with desired services. At this stage, analysis of a
composed system (e.g. verification of functional or safety properties) can be
performed due to the defined transformation of collaborative models into a
temporal logic formula that serves as an input to the TLA (Temporal Logic
of Actions) model checker [45]. Thereafter, the resulted system design is
automatically transformed into state machines, that can be further used to
generate implementation code via relevant transformations.

Our contribution enhances the step composition and analysis from Fig-
ure 2.9 when it comes to decide on a set of security measures expressed as
reusable building blocks. In particular, we elaborate a method to select a set
of security building blocks that are suitable for a system under development
according to identified security needs.

Figure 2.9: SPACE model-based engineering method, adapted from [2]

In the following, we explain elements of the modelling language used
by SPACE, namely local blocks, collaborative blocks, and external state
machines. We use a small example of a simple e-consultation application
depicted in Figure 2.10 to demonstrate the introduced elements. In this
scenario, a customer sends a question to a consultant. The consultant pro-
cesses the question and sends a reply to the customer. The system structure
is specified by a UML collaboration as shown in Figure 2.10(a). On this
diagram, the collaboration roles depicted as rectangles represent two com-
ponents of the system, namely a Customer and a Consultant. These two
components are bound to the client and server roles respectively. The col-
laboration use, namely the chart:Simple Chart block, that is depicted as an
ellipse encapsulates a logic of the component interaction.

24 CHAPTER 2. BACKGROUND

Figure 2.10(b) shows the behaviour view of the system that is modelled
as a UML activity with a slightly modified syntax. The e-consultation sce-
nario is built of two partitions, i.e. the client and the server, that model
the corresponding entities, i.e. a customer and a consultant. These parti-
tions include three building blocks (instantiated as call behaviour actions),
namely cm:Customer, cnt:Consultant, and chart:Simple Chart. The for-
mer two blocks model the local behaviour and are called local blocks, while
the latter block models interaction between entities and called collaborative
block. Each of these blocks is associated with another UML activity that
details their behaviour (not shown in Figure 2.10).

(a) UML Collaboration

<<system>> e-Consultation

cm: Customer chart: Simple Chart cnt: Consultant

ask: String

reply: String

in-ask: String

out-reply: String

out-ask: String

in-reply: String

start

ask: String

reply: String

start

Client Server

(b) UML Activity

(c) External State Machine

Figure 2.10: Model of a simple e-consultation application in SPACE

The overall activity is called system block. In our example, the local
blocks are initiated with a special node denoted as filled circle (•). Pins at
sides of building blocks are used to control their behaviour passing tokens of
control or data flows along corresponding edges. The white pins represent
pins that are used to start (the start and in-ask pins) or to terminate (the
out-reply pins) building blocks. The dark pins denote streaming pins, i.e.
pins that are used just to pass data objects. In our case, they are ask, reply,
out-ask, and in-reply. The pins out-reply and in-ask transmit data objects
as well, but these are activating and deactivating pins respectively, and,
therefore, are coloured in white.

Figure 2.10(c) illustrates the ESM for the Simple Chart building block
that is a modified UML state machine. The labels of the transitions refer
to pins that sit on sides of the corresponding building block used to pass
tokens. Thus, pins are used to activate transitions. The slash symbol (/)
indicates if a transition is activated by an input (the slash symbol follows
the label) or output (the slash symbol preceeds the label) pin.

Similar to functional building blocks, security mechanisms can be ex-
pressed as self-contained building blocks. SPACE has been already used

2.2. MODELWARE ZOO 25

for encapsulating security functionality in the form of building blocks [46]
validating their correct integration [47]. Additionally, the recent work of
Gunawan and Herrmann [48] enables compositional verification of security
properties for SPACE models.

2.2.5 Tools

MBE promotes the use of modelling for a set of sophisticated tasks of system
development. It defines techniques to manipulate produced models, e.g.
for simulation, verification, and transformation. These techniques, in turn,
must be supported with corresponding tools to enjoy all benefits that are
provided by MBE. This section outlines some basic and widely spread tools
that enable the practices of MBE.

There are two main languages for meta-modelling, namely MOF (men-
tioned in Section 2.2.1) and Ecore. Recall, that a meta-model or abstract
syntax defines the structure of a modelling language, i.e. its constructs,
relations, and properties. Ecore is a meta-modelling language used within
the Eclipse Modelling Framework (EMF) [49]. The EMF project is a widely
used modelling framework that allows engineers to work with modelling
languages. EMF provides facilities to define abstract and concrete syn-
tax, and to create editors for custom models and Java code for developed
meta-models. OMG defines two variants for MOF, namely Essential MOF
(EMOF) and Complete MOF (CMOF). CMOF extends EMOF with ad-
ditional structures. To specify a modelling language using EMOF, an en-
gineer can use the Kermeta tool [50]. Alternatively, KM3 (Kernel Meta-
Meta-Model) [51] is a textual language to create meta-models for DSMLs.
Meta-models specified in Ecore or MOF can be serialised to an XMI file.

A variety of tools exist to define a concrete syntax for a DSML. For
example, Graphiti [52] and GMF [53] are Eclipse-based graphic frameworks
that allow developing custom editors. These tools enable automatic gener-
ation of a basic editor that can be further refined and tuned. Alternatively,
an engineer can define the text representation of a concrete syntax for a
modelling language using such tools as Xtext [54]. It provides a language to
define grammars and a generator to create parsers and Eclipse-based editors
for DSMLs.

A lot of tools are available for modelling with UML: MagicDraw [13],
Enterprise Architecture [55], Rhapsody [56], to name some main examples.
Additionally, EMF provides its own UML2Tool plug-in [57] for defining UML
models. Most of the tools mentioned above already support the use of the
MARTE profile providing corresponding plug-ins. Moreover, MARTE is
implemented in the Eclipse-based Papyrus tool [58].

In our work, we use the MagicDraw tool together with its MARTE plug-
in (in Chapters 4 – 5) since MagicDraw was used in a European project in
which we participated. Besides, we use the Eclipse-based Arctis tool-set [42]
to work with the language of the model-based engineering method SPACE

26 CHAPTER 2. BACKGROUND

describe in Section 2.2.4.
Atlas Transformation Language (ATL) and Query/View/Transform

(QVT) are M2M transformation languages. QVT (QVT Operational) [59] is
an imperative language standardised by OMG that allows specifying unidi-
rectional transformations. ATL [60] is a declarative and imperative (hybrid)
language developed within EMF. To create transformations using these lan-
guages, an engineer needs to write a script. Henshin [61] and EMorF [62]
are declarative EMF M2M transformation languages where transformations
are specified graphically. There is also an extensive support for M2T trans-
formations. For example, EMF provides Java Emitter Template (JET),
Acceleo, and Xpand template-based languages. In this thesis, we use the
Acceleo tool for transforming UML models into the OWL syntax.

2.3 Ontology Technologies

An ontology [63] represents knowledge in a particular domain as a set of
concepts and their relations. This knowledge is formalised as a logic-based
system and described by knowledge representation languages. In particular,
we use the Web Ontology Language (OWL2) [64] which is a commonly used
and standardised language for creation of large ontologies.

OWL represents an ontology as a sequence of axioms. These axioms
describe classes, relations between classes, and their individuals. An OWL
class declares the concept of a domain and can be refined by sub-classes.
OWL individuals are instances of OWL classes. OWL supports two types
of relations. OWL object property defines a relation between two individu-
als, where one of them plays the role of a domain, and another one plays
the role of a value range. In other words, domain defines a subject of a
relation, whereas range defines an object. OWL datatype property serves to
introduce relations between an individual (domain) and the XML schema
datatypes (range) known as XSD (XML Schema Definition). XSD provides
such primitive data types as boolean, integer, etc.

The OWL language supports a set of constructs that facilitate man-
agement of ontologies. In particular, the OWL language implements the
importing feature, which allows relating different OWL ontologies using the
owl:import statement. When merging two or more ontologies, it may be the
case that these ontologies contain overlapping concepts that have different
names, but actually refer to the same things from the reality. Such simi-
lar concepts should be related in the merged ontology using the construct
owl:sameAs. This procedure sometimes is referred to as ontologies align-
ment that is the process of determining correspondences between concepts.

OWL ontologies enable querying of the declared knowledge by combin-
ing ontology reasoners (e.g. Pellet or HermiT) and SPARQL querying lan-
guage [65]. SPARQL 1.1 is a standard query language (recommended by
W3C) to execute data queries on top of OWL. It supports yes/no-questions
(the ASK query form), a selection which matches a desired pattern (the SE-

2.3. ONTOLOGY TECHNOLOGIES 27

LECT query form), filtering (the FILTER modifier), sorting (the ORDER
modifier), string matching, etc. In this thesis, we use SPARQL together
with HermiT.

To design and manage an ontology, one can use such a tool as Protégé [66].
Since tools developed in this work are Java-based, we exploit the Java OWL
API [67, 68] to manipulate ontologies (i.e. addition and modification of
axioms). To execute SPARQL queries, one can load an ontology into the
Protégé tool and use its SPARQL plug-in [69]. In our work, we use Java
APIs provided by the widely accepted Jena [70] framework to query on-
tologies. It provides the SPARQL compliant query engine (among other
services) for OWL ontologies.

The OWL standard [71] defines three variants of OWL, namely OWL
Lite, OWL DL (Description Logic), and OWL Full. These three sub-
languages have different expressiveness and, consequently, different com-
plexity, and, therefore, are used for different purposes. OWL Lite is the
simplest variant and allows the user to capture classification hierarchy and
constraints with restricted expressiveness. For example, it permits only 0
and 1 as cardinality values. However, it has a simple implementation and
comparatively easy to use. In contrast, OWL DL is the most expressive
variant. It supports all OWL constructs, but their use is restricted by a set
of requirements and rules outlined by W3C [71]. These constraints maintain
computational completeness and decidability of this language. OWL Full re-
laxes constraints of OWL DL and enjoys all capabilities of OWL constructs.
The price for this freedom is absence of any computational guarantees.

Ontologies for Security

A number of ontologies for security have been proposed. For example, Her-
zog et al. [72] and Fenz and Ekelhart [73] introduce two ontologies that
formalise the domain of information security from different aspects; Kim et
al. [74] present an ontology for annotating web-services; Karyda et al. [75]
propose an ontology to assist reuse of the experts’ security knowledge in
the area of e-government applications. In our work, we adopt the ontology
presented by Herzog et al. since it is built upon classic components of risk
analysis. We continue with a brief description of this ontology.

The core of the Herzog et al. ontology [72] consists of six classes. Four
of them are concepts related to risk analysis, i.e. asset, vulnerability, threat,
and countermeasure. The remaining two classes are security goal and de-
fence strategy. Relations between these concepts are defined as follows: an
asset can have several vulnerabilities; a threat threatens assets with respect
to some security goals; a countermeasure protects assets with respect to
security goals by means of defence strategies.

The ontology gives diverse classifications of countermeasures, assets,
threats, and vulnerabilities relevant for information security. In particu-
lar, the ontology defines 133 countermeasures, 79 assets, 88 threats, and 14
vulnerabilities. The security goal and defence strategy classes are described

28 CHAPTER 2. BACKGROUND

by a set of individuals. Six individuals are defined for the defence strat-
egy class, namely correction, deflection, detection, deterrence, prevention,
and recovery. Fifteen individuals are defined for the security goal class, e.g.
confidentiality, integrity, authorisation, and anonymity.

2.4 Semi-Markov Chains

A semi-Markov chain (SMC) [76] is a general state transition system defined
by three components (S, P,H) where S is a set of states, P = (pij) is a
transition matrix, andH = hij(.) is a holding time distribution matrix. Each
pij is the probability that a SMC that enters state i on its last transition
will enter state j on its next transition. Each pij satisfies the standard
conditions:

pij ≥ 0, i = 1, . . . , N ; j = 1, . . . , N,

N
∑

j=1

pij = 1

N is the number of system states. Each hij(.) is a holding time mass function
of the process in state i when the next transition is to state j.

S1 S2
h12 h21

p12

p21

Figure 2.11: An example of a semi-Markov chain

A SMC depicted in Figure 2.11 has two states s1 and s2. The SMC
moves to state s2 from s1 with the transition probability p12 and to state
s1 from s2 with the transition probability p21. However, before making a
transition the process holds for some time τ in a current state. This holding
time for each state is given by assigning a probability mass function that
expresses the time that a system will stay in a state before proceeding to a
next state as exemplified in Figure 2.11. In our example, h12(t) and h21(t)
are holding times in states s1 and s2 respectively. Note that in general case
holding time can depend on the next transition, therefore, the notation for
holding times contains both the initial state and the destination. Hence,
h12(t) is interpreted as holding time for a process in state s1 given that the
next transition is taken into state s2. Thus,

P (τij = t) = hij(t) (2.1)

We consider a case where holding time distributions are discrete distri-
butions. There is also an assumption [76] that all holding times are at least
one time unit in length, i.e. hij(0) = 0.

2.5. METERING INFRASTRUCTURE 29

A SMC is characterised by φij(n) that is called the interval transition
probability from state i to state j in the interval (0, n). The interval tran-
sition probability is defined by the following system equation:

φij(n) = σij w
>
i (n) +

N
∑

k=1

pik

n
∑

m=0

hik(m)φkj(n−m) (2.2)

In equation (2.2), σij = 1 if i = j, otherwise, σij = 0; w>
i (n) is the

probability that a SMC leaves its state i at a time greater than n. The
second part of equation (2.2) represents the probability that a SMC will
enter state j from i sequentially passing some states k before some time m

and then continues along any path from k to j in the remaining time n−m.

2.5 Metering Infrastructure

Figure 2.12: Overview of the smart metering infrastructure [3]

Figure 2.12 gives an overview of an infrastructure called Trusted Sensor
Network (TSN) from the smart metering domain. This case is provided by
the MixedMode company that has participated in the European SecFutur
project [17]. TSN is built of a set of metering devices, database servers,
client applications, and a communication infrastructure. The main goal of
this system is to measure energy consumption at households and to associate
measurements with the clients’ data for billing purposes.

The actual measurement is done by Trusted Sensor Modules (TSMs)
consisting of a computing platform and physical sensors. These devices can
be distributed in households or office buildings. The acquired measurement
data is transferred via a local bus from each TSM to a Trusted Sensor Module
Collector (TSMC). All measurements collected by TSMCs are eventually
sent to operator servers through a general-purpose network. Administrator
servers and terminals can also be connected to this network for maintaining
TSMs and TSMCs. The TSMC is also an embedded device, similar to TSM
but with more functionality. That is, TSMC and TSM are two functional
modules that are implemented on the same physical platform.

30 CHAPTER 2. BACKGROUND

The overall specification of this case consists of 7 main scenarios that
have a range of diverse security considerations. In this thesis, we focus on
the measurement data transfer from TSM to TSMC and from TSMC to an
operator server. Consequently, we concentrate on those security issues that
concern confidentiality and integrity of the measurement data produced,
collected, or stored by the system components.

3
SEED: Bird’s Eye View

This chapter presents a Security-EnhancedEmbedded systemDesign (SEED)
approach, that provides concepts, methods, and tools for dealing with secu-
rity issues of embedded systems already at the design phase.

3.1 Introduction to SEED

SEED addresses the situation when system engineers are not necessarily
security experts, and when security experts are not easily accessible to assist
system engineers. Overall, the SEED approach rests on three basic principles
discussed in the introduction:

• model-orientation,

• domain specialisation, and

• separation of responsibilities and concerns.

Besides these principles, there is another significant design consideration,
namely the proposed approach is defined as an increment to existing prac-
tices and process models known for embedded system development. These
concerns for security-related processes have been revealed by Whyte and
Harrison [77]. The authors point out that among factors that prevent en-
forcing security in a systematic way are a lack of security expertise and
hesitation of system engineers to commit to follow a new approach that
deals with the security aspects due to associated risks.

31

32 CHAPTER 3. SEED: BIRD’S EYE VIEW

The SEED approach can be considered in two parts that describe it at
two levels of abstraction. These levels are SEED foundation and SEED re-
alisation. The SEED foundation is a generic form of the proposed process
that can be instantiated for different technologies, modelling and formal lan-
guages. The SEED foundation defines main activities, involved roles, used
principles, and their exploitation. The SEED realisation is an implementa-
tion of the generic process on a selected set of technologies and languages.
In this thesis, the set of languages and technologies selected for one SEED
realisation are SPACE, MARTE, and ontology.

This chapter focuses on presenting the generic process, i.e. the SEED
foundation. The realisation details are explained in Chapters 4 – 6 where
we also illustrate application of the SEED using scenarios from the smart
metering infrastructure.

3.2 The SEED Foundation

Figure 3.1 depicts the generic process1 of the SEED foundation. It consists
of three activities: creation of a system model, capturing of the domain-
specific security knowledge, and development of a security-enhanced embed-
ded system. These activities are performed by embedded system engineers
or security experts. Thus, the SEED approach acts as a vehicle for commu-
nication between the two expert groups. We continue explaining each of the
above-mentioned activities.

Figure 3.1: Generic process – the SEED foundation

1It has been developed in cooperation with research partners from the EU FP7 Sec-
Futur project [17].

3.2. THE SEED FOUNDATION 33

3.2.1 Creation of a System Model

The activity of creation of a system model is performed by an embedded
system engineer. Figure 3.2(a) depicts a fragment of a simplified embed-
ded system design flow that demonstrates artefacts that are used for the
SEED foundation. Note, that this figure does not detail how an embedded
system engineer produces the artefacts (see the process models described in
Section 2.1).

An embedded system engineer starts from system specifications and cre-
ates a functional model of a system and a set of models for potential ex-
ecution platforms. A functional model of a system is a set of modelling
elements that describe structural and behavioural aspects of an application,
e.g. UML class and activity diagrams respectively. An execution platform
model of a system describes an assembly of resources. Each resource pro-
vides some services to support execution of an application described as a
functional model. Thereafter, an embedded system engineer proceeds to
select the best-fitted execution platform. This step includes allocation of
elements of a functional model onto available resources, i.e. onto the exe-
cution platform model. In other words, allocation is used to establish an
association between elements of functional and execution platform models.
To sum up, the generic process, i.e. the SEED foundation, uses three arte-
facts produced while designing an embedded system. These artefacts are a
functional model, execution platform model (or just platform model), and
allocation information.

Hence, SEED is intended to support security analysis when a system en-
gineer has a version of a system design when some decisions about function-
ality of an embedded system and its hardware/software architecture have
been made. At this point, an embedded system engineer has relevant in-
formation needed to estimate the system’s capabilities to deal with security
aspects. In particular, the initial system design is present, valuable objects
and actions that influence them are known, and the capacity of a system
dedicated for security enforcement of security can be indicated.

3.2.2 Capturing the Domain-specific Security Knowl-

edge

Capturing of the domain-specific security knowledge is an essential step to
enable further reuse. This activity is conducted by a domain security expert
(just a security expert or a security engineer from now on), i.e. a security
expert who has knowledge about an application domain. The main task that
a security expert completes as part of this activity is to describe available
security mechanisms. Additionally, a security expert provides other rele-
vant information that is needed for an embedded system engineer to make
informed decisions when selecting a suitable set of security mechanisms.

Figure 3.2(b) illustrates a simplified flow of a security mechanism devel-
opment that demonstrates artefacts that are used for the SEED foundation.

34 CHAPTER 3. SEED: BIRD’S EYE VIEW

First, a functional model is created based on some specifications of a secu-
rity mechanism. For example, it can be a mathematical abstraction of a
mechanism, e.g. an algorithm defined as a mathematical object. Similarly
to an embedded system, a functional model defines behaviour and structural
aspects of a security mechanism. Thereafter, a security expert proceeds to
implement it. At the implementation phase, besides an implementation it-
self, a security expert produces constraints on execution platforms. These
constraints come from design characteristics of a security mechanism. For
example, a certain implementation of an encryption algorithm can rely on
a certain instruction set that should be present in a micro controller. These
constraints restrict a set of suitable evaluation execution platforms selected
at the next step. Thereafter, the evaluation step allows studying perfor-
mance aspects of a security mechanism (i.e. the created resource overhead
for a provided security level) on a selected set of evaluation execution plat-
forms given certain workloads. Ideally evaluation platforms should mimic
candidate execution platforms where a security mechanism is expected to be
deployed. For example, a security expert may consider different assemblies
of systems or different configurations of the same system. A workload is a
set of stimulus under which a security mechanism should be evaluated, e.g.
a stream of input events. This also should resemble the expected use of a
target system. The main intention of this evaluation is to study different
aspects of security mechanisms and to collect a range of performance indica-
tors that can be later used by a system engineer to reason about applicability
of a security mechanism in the context of a certain system. This informa-
tion about evaluation platform candidates and workloads comes from the
application domain knowledge.

The set of artefacts mentioned above, namely a functional model, ex-
ecution platform constraints, data about performance evaluation (evalua-
tion platforms, workload, and results of evaluation) constitute the domain-
specific security knowledge where a domain represents an application domain
like smart metering devices and set-top boxes in the context of this work.
Additionally, the domain-specific security knowledge includes a declaration
of security properties provided by a security mechanism. All together these
artefacts give a holistic view on existing security solutions needed to support
their integration into an embedded system. For example, an embedded sys-
tem engineer can study such aspects as: whether a system integrated with a
security mechanism still maintains its dedicated functionality in a satisfac-
tory way; or whether a candidate security mechanism fits in the resource-
related constraints of an embedded system; or whether security properties
of a security mechanism correspond to formulated security requirements of
a system.

The domain-specific security knowledge is stored in a repository so that
it is available for an embedded system engineer for its further reuse. The
domain specialisation of security knowledge is motivated by the following
rationale. Security requirements for a particular application depend on po-

3.2. THE SEED FOUNDATION 35

tentially present threats that vary based on the nature of an application and
deployment environment (i.e. a domain). As a result, the domain-specific
security knowledge will have a different set of required security properties
and, consequently, associated with them security mechanisms that satisfy
these security properties.

Functional model

Creation of a

functional model

System

sepcifications

Design space

exploration and

allocation

System model

Creation of

platform models

Platform models

(a) Embedded system

Security mechanism

specificaitons

Functional model

Implemention of a

security mechanism

Implementation

Evaluation results

Creation of a

functional model

Evaluation on different

 execution platforms

Execution platform

constraints

Evaluation execution

platforms

Workloads

(b) Security mechanism

Figure 3.2: Fragments of simplified design flows

3.2.3 Role of an Application Domain

The notion of an application domain plays an important role in SEED. It
is a basic notion that creates a common ground for system engineers and
security experts.

In general, a domain can be simply defined as an area of interest to a
particular development [36]. Kelly and Tolvanen [36] mention two general
ways to look at the notion of a domain: horizontal and vertical. Examples of
horizontal (also called technical) domains are persistency, user interface, and
communication; examples of vertical (also called as functional or business)
domains are telecommunication, banking, and robot control. In this thesis,
our notion of application domains has more in common with the vertical
domains mentioned by Kelly and Tolvanen.

In domain-specific modelling the main objective of creating a domain is
to define a domain-specific language that will facilitate development effort.
In our work, we look at a domain as a pool that contains domain-specific
information. In particular, this pool contains information about components
that are used in this domain for construction of execution platforms, and
information about workloads that are typical for this domain. These details
can be encapsulated as a part of a domain-specific language.

Thus, when a system engineer designs an execution platform he/she uses

36 CHAPTER 3. SEED: BIRD’S EYE VIEW

constraints and components from the corresponding domain pool; similarly,
a security experts relies on the same common components and constraints
when designing a security mechanism. Additionally, when a security expert
evaluates a security mechanism he/she does it based on workloads that are
typical for systems from this domain. Figure 3.3 summarises the relation
between a domain, a system, and a security mechanism. In this fashion, we
can achieve some degree of relative independence between security experts
and system engineers.

System

Functional

model

Execution

platform

Components

Domain

Security

mechanism

Functional

 model

Evaluation

platform

has

has has

hashas

has

uses
uses

. . .

Figure 3.3: Partial relations between a domain, a system, and a security
mechanism

3.2.4 Development of a Security-enhanced Embedded

System

An embedded system engineer is the one who develops a security-enhanced
embedded system. The goal is to extend a system model with security
features that are retrieved from relevant parts of the domain-specific security
knowledge. In particular, this activity within SEED foundation is built of
three basic steps:

• First, a system model is analysed to identify those parts that need
security protection. Both functional and execution platform models
are subjects of this analysis.

• Second, the security knowledge is consulted to retrieve a set of rel-
evant security properties (based on outcomes of the previous step).
Consequently, a set of security mechanisms that are available in the
repository to satisfy identified security properties are also retrieved
from the domain-specific security knowledge.

• Finally, since integration of a new feature into an embedded system
comes with resource claims, the selected set of security mechanisms is
studied with respect to a potentially created resource overhead.

3.2. THE SEED FOUNDATION 37

The result of this activity (if successful) is an embedded system design
extended with a suitable set of security mechanisms that meet security goals
of a system under development.

In this section, we have described the SEED foundation that presents
the generic process intended to support an embedded system engineer and
security expert in designing security-enhanced systems. In the next chap-
ters, we describe one instance of the SEED realisation. In particular, we
clarify in terms of specific concepts, methods, languages, and technologies
how the domain-specific security knowledge is captured by a security expert
(in Chapter 4) and how it is applied by an embedded system engineer (in
Chapter 5).

4
Capturing of the Domain-specific

Security Knowledge

This chapter details the “capturing of the domain-specific security knowl-
edge” activity for the SEED realisation. Recall from Figure 3.1, that as part
of this activity, a security expert creates a set of artefacts to describe the
existing security mechanisms. This description includes functional model of
security solutions, their provided security properties, and information about
their performance evaluation. In order to structure and operate with this
information, we develop two concepts, namely a Domain-Specific Security
Model (DSSM) and a Performance Evaluation Record (PER). These con-
cepts are formalised as a set of ontologies. Additionally, we employ methods
and tools from the area of model-based engineering, like modelling languages
and transformation techniques, to facilitate the creation and usage of these
concepts by embedded system engineers and security experts.

We describe the developed concepts and their support in Section 4.1.
Thereafter, Section 4.2 explains processes and tools created to assist a se-
curity expert to work with the introduced concepts.

4.1 Developed Concepts and Artefacts

As mentioned above, our approach rests on two concepts. DSSM is a concept
used by a security expert to describe a security solution; PER is another
one that serves to describe results of performance evaluation of a security
solution. These concepts are implemented by aligning two technologies,
namely UML modelling and ontologies. In the following, Section 4.1.1 and

39

40
CHAPTER 4. CAPTURING OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

Section 4.1.2 explain the DSSM and PER concepts respectively.

4.1.1 Domain-specific Security Model

A scheme depicted in Figure 4.1 shows the introduced artefacts and their
relations. The core artefact is an ontology that we use to define the structure
for description of the domain-specific security knowledge. Among studied
ontologies for the security domain, the one created by Herzog et al. [72] fits
our needs. This ontology is a general information security ontology and was
explained in Section 2.3. The ontology created in our work is an adapted
Herzog et al. security ontology and is called core security ontology. To
facilitate the use of this ontology we define an expert’s front-end using the
widely accepted UML standard. In particular, the core security ontology is
represented as a UML class model. This UML class model serves as a simple
tool used by security experts to describe their knowledge about existing
security solutions. More specifically, an instance of this model, i.e. object
diagram, is actually the captured domain-specific security knowledge and is
called Domain-Specific Security Model (DSSM). We transform each DSSM
into the OWL syntax and use it to extend the original core security ontology.
We refer to an extended ontology as an enriched security ontology. In the
following, we continue explaining the mentioned artefacts in more detail.

Figure 4.1: DSSM concept and related artefacts

Core Security Ontology

The core security ontology adapted from the Herzog et al. [72] ontology
is depicted in Figure 4.2. The main point of departure arises in order to
introduce three new concepts, which are security property, security building
block, and domain. Thus, the use of the Herzog et al. ontology has served its
purposes outlined by the authors [72], namely as a learning material about
the structure of information security and as a framework for developing new
detailed security taxonomies. We proceed to describe the adapted ontology
used to support the processes of capturing and using the domain-specific
security knowledge.

In the core security ontology, we reuse three basic concepts introduced by
Herzog et al. [72], namely asset, security goal, and defence strategy. Assets
are the “objects of value” of a system that are needed to be protected. In

4.1. DEVELOPED CONCEPTS AND ARTEFACTS 41

Data in
transit

Data

stationary

Asset

Security

property

Defence

strategy

Security

goal

Concrete SBB

Abstract

SBB

is
-a

is-a
im

plements

creates

protects

re
la
te

s

relates

uses

provides

satisfies

Domain

b
e
lo

n
g
s
 t
o

Standard
Functional

specification

ha
s com

plies

relates

Figure 4.2: Illustration of the core security ontology

our context, they can be stationary data residing on a physical component
or data in transit being transmitted between different components. Other
types of assets, e.g. algorithms or Intellectual Properties (IPs), may also be
considered and introduced. The protection of an asset leads to the fulfil-
ment of a particular security goal like protecting its confidentiality, integrity,
or availability. The countermeasures introduced below follow a certain de-
fence strategy, e.g. preventing attacks or recovering after an attack. For
the security goal and for the defence strategy, we reuse all the terms (i.e.
individuals) defined in the ontology of Herzog et al. [72].

In addition to these elements, the core security ontology introduces new
concepts, which are shown as grey boxes in Figure 4.2. Two of them are
abstract and concrete Security Building Blocks (SBBs) replacing the notion
of a countermeasure used by Herzog et al. [72]. These refinements enable
us to distinguish between more general countermeasures represented by the
abstract SBBs and their implementations specified as concrete SBBs. For
example, an abstract SBB might refer to a cryptographic hash function as
a general method to provide integrity while the different realisations of the
hash function (e.g. SHA-1, MD2, or MD5), that are implemented as a piece
of code or hardware, are represented by concrete SBBs. With respect to the
resource limits of embedded systems, it is important to note that the im-
plementations may have different resource footprints. Each concrete SBB is
associated with functional specifications. The functional specification entity
is description of a functionality of a concrete SBB (that is an implementation
of a security countermeasure) to the extent (level of details) that is needed
for integration of this SBB into a system model. A particular form of these
descriptions will dependent on modelling language of this domain. For ex-

42
CHAPTER 4. CAPTURING OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

ample, in case of the component-based system development, the functional
specifications of a SBB can be a specification of a corresponding component
and its interfaces. In our work, we use the SPACE building blocks that are
composed of a functional model and external state machine. Further, a con-
crete SBB can comply with some standards, e.g. it may have passed some
certification. Another concept introduced by our ontology is the notion of
security properties encompassing the three notions: assets, security goals,
and defence strategies. Finally, we enrich the ontology with the concept of
a domain that represents an application domain, e.g. the smart metering
domain.

The relations in the core security ontology are defined as follows. Like
the countermeasures in the Herzog et al. ontology, an abstract SBB protects
an asset, provides some security goals, and uses some defence strategies. We
have modified the protects relation for a security goal and a defence strategy
used by Herzog et al. [72] since we find that the provides and uses relations
reflect more precisely their semantics within our process. In addition to these
three relations, an abstract SBB belongs to some application domain. A
concrete SBB implements an abstract SBB but, in turn, may create certain
assets itself. For example, the keys in some implementation of a public
key cryptography mechanism have to be protected in order to fulfil the
confidentiality and integrity goals. The functional specification concept is
related to the concrete SBB concept with the has relation. The last relation
of the concrete SBB concepts is a comply that relates it to the standard
concept. This covers common requirements in engineering of networked
embedded systems. In the metering domain, for example, a system will
have to fulfil legal calibration requirements following a standard. Finally, a
security property relates assets, security goals, and defence strategies, which
in the following sections will be referred to by triplets [asset, security

goal, defence strategy].

The UML Representation

To support a security expert in capturing the domain-specific security knowl-
edge that is formalised as the core security ontology, we represent the ontol-
ogy as a UML class model depicted in Figure 4.3. Each DSSM is effectively
an instantiation of the core security ontology. Therefore, we specify a DSSM
as an instance of this class model. The security knowledge captured by each
DSSM is used to extend our core security ontology presented above with
a corresponding set of axioms on relations and individuals. This enables
us to use the ontology querying and reasoning services to extract relevant
parts when this knowledge is required for an embedded system engineer. In
other words, the class model in Figure 4.3 serves as a language dedicated for
capturing knowledge by security experts, i.e. to create DSSMs, while the
ontology in Figure 4.2 is a formalism for this language [36].

It is worth mentioning, that the UML model in Figure 4.3 is not a di-
rect transformation of the security ontology from Figure 4.2 since it is not

4.1. DEVELOPED CONCEPTS AND ARTEFACTS 43

ConcreteSBB

mFunctional: String

AbstractSBB

Asset

DataIn

Transit

Data

Stationary

usesStrategy:

DefenseStrategyKind
providesGoal:

SecurityGoalKind

implements

protects

0..* 1..*

0..*

1..*
1..*

1..*

SecurityGoalKind
Confidentiality
Integrity

Authenticity

Availability

DefenceStrategyKind
Prevention
Detection

Recovery
Correction

stdCompliance: String

creates

Figure 4.3: UML representation of the core security ontology

domain knowledge by itself, but rather a tool to capture the knowledge.
The model consists of five classes and three relations, which are direct map-
pings of the elements of the core security ontology. The preserved classes
are Asset, AbstractSBB, ConcreteSBB, DataStationary, and DataInTran-
sit. The preserved relations are implements (between ConcreteSBB and
AbstractSBB), protects (between Asset and AbstractSBB), and creates (be-
tween ConcreteSBB and Asset). The is-a relation from DataStationary and
DataInTransit to Asset in the core security ontology is modelled in the form
of generalisations.

Other elements of the core security ontology are specified in a differ-
ent way. Instances of the security goal and defence strategy classes are
represented as the enumerations SecurityGoalKind respective DefenceStrat-
egyKind. The uses relation between the abstract SBB and defence strategy
classes in our ontology is represented by the property usesStrategy in the
class AbstractSBB. Likewise, the providesGoal property in AbstractSBB re-
places the provides relation between the abstract SBB and security goal
classes of the core security ontology. Similarly, the functional specification
and standard concepts related to the concrete SBB concept are represented
as the mFunctional and stdCompliance properties of the ConcreteSBB class
respectively.

In contrast, the security property and the domain concepts of the core
security ontology are not directly represented in the UML model. This is due
to the fact that the triple asset, security goal, and defence strategy already
captures the notion of a security property. Therefore, security properties
can be directly extracted from a DSSM. Analogously, the domain concept
from the core security ontology is represented by the name of a DSSM (i.e.
the object diagram).

As mentioned before, a given DSSM is essentially an instance of the UML
class model depicted in Figure 4.3. As an example, we depict in Figure 4.4
the UML class diagram for a small fragment of the metering DSSM used
for our measurement transfer scenario from Section 2.5. This DSSM con-
tains three assets: StoredMeasurement that represents energy measurements
stored on a device; CollectorToServerMsr that represents energy measure-

44
CHAPTER 4. CAPTURING OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

Figure 4.4: Metering DSSM

ments sent from a collector device to an operator server; SensorToMeterMsr
that represents energy measurements sent from a sensor to a metering de-

4.1. DEVELOPED CONCEPTS AND ARTEFACTS 45

vice. These assets may be protected by five abstract SBBs: Secure stor-
age and Tamper evident seal that provide confidentiality and integrity for
the StoredMeasurement asset; Cipher that provides confidentiality for the
CollectorToServerMsr asset; Digital signature that provides integrity and
authentication for the CollectorToServerMsr asset; and Anomaly detection
that provides integrity for the SensorToMeterMsr asset. Seven concrete
SBBs implement these abstract SBBs. Each abstract SBB in Figure 4.4 is
supported by one or two implementations. In general, one abstract SBB
can be implemented by several concrete SBBs. For example, the DES and
AES concrete SBBs implement the Cipher abstract SBB. These concrete
SBBs have one or a pair of functional models (see the mFunctional slot). In
this study and in this SEED realisation, they are SPACE blocks for encryp-
tion (AES Encryption and DES Encryption respectively) and decryption
(AES Decryption and DES Decryption respectively).

Enriched Security Ontology

In the following, we explain the last artefact introduced in Figure 4.1, namely
the enriched security ontology.

Each DSSM is transformed into the OWL syntax (outlined in Section 2.3)
extending the core security ontology, as it is depicted in Figure 4.1. In other
words, these DSSMs are used to populate the core security ontology. In
turn, each DSSM is encapsulated into a separate ontology, called [domain
name] security ontology that imports (using the owl:import construct) the
core security ontology. We refer to the merge of all domain security ontolo-
gies obtained from DSSMs as the enriched security ontology. This modular
structure of the enriched security ontology facilitates its management (e.g.
its update). Figure 4.5 shows the described dependencies of the introduced
ontologies. In this figure, Domain 1 and Domain n represent application
domains, e.g. metering devices and set-top boxes domains respectively.

Figure 4.5: Enriched security ontology

46
CHAPTER 4. CAPTURING OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

The task of updating the enriched security ontology with the knowledge
captured by a newly created DSSM is implemented as transformation of
elements of a DSSM and their relations into corresponding set of axioms
on classes, relations, and individuals. We use model-to-text transformation
techniques and tools, like Acceleo [78], to realise this transformation. Af-
terwards, these axioms are added into the corresponding [domain name]
security ontology.

All objects of the metering DSSM in Figure 4.4 are added into the en-
riched security ontology as individuals of the corresponding concepts of the
core security ontology from Figure 4.2. Thereafter, additional axioms are
added that transform instances of the protects, implements, and creates
associations from a DSSM into corresponding (OWL) object properties.
The usesStrategy and providesGoal attributes are transformed into triples
of [object, object property, subject] where an object is an instance
name of the AbstractSBB class, an (OWL) object property corresponds to
the uses and provides relations respectively, and a subject is a value of
the attribute. Such attributes as mFunctional and stdCompliance are ap-
proached in a similar way. The difference is that an (OWL) object property
is replaced by a (OWL) data property since values of these three attributes
are strings.

4.1.2 Performance Evaluation Record

Figure 4.6 depicts a scheme that shows the defined artefacts and their re-
lations. This scheme follows a similar pattern as presented in the previous
section. The core artefact is an ontology that describes concepts and re-
lations of the performance evaluation domain. This ontology is called core
evaluation ontology. Differently from the core security ontology, a UML
profile is designed as a representation front-end for the core evaluation on-
tology. This profile is called Generic Evaluation Model (GEM). An expert
defines an evaluation context as a set of UML models of different types and
annotates their elements using stereotypes of the designed profile. These
UML models are called Performance Evaluation Record (PER). Further,
these models are transformed into the OWL syntax and used to extend the
initial core evaluation ontology forming an enriched evaluation ontology.

The infrastructure in Figure 4.6 can be used to capture results of perfor-
mance evaluation of any building block that realises extra-functional prop-
erties, e.g. security, safety, and real-time. Thus, security is just one example
of such extra-functional properties. Therefore, we use generic terms in this
section, i.e. the SBB term introduced in the previous section is replaced by
the Reusable Building Block (RBB) concept 1. In the following, we continue
explaining in more detail the mentioned artefacts.

1In the rest of the thesis (except this section), we avoid using the term RBB. However,
a reader should understand that the term SBB should be replaced by RBB when it comes
to discussions of PER and related concepts (e.g. in Section 4.2 and 5.5).

4.1. DEVELOPED CONCEPTS AND ARTEFACTS 47

Figure 4.6: PER concept and related artefacts

Core Evaluation Ontology

Figure 4.7 depicts an ontology developed in this study in order to capture re-
sults of performance evaluation of RBBs called core evaluation ontology. To
build the core evaluation ontology, we use the knowledge about the structure
of the analysis domain obtained from various sources. They are mainly the
MARTE GQAM profile explained in Section 2, and the published research
and industrial papers where performance aspects of different RBBs are stud-
ied, e.g. such works published by Nadeem and Javed [79] and Preissig [80]
where performance characteristics of security solutions are investigated. We
proceed to describe elements of the core evaluation ontology depicted in
Figure 4.7.

Evaluation

Metrics

ToE function

ToE

ToE RBB

Platform

Domain metrics

Resource metrics

Workload

Required

component

e
v
a
lu

a
te

s

contains

executes on

executes under

obtains

m
e
a
s
u
re

d
 o

n

p
ro

v
id

e
s

Approachuses

Approach

kind

Approach

parameter

has

has

Date Organisation

h
a
s

performed by

Workload

parameter

ToE parameter

has

h
a
s

is-a

is-a

has

has

Figure 4.7: Core evaluation ontology

Evaluation is a central concept of the core evaluation ontology. It relates
four other concepts that indicate constituents of any evaluation procedure.
They are Target of Evaluation (ToE), approach, workload, and metrics.

ToE refers to an RBB that is under performance evaluation. There are
two sub-classes for the ToE concept, namely ToE RBB and ToE function.
A ToE can be characterised by a set of parameters introduced by the ToE
parameter concepts, e.g. the key size for an encryption RBB. The platform
concept denotes an evaluation platform used for performance analysis. We

48
CHAPTER 4. CAPTURING OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

create the required component concept to introduce those components of an
evaluation platform that are significant for a considered ToE to obtain the
captured performance results. For example, it can be a particular instruction
set exploited by a ToE implementation.

The approach concept denotes the description of the used evaluation
method. Each approach can be characterised by its kind and approach
parameters. The approach kind concept defines the type of the evaluation
method. It has such individuals as simulation, emulation, or analytical
analysis. The workload concept introduces the workload used during the
performance evaluation, e.g. a sequence of triggering events, or an amount
of data sent over a channel. Similarly, a workload can be parameterised
using the workload parameter concept.

The metrics concept defines a set of metrics adopted for the perfor-
mance evaluation. These metrics can be of two categories as denoted by its
sub-classes. The first category (the resource metrics concept) describes the
resource footprint created by ToE (e.g. execution time). The second cat-
egory (the domain metrics concept) refers to the obtained indicators that
characterise the quality of extra-functional properties, e.g. the security level
provided by a ToE. The presence of these two categories reflects the fact
that for selection of suitable RBBs both resource footprint and quality of
service indices play a significant role.

The following relations are defined in the core evaluation ontology. Any
evaluation evaluates some ToE, executes under some workload, uses some
approach, and obtains some metrics. A ToE RBB can provide some ToE
functions. Any ToE executes on some evaluation platform. A platform may
contain some required components. Any obtained metrics are measured on
some platform. A ToE, approach, and workload have some ToE parameters,
approach parameters, and workload parameters respectively. Additionally,
an approach can have some approach kind. Finally, each evaluation has
some date and performed by some organisation.

The UML Representation

In this section, we define a profile used by an expert in order to capture
performance evaluation results called Generic Evaluation Model (GEM).
This profile is depicted in Figure 4.8.

The GEM profile consists of nine stereotypes and nine relations which
are direct mappings of the elements of the core evaluation ontology. The
preserved classes are gemToE, gemToE RBB, gemToE Function, gemEval-
uation, gemApproach, gemWorkload, gemMetrics, gemPlatform, and gem-
RequiredComponent. The preserved relations are uses, evaluatesUnder, ob-
tains, and evaluates which relates gemEvaluation with gemApproach, gem-
Workload, gemMetrics, and gemToE respectively. Other directly mapped
relations are measuredOn between the gemMetrics and gemPlatform stereo-
types, contains between gemPlatform and gemRequiredComponent, exe-
cutesOn between gemToE and gemPlatform, and provides between gem-

4.1. DEVELOPED CONCEPTS AND ARTEFACTS 49

gemToE_RBB

‹‹stereotype››

[Classifier, Diagram

InstanceSpecification]

gemToE_Function

‹‹stereotype››

[Classifier, Diagram,

InstanceSpecification]

gemEvaluation

‹‹stereotype››

[Class, InstanceSpecification]

organisation: String

date: Date

gemToE

‹‹stereotype››

[Classifier, Diagram,

InstanceSpecification]

toeParam:

ToEParameter[0...*]

gemRequiredComponent

‹‹stereotype››

[Classifier, Property,

InstanceSpecification]

gemPlatform

‹‹stereotype››

[Classifier, Diagram,

InstanceSpecification]

gemMetrics

‹‹stereotype››

[InstanceSpecification]

domainMetrics:

DomainMetrics[0...*]

resourceMetrics:

ResourceMetrics[0...*]

gemApproach
‹‹stereotype››

kind: ApproachKind

approachParam:

ApproachParameter [0...*]

[Classifier, Diagram,

InstanceSpecification]

gemWorkload

‹‹stereotype››

[Classifier, Diagram,

InstanceSpecification]

workloadParam:

WorkloadParameter[0...*]

provides

function 1..*

uses

evaluatesUnder

1..*

workloadEvents

approach

executesOn

evalPlatform
contains

reqComp0..*

measuredOn

obtains

metrics 1..*

1..*

1..*

platform

evaluates

toe

ApproachKind

‹‹enumeration››

Emulation

Simulation

Analytical

ModelBasedAnalysis

Other

ToEParameter

‹‹stereotype››

[Classifier]

WorkloadParameter

‹‹stereotype››

[Classifier]

DomainMetrics

‹‹stereotype››

[Classifier]

ResourceMetrics

‹‹stereotype››

[Classifier]

ApproachParameter

‹‹stereotype››

[Classifier]

Figure 4.8: Generic evaluation model UML profile

ToE RBB and gemToE Function. The is-a relations from gemToE RBB
and gemToE Function to gemToE in the core evaluation ontology are mod-
elled as generalisations in GEM.

Other elements of the evaluation ontology are specified in a different way.
Individuals of the approach kind class are represented as an ApproachKind
enumeration (not shown). The relation between the ToE and ToE parame-
ter concept in our ontology are represented by the tag definition toeParam
in the stereotype gemToE. Likewise, the approachParam tag definition in
gemApproach replaces the has relations between the approach and approach
parameter concepts of the core evaluation ontology. The same logic applies
for the workloadParam tag definition. Finally, the has relation between
the metrics concepts are represented as corresponding tag definitions of the
gemMetrics stereotype, namely domainMetrics and resourceMetrics.

In the following, we explain what UML models can be annotated with the
stereotypes from GEM, and what MARTE packages are used. We conclude

50
CHAPTER 4. CAPTURING OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

this section with an example illustrating a possible use of the GEM profile.
gemToE, gemApproach, and gemWorkload can be used to annotate either

a complex or a very simple UML model of a corresponding constituent.
The level of detail does not play a significant role for the GEM profile.
Nevertheless, the richer these models are the more informed decisions can
be made by an embedded system engineer when selecting RBBs.

In order to model an evaluation platform, i.e. the gemPlatform stereo-
type, we use a UML class model annotated with stereotypes from the HRM
MARTE package. An execution platform can describe resources that take a
variety of forms, e.g. hardware, software, or logical resources. In this study,
we consider only hardware components. However, the general concept is
scalable to include other forms of resources for analysis.

We employ the non-functional properties (NFPs) modelling package of
MARTE to specify parameters and metrics tags defined in GEM. These
are such classes as ToEParameter, ApproachParameter, WorkloadParame-
ter, DomainMetrics, and ResourceMetrics. The NFP package provides a
domain model and syntax for specifying different kinds of customer data
type. MARTE also provides a library with predefined primitive types and
types commonly used in real-time and embedded system domain (see Annex
D.1 of the MARTE specifications [41]). In short, this library defines such
basic data types as interval type and collection type (MARTE DataTypes
package in MARTE Library) and such NFP types as frequency, data size,
and power (BasicNFP Types in MARTE Library).

The MARTE GQAM profile (outlined in Section 2.2) allows bridging the
gap between model-driven engineering and existing formalisms and tools for
analysis. Thus, it can significantly help the domain (in our case, security)
experts to design their evaluations. In order to demonstrate how our profile
can be used to capture performance evaluation results modelled in GQAM,
we identify the correspondence between the stereotypes and tags of GEM
and GQAM shown in Table 4.1.

Note that our profile is not restricted to capturing results only when
GQAM or its refinements are used. For example, results presented by Preis-
sig [80], that are obtained through a traditional approach, can also be de-
scribed by GEM (as we will show later in this section). However, GQAM
can facilitate this task, since the mapping identified in Table 4.1 can be
automated as a transformation directly feeding relevant data into GEM.

GEM is a general UML profile that does not target any concrete extra-
functional domain. The same statement is applicable for the core evaluation
ontology. Therefore, a domain expert should refine some of its concepts to
tailor it to a certain domain. In particular, an expert needs to extend
the ToEParameter, DomainMetrics, and ResourceMetrics stereotypes. Fig-
ure 4.9 shows such a refinement for the security domain as an example
where a cipher and cluster-based anomaly detection RBBs are considered.
ToEParam Anomaly and ToEParam Cipher refine the ToEParameter con-
cept. According to these refinements, an anomaly detection mechanism can

4.1. DEVELOPED CONCEPTS AND ARTEFACTS 51

Table 4.1: Correspondence between the GEM and MARTE GQAM profiles

GEM GQAM
gemToE, gemToE RBB,
gemToE Function

Not represented.

toeParam No direct mapping. This tag definition
can be mapped to parametrisation (in-
put) variables declared by an expert within
the GaAnalysisContext stereotype where
sourceKind is defined as required (req).

gemEvaluation Not represented.
gemPlatform The GaResourcePlatform stereotype.
gemRequiredComponent Any element from a GaResourcePlatform

model can be annotated with this stereo-
type.

gemApproach Not represented.
kind (ApproachKind) Not represented. It is defined by an anal-

ysis formalism that underlies the GQAM
model.

approachParam Not represented.
gemWorkload The GaWorkloadBehaviour stereotype
workloadParam No direct mapping. This tag definition

can be mapped to parametrisation (in-
put) variables declared by an expert within
the GaAnalysisContext stereotype where
sourceKind is defined as required (req).

gemMetrics Not represented.
resourceMetrics No direct mapping. This tag definition

can be mapped to parametrisation (out-
put) variables declared by an expert within
the GaAnalysisContext stereotype where
sourceKind is set to calculated (calc), esti-
mated (est), or measured (msr). For ex-
ample, a range of tag definitions of the
GaStep stereotype (e.g. throughput, re-
sponse time, utilisation) can serve for the
purpose of the resource metrics.

domainMetrics No direct mapping. This tag definition
can be mapped to parametrisation (out-
put) variables declared by an expert within
the GaAnalysisContext stereotype where
sourceKind is set to calculated (calc), esti-
mated (est), or measured (msr).

52
CHAPTER 4. CAPTURING OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

be characterised by the number of clusters (numberOfClusters) and clus-
ter centroid distance threshold (clusterDistanceThreshold) [81], while a ci-
pher building block can be characterised by its key size (keySize), cipher
mode (cipherMode), and cipher type (cipherType). Quality of service met-
rics for an anomaly detection are detection rate and false positive rate (see
DM Anomaly) and for a cipher they are resistance to attacker’s capabilities
in terms of its skill, motivation, and duration of the attack(see DM Cipher),
and etc. Finally, a pair of resource metrics are considered for these two
security RBBs, namely bandwidth and energy (see RM Anomaly) for an
anomaly detector and the used memory and data rate (see RM Cipher) for
a cipher.

ToEParam_Cipher

‹‹ToEParameter››

keySize: NFP_DataSize

cipherMode: CipherMode

cipherType: CipherType

DM_Cipher

‹‹DomainMetrics››

skill: AttackSkill

motivation: AttackMotivation

duration: NFP_Duration

kind: AttackKind [1..*]

source: SourceKind

technique: TechniqueKind [1..*]

resource: ResourceKind

RM_Cipher

‹‹ResourceMetrics››

memory: NFP_DataSize

throughput: NFP_DataTxRate

area: NFP_Area

power: NFP_Power

energy: NFP_Energy

DM_AnomalyDetector

‹‹DomainMetrics››

detectionRate: NFP_Percentage

falsePositiveRate: NFP_Percentage

RM_AnomalyDetector

‹‹ResourceMetrics››

bandwidth: NFP_DataTxSize

energy: NFP_Energy

ToEParam_AnomalyDetector

‹‹ToEParameter››

numberOfClusters: NFP_Integer

clusterDistanceThreshold:

NFP_Real

AttackKind

‹‹Enumeration››

Spoofing

DenailOfService

Eavesdropping

AttackMotivation

‹‹Enumeration››

Hacktivism

CyberCrime

CyberEspionage

CyberWar

Other

SourceKind

‹‹Enumeration››

theoretical

implementation

ResourceKind

‹‹Enumeration››

limited

unlimited

AttackSkills

‹‹Enumeration››

low

medium

high

CipherType

‹‹Enumeration››

DES

RSA

AES

TripleDES

ECC

Blowfish

Twofish

IDEA

RC5

AREA

TechniqueKind

‹‹Enumeration››

SimplePowerAnalysis

DifferentialPowerAnalysis

TimingAnalysis

EMAnalysis

AcousticAnalysis

LightAnalysis

TemperatureAnalysis

PhotonicEmissionAnalysis

Microbing

FaultInjection

TemplateAttack

FaultAttack

DictionaryAttack

ScanningAttack

SourceRoutingAttack

Physical

CipherMode

‹‹Enumeration››

CBC

ECB

stream

Figure 4.9: The refinement of the GEM profile for the security domain

A description of actual performance evaluation results captured when
the GEM profile is used is called Performance Evaluation Record (PER).
Figure 4.10 depicts an example of a PER used in development of the smart
metering application from Section 2.5. The DES Evaluation class anno-
tated as “gemEvaluation” shows that an evaluated RBB is DES Encryption
where DES Metrics is a set of the obtained metrics. The DES Encryption
RBB has configuration parameters specified in DES Settings and is executed
on the TMS320C6211 chip. Besides, TMS320C6211 is annotated with the
gemRequiredComponent stereotype and, therefore, will be treated as a plat-

4.1. DEVELOPED CONCEPTS AND ARTEFACTS 53

form constraint for DES Encryption in further analysis. For specification
of this chip we use two stereotypes from the HRM profile, i.e. HwProcessor
and HwComponent, and one tag, i.e. r Conditions. The two stereotypes
intuitively denote that TMS320C6211 is a processing component; the tag
associates environmental condition to the component. This information will
be further reused for selecting suitable SBBs.

Figure 4.10: Security evaluation record for the DES RBB

Enriched Evaluation Ontology

In the following, we explain the last artefact introduced in Figure 4.6, namely
the enriched evaluation ontology.

Each refinement of the GEM profile for an extra-functional domain (e.g.
as one depicted in Figure 4.9) is transformed into a separate ontology called
[domain name] evaluation ontology that imports the core evaluation ontol-
ogy enriching it with additional concepts from this domain, e.g. refinements
of the ToE parameters, domain, and resource metrics concepts. Since each
PER (e.g. as one depicted in Figure 4.10) is essentially an instance of the
refined GEM profile, we transform it into axioms on individuals and call it
[domain name] evaluation record ontology.

The transformation is approached similar to one outlined in Section 4.1.1.
For example, a class annotated with the ToE stereotype becomes a subclass
of a corresponding concept (ToEParameter) and an instance becomes an
individual of this subclass. A [domain name] evaluation record ontology
imports a corresponding [domain name] evaluation ontology. We refer to
a collection of [domain name] evaluation record ontologies as an enriched
evaluation ontology. Figure 4.11 shows the above introduced ontologies and
their dependencies. In this figure, Domain 1 and Domain n represent extra-
functional domains, e.g. Domain 1 can be exemplified as the security do-
main, and Domain n as the safety domain.

54
CHAPTER 4. CAPTURING OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

Figure 4.11: Enriched evaluation ontology

4.2 Capturing Security Knowledge

In this section, we explain the proposed process for capturing of the domain-
specific security knowledge using the DSSM and PER2 concepts.

The starting point of the creation of DSSMs is to decide on a domain.
The DSML theory inherently leaves the notion of a domain flexible. Hence,
it is up to security experts to decide what kind of a domain a DSSM will
describe. Typically, we consider application domains (e.g. metering devices,
set-top-boxes, banking access terminals), which can be characterised by a
different set of assets and a specialised set of security solutions. Domains
can be in some relations, e.g. domains can overlap or one domain can be a
part of another one. Note that the closer a selected domain is tailored to a
type of a system, the more specialised and detailed solutions it contains (i.e.
the set of assets and concrete SBBs). For example, both communication
and metering DSSMs may be applied for our smart metering devices case
study described in Section 2.5, but obviously the communication DSSM will
contain such general assets as “message” and “acknowledgement”, while the
metering DSSM operates with “measurement” as an asset.

The process of DSSM creation is depicted in Figure 4.12. It starts
with three activities: Create a DSSM, Create functional models for concrete
SBBs, and Create PERs for concrete SBBs. The Create a DSSM activity
includes definition of assets, abstract SBBs with their goals and strategies,
and concrete SBBs omitting the definition of their functional specifications
(i.e. the mFunctional slot of the ConcreteSBB class depicted in Figure 4.3).
Thus, the outcome of this activity is a definition of the DSSM with place
holders for concrete SBBs. Functional models of each concrete SBBs are cre-
ated during the Create functional specifications for concrete SBBs activity.
In our case, a security expert creates SPACE models of concrete SBBs. The

2In this section, we start again to use the term (concrete) SBB instead of RBB when
discussing PER and related concepts shifting the focus back to security.

4.2. CAPTURING SECURITY KNOWLEDGE 55

third activity, i.e. Create PERs for the concrete SBBs, is concerned with a
description of the performance evaluation results in the form of PERs.

The order of the three activities described above is undefined, since it
does not play a significant role for our process. Thus, if SPACE models of
the considered concrete SBBs exist (e.g. they are available in the Arctis
library of building blocks [43]), the corresponding activity can be omitted.
Similarly, the activity Create PERs for concrete SBBs can be omitted. The
absence of any of the two types of artefacts produced by these activities
(e.g. functional models for concrete SBBs or their evaluation records) will
simply disable the corresponding type of analysis.

The DSSM with

place holders for

concrete SBBs

SPACE models

of the

concrete SBBs

Create a DSSM

Create PERs

for

concrete SBBs

The PERs for

the

concrete SBBs

Register the

concrete SBBs

Register the DSSM

The DSSM with

the concrete SBBs

Enriched ontologies

Create functional

specifications

 for concrete SBBs

Figure 4.12: The process for creation of DSSMs

The next activity is Register the concrete SBBs that allows associating
the created functional (SPACE) models and PER models of concrete SBBs
with the corresponding elements of the DSSM. In particular, the functional
Arctis model is bound to the mFunctional. When all concrete SBBs of the
created DSSM have been bound with the functional and PER models, the
DSSM can be registered.

The main outcome of the Register the DSSM activity is two ontologies.
The first ontology is a [domain name] security ontology derived from the
DSSM that is a part of the enriched security ontology as explained in Sec-
tion 4.1.1. The other ontology is a [domain name] evaluation record ontology
derived from the PER that is a part of the enriched evaluation ontology as
explained in Section 4.1.2. Note that the enriched security and evalua-

56
CHAPTER 4. CAPTURING OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

tion ontologies are two independent ontologies that can be used separately
from each other. In our work, we align them employing the owl:sameAs
construct (see Section 2.3) as follows: concreteSBB owl:sameAs ToE. Fig-
ure 4.13 summarises the relation between security and evaluation ontologies,
and domain.

Platform

Required

components

ToE

Components Domain

Abstract

SBB

Concrete

SBB

Functional

specifications

uses

has

implements

has

has

has

same as

. . .

Core evaluation ontology
Core security ontology

has

has

Domain

Figure 4.13: Relations between the core security and evaluation ontologies,
and domain

It is worth noting that this architecture is modular. For example, the
activity Create PERs for concrete SBBs can be replaced by any other ac-
tivity that allows preparing concrete SBBs for a desirable type of analysis.
This will require creation of the needed infrastructure (e.g. ontologies and
profiles) and adjustment of the alignment.

When updating the enriched ontologies with new knowledge, the im-
portant question of maintaining their consistency arises. In particular, an
obvious problem when updating the enriched security ontology is its pol-
lution with concrete SBBs that have different names but refer to the same
implementation3. The unique name assumption of an ontology says that
entities with different names refer to different elements of the real world.
The OWL language has two constructs to express this assumption, namely
owl:sameAs or owl:differentFrom, that assert that two or more given entities
refer to the same or to different elements of the real world respectively. We
use the latter construct each time a new concrete SBB is added into the
enriched security ontology. However, it may be the case that security ex-
perts will populate the enriched security ontology with concrete SBBs that
actually refer to the same implementation. This situation can be resolved
by the owl:sameAs construct that states that two or more individuals refer
to the same element of the real world. However, some additional support
may be needed to ensure that two (or more) concrete SBBs under different
names are equal implementations. We envisage that techniques from the

3The trivial case, i.e. two entities with the same names, is not possible.

4.2. CAPTURING SECURITY KNOWLEDGE 57

area of model comparison or models diff (applied to functional and platform
models of concrete SBBs) can be employed to address the mentioned issue.
For example, Selonen [82] and Bendix and Emanuelsson [83] have a survey
about existing model comparison methods for UML models. Besides, a set
of tools exist to implement model comparison, e.g. EMF Compare [84].
The exploitation of these techniques goes beyond the scope of this work.
We consider it as a further enhancement of our tool support. In the rest of
this section, we outline a developed tool that supports the above process of
DSSM creation.

Figure 4.14: Registration of concrete SBBs (the user interface)

As mentioned earlier, we use the MagicDraw tool [13] as an integration
environment. To create DSSMs and PERs, we use the standard functionality
provided by MagicDraw. At the same time, functional models of concrete
SBBs are created in the Arctis tool [42]. In order to bind these two tools
supporting the process of the DSSM creation, we have developed a SEED
MagicDraw plug-in. In particular, this plug-in assists the creation of DSSMs
by supporting the following activities of the process depicted in Figure 4.12:

• Creation of a DSSM: the plug-in prepares an environment for a security
expert, i.e. it creates a MagicDraw project and loads the class model
depicted in Figure 4.3.

• Registration of concrete SBBs: the plug-in provides an interface (shown
in Figure 4.14) for binding functional model and platform model el-
ements of concrete SBBs with corresponding SPACE and MARTE
(from PER) models.

• Registration of a DSSM: the plug-in executes transformation of the
DSSM and PER to a set of axioms and adds them into the enriched
ontologies. Additionally, the plug-in can be used to upload the created
DSSM and PER to a library (local or public) for its further use.

58
CHAPTER 4. CAPTURING OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

This chapter has explained capturing of the domain-specific security
knowledge. For this purpose, we have introduced two concepts, namely
the DSSM and PER concepts. The process followed by a security expert,
that exploits DSSMs and PERs, has been described. In the next chapter,
we describe how an embedded system engineer can apply this knowledge to
select a suitable set of security solutions to be integrated into a system.

5
Application of the Domain-specific

Security Knowledge

This chapter explains the “Development of a security-enhanced embedded
system model” activity for the SEED realisation. In particular, we focus on
the process of application of the domain-specific security knowledge captured
using DSSMs and PERs. This process is depicted in Figure 5.1.

Figure 5.1: Application of the domain-specific security knowledge

The process starts from the functional and platform models of a system.
In particular, we use SPACE models (see Section 5.1.1) to create a functional
description of a system and UML class models annotated with some MARTE
stereotypes (see Section 5.1.2) to create a platform description of a system.
Thereafter, a suitable DSSM is selected and its elements are associated with
the components of a functional model of a system (see Section 5.2). Note
that if a required DSSM is not found, this step should be preceded by

59

60
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

the DSSM creation step explained in the previous chapter. That is, the
association step could be postponed until a suitable DSSM is created.

The step Association with DSSMs is followed by the step Asset elicita-
tion&Search for security properties (see Section 5.3) that results in a list
of relevant security properties to be satisfied. Subsequently, concrete SBBs
that satisfy the identified security properties are inferred from the enriched
security ontology as indicated by the Search for concrete SBBs step. There-
after, a related set of SPACE models are fetched, e.g. from the Arctis
libraries. This step is explained in Section 5.4.

Due to the existence of different concrete SBBs, often various ways to
secure an embedded system are possible that differ with regards to a range
of criteria. For example, an engineer needs to ensure that a system un-
der consideration will still perform the required functionality when security
mechanisms are incorporated [47]. Additionally, when dealing with embed-
ded systems, one needs to investigate how the added security mechanisms
affect the consumption of crucial resources. The compliance of considered
concrete SBBs to some standards can also affect a decision taken by a sys-
tem engineer. A set of other possible criteria to be considered is proposed
by Georg et al. [85]. Thus, to find a suitable solution one needs to carry
out analysis of desired criteria and compare different alternatives. In our
work, we introduced a so-called model-based compatibility analysis tech-
nique applied at the Compatibility-based selection of concrete SBBs step.
This analysis studies platform-related constraints of a system under devel-
opment and alternative concrete SBBs.

Subsequently, a set of SPACE blocks that satisfy this criterion are inte-
grated into a system model. At this point, other type of analysis are enabled,
e.g. to verify that integration of concrete SBBs provides the required level
of protection or that functional properties of a system are not violated by
this increment. It is reflected by the Analysis&Integration of concrete SBBs
step. A dashed line of the box for this step in Figure 5.1 indicates that the
elaboration of this step is not a contribution of this work. However, some
types of analyses are in a focus of the research group that is developing the
Arctis tool.

In the rest of this chapter, we explain each step outlined above using the
measurement transfer scenario from the metering infrastructure introduced
in Section 2 as a running example. We conclude this chapter with Section 5.6
that gives to a reader a broader view on the process of designing a security-
enhanced embedded system. In particular, Section 5.6 extends the proposed
process from Figure 5.1 highlighting additional steps and considerations that
an embedded system engineer needs account for when integrating security
mechanisms into a system.

5.1. SYSTEM MODEL 61

5.1 System Model

In the following, we demonstrate the languages employed in our work for
the functional and platform modelling. Section 5.1.1 illustrates a model
of the measurements transfer scenario using the model-based engineering
method SPACE. Section 5.1.2 shows an execution platform for a TSMC
device defined as a MARTE model.

5.1.1 Modelling a Functional Behaviour of a System

To develop secure networked embedded systems, we employ the model-based
engineering method SPACE [2] described in Section 2.2. Recall that appli-
cations are composed of building blocks that can specify a local behaviour
as well as the interaction between several distributed entities. Similar to
functional building blocks, security mechanisms can be expressed as self-
contained building blocks. These SPACE building blocks that describe
functionality of security mechanisms are functional specifications of con-
crete SBBs introduced in Section 4.1.1. Note that as a result of apply-
ing the SPACE method (i.e. building a system as composition of reusable
building blocks) the models used in different scenarios can share a lot of
commonalities.

«system» Metering Data Transfer

tsmc operator_server

c: Collector db: Db Handlert: Transfer Handler

start

data:
HashMap

start

dataIn:
HashMap

dataOut:
HashMap

start

ack:
boolean

store:
HashMap

ack:
boolean

Figure 5.2: Functional model of the measurement transfer scenario

Figure 5.2 depicts the measurement transfer scenario modelled in SPACE.
It is a UML activity consisting of two partitions, namely tsmc and opera-
tor server, that model the respective entities in our scenario. The activity is
composed of three building blocks that are connected with some “glue logic”
through pins on their frames. The building block c: Collector models peri-
odic collection of measurement data from TSMs handled by a TSMC. The
block db : Db Handler encapsulates the behaviour to store the data in a
database of the operator. The block t: TransferHandler manages the com-
munication between the two components that, as will be described later,
buffer the data, send it, and resend it in the case of a negative acknowl-

62
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

edgement. The block c and db are local blocks since they specify the local
behaviour of an entity. In contrast, the block t is a collaborative block as
it also describes interaction between two entities. The three blocks (c, db,
and t), further, refer to activity diagrams that define their detailed internal
behaviour as exemplified for the block t in Figure 5.3.

The Petri net-like semantics of the activities models behaviour as control
and object flows of tokens between the nodes of an activity via its edges.
When a system starts, a token flows from each of the initial nodes (•) follow-
ing the edges of the activity. In the application in Figure 5.2, all three inner
blocks are started in the initial node. Then, periodically the collector block
emits a token containing an object of type HashMap through its pin data.
This object maps TSM identifiers to measurement values at a particular
time. As depicted by the outgoing edge from pin data of block c, the object
is forwarded to block t and further to block r: Reactive Buffer via its pin add
(see Figure 5.3). This buffering block, which is taken from one of the Arctis
libraries, is used to buffer measurement data that may arrive when other
data is being sent but not yet acknowledged. If data is received when the
buffer is empty, it is emitted immediately; otherwise, it is buffered. The pin
next is used to get subsequent data. Following the outgoing edge of the pin
out of the block r, a copy of measurement data is stored temporarily in vari-
able temp by the operation set temp. Thereafter, the token flows through
the merge node (⋄) and data is sent to the other entity as illustrated by
the edge crossing the partition border. In the receiver partition, the data
is forwarded out of the block which, according to Figure 5.2, is stored in a
database by the block db.

Transfer Handler

sender receiver

r: Reactive Buffer

out:
HashMap

add:
HashMap

temp: HashMap

delete

tempset

tempget

nextempty

init

dataIn:
HashMap

start

ack:
boolean

dataOut:
HashMap

true

false

Figure 5.3: Detailed behaviour of the transfer handler block

The block db:DbHandler in Figure 5.2 will emit a token via the pin
ack containing either a positive or a negative acknowledgement. A positive
acknowledge corresponds to a successful transfer of measurement data, while
a negative acknowledgement is issued in the case the received measurements
have not passed the validation test executed by the db block. Thus, the token

5.1. SYSTEM MODEL 63

emitted via the pin ack flows further inside the block t and, as depicted in
Figure 5.3, reaches the decision node (⋄). A positive acknowledgement leads
the token flows through the outgoing edge labelled with true. Thereafter,
the operation delete, that removes the data stored in the variable temp, is
called and subsequent data, if any, is retrieved from the buffer r. A negative
acknowledgement moves the token through the edge labelled with false. In
this case, the previously sent data is retrieved from the variable temp and
sent again.

5.1.2 Modelling an Execution Platform

A platform model of a TSMC device for our scenario is depicted in Fig-
ure 5.4. We use UML class models annotated with stereotypes of the Hard-
ware Resource Modelling (HRM) package of the MARTE profile (see Sec-
tion 2.2). The modelling is done in the MagicDraw tool [13].

Figure 5.4: Platform model for a TSMC device

The main component of a TSMC platform is an OMPA3530 board [86].
This board includes computing elements (TMS320C64x+ DSP and ARM
Cortex-A8), storage elements (NAND Flash and LPDDR), communication
interfaces (I2C, SDIO, and 10/100Mbps NIC), a daughter card, and a LCD
display. The daughter card is connected to the ADE7758 sensor via a Serial
Peripheral Interface (SPI) bus. Finally, 10/100Mbps NIC is used to connect
a TSMC to a communication channel (LAN). In the following, we briefly

64
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

explain stereotypes from the MARTE HRM package used for modelling the
TSMC platform.

The HwResource is the most general term of the HRM that represents
any hardware unit. The HwComputingResource denotes a computation unit,
where the HwProcessor is its refinement that represents a processor or mi-
crocontroller unit. Similar, the HwMemory is an abstract memory unit that
denotes a given amount of memory, where the HwRAM refines it to repre-
sent a unit of the random access memory. The HwMedia is a central term
that represents a communication resource used to transfer data over some
channel. In our example, we use the HwBus stereotype that models a wired
channel. The HwEndPoint indicates that annotated components are con-
nection points. Finally, the HwDevice stereotype refers to an entity that
interfaces with an external environment.

5.2 Association with DSSMs

The goal of the step Association with DSSMs in the proposed process is
twofold: (1) a DSSM that is relevant for a system under development is
identified and selected; (2) bounds of a system (its functional model), where
the knowledge captured by a selected DSSM should be applied, are estab-
lished. Figure 5.5 depicts an interface of the SEED MagicDraw plug-in
developed to support this step. We exemplify the Association with DSSMs
step with our use case of the measurements transfer scenario.

Figure 5.5: Association of the selected DSSM with the system elements (the
user interface)

Since the scenario is the smart metering domain, an embedded system en-
gineer selects the metering DSSM from the library of DSSMs (i.e. step (1)).
Hence, the association is based on a matching of the system and security do-
mains. Thereafter, those parts of a system containing data to be protected
are identified (i.e. step (2)). In this thesis, we discuss the protection of the
metering data that, in the functional system model from Figure 5.2, flows
from the block c: Collector in the TSMC to the db:DbHandler in the op-

5.3. ASSET ELICITATION AND SEARCH FOR SECURITY

PROPERTIES 65

erator server. Thus, these two blocks are the starting respective end points
of the object flow to be protected. Therefore, the identifiers of these two
blocks are assigned to the fields StartAnchor and FinishAnchor respectively
as it is shown in Figure 5.5.

5.3 Asset Elicitation and Search for Security

Properties

In this section, we present the asset elicitation technique along with the
search for security properties method. The developed asset elicitation tech-
nique consists of two steps. The first step inspects a functional model iden-
tifying present assets. This step uses a set of rules elaborated for traversing
a functional model and the information about assets relevant for a certain
domain obtained from an associated DSSM. Thereafter, we retrieve from the
enriched security ontology a set of security properties associated with the
identified assets through the DSSM. Further, we proceed with the second
step of the asset elicitation technique. This step utilises a platform model
of a system and information about their potential threats to identify vul-
nerable assets. The output, when the asset elicitation technique is applied,
is a set of assets and security properties that associate security goals and
defence strategies with the identified set of assets.

In Section 5.3.1 we define a set of rules that allow identifying assets
to be protected within a functional system model. Section 5.3.2 shows a
method to retrieve a set of security properties relevant for the identified
assets. Then, we explain the developed approach to refine a set of identified
assets and corresponding security properties utilising the platform descrip-
tion information. This method is presented in Section 5.3.3.

5.3.1 Asset Elicitation on a Functional Model

The first step of the proposed asset elicitation technique is to identify an
initial set of security assets utilising a functional model of a system. This
identification is implemented as rule-based classification of assets. Thus, the
rule-based classification is a method that allows identifying assets within a
functional model of a system and their matching to the classes defined in
the core security ontology introduced in Section 4.1.1. In particular, the
considered classes are “data stationary” and “data in transit”.

The rule-based classification is realised as application of the rules R1
– R7 to collaborative-based SPACE models. These rules are presented in
Figure 5.6. We have implemented this functionality in a tool called asset
analyser. Afterwards, an engineer complements this classification according
to an associated DSSM. However, it is worth noting that the latter task can
potentially be automated given a system modelling language closely tailored
to a domain (i.e. a domain-specific language). We now proceed to explain

66
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

our rules (see Figure 5.6) and their application logic (see Figure 5.8).
According to the SPACE semantics [44], an activity is a directed graph

g with a set of activity nodes V and connecting edges E, i.e. g = (V,E).
Figure 5.6 presents the seven identification rules R1 to R7. In the rules, we
use the following functions:

• Two functions mapping an activity node and edge to their particular
types, i.e. kindV : V → KV and kindE : E → KE , where KV =
{operation, merge, join, fork, decision, local, collaboration, other}
and KE = {object, control}.

• The set ON of all object nodes of a given activity, i.e. the data stored
in the system and transported within the data flow tokens.

• Two functions mapping a given node to the set of its incoming and
outgoing edges, i.e. inE : V → 2E and outE : V → 2E .

• Two functions returning an object flowing to (reps. from) a given node
through an edge, i.e. inO : E × V → ON and outO : V × E → ON .

• A function mapping a node to a set of partitions to which it belongs,
i.e. part : V → 2P , where P is a set of all partitions of a given activity
diagram.

• Two functions that return the source and target nodes of a given edge,
i.e. source : E → V and target : E → V respectively.

• A function mapping a merge node and the set of its incoming object
edges to its outgoing object, i.e. fMerge : V × 2E → ON . Likewise,
we define function fJoin for a join node. In SPACE only one outgoing
edge is allowed for merge and join nodes [45].

• A function mapping a fork node, its incoming object edge, and one of
its outgoing edges to an object flowing through this outgoing edge, i.e.
fFork : V × 2E ×E → ON . Likewise, we define function fDecision for
a decision node. For the sake of generality, we allow that the second
argument of fFork and fDecision is a set of edges, but in SPACE fork
and decision nodes can have only a single incoming edge [45].

• A function mapping a given asset to a class from the core security
ontology, i.e. class : A → KA, where KA = {transit, stationary} and
A is the set of assets constructed from elements of the set ON . Each
asset is uniquely identified as a tuple 〈ON, V,E〉.

• A function that takes a certain activity (i.e. a graph) g ∈ G and
returns a set of assets elicited within this activity g, i.e. fa : G → A,
where G is a set of activities.

5.3. ASSET ELICITATION AND SEARCH FOR SECURITY

PROPERTIES 67

R1:

q ∈ V, e ∈ inE(q), kindE(e) = object,

kindV (q) ∈ {operation, local, collaboration}

∃asset : asset = 〈inO(e, q), q, e〉,

class(asset) = stationary, fa(g) = fa(g) ∪ asset

R2:

q ∈ V, e ∈ outE(q), kindE(e) = object,

kindV (q) ∈ {operation, local, collaboration}

∃asset : asset = 〈outO(q, e), q, e〉,

class(asset) = stationary, fa(g) = fa(g) ∪ asset

R3:

e ∈ E, kindE(e) = object,

part(source(e)) ∩ part(target(e)) = ∅, q ∈ V,

kindV (q) ∈ {operation, local, collaboration}, e ∈ outE(q)

∃asset : asset = 〈outO(q, e), q, e〉,

class(asset) = transit, fa(g) = fa(g) ∪ asset

R4:

e ∈ E, kindE(e) = object,

part(source(e)) ∩ part(target(e)) = ∅,m ∈ V,

kindV (m) = merge, e ∈ outE(m), V ′ ⊆ V, q ∈ V ′,

inE(m) ∩ outE(q) 6= ∅, kindV (q) ∈ KV \ {other}

∃asset : asset = 〈fMerge(m, inE(m)),m, e〉,

class(asset) = transit, fa(g) = fa(g) ∪ asset

R5:

e ∈ E, kindE(e) = object,

part(source(e)) ∩ part(target(e)) = ∅, d ∈ V,

kindV (d) = decision, e ∈ outE(d)

∃asset : asset = 〈fDecision(d, inE(d), e), d, e)〉,

class(asset) = transit, fa(g) = fa(g) ∪ asset

R6:

e ∈ E, kindE(e) = object,

part(source(e)) ∩ part(target(e)) = ∅, j ∈ V,

kindV (j) = join, e ∈ outE(j), V
′ ⊆ V, q ∈ V ′,

inE(j) ∩ outE(q) 6= ∅, kindV (q) ∈ KV \ {other}

∃assetasset = 〈fJoin(j, inE(j)), j, e〉,

class(asset) = transit, fa(g) = fa(g) ∪ asset

R7:

e ∈ E, kindE(e) = object,

part(source(e)) ∩ part(target(e)) = ∅, f ∈ V,

kindV (f) = fork, e ∈ outE(f)

∃asset : asset = 〈fFork(f, inE(f), e), f, e〉,

class(asset) = transit, fa(g) = fa(g) ∪ asset

Figure 5.6: Rules for asset identification

The asset elicitation rules defined in Figure 5.6 form a set of assets
for an activity g that is accessed through fa(g). Thus, each time a rule

68
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

identifies an asset, i.e. asset, this asset is added into a set of elicited assets
for g, i.e. fa(g) = fa(g) ∪ asset. We require that initially (i.e. before the
elicitation process starts) the set of assets for an activity g is an empty
set, i.e. fa(g) = ∅. We continue describing in more detail each rule from
Figure 5.6 and their application logic.

The rules R1 and R2 express that for an operation, local, or collabora-
tion node q a stationary data asset (i.e. asset) is observed if this node has
an incoming (R1) resp. outgoing (R2) edge e of the object kind. The rules
R3 to R7 are applied to an object flow crossing a border of two partitions,
which corresponds to the data in transit concept. R3 describes the case that
an object leaves an operation node and goes directly to another partition.
By the rules R4 to R7, we cover the cases that a flow passes a merge, join,
decision, or fork node before crossing a partition border. Figures. 5.7.(a) to
5.7.(e) illustrate the cases of R3 to R7 respectively.

(a) Simple case (R3) (b) Merge case (R4) (c) Decision case (R5)

(d) Join case (R6) (e) Fork case (R7)

Figure 5.7: Illustration of the rules

The application of the rules R1 – R7 to a functional system model is
outlined by the traverseBlocks and traverseEdges functions depicted in
Figure 5.8. Recall that each activity (i.e. graph) g is represented by a pair
of nodes and edges (V,E). First, the function traverseBlocks traverses
all nodes V and applies the rules R1 and R2. For example, an application
of this function to the model in Figure 5.2 will identify six data stationary
assets, which are data, dataIn, dataOut, store, and two acks.

Thereafter, if a considered node is a local block, the traverseBlocks

function is recursively applied to its internal behaviour. Likewise, a collab-
orative block invokes both the traverseBlocks and traverseEdges func-
tions. For example, this is the case for the analysis of the t block in Fig-
ure 5.3. Here, the function traverseEdges applies the R4 rule to the merge
node before the crossing edge from partition sender to receiver. For the de-
cision node before the crossing edges in the opposite direction, the rule R5
is used. As a result, four data in transit assets are elicited: two ack assets
incoming to the get and delete nodes; two temp assets outgoing from the
get and set nodes.

Table 5.1 summarises the results of applying the rules to our measure-
ment transfer scenario described in Figure 5.2. For those assets that have

5.3. ASSET ELICITATION AND SEARCH FOR SECURITY

PROPERTIES 69

function traverseBlocks (Activity g)

for all v in V do

R1−R2
if kindV (v) = local then

traverseBlocks(v)
end if

if kindV (v) = collaboration then

traverseEdges(v),
traverseBlocks(v)

end if

end for

end traverseBlocks

function traverseEdges (Activity g)

for all e in E do

R3−R7
end for

end traverseEdges

Figure 5.8: Functions to traverse a functional system model

duplicating names (i.e. ack and temp), we have added their location infor-
mation in brackets.

Table 5.1: Results of eliciting assets from the functional model

Asset DSSM classification
data, dataIn, dataOut, store, out,
add, two temp (to and from the set
operation), temp (from the get op-
eration),

StoredMeasurement (Data sta-
tionary)

ack (from the db block), ack (to
the t blocks)

Not an asset (Data stationary)

temp (from the merge node) CollectorToServerMsr (Data in
transit)

ack (that goes from the decision
node to the operations get), ack
(that goes from the decision node
to the operations delete)

Not an asset (Data in transit)

Figure 5.9 demonstrates the interface of the developed asset analyser
tool when it is applied to the scenario of the MixedMode use case from
the Figure 5.2. The main output of this tool is a table where each row
represents an identified asset. First four columns contain information elicited
by the algorithm (the functions and rules) presented in Figure 5.7, namely
the name of an asset, its source (the NodeId | EdgeId column), and its
class according to the core security ontology (the Ontology classification

70
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

column). Classes in the column DSSM classification are assigned by an
engineer among possible alternative classes captured in an associated DSSM.
That is the metering DSSM for this example where the alternative classes are
StoredMeasurement for data stationary assets, and CollectorToServerMsr
and SensorToMeterMsr for data in transit assets (see Figure 4.4).

Figure 5.9: Asset analyser (the user interface)

5.3.2 Search for Security Properties

Once the classification of the elicited assets is known a set of corresponding
security properties can be retrieved from the enriched security ontology.
Recall that the security property concept is defined in the core security
ontology as the triple of asset, security goal, and defence strategy. These
triples are generated when a DSSM (i.e. an object diagram) is transformed
into a set of axioms that are added into the enriched security ontology. Thus,
security properties which are available for a given asset can be accessed in
the enriched security ontology executing the following query:

SecurityProperty and has value [Asset]

This query is formulated as an expression written in the Manchester
syntax [87]. The Manchester syntax uses the standard description logic no-
tation to specify restrictions (e.g. ∃, ∀, ∈) replacing them with the English

5.3. ASSET ELICITATION AND SEARCH FOR SECURITY

PROPERTIES 71

language keywords (e.g. some, only, value respectively). All boolean con-
structs (i.e. ⊓, ⊔, ¬) are also replaced by the English language keywords (i.e.
and, or, not respectively). The rest of the words in the query defined above
are names of the corresponding concepts and relations from the core secu-
rity ontology depicted in Figure 4.2. The values in square brackets denote
parameters of the query. We employ the HermiT reasoner [88] to execute
this query.

For example, for those assets that are classified as CollectorToServerMsr
and StoredMeasurement (see Table 5.1) the following set of security proper-
ties is retrieved:

[CollectorToServerMsr, Confidentiality, Prevention]

[CollectorToServerMsr, Integrity, Detection]

[CollectorToServerMsr, Authentication, Detection]

[StoredMeasurement, Confidentiality, Prevention]

[StoredMeasurement, Integrity, Prevention]

5.3.3 Asset Elicitation Utilising a Platform Model

In this section, we explain the second step of the asset elicitation technique.
In particular, we present a method that refines the results of the rule-based
classification (introduced in Section 5.3.1) by utilising a platform model of
a system.

This method is applied when the initial set of assets and related security
properties are identified inspecting a functional model. Three steps that
compose this method are shown in Figure 5.10. These steps allow identifying
which security properties must be considered as those security properties to
be satisfied given a platform model. Thus, this extended method allows
focusing on a set of relevant assets refining the results from the previous
steps (see Sections 5.3.1 and 5.3.2). We use the platform model selected for
a TSMC block presented in Section 5.1.2.

Figure 5.10: Asset elicitation technique utilising a platform model

At the step 1, initially elicited assets are associated with available plat-
form resources, e.g. communication, computing, and storage components.

72
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

In general, all platform components that are involved in operations with as-
sets should be mentioned during this association. We provide the following
basic guideline:

1. Associate each data stationary asset with a computing unit that oper-
ates with this asset (i.e. components annotated with the HwProcessor
stereotype and its subclasses) and a memory unit that stores it (i.e.
components annotated with the HwMemory stereotype and its sub-
classes).

2. Associate each data in transit asset with a communication channel
that is used to transmit this asset (i.e. components annotated with
the HwMedia stereotype and its subclasses) and with two interfaces
on the sender and receiver ends (i.e. the HwEndPoint stereotype).

3. Associate each data stationary asset with some resource (i.e. compo-
nents annotated with the HwResource or HwDevice stereotypes) that
contains computing and memory units, which operate with the asset
and store it respectively.

4. Associate each data in transit asset with some resource (i.e. compo-
nents annotated with the HwResource or HwDevice stereotypes) that
contains sender and receiver interfaces and a communication channel,
which are involved in transmission of the asset.

Table 5.2 demonstrates association of the assets elicited in Section 5.3.1
with the components of the TSMC platform depicted in Figure 5.4. The
data asset is associated with the ADE7758 component (the third rule of
our guideline). All other data stationary assets (row 2 and 3 in Table 5.2)
are associated with the NAND Flash or LPDDR components (i.e. memory
units) and the ARM Cortex-A8 component (i.e. computing unit) as it is
instructed by the first rule of the guideline. Finally, following the second
rule, the data in transit assets (row 4 in Table 5.2) are associated with
the 10/100Mbsp NIC components of the TSMC device and of the operator
server host (not shown in Figure 5.4) and onto the LAN, which is used as a
communication channel.

Alternatively, the required association can be also derived from an allo-
cation model if such is available. For example, MARTE specifies a dedicated
package for this purpose that is MARTE::Alloc. It is a powerful package that
provides means for capturing spatial and even temporal relations between
application and execution platform.

Step 2 from Figure 5.10 involves analysis of existing threats for com-
ponents of the used execution platform. In general, this task may imply
collaboration between a security expert and a system engineer, but the use
of threat repositories can facilitate this task. For example, an engineer can
query an ontology like one presented by Herzog et al. [72] (potentially ex-
tended with other expert knowledge about existing threats). Creation of the

5.3. ASSET ELICITATION AND SEARCH FOR SECURITY

PROPERTIES 73

Table 5.2: Association of the assets with the platform components

Asset Classification Association
data StoredMeasurement ADE7758
dataIn, dataOut,
out, add

StoredMeasurement [NAND Flash, ARM
Cortex-A8]

two temp (to and
from the set oper-
ation), temp (from
the get operation)

StoredMeasurement [LPDDR, ARM
Cortex-A8]

temp (from the
merger node)

CollectorToServerMsr [OMAP3530:
10/100Mbsp NIC,
LAN, DBHost:
10/100Mbsp NIC]

threat ontology goes beyond our scope. Moreover, we find it inappropriate
since a set of threat taxonomies, ontologies, repositories, and databases al-
ready exist [89, 90]. However, we provide a binding interface that enables
integration of needed information into the core security ontology. It is de-
picted in Figure 5.11. In this figure a threat exploits vulnerabilities that can
be present on certain components from a domain. By this means, a threat
attacks certain assets and violates certain security goals. In our case, we use
knowledge acquired within the SecFutur project combined with the results
of the threat analysis for embedded system platforms published by Ravi
et al. [91]. Table 5.3 shows the identified threats and potentially violated
security goals.

Vulnerability

Threat

Components Domain

Abstract

SBB
Security

goal

has

exploits

provides

belongsTo

has . . .

Binding interface for a threat ontology
Core security ontology

has

violates

Domain

Asset

protects

. . . targets

Figure 5.11: Integration of a threat ontology

The last step of the asset elicitation technique (i.e. step 3 in Figure 5.10),
automatically identifies a set of security properties to be satisfied. The
identification algorithm is implemented as follows. The security goal of each

74
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

Table 5.3: Threats and violated security goals

Platform compo-
nent

Threat Violated security
goal

NAND Flash injection integrity
LAN eavesdropping confidentiality

earlier retrieved security property (explained in Section 5.3.1) is compared
to the security goal violated by the threat (see Table 5.3), which targets
a platform component associated with an asset of the considered security
property (see Table 5.2). Now, if the security goal of the security property is
equal to the security goal violated by the threat, then this security property
is added to the set of security properties to be satisfied. In our scenario, we
have extracted the following set of security properties:

• SP1: [StoredMeasurement, Integrity, Prevention]

• SP2: [CollectorToServerMsr, Confidentiality, Prevention]

SP1 is formulated due to the knowledge about the existence of an injection
threat that violates integrity of the NAND Flash component (see Table
5.3) used in association of the StoredMeasurement asset (see Table 5.2).
Similarly, SP2 is identified due to the presence of an eavesdropping threat
that violates confidentiality of the LAN component (see Table 5.3), which
is used in association of the CollectorToServerMsr asset (see Table 5.2).

5.4 Search for Concrete SBBs

At this step, a set of identified security properties to be satisfied are used to
find a set of concrete SBBs. They are, for example, the SP1 and SP2 security
properties for the metering scenario. Concrete SBBs for a particular domain
and security properties described within an associated DSSM are retrieved
from the enriched security ontology executing the following query1:

ConcreteSBB and (satisfies value [SecurityProperty])

and implements some (AbstractSBB and belongsTo value [Domain])

Execution of the above query for SP1 and SP2 retrieves two concrete
SBBs for the StoredMeasurement asset, namely SecFutur secure storage and
SecFutur TPM seal2 and two concrete SBBs for the CollectorToServerMsr
asset, namely AES and DES.

Due to the existence of several alternatives to secure a considered sce-
nario an engineer needs to carry out an additional analysis. This is the case

1The query is written in the Manchester syntax [87]
2The concrete SBBs that start with the suffix “SecFutur” are developed within the

SecFutur [17] European project.

5.4. SEARCH FOR CONCRETE SBBS 75

of the measurement transfer scenario above. For example, this analysis may
include investigation of the resource overhead introduced by concrete SBBs.
Our work contributes to one kind of such analyses proposing a technique
that inspects and matches platform constraints of candidate concrete SBBs
and constraints of an execution platform model adopted for a design of an
embedded system under development. Recall that platform constraints for
concrete SBBs are obtained as results of performance evaluation of these se-
curity solutions and captured by corresponding PERs that are consequently
stored in the enriched evaluation ontology. This step is reflected in Fig-
ure 5.1 by the Compatibility-based selection of concrete SBBs and presented
in the following sections.

Other possible criteria for selection of concrete SBBs could be, for exam-
ple, their effect on the original functionality of a system and the cost of the
concrete SBBs’ integration. Formalisation of these needs goes beyond the
contributions of this thesis. However, our process accounts this necessity as
the Analysis&Integration of concrete SBBs step in Figure 5.1.

For the illustration purposes, let us assume that a system engineer de-
cides to use the AES concrete SBB to satisfy SP2. As a result, the system
engineer is directed towards a pair of SPACE blocks, namely AES Encryp-
tion and AES Decryption.

As mentioned in Section 4.1.1 integrating a concrete SBB may create
new assets as expressed by the creates relation in the core security ontology.
Hence, a further search of concrete SBBs, i.e. a recursive application of the
above mentioned query, is needed to fulfil the security properties required for
these newly created assets. As a result, search of concrete SBBs will continue
until all security properties of all created assets are fulfilled. Alternatively,
this search will lead to an empty set of SBBs indicating that a vulnerability
remains in terms of an unprotected asset. In other words, the search for
concrete SBBs results in building alternative sets of concrete SBBs. Each
set satisfies a considered security property.

Note that such an approach can lead to a cycle since an ontology reasoner
exhaustively searches for any concrete SBB in a DSSM that satisfies the
security property. For example, the query can return the same concrete
SBB that has invoked it if this concrete SBB satisfies the same security
property required by its created asset. To handle such occurrences, we have
used an algorithm that detects and resolves such cycle conditions.

This algorithm is based on constructing a directed graph while the search
for concrete SBBs goes on:

• Create a node for each found concrete SBB and asset.

• Create a directed edge from a concrete SBB to an asset if the concrete
SBB creates the asset.

• Create a directed edge from an asset to a concrete SBB if the concrete
SBB protects the asset.

76
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

Then, we use a cycle detection algorithm (one based on identification of
backward edges during execution the DFS (Depth-first search) algorithm [92])
to detect cycles in the constructed graph. The search continues if there are
still alternative paths ignoring (by removing) the detected cycles. Other-
wise, the engineer is notified of the remaining unprotected asset.

A nice property of the previously selected SPACE blocks (i.e. the AES
pair) is that they already contain a protection of the keys, i.e. new assets
are not created. Thus, we can directly continue with the integration of
these blocks. The integration of the AES blocks (encryption and decryp-
tion) is easily done by arranging their instances before and after the block
t: TransferHandler as shown in Figure 5.12.

«system» Secure Metering Data Transfer

tsmc operator_server

c: Collector

db: Db Handler

t: Transfer Handler

start

data:
HashMap

start

dataIn:
Ciphertext

dataOut:
Ciphertext

start

ack:
boolean

store:
HashMap

ack:
boolean

e: AES Encryption

plainIn:
HashMap

cipherOut:
Ciphertext

d: AES Decryption

CipherIn:
Ciphertext

plainOut:
HashMap

Figure 5.12: Adapted model protecting the transfer of measurement data

The functionality described above is implemented as a tool called con-
crete SBB searcher. The user interface of this tool is depicted in Figure 5.13.
In this tool, the list “Security properties” contains a list of relevant security
properties for a selected asset (e.g. CollectorToServerMsr). These properties
are represented in a form of tuples, i.e. [asset, security goal, defence

strategy].
The bottom part of the GUI screenshot in Figure 5.13 contains a tree

representation of found sets of concrete SBBs. The root item denotes the
selected for the search security property. For this example, we use the
earlier retrieved security property SP2 that is [CollectorToServerMsr,

Confidentiality, Prevention]. Recall that other security properties have
been eliminated when the platform model is added into the analysis (as ex-
plained in Section 5.3.3). The root item expands to several items that have
the following format:

5.5. COMPATIBILITY-BASED SELECTION OF SBBS 77

[asset] requires [security goal] : [concrete SBB]

In this string, [asset] and [security goal] are elements from the selected
for the search security property, i.e. CollectorToServerMsr and Confiden-

tiality respectively from SP2. Then, [concrete SBB] denotes a retrieved
concrete SBB that satisfies this security property. In our example, they are
OpenSSL, DES, and AES implementations. Note that the DES SBB has a
special icon, i.e. “CA”, that stands for Created Assets. This icon denotes
that the DES SBB, in turn, creates some assets to be protected (a key in
this example). An engineer needs to expand this item to see the created
assets, their required security goals, and available concrete SBBs. Thus, a
system engineer can see all possible alternative sets of concrete SBBs that
together can be used to protect a considered asset.

Figure 5.13: Concrete SBB searcher (the user interface)

5.5 Compatibility-based Selection of SBBs

The last step that we describe in this thesis is the Compatibility-based se-
lection of concrete SBBs 3. It is supported by the method for model-based
compatibility analysis developed in this work. We begin with introducing
a reader into the context in Section 5.5.1. In particular, we recall some
concepts introduced earlier in this thesis and outline basics of the proposed
method. Thereafter, Sections 5.5.2 – 5.5.4 explain the method for model-
based compatibility analysis.

3In this section, the term SBB can be understood as the term RBB used in Section 4.1.2

78
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

5.5.1 Introduction into the Compatibility Analysis

Adding a new feature to a system always comes with resource claims. In
Section 4.1.2, we introduced the PER (Performance Evaluation Record)
concepts that enables capturing results of performance analysis of SBBs
conducted by domain security experts. Among other information, PERs
store data about resource footprint and quality of extra-functional properties
provided by concrete SBBs. Thus, an embedded system engineer can use
this information already at the early design phase increasing the efficiency of
an embedded system design process. Hence, the PER concepts contributes
to selection of a suitable set of concrete SBBs by enabling the sensitivity
and trade-off analyses at early phases.

Another useful and significant input to the design process is knowledge
about platform-specific constraints of concrete SBBs. These constraints
originate from the fact that SBBs (and just RBBs) for embedded systems
are often optimised to exploit a particular feature of hardware components
on which they are implemented. Thus, they can provide good quality of
extra-functional properties (i.e. level of security) while consuming a small
amount of limited resources. In our studies, we argue that these constraints
also need to be documented and accounted in order to support integration
of concrete SBBs into embedded systems. For example, Preissig [80] reports
the results of performance analysis of the Data Encryption Standard (DES)
implementation optimised for the memory architecture of the used chip.
Similarly, other implementations of DES rely on the presence of a certain
instruction set to accelerate permutation operations [6]. Therefore, this in-
formation is included as a part of a PER using the gemRequiredComponent
stereotype from the GEM profile explained in Section 4.1.2.

Consequently, each PER is transformed into an ontology called enriched
evaluation ontology that allows storing and structuring this field knowledge.
As a result, a variety of information can be retrieved from this ontology
defining appropriate queries to the ontology, for example:

• Retrieve values of relevant performance metrics for a certain SBB.

• Retrieve a set of SBBs of a particular domain that satisfy required
values with respect to certain performance metrics.

• Retrieve a set of SBBs, for which the platform constraints are com-
patible with a platform adopted for an embedded system under devel-
opment.

Queries like the first two can be directly implemented as SPARQL queries
[65]. However, the task of compatibility analysis, i.e. the third query in the
list above, requires more sophisticated support. Consequently, we develop
such a support as a method that implements model-based compatibility anal-
ysis.

5.5. COMPATIBILITY-BASED SELECTION OF SBBS 79

This analysis allows automatically accounting for platform constraints
while selecting a set of SBBs to be used for a system design. An extra-
functional domain expert (in our study, a security expert) provides these
constraints by annotating elements of an evaluation platform (i.e. a MARTE
model) with the gemRequiredComponent stereotype (see Figure 4.8).

The core of our method is a set of ontologies and SPARQL queries de-
signed to infer whether concrete SBBs and an adopted platform for the
embedded system are compatible (i.e. whether the formulated platform con-
straints for a concrete SBB fits platform declarations of the system being
configured). The SEED MagicDraw plug-in implements this functionality
to support the use of the compatibility analysis.

In the following, Section 5.5.2 explains the developed hierarchy of on-
tologies and Section 5.5.3 defines the notion of compatibility. Section 5.5.4
shows results of scalability and performance estimations for our approach.

5.5.2 Ontologies for Compatibility Analysis

Figure 5.14 depicts the developed set of ontologies. These ontologies are
organised in three layers: expert, vendor, and engineer layers. The name of
each layer denotes its main actor. These ontologies are related to each other
through the import, use, and refer to relations.

Figure 5.14: Ontologies for compatibility analysis

Expert Layer

Ontologies of the Expert layer are created and maintained by experts of the
embedded and security (or any other extra-functional properties) domains.
It contains three ontologies. The first two ontologies (from the left to the
right) are obtained from the transformation of MARTE packages dedicated
to platform resource descriptions. The third ontology is the refinement of the
core evaluation ontology for the security domain as it is already explained
in Section 4.1.2.

80
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

Techniques to transform UML class models into ontologies are studied
and presented by several researchers, e.g. by Hermida et al. [93] and Xu et
al. [94]. Similar to their works, we identify the mapping needed to transform
MARTE packages. Basic mapping rules that we apply in our work may be
summarised as follows:

• Each MARTE stereotype is represented as an OWL class.

• Each tag definition is represented as an OWL object or data property,
where the domain is the stereotype that owns the tag and the range
is the type of the tag. We create an OWL object property if the
type of the tag is defined as another stereotype, which can not be
replaced with a basic type defined in XSD [95] (e.g. float, integer, or
string). Analogously we create an OWL data property if the type of
the corresponding tag is a basic XSD type.

• An enumeration is represented as a class with a predefined set of in-
dividuals.

• The generalisation relations of the MARTE profile are represented as
sub-class relations in the ontology, i.e. the “is-a” relation.

• The composition relations are represented as the part-whole object
properties [96], i.e. the “hasPart” relation.

• The named associations are represented as OWL object properties
with the corresponding name, e.g. the “hasConnected” relation.

We avoid using the Ontology UML profile [97] that allows designing on-
tologies as UML models since this requires in-depth understanding of the
underlying ontologies from an engineer. Our goal is to exploit advantages
of ontology technologies (e.g. querying services), but to allow an engineer
to operate only with terms of a considered extra-functional domain.

We proceed to explain the remaining two ontologies that build the expert
layer, i.e. NFPType ontology and Resource ontology. The third, Security
evaluation ontology, was already discussed in Section 4.1.2.

The NFPType ontology of the expert layer contains a set of types and
their relations needed to characterise a piece of hardware/software compo-
nent, e.g. data rate (Mbps, Kbps, etc.) and frequency (Hz, KHz, etc.).
This ontology is derived from the MeasurementUnits, MARTE DataTypes,
and Basic NFP Types sub-packages of the MARTE Library package (chap-
ter D.2 of the MARTE profile specification), which enable specification of
non-functional properties.

Note that types such as NFP Real and NFP Integer are not present in
our NFPType ontology since they can be sufficiently modelled as the XSD
types [95], i.e. xs:float and xs:integer respectively. Figure 5.15(a) depicts an
excerpt of the classification from this ontology.

5.5. COMPATIBILITY-BASED SELECTION OF SBBS 81

(a) NFPType ontology (b) Resource ontology

Figure 5.15: Classification levels for the developed ontologies (excerpts)

The Resource ontology contains those concepts needed to describe plat-
form components and is derived from the MARTE HRM package described
in Chapter 14.2 of the MARTE profile specification [41]. Some classification
levels of this ontology are depicted in Figure 5.15(b).

The core concept of our ontology is the HwResource class that denotes a
generic hardware entity. The HRM package differentiates two complemen-
tary views onto components, namely logical and physical. This structure is
flattened in our ontology.

The logical view (Hw Logical model) consists of five sub-packages. The
core elements of these sub-packages are transformed into sub-classes of
the HwResource class. These classes are HwComputingResource, HwIsa,
and HwBranchPredictor from the Hw Computing sub-package; HwMem-
ory and HwStorageManager from Hw Storage; HwCommunicationResource
from Hw Communication; HwTimingResource from Hw Timing; and HwDe-
vice from Hw Device.

The physical view (Hw Physical model) contains two sub-packages, name-
ly Hw Power and Hw Layout. The core concepts of Hw Power are repre-
sented as sub-classes of the HwResource class, i.e. HwPowerSupply and
HwCoolingSupply. The Hw Layout model contains only one element, i.e.
HwComponent. This stereotype is used to specify physical characteristics
(e.g. weight and area) and environmental conditions (e.g. temperature and
humidity) for a platform component. We treat it in a special way in our
ontology. Thus, we have encapsulated physical characteristics of a compo-
nent into the “ComponentCharacteristics” OWL class and related it to the
HwResource class with the “hasCharacteristics” object property.

The composition relations defined in HRM are transformed into the “has-
Part” object properties [96] (and its inverse property “isPartOf”). The
named association “connectTo” is modelled as the “hasConnected” object
property (and its inverse property “isConnectedTo”). Both these properties
have corresponding sub-properties, e.g. “hasCache” is a sub-property of the
“hasPart” property.

82
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

Vendor Layer

The Vendor layer in Figure 5.14 consists of vendor component ontologies,
where a vendor is a provider of platform components available for con-
struction of execution platforms for embedded systems (e.g. Texas Instru-
ments [98]). Thus, each ontology encapsulates description of platform com-
ponents. The resource ontology of the expert layer serves as a description
language to describe these components.

In order to provide the description of available components, a vendor
needs to perform the following steps. First, a vendor uses the MagicDraw
tool [13] to create models of platform components. These models are UML
class diagrams annotated with stereotypes from the HRM package. Second,
a vendor launches the developed SEED MagicDraw plug-in to transform the
created MARTE models of the platform components into an ontology. The
user interface of this plug-in is depicted in Figure 5.16(a). We have used the
Java OWL API [67] and Acceleo [78] tool to implement this transformation.
Figure 5.16(a) depicts an interface of the developed plug-in. A vendor may
create a new ontology for described components or add these components
into an existing ontology.

Figure 5.4 from Section 5.1.2 depicts a valid model of the OMPA3530
board [86] provided by Texas Instruments.

Engineer Layer

The bottom layer in Figure 5.14 is the Engineer layer. At this level, sys-
tem and security engineers use the ontologies created at the higher levels
(i.e. the expert and vendor layers) to model the adopted platform for an
embedded systems and platforms used for evaluation of concrete SBBs re-
spectively. In particular, an engineer uses vendor ontologies when certain
vendor components required for the application are known, whereas the re-
source ontology is suitable if such a component is not known or not present
in vendor ontologies. Security engineers instantiate the security evaluation
ontology to capture the results of performance evaluation of a considered
SBB. Thus, security engineers create PERs where the concept gemPlatform
refers to the SBB platform specification (see Figure 5.14). These PERs are
further transformed into corresponding security evaluation record ontologies
as explained in Section 4.1.2.

In the smart metering infrastructure from Section 2.5, TSMC devices are
built on the OMAP3530 board depicted in Figure 5.4. This component will
be already described and stored in the vendor ontology. Therefore, an em-
bedded system engineer needs to load the ontology and use this component
as a part of the TSMC model. The developed SEED MagicDraw plug-in
supports this functionality.

In the measurement transfer scenario analysed in Section 5.3, the data
transmitted between a TSMC and server (i.e. the CollectorToServer asset)
must be protected against confidentiality threats as it is indicated by the

5.5. COMPATIBILITY-BASED SELECTION OF SBBS 83

security property SP2. Consequently, two concrete SBBs that satisfy this
security property have been found in the Metering DSSM (see Section 5.4).
They are the AES (Advanced Encryption Standard) [99] and DES (Data
Encryption Standard) [80] implementations provided by the Texas Instru-
ments [98]. For these implementations, the AES SBB requires the use of the
C64x+ processor, while the DES SBB requires the use of the TMS320C6211
chip (see Figure 4.10 in Section 4.1.2).

In the next section, we explain how this architecture of different ontolo-
gies enables selection of concrete SBBs (or any RBBs) based on the defined
compatibility analysis.

5.5.3 Model-based Compatibility Analysis

We differentiate two types of the platform compatibility: logical and envi-
ronmental. In the following, we explain each of the mentioned types and
exemplify some of them using the system and SBB models introduced in
the previous sections.

The notion of logical compatibility is based on the pairwise logical com-
patibility of a SBB and system platform components defined below.

Definition 1 Two components A and B are logically compatible if one of
the following holds: (a) A is identical with B; (b) A has B as a part; (c) A
is a part of B; (d) A can be connected to B; (e) B can be connected to A;
(f) a disjunction of (b)-(e).

We employ the ontology querying services to automate a check of the
above definition. In particular, we use the ASK operator of SPARQL [65]
that returns a boolean value indicating whether a path that matches a query
pattern exists. For example, the query for case (b) where the relation “has-
Part” is examined has the following form:

PREFIX hrm: [the ontology IRI]

ASK {?A hrm:hasPart ?B}

Queries for cases (c) – (e) have a similar structure replacing “hasPart” with
the “isPartOf”, “hasConnected”, and “isConnectedTo” object properties
respectively. To support the check of case (f), we use a special construct
defined by the SPARQL 1.1 syntax, i.e. the so called path properties [100].
It allows examining a path of an arbitrary length. Hence, the query for case
(f) replaces the “hasPart” property with a path expression: (hrm:hasPart
| hrm:isPartOf | hrm:connectedTo | hrm:hasConnected)*. In this ex-
pression, the symbol “|” denotes the “OR” operator, while the symbol “∗”
means that any number of occurrences is allowed.

In the query mentioned above, the ?A and ?B symbols denote variables.
They are replaced by components of a system platform and components

84
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

of a SBB platform (annotated with the “gemRequiredComponent” stereo-
type) respectively. In our case (see Section 5.5.2), these are OMAP3530
and C64x+ for the AES SBB, and OMAP3530 and TMS320C6211 for the
DES SBB. Since TMS320C64x+ has a C64x+ processor as its part, the
query returns true. In contrast, no path is found between TMS320C6211
and TMS320C64x+ for the DES SBB. Thus, we conclude that the particular
implementation of the DES algorithm is not logically compatible with the
current design of a system platform that is based on the OMAP3530 board,
while AES can be selected as a SBB to provide secure communication for a
TSMC device.

The definition of environmental compatibility is built upon the Env Cond-
ition data type from the HRM package (see Figure 14.72 from the MARTE
specifications [41]) which defines five types of environmental conditions:
temperature, humidity, vibration, shock, and altitude. Its semantics is a
safety condition applied to a component. An environmental condition of
each type has a value range and also is applied to a certain state of a compo-
nent. An engineer needs to annotate the components with the “HwCompo-
nent” stereotype and define the “r Conditions” tag to assign environmental
conditions to a component. We use the following terms and functions to
define environmental compatibility :

• K, U , and S are sets of the environmental condition types, measure-
ment units, and component states respectively, where K = {temperature,

humidity, vibration, shock, altitude}, U = {◦C,%,m/s2, g,m}, and S={oper-

ating, storage, other, undef}.

• A set ENV COND defined as I × U × K × S that describes each en-
vironmental condition as a tuple of a value interval (a set I), a unit
(from the set U), a type (from the set K), and a state (from the set
S).

• A function defining environmental conditions of a component, i.e.
env cond : COMP → 2ENV COND, where COMP is a set of compo-
nents.

• Projection functions extracting from an environmental condition the
corresponding type, i.e. kind : ENV COND → K, unit, i.e. unit :

ENV COND → U , state, i.e. state : ENV COND → S, and value
interval, i.e. range : ENV COND → I.

Given these terms and functions we introduce two other functions to
define the notion of environmental compatibility.

Definition 2 Given that environmental compatibility is a function env comp :

COMP × COMP → {true, false} then a component A is environmentally
compatible with a component B if env comp(A,B) is evaluated to true as
defined below:

5.5. COMPATIBILITY-BASED SELECTION OF SBBS 85

env comp(A,B) , true if ∀k ∈ K, ∀s ∈ S : a ∈ env cond(A), b ∈ env cond(B),

kind(a) = kind(b) = k, state(a) = state(b) = s, range(a) ∩ range(b) 6= ∅

The intuition is that environmental conditions of a platform component
A adopted for an embedded system and a component B required by a SBB
are compatible if corresponding interval values of environmental conditions
of the same type are overlapping. Note that if some conditions are not spec-
ified for a component we assume that an interval value for such a condition
spans over its whole admitted range.

In addition, we define another function that specifies the environmental
conditions under which a pair of components can not operate (although each
could operate individually under respective conditions). We refer to such
environmental conditions as environmental constraints.

Definition 3 Given two components A and B, environmental constraints
for these two components are returned by the function env constr : COMP ×

COMP → 2ENV COND×ENV COND defined as follows:

env constr(A,B) ,
{

{〈i1, u, k〉, 〈i2, u, k〉} | a ∈ env cond(A), b ∈ env cond(B),

k ∈ kind(a) ∩ kind(b), i1 = range(a) \ range(b), i2 = range(b) \ range(a),

u = unit(a)
}

The intuition is that while each component might operate in an interval
that is a subset of its operational condition, its composition with another
component dictates that one component is prohibited from operating in
those environment conditions that are not within the range allowed by an-
other component (and vice verse). In other words, environment conditions
of one component are constrained because of presence of another component.
Therefore, environment constraints for each component are generated. Con-
sequently, the presence of these constraints for components guides a system
engineer to implement a mechanism (e.g. cooling system) that ensures that
the corresponding components sustain the environment constraints gener-
ated for another component (e.g. to keep within a given temperature range).
The SEED MagicDraw plug-in generates these environmental constraints
automatically from given environmental conditions attached to individual
components.

In our scenario, the temperature conditions for OMAP3530 and TMS32-
0C64x+ (the AES SBB) have the same ranges of [0; 90]◦C. Therefore, the
system and SBB are environmentally compatible without any additional
constraints.

The above definitions for computing the compatibility relation and their
pairwise imposed constraints allow us to reason about environmental condi-
tions of assemblies based on constraints for its constituent components.

Figure 5.16(b) depicts the user interface of the SEED MagicDraw plug-in
supporting compatibility analysis. It allows selecting a type of the desired

86
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

compatibility analysis (logical and environmental) and its settings. The
bottom part of this tool shows the results of the analysis, namely whether
the system and SBB are compatible according to the selected criteria. Ad-
ditionally, it shows a generated set of environmental constraints for the
environmental compatibility check.

(a) Transformation tool (b) Compatibility analysis tool

Figure 5.16: Model-based compatibility analysis (the user interfaces)

5.5.4 Scalability and Performance

So far, we have used the scenario from the smart metering infrastructure
to illustrate the compatibility analysis and knowledge management ideas
supported by our methods and tool. This section proceeds to show that this
approach is scalable to domains with large data sets. We design experiments
to estimate the potential size of resulting vendor ontologies as well as the
execution time for the transformation of MARTE models into OWL.

In this study, we focus on microcontrollers (MCUs) provided by some
of popular vendors (Renesas, Texas Instruments, Fujitsu, Atmel, and Mi-
crochip Technology). We estimate the potential complexity of corresponding
MARTE models and the size of corresponding OWL ontologies in terms of
the number of generated axioms. Three classes of embedded systems and
MCUs commonly used for their design [101] are considered: small scale (8-bit
MCUs), medium scale (16-bit MCUs), and sophisticated embedded systems
(32-bit and ARM-based MCUs). Thereafter, we study how many models
are currently available on the market for each vendor (see Table 5.4). The
data has been extracted from the official Internet resources of the vendors
mentioned above.

5.5. COMPATIBILITY-BASED SELECTION OF SBBS 87

Table 5.4: Scalability and performance estimations

8-bit 16-bit 32-bit
1 Renesas 933 2290 1817
2 Texas Instruments 0 406 292
3 Fujitsu 103 207 630
4 Microchip Technology 348 334 79
5 Atmel 238 0 179
6 Total amount of units 1622 3237 2997
7 Av. number of axioms per unit 68 105 133
8 Approx. total number of axioms 110 296 339 885 398 601
9 Av. transformation time (ms) 1455 1627 2497

To estimate the potential number of generated axioms, we select five
commonly used MCUs of each class, create their MARTE models, and exe-
cute their transformations. This study shows that the simplest 8-bit MCUs
creates an average of 68 (σ = 3) axioms and 16-bit MCUs correspond to
105 (σ = 6) axioms while the most sophisticated 32-bit MCUs generate 133
(σ = 21) axioms (see Table 5.4, row 7). The 8th row shows the approximate
number of produced axioms when all models are added into ontologies. Fi-
nally, we compare these numbers with scalability studies of the OWL APIs
and Jena technologies done by Horridge and Bechhofer [68] and Dibowski
and Kabitzsch [102]. In particular, Horridge and Bechhofer [68] show that
OWL APIs can easily handle ontologies that contain 1 651 533 axioms con-
suming 831 MB. As a result, we conclude that the used technologies (OWL
APIs and MARTE) allow handling ontologies for a significant number of
vendors in a potential real world deployment. This capacity allows loading
multiple vendors’ ontologies to execute compatibility analysis. Additionally,
some techniques for swapping ontologies in memory can be implemented to
handle even bigger datasets.

Next, we execute 50 runs of the transformation for the same representa-
tives of each MCU class and measure the execution time for each run (see
Table 5.4, row 9). In particular, we measure the execution time of the fol-
lowing operations for each run: transformation of an original UML/MARTE
model into the OWL API syntax; generation of axioms executing corre-
sponding OWL APIs; and saving the resulting ontology into an owl-file.
The hardware used in this study is a system with 2.8 GHz Intel Core i7 and
8 GB of RAM running Mac OS X 10.7. In our case, the transformation
time does not vary substantially for small (1455ms, σ = 253) and medium
(1627ms, σ = 292) MCUs while one-second increase is observed for the so-
phisticated 32-bit MCUs (2497, σ = 328). This increase can be explained
by naturally larger, in comparison with 8-bit and 16-bit MCUs, complexity
of 32-bit MCUs in both number of elements and their attributes.

88
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

5.6 Extended Form of the Process

We have presented the process for application of the domain-specific security
knowledge that is depicted in Figure 5.1. The process has been intentionally
simplified by the author to facilitate explanation of the introduced methods
and tools. In this section, we give a broader view to this process.

System model

System model

coupled with DSSMs

Initial set of SPs

to be satisfied

(3) Preliminary

analysis of SPs

Refined set of SPs

to be satisfied

A collection of

alternative sets of

SBBs

 A collection of alternative

sets of compatible

SBBs

The system model with

integrated SBBs

(6) Integration of one of

alternative sets

of SBBs

(7.a) Security

analysis

(7.b) System

analysis

(7.c) Detailed

trade-off analysis

Security-enhanced

embedded system model

(1) Association of

DSSMs

(2) Asset elicitation&

search for SPs

(4) Search for

concrete SBBs

(5) Compatability-

based selection of

concrete SBBs

go to (3)

or restart

go to (6)

or restart

go to (6)

or restart

Repository

of DSSMs

Figure 5.17: Extended form of the proposed process

Figure 5.17 depicts the extended representation of our process. Input
artefacts of this process are a system model created by a system engineer
and a repository of DSSMs created by domain security experts. A system
model includes both functional and execution platform models. The grey
boxes indicate the steps that rest on the SEED methods explained earlier
in this chapter.

In step 1 a suitable DSSM is selected and boundaries of a system, where
knowledge captured by a selected DSSM should be applied, are established
(see Section 5.2). The association is based on matching of the application
domains. The next step is Asset elicitation & search for SPs (Security Prop-
erties). Step 2 has two elements: (a) a system model is analysed to identify
assets that need security protection; (b) the coupled DSSM is consulted to
retrieve a set of relevant security properties and an ontology search provides
the known tuples in the domain. These methods are described in Section 5.3.

Next, a preliminary analysis of the proposed security properties is con-
ducted in step 3. This step is necessary to eliminate less relevant security
properties (that encompass unprioritised assets). The focus of this thesis
that we will expand in the next chapter is activities in this part of the
process.

5.7. DISCUSSIONS 89

Once the set of security properties to be satisfied is fixed, a system
engineer proceeds with searching for suitable security mechanisms as in-
dicated by step 4 – Search for concrete SBBs. As we have explained in
Section 5.4, this step may lead to proposing a number of alternative ways to
secure a system, i.e. a collection of alternative sets of concrete SBBs. The
Compatibility-based selection of concrete SBBs step allows narrowing the
initial collection of concrete SBBs sets. It helps to ensure that the platform-
related constraints of the system under development are compatible with
the SBBs, especially in terms of resource usage and environmental factors.

Thereafter, one selected set of concrete SBBs is integrated into a system
design. At this phase, an embedded system engineer can use tools and tech-
niques developed by the research community to conduct a detailed analysis
to study consequences of incorporating security functions into a system. The
Security analysis step can be used to check whether a set of integrated SBBs
provides the required level of security. The System analysis step can assist
in verifying if security functions do not violate functional requirements of a
system, e.g. all deadlines are met. The Detailed trade-off analysis step is
intended to ensure that other non-functional properties are satisfied in pres-
ence of the integrated security protection mechanisms, e.g. available system
resources are enough to provide the desired level of quality of service (QoS).

Either of these analyses may disclose discrepancies that may sanction a
search for another set of concrete SBBs (i.e. go to step (6)), re-evaluating
earlier design choices in terms of QoS, or reconsidering security requirements
(i.e. go to step (3)). In some cases, the process may be re-iterated from a new
system model or an updated DSSM (restart). Otherwise, a system model
with an integrated set of SBBs constitutes a security-enhanced embedded
system model.

5.7 Discussions

In this section, we discuss SEED with respect to success indicators formu-
lated within the SecFutur project [17]. Afterwards, we also look at SEED
through the lens of software process improvement criteria discussed in re-
search literature.

Success Indicators

To evaluate success of the project 47 success indicators have been formu-
lated by the research and industrial partners [3]. Among which 32 criteria
are applicable to parts of the project that are irrelevant in the context of
our work. These are, for example, abstract model for embedded systems,
implementation of SBBs, code generation, and automated testing. The cri-
teria that we find relevant to the subject of this work belong to two project
work packages (WPs): security building blocks WP and security engineer-
ing process WP. In total, there are 15 indicators devised for evaluation of

90
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

outputs of these WPs. Furthermore, among these 15 indicators we exclude
those that analyse the use of the SecFutur approach on concrete showcases
and that assess the outputs with respect to other goals of the project. This
results in 10 indicators that are suitable for the scope of this work. These
are listed below:

• Indicator 1: Ease of integration of building blocks.

• Indicator 2: Effort saved by using building blocks.

• Indicator 3: Suitability of solutions provided by the configuration
model and tool.

• Indicator 4: Ease of use of the configuration model and tool.

• Indicator 5: Ease of integration of the security-aware process.

• Indicator 6: Compatibility of the security-aware process with current
development processes.

• Indicator 7: Use and usefulness of the modelling formalisms.

• Indicator 8: Ease of use of the modelling formalisms.

• Indicator 9: Improvements in system modelling by using the mod-
elling formalisms.

• Indicator 10: Improvements in security requirement management by
using the modelling formalisms.

Now we provide our reflection with respect to these indicators.
Indicator 1: The integration aspect is addressed in SEED by promot-

ing usage of such modelling languages (at the realisation level) that support
compositional semantics. For example, we adopt the SPACE language that
enables verifying that properties of the system are preserved after integration
of building blocks. Another viable technique is aspect-oriented modelling
where security mechanisms are represented as security aspects. In addi-
tion to composability, the SecFutur project proposes to augment each SBB
with a special form of security patterns that contains additional integration
information.

Indicator 2: It goes without saying that use of pre-defined, already
tested, studied, and packaged in a form of SBBs solutions is more efficient
than creation of such solutions from scratch. This idea fundamentally lies
within component-based development, aspect-based development, and secu-
rity patterns.

Indicators 3 and 4: The configuration aspects are addressed in SEED
in two ways. First, search for a set of SBBs is done based on present assets
and corresponding security properties. This step exhaustively explores all
possible combinations of SBBs. In such a way, any SBB that is suitable from

5.7. DISCUSSIONS 91

the security properties standpoint is shown to a system engineer as a feasible
alternative. To limit the set of considered SBBs and to exclude unsuitable
alternatives we incorporated the resource criterion into SEED and also have
developed the compatibility analysis technique. Here, we must acknowledge
that these techniques depend on richness of the repository and quality of the
stored information. The development of finely tuned tools was not possible
within the scope of thesis work. We provide the proof-of-concept versions.
Ease of use is a topic that include such complex aspects as human-machine
interaction and graphical design of user interfaces that are not the focus of
our work.

Indicators 5 and 6: We designed SEED as an adjunct process to cur-
rent practices. In particular, from the system design perspectives it adds one
activity and does not affect the rest of the practices and processes. More-
over, SEED uses the artefacts produced by a conventional design process –
model of system functionality, its execution platform, and allocation – as
prescribed by the foundation level. Consequently, SEED is compatible only
with those engineering processes where a system engineer models a system
(its functional part and execution platform). For a process on the security
expert side, SEED only adds the documentation and modelling routines in
some cases. One can argue that this can be cumbersome and brings addi-
tional complexity. However, it can be addressed by adopting the proposed
modelling artefacts (DSSM and PER), and by providing user-friendly tools.
This effort, in turn, will be paid off by bringing security concerns close to
system engineers.

Indicators 7 and 8: SEED starts when system modelling is already
done and does not force a system engineer to adopt new techniques for this
task. One can argue that SEED sets extra requirements on system modelling
since the quality of SEED outcomes depends on completeness of system
models. This is a viable comment. However, we also must acknowledge the
added value of modelling in general: proper modelling will also contribute
to other phases of system development benefiting from model-driven engi-
neering techniques. For example, appropriate models are suitable for code
generation and testing. The modelling required by SEED from security ex-
perts has simple syntax and semantics, and is more of the documentation
nature.

Indicator 9: The SEED foundation is agnostic to modelling languages
and the SEED realisation is adaptive to languages that are inherent to an ap-
plication domain. Therefore, improvement of system modelling formalisms
and languages is an orthogonal issue.

Indicator 10: SEED provides the methods for asset elicitation and
for extraction of associated security properties. These two techniques sys-
tematically analyse the system model and match it with stored security
knowledge. This supports elicitation of security requirements since ade-
quate security properties are pulled from the repository that can be further
processed and serve as basics for generation of security requirements. Al-

92
CHAPTER 5. APPLICATION OF THE DOMAIN-SPECIFIC

SECURITY KNOWLEDGE

ternatively, a system engineer with assistance of a security expert would
manually go through this process. Hence, we can conclude that SEED con-
tributes to security requirement management by facilitating elicitation of
requirements.

Process Improvement

Software process improvement (SPI) is a systematic approach to increase the
efficiency and effectiveness of development and to enhance software prod-
ucts [103]. SEED is constructed to enhance the conventional design process
by extending it with methods and tools to support security analysis. Hence,
SEED can be considered as a process improvement. In this vein, we examine
SEED with respect to known factors influencing adoption of development
processes.

Baddoo and Hall [104], and Niazi et al. [105] report that the human
related factors are among critical success factors for adoption of process im-
provements. These are, for example, management commitment and staff
involvement according to Niazi et al. [105]. Baddoo and Hall [104] men-
tion such human factors as inadequate communication, lack of management
direction and commitment, personality clashes, etc. Besides, Baddoo and
Hall [104] include factors related to SPI strategy itself, e.g. lack of SPI
management skills, commercial pressure, lack of overall support, etc.

Even though we do not focus on detail investigation of such factors, we
must mention that security has obviously become an intricate and serious
issue for the last two decades since both threats and regulatory pressure on
organisations have evolved. Simple threats in a form of viruses distributed
through floppy disks have evolved in sophisticated botnets spreading over
the network. An adversary model moved from script kiddies to organised
criminals that hunt cyber assets. As a result, the burst of attacks against
embedded systems, which become known to public, creates significant com-
mercial pressure on organisations. Besides, the regulatory pressure also con-
tinues increasing. Thus, a range of standards and guidance have appeared
to regulate core industries, e.g. ISO27000-series, HIPAA (healthcare), PCI
DSS (payment card industry), NISTIR (smart grids), to name a few. Both
threats and regulations stipulate the need to improve current development
practices with security related activities.

Niazi et al. [105] mention among major critical barriers that hinder SPI
such factors as lack of resources, time pressure, and inexperienced staff.
Baddoo and Hall [104] bring such de-motivators as time pressure and con-
straints, lack of resources, cumbersome processes, lack of evidence of direct
benefits, inertia, and inexperienced staff. We proceed with analysing SEED
with respect to these factors.

SEED does not intend to change established development processes. In
contrast, it is designed to be complementary to existing life cycles, therefore,
it does not require additional time and resources to reorganise the whole
development routine. The resource- and time-consuming parts of SEED

5.7. DISCUSSIONS 93

adoption are maintainability of the repositories and also initial learning of
SEED by inexperienced staff.

We envisage that benefits obtained from reusing security knowledge will
exceed the costs and resources associated with maintenance of the SEED
repositories. The initial learning is facilitated by employing visual mod-
elling and transformation techniques that hide the ontology layers from the
users. Thus, inexperience staff needs only a little training about the sim-
ple modelling language to be able to create and read DSSMs. Moreover,
the SEED realisation relies on modelling languages that are inherent for
a certain application domain as opposed to introducing new system mod-
elling languages for enabling security analysis. This prevents unreasonable
increase in costs and resources; it also mitigates frustration of inexperience
staff who are not forced to learn a completely new language.

Inertia and negative experience criteria is related to unwillingness to
adopt a new process if the current one works and when there is no under-
standing of the purpose of a new process. SEED does not force practitioners
to change well-established current processes, but it complements them with
security analysis activities. The lack of understanding of the need for (any)
security analysis is contracted by the recent uprise of attacks and emerg-
ing mindset. A product can not be competitive on the market when it
completely neglects basic security issues. Completely unprotected products
bear too high risks, especially when these risks could be anticipated with
the assistance of such approaches as SEED.

We think that at the initial stage SEED will be more beneficial to such
practitioners who do not have any security routines in their design processes
at all. In contrast, practitioners who already have security analysis deeply
established within their development life-cycles will benefit less. SEED is
developed for specialists inexperienced in security and evidence of benefits
for such audience lies obviously in incorporation of SBBs into a system.
However, we believe that when the SEED repository grows even experienced
practitioners will find it useful and profitable.

To conclude, contrary to barriers discussed above, we can distinguish
three significant enablers of SEED. These are visual modelling, possibility to
use SEED with the existing development processes and modelling languages,
and enabled reuse of security knowledge.

6
Quantifying Risks to Data Assets

6.1 Overview

Up till now we have considered that all assets elicited from a system model
are candidates for protection that is, in turn, requires integration of SBBs.
However, it is often not possible to provide perfect protection for all iden-
tified assets. One should be able to sift through only the relevant assets
prioritising and trading the potential security provided by integrated SBBs
for other economical and resource aspects (as prescribed by step 3 – pre-
liminary analysis of SPs – in Figure 5.17). Therefore, there is a need for a
method that will allow quantifying security inherent in a system design.

In this section, we first introduce risks into the picture explaining its main
ideas and elements in Section 6.1.1 and Section 6.1.2 followed by examples
of application scenarios in Section 6.1.3.

6.1.1 Introducing Risks

Modern system and computing infrastructures are complex artefacts. These
systems have a lot of stakeholders whose preferences regarding data assets
should be accounted for when deciding the appropriate level of security dur-
ing design stages. In the telecommunications sector, for example, there is a
growing number of end user devices all with their own characteristics (incor-
porating software and hardware from many different vendors), a number of
network operators (wired and wireless), a number of communication system
vendors (supporting various access technologies and incarnations of the same
standards), as well as regulatory authorities that have the overall national

95

96 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

interests as their domain of interest.
Therefore, when determining which assets and how should be protected a

system engineer should have means to answer the following basic questions:
Which assets are more important? What assets are more vulnerable to
security breaches? Who should compensate for extra costs associated with
integrating of SBBs? To be able answering these and similar questions, we
need to associate a measure for security with a certain system design. As
it naturally comes from the questions being answered, this measure should
reflect both the stakeholder take on assets and exposure of these assets to
security violation. In this thesis we investigate how the classic notion of risk
can be adopted for this purpose.

A security risk is built of two elements: likelihood and consequence. A
consequence is an indication of the impact of unwanted incidents on the
assets in terms of degree of damage; and a likelihood is the frequency or
probability of negative events (unwanted incidents) to occur [106]. Figure 6.1
illustrates how we adopt the notion of risk in our context.

The right hand side of Figure 6.1 visualises the idea that for any given
asset different stakeholders may provide different costs for a property vio-
lation. While risk analysis tools typically do the weighing and aggregating
the various stakeholder perspectives in one model, we extend the domain
specific development process to involve different costs associated with dif-
ferent stakeholders. In our work we adopt the view that the notion of cost
varies from one application domain to another, from one asset to another,
and also from one stakeholder to another. These costs also differ depending
on which security goals are violated. For example, for a utility provider as a
stakeholder the breach of integrity for user-end electricity measurements are
usually associated with high costs, while customer privacy (confidentiality)
may have a lower relative priority.

The left hand side of Figure 6.1 shows that the likelihood element is
computed using three elements. These are attack models (a negative event),
assets (identified by the SEED elicitation technique) coupled with security
goals, and also a design model of a system under development itself. A
given system design (functional model and selected platform) should be
coupled with relevant attack models to obtain the likelihood to compromise
a certain security property (that is a triple of asset, security goal, and defence
strategy).

Finally, the aggregation of the likelihood and consequence are combined
for each asset. The result of this aggregation indicates the risk of losing a
certain security goal with respect to an asset. We focus on two basic security
goals integrity and confidentiality. Thus, the security metrics defined in
this work are intended to describe what are the confidentiality and integrity
losses for a system with respect to given attacks. The outcome of the process
depicted in Figure 6.1 can be used in step 3 of the SEED process from
Figure 5.17 (“Preliminary analysis of SPs to be satisfied”) as a means of
ranking and filtering the important assets and the less relevant ones.

6.1. OVERVIEW 97

Attack

models

Costs

(consequences)
Stakeholders

System

model

X

Confidentiality loss (CL)

 and integrity loss (IL)

Assets&

security goals

Probabilities to be

compromised (likelihood)

Figure 6.1: Focusing on relevant assets and security goals

6.1.2 Security Goals and Risks to Data Assets

In previous section we have postulated that we focus on confidentiality and
integrity losses as risks to data assets. This section motivates these choices.

Confidentiality, integrity, and availability are three basic aspects of se-
curity. These three build the CIA triad and can be referred to as security
properties, goals, aspects, attributes, characteristics, building blocks and so
on. Security is concerned about the whole triad, but depending on an appli-
cation domain (and its stakeholders) one can be prioritised over others. In
our work, we provide means to quantify confidentiality and integrity of data
assets while omitting availability. To motivate this choice we make a brief
review to understand what elements of the system – data, service, or sys-
tem – can be potentially subject to confidentiality, integrity, and availability
losses. Table 6.1 summaries the results of this study.

According to Avizienis et al. [107], security can be represented as built
of the three elements of the above triad. Availability is defined as “readi-
ness for correct service” for authorised actions only. Integrity is explained
as “absence of improper system alterations” and confidentiality is defined
as “the absence of disclosure of information” with respect to unauthorised
actions.

Schumacher et al. [108] specify confidentiality as a property that “data
is disclosed only as intended by the enterprise”; whereas integrity and avail-
ability are discussed with respect to assets, i.e. “integrity is the property
that enterprise assets are not altered” and “availability is the property that
enterprise assets . . . will be accessible when needed for authorised use”. As-
sets include both information and tangible assets such as money.

Jürjens [109] mentions secrecy and integrity with respect to data among
important security properties.

Koopman [110] refers to integrity as a property that serves for “ensuring
that data or the system has not been tampered with” and to availability as
a property that serves for “ensuring that the service provided by the sys-
tem remains available despite attacks”. Confidentiality aspect is mentioned
through secrecy and privacy where secrecy is described as “keeping others

98 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

from having access to information” and privacy is described as “ensuring
that data about a user is not revealed”.

Boritz [111] extensively studies information integrity and considers avail-
ability as an enabler of integrity.

Parker introduces the Parkerian hexad [112] that is a set of six elements
of information security. These are confidentiality, possession or control,
integrity, authenticity, availability, and utility. Parker describes availability
as “having timely access to information”, integrity refers to “being correct
or consistent with the intended state of information”, and confidentiality is
interpreted as “limits on who can get what kind of information”.

Ravi et al. [91] mention the CIA triad in the context of functional objec-
tives of attacks against embedded systems. In particular, an objective of an
privacy attack is to “gain knowledge of sensitive information”, an integrity
attack attempts “to change data or code associated with embedded system”,
and an availability attack wants to “disrupt the normal functioning of the
system”.

Kocher [9] discusses security requirements for embedded systems. Among
these requirements availability is referred to as ensuring that “the system
can perform its function and service”. Confidentiality and integrity are
mentioned in the context of secure communications and secure storage of
information.

Fang et al. [113] in their survey on smart grids extensively discuss in-
tegrity of data and user privacy where confidentiality of user data is an
integral part of it. Similarly, Cleveland [114] focuses on smart grid security
challenges and studies confidentiality, integrity, and availability of data.

Besides the research literature the CIA triad is also interpreted by a range
of standards. For example, these are NIST 800-27 [115], ISO 27000 [116],
and NISTIR7628 [117].

NIST 800-27 [115] determines confidentiality as a security goal that “gen-
erates the requirement for protection from intentional or accidental attempts
to perform unauthorized data reads”. Integrity is defined with respect to
both data and system, i.e. “The security goal that generates the require-
ment for protection against either intentional or accidental attempts to vi-
olate data integrity (the property that data has not been altered in an
unauthorized manner) or system integrity (the quality that a system has
when it performs its intended function in an unimpaired manner, free from
unauthorized manipulation)”. Finally, the availability is explained as the
security goal that “generates the requirement for protection against inten-
tional or accidental attempts to (1) perform unauthorized deletion of data
or (2) otherwise cause a denial of service or data”.

In ISO 27000 [116] confidentiality is described as a “property that in-
formation is not made available or disclosed”. Integrity and availability are
widely defined and attributed to anything that has value to an organisation.
In particular, integrity is defined as a “property of protecting the accuracy
and completeness of assets” where an asset can be anything that is valuable

6.1. OVERVIEW 99

for an organisation; and availability is a “property of being accessible and
usable upon demand by an authorized entity”.

The guidelines for smart grid cyber security [117] operates with the terms
loss of confidentiality, integrity, and availability. Losses of confidentiality
and integrity are defined as “the unauthorised disclosure and modification
or destruction of information”; and loss of availability is considered to be
“the disruption of access to or use of information or an information system”.

Table 6.1: Confidentiality, integrity, or availability

Source Confidentiality Integrity Availability
Avizienis et
al. [107]

information system service

Schumacher et
al. [108]

data asset (data and
other tangible
assets)

asset (data and
other tangible
assets)

Jürjens [109] data data –
Koopman [110] information data and sys-

tem
service

Boritz [111] – information —
Parker [112] information information service (access

to informa-
tion)

Ravi et al. [91] data data and code system
Kocher [9] data data system
Fang et al. [113] data data –
Cleveland [114] data data data
NISTIR
7628 [117]

information information service (access
to data)

ISO 27000 [116] information asset (data,
system, and
others)

asset (data,
system, and
others)

NIST 800-
27 [115]

data data and sys-
tem

service or data

T
ot
a
l data(information) 13 13 4

service 0 0 5
system or code 0 5 3

As it follows from the table, confidentiality is only thought to be ap-
plicable to data or information. Integrity is used when referring to both
system and data or information, but the latter cases strongly prevail. We
can see that availability is also applied to all three categories, but service
and system cases outweigh the data category. In the course of our study,
we have also observed that the interpretation of the CIA triad is affected
by an application domain. For example, we should notice that data avail-

100 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

ability is widely applicable in the domain of data storage services, where
data availability is often used to characterise the quality of provided ser-
vices. In critical infrastructures availability is applicable to infrastructure
and its services and is one of the main security objectives along with pri-
vacy of consumers [117, 113]. We have also seen that in the embedded
system domain the data is mainly subject to integrity and confidentiality
goals [110, 91, 9, 118].

In our work, we make a first step towards providing a method for quantifi-
cation of confidentiality and integrity to data assets within system models.
Our brief analysis shows that these two considered attributes are well rep-
resented when speaking about data assets. We leave the availability goal
outside the scope of our work since it is most commonly applied as a char-
acteristic for a system and service.

6.1.3 Application Scenarios

In this section, we discuss application of the proposed metrics, i.e. confi-
dentiality loss and integrity loss. In particular, we discuss two application
scenarios where the loss metrics can be employed (1) to analyse the effect
of integrated SBBs and (2) to compare alternative designs. For illustration
purposes, we use the smart metering infrastructure case.

As described in Section 2 the overall specification of this case consists of
7 main scenarios that have a range of diverse security considerations. Con-
sequently, there are many assets identified in these scenarios, e.g. measure-
ments (meter readings), a set of user account data (customer, administrator,
operator), a set of certificates (calibration, installation, deinstallation, man-
ufacturer), communication configurations, functional settings, event records,
commands, control messages, etc. Additionally, as any large system the
metering infrastructure has many stakeholders. We focus on three assets,
namely measurements (denoted by A1), certificates (A2), and commands
(A3). We also consider three distinct stakeholders, i.e. end users, the utility
provider, and the national regulatory agency.

Violation of confidentiality and integrity of these assets has different con-
sequences for different stakeholders. For example, for a utility provider as
a stakeholder, breach of the integrity of measurements is usually associated
with high costs. A systematic misuse of the metering device can lead to
manipulations at large scale and result in economic losses. However, the
breach of confidentiality for the same measurement data is of a lower pri-
ority. Obviously, the picture is different for the user as a stakeholder. One
can consider the national regulatory agency to be mainly interested in the
availability dimension of the electricity supply and thereby, seen from that
stakeholder’s perspective the breach of confidentiality of the measurement
data has a lower consequence. On the other hand, a large scale manipula-
tion of the commands issued to the sensor nodes, can be used in a scenario
where national security is threatened.

6.1. OVERVIEW 101

Application of the SEED approach allows systematically identifying the
presence of above assets within a system model. The calculated confidential-
ity or integrity loss for all assets can be organised in a stakeholder security
profile that shows losses for a stakeholder with respect to each asset. These
profiles can be visualised as plots, e.g. as depicted in Figure 6.2. Here, the
selected assets are listed along the x-axis, and the y-axis shows the calculated
confidentiality loss.

Figure 6.2: Stakeholder security profile view

The goal of the rest of the SEED approach from Figure 5.17 is to select
a set of SBBs to reduce potential confidentiality (integrity) loss for one or
more stakeholders. Obviously, integration of any new functionality into a
system (including security features) will imply extra costs. These costs can
be both monetary in terms of added software and hardware components for
integrating SBBs, and some reduction of the available computing or memory
resources. In order to incorporate the cost of bringing these aspects and
potentially to distribute the cost among stakeholders, we need to evaluate
how each stakeholder benefits when a certain SBB is integrated. We propose
that the added benefit is expressed as a reduction effect 1 that a SBB brings
in terms of confidentiality or integrity losses for each asset.

Figure 6.3: Reduction effect of SBBs on stakeholder profiles

For illustration we consider three SBBs from the metering DSSM (de-
picted in Figure 4.4) selected within the SecFutur project to be integrated
into the TSM device. They are secure storage, anomaly detection, and se-
cure communication. Secure storage and security communication reduce
the likelihood of breaching integrity and confidentiality of stored data and

1The term is inspired by [119]

102 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

transmitted data respectively. The anomaly detection [81] aims to reduce
the likelihood of integrity loss for measurements stored in the device. Re-
duction effect of implemented SBBs is visualised in Figure 6.3 as arrows that
shift the initial confidentiality loss to lower values2. In this way a system
designer can analyse which stakeholders benefit most from integration of
which SBBs and consider the cost-benefit trade-off for the implementation
appropriately.

Design

alternatives

CL/IL

Design 1 Design 2 Design 3

Figure 6.4: Comparison of alternative designs

The proposed risk-based metrics can also be employed to differentiate
and compare alternative designs of the same system specifications. Fig-
ure 6.4 demonstrates the second application scenario where there are three
candidate implementations for a system. Alternative designs can differ in
a broad sense. For example, the same metering device can be implemented
on different execution platforms that possess different attack surfaces, and
thus, implies different risks. Particularities of an internal logic of a system
design can also impose different confidentiality and integrity losses, since
the way how assets are manipulated by a system can have a big impact on
its security properties. For instance, if there are measurements stored on
an unprotected memory unit, the way (e.g. frequency) this memory unit
is erased naturally influences the probability to success for an attack when
an attacker tries to copy the data from this memory unit. This application
scenario for the proposed metrics goes beyond the SEED approach, but still
a viable case.

In this section we introduced the notion of confidentiality and integrity
losses by giving motivation and application scenarios. In the following sec-
tions, we provide a complete machinery to support computation of these
metrics.

2Note that the placement of the dots in the figures and the scale of the reduction (the
size of arrows) in the shown diagrams is not the result of exact computations, but only a
relative placement to visualise the intended use of the suggested techniques.

6.2. PROPOSED METRICS 103

6.2 Proposed Metrics

As it is explained in the previous chapter, confidentiality and integrity losses
can be naturally defined as risk-based metrics. Risk is typically modelled
by the likelihood of an unwanted event and the severity of its consequences.
An unwanted event is a mixture of system dynamics and attack behaviour.
In particular, different ways of handling assets within a certain system (cap-
tured by a design model) will imply different exposure of these assets to con-
fidentiality and integrity breaches that are, in turn, associated with a certain
attack vector. In the same vein with SEED that follows the separation of
concerns principle, we suggest that security analysis should treat attack and
system behaviours as two separate, though interwoven, elements. Both ele-
ments are usually highly complex constituent of system security and should
be regarded separately for their more accurate elaboration, hence ‘separate’;
while both of them are clearly interdependent, hence ‘interwoven’, for ex-
ample, behaviour of an attack usually depends among other factors on a
system design and its reactions.

We also posit that attack and system behaviours should be modelled as
time-dependent probabilistic processes. The presence of the time dimension
allows accounting for dynamic aspects of potential attacks and a considered
system: the probability of a successful attack may change as time progresses,
and a system may possess different valuable data assets as its execution
unfolds. The use of probabilistic modelling, in turn, enables dealing with
uncertainties (both aleatory and epistemic [120]) that are naturally present
at the design phase.

One can potentially argue about difficulties of obtaining realistic data
about the timing aspects of an attack and system at the design phase, and
therefore, question reliability of results of the proposed security analysis.
We nonetheless propose that an easier and more effective explorations of
security threats and impacts is already a valuable input to design decisions,
even when subject to some uncertainties. This enables ‘what if’ analysis
which allows understanding the sensitivity of the system to potential attacks.
Furthermore, the research that enables quantitative estimations of timing
aspects of attacks and system at earlier design stages constantly progresses.

6.2.1 Confidentiality Loss and Integrity Loss

We define confidentiality loss (CL) of a valuable data asset o given an attack
A by time t as a risk metric that characterises the damage potentially caused
by the attack A to the asset o. It is calculated as a product of the likelihood
that the attack A would disclose the asset by t and the cost of this breach
for a stakeholder R. In turn, confidentiality loss of a system Y is a function
(denoted by the symbol ⊗) of confidentiality losses for each data asset oi
that is subject to an attack A. The actual function will depend on the

104 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

properties of the data assets in question and stakeholder’s take on them.

CL(Y,A,R, t) = ⊗iCL(oi, A,R, t) (6.1)

Similarly, integrity loss (IL) of a data asset o given an attack A by time
t is a risk metric that characterises the effect from the potential alteration
of the affected data asset. The notion is analogously extended to the system
level.

In the rest of this section, we focus on confidentiality and integrity losses
(CL and IL) for a single asset. Section 6.4 takes this further and discusses
extension of the defined metrics to a system level.

6.2.2 Basic Terms: Domain, Attack, and System

In accordance with the domain specialisation principle adopted by SEED,
we use an idea of domain as a basic notion that creates a common ground
for system engineers and security experts. More specifically, we say that a
security expert and a system engineer work in the same application domain
when they refer to a common set of components and objects while modelling
respectively a system and the attacks. This, in turn, provides us with a
mechanism for treating the system and attack as separate though interwoven
artefacts.

Definition 4 A domain M is a tuple (C,O) where C is a set of components
and O is a set of data objects accessible in an application area. A set of assets
is a subset of O denoted by Assets ⊆ O.

Attack modelling is a commonly used technique to capture behaviour
of attacks. Attack trees or attack graphs are two main examples of such
techniques. The basic elements of attack trees and attack graphs are attack
steps and relations on them. Attack trees, additionally, have special elements
such as gates, which are logical operations applied on attack steps (e.g. AND
and OR), and root, which represents the goal of an attack. Quantitative
aspects of attack models are captured in several ways. One of them is
assigning a probability distribution of execution time to the attack steps.
Kordy et al. [121] provide a comprehensive survey of different forms of attack
trees and attack graphs. In our work, we use the term basic attack model to
describe an attack that generalises attack trees and graphs.

Definition 5 A basic attack model is a tuple (AS,AR, lAS) where: AS is
a finite set of attack steps; AR ⊆ AS × AS is a relation between attack
steps; and lAS : AS → F is a labelling function that associates execution
time distributions from the set F to attack steps (AS).

We extend this basic definition of an attack model with the attack step
annotation concept. It enriches the definition of a basic attack model with
what, where, and how information: what assets are targeted; where in a

6.2. PROPOSED METRICS 105

system (i.e. on which parts of a system platform); and how these assets are
compromised, meaning which security attributes are violated.

Definition 6 An attack step annotation is a tuple (TA, TC, AV) where:

• TA ∈ 2O is a set of targeted assets;

• TC ∈ 2C is a set of targeted components;

• AV ∈ 2Attr is a set of security attributes violated by the attack step
where Attr = {Cnf, Int,Avl} (Confidentiality, Integrity, Availability).

We denote a set of such annotations by N and we refer to each element x
of the attack step annotation as by as.x (e.g. as.TA).

For example, if an attack step reads message m ∈ O from a component
link ∈ C then an AS annotation for this attack step is (m, link,Cnf)3; if an
attack step only connects to some link ∈ C then its annotation is (∅, link, ∅);
if an attack step changes some file f ∈ O stored on the device memory unit
u ∈ C then its annotation looks like (f, u, Int). These annotations allow
relating an attack model to relevant elements of a system model. This, in
turn, enables combining attack models with system models. A basic attack
model enriched with annotations is called an annotated attack model.

Definition 7 An annotated attack model A is a tuple (AS,AR, lAS , lN)
where (AS, AR, lAS) is a basic attack model and lN : AS → N is a labelling
function that assigns an annotation to each attack step.

Next, we present the elements of a system that we need to capture in
our formalisation of a system model. For our analysis, we need to capture
two aspects of a system: its functionality, execution platform and allocation
information, and information about data object dependencies. These two
aspects are represented by a state model and a data model.

Definition 8 A state model SM of a system is a tuple (S, s0, P,H, lO, lS)
where:

• S is the set of system states related to each other by a set of transitions;

• s0 is the initial state;

• P : S × S → [0, 1] associates a probability with a transition;

• H : S → F associates a probability distribution with a state;

• lO : S → 2O is a labelling function that associates a set of objects from
domain M with each state;

3To simplify the representation of AS annotations we omit the curly brackets when
denoting a set that is built of one element.

106 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

• lC : S → 2C is a labelling function that associates a set of components
from domain M with each state.

A state in S can be seen as a basic element of behaviour (e.g. an action)
of a system. P and H formalise the probability of moving from one state
to another and the probabilistic measure of execution time of each system
state respectively. Thus, the first four elements of our state model form
a semi-Markov chain [122] (SMC). The latter two elements extend a SMC
with additional information that is utilised to automatically combine system
and attack models.

Function lO allows capturing the information about data objects (includ-
ing assets) which exist at a certain state. Function lC associates the states
with components of an execution platform.

Definition 9 A data model DM of a system is a tuple (D, lD) where:

• D ⊆ O ×O is a relation that captures immediate object dependency;

• lD : D → 2S \ ∅ is a labelling function that associates a set of states
from S with each tuple in D.

The relation D represents dependencies between data objects in an anal-
ysed system. In particular, (oi, oj) ∈ D means that an asset oj depends on
an asset oi; for example, oj = f(oi) where f is some function. We omit the
nature and strength of such dependencies, however, this information can
also be utilised. The function lD captures at which system state the depen-
dencies in D occur. Thus, if lD(oi, oj) returns state s then it means that
oj is derived from oi in s. Implicitly, a well-formed data model associates a
non-empty state set to every element in D.

Finally, a system is a tuple of a system model and a data model.

Definition 10 A system model Y is a tuple (SM,DM) where SM is a
system model and DM is a data model.

We summarise the introduced notation and terms in Table 6.2.

6.2.3 Metrics and Their Derivation

We now go on to define the CL and IL metrics and show how they are
derived based on the formalised above system and attack models.

Confidentiality loss

Recall that confidentiality loss (CL) caused by an attack A to each valuable
data asset o by time t is a product of the likelihood that A would disclose
o by t, and the cost of this disclosure to stakeholder R. In our context, the
likelihood is a probability. Thus,

6.2. PROPOSED METRICS 107

Table 6.2: Summary of the used notation

Sets and subsets

C – components AV – security attributes violated
O – objects N – attack step annotations
Assets – assets, Assets ⊆ O S – system states
F – probability distributions Ωo,o′ – all state sequences between o′ and o

AS – attack steps S〈o〉 – system states where object o exists
TA – targeted assets Ctarget – system components targeted by an at-

tack
TC – targeted components AS〈Cnf,o〉 – attack steps violating confidentiality

of an object o

Functions, dependencies and relations

lAS – assigns execution time probability distributions to attack steps, lAS : AS → F

lN – assigns an annotation to an attack step, lASN : AS → ASN
P – associates a probability with a transition, P : S × S → [0, 1]
D – a dependency relation between data objects, D ⊆ O ×O

lD – associates a set of system states with a data dependency, lD : D → 2S

H – associates a probability distribution of execution time with a state, H : S → F

lO – associates a set of existing objects with a state, lO : S → 2O

lC – associates a set of components with a system state, lC : S → 2C

AR – a relation between attack steps, AR ⊆ AS ×AS

cost – a cost of asset disclosure or alternation expressed by a stakeholder
κ – a function that checks whether there is a transitive dependency between two objects
Tuples

SM = (S, s0, P,H, lO, lC) – a state model M = (C,O) – an application domain
DM = (D, lD) – a data model Y = (SM,DM) – a system model
A = (AS, AR, lAS , lASN) – an annotated attack model
Other

R – a stakeholder PE – propagation effect ω – sequence of states
CL – confidentiality loss DE – direct effect γ – sequence of data objects
IL – integrity loss φ – interval transition probability

CL(o,A, Y,R, t) = p(o,A, Y, t) cost(o,R) (6.2)

In equation (6.2), the cost of an asset, cost(o,R), is a subjective estimate
expressed by a stakeholder R. In general case, the cost can also be time-
dependent, but in this work we assume that it is time-agnostic. In turn, a
probability of disclosure, p(o,A, Y, t), can be broken down into a product of
two independent events: (E1) an attack A is in a step that can disclose o by
time t; and (E2) an asset o actually exists in system Y when it is attacked
by time t.

p(o,A, Y, t) = p(E1(o,A), t) p(E2(o, Y), t) (6.3)

To put it another way, the E1 event accounts for a subset of attack steps
AS〈Cnf,o〉 ⊆ AS that compromise an asset o and violate its confidentiality;
and the E2 event accounts for a subset of system states S〈o〉 ⊆ S that are
associated with asset o. Additionally, the attack steps from AS〈Cnf,o〉 should
target a set of components that are used for allocation of system states from
S〈o〉. This simply means that, for the attack to be successful, a system
should have components with certain targeted vulnerabilities exploited by
the attack steps from AS〈Cnf,o〉. We refer to this subset of targeted compo-
nents as Ctarget.

108 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

Given a set of states S from a system Y and a set of attack steps AS from
an attack A the set of targeted components Ctarget is defined as follows:

Ctarget = {c | s ∈ S, as ∈ AS, c ∈ lC(s) ∩ as.TC} (6.4)

Given a set of attack steps AS and a set Ctarget then a subset of attack
steps that disclose an object o is defined as follows:

AS〈Cnf,o〉 = {as | as ∈ AS, as.TC ∩ Ctarget 6= ∅, o ∈ as.TA,Cnf ∈ as.AV}
(6.5)

Given a set of system states S and a set of targeted components Ctarget

then a set of states where an object o potentially can be comprised is defined
as follows:

S〈o〉 = {s | s ∈ S, lC(s) ∩ Ctarget 6= ∅, o ∈ lO(s)} (6.6)

In other words, execution of any attack step in AS〈Cnf,o〉 leads to disclo-
sure of a given object o, which is essentially the E1 event. This corresponds
to construction of an attack tree with attack steps from AS〈Cnf,o〉 which
are all connected by the OR gate. Thus, the probability that an attack A

discloses o in a system Y by time t can be computed as follows:

p(E1(o,A), t) = 1−
∏

as∈AS〈Cnf,o〉

(

1− p(as, t)
)

(6.7)

Finally, given the SMC that underlies the system state model, the prob-
ability that an asset o exists in Y by time t can be computed as follows:

p(E2(o, Y), t) =
∑

s∈S〈o〉

φ(s0, s, t) (6.8)

In equation (6.7), p(as, t) is a probability of success of an attack step
as by time t within an attack model A. It is returned by lAS given t that
is, in turn, calculated from a selected modelling formalism for attack step
relations (e.g. attack trees or graphs). In equation (6.8), φ(s0, s, t) is a
so called interval transition probability of the system Y transiting from a
state s0 to a state s in interval (0, t) [122]. It is calculated from the system
equation shown in Section 2 that describes the dynamics of a SMC.

Integrity loss

Integrity loss (IL) is a metric that defines the risk of alterations to an asset
o, and should account for two aspects:

• the loss caused by the direct influence of an attack A on asset o,
referred to as the direct effect (DE);

6.2. PROPOSED METRICS 109

• the loss caused by spreading corrupted data and further contaminating
the computations dependent on asset o, referred to as the propagation
effect (PE).

Hence, integrity loss is built of two compounds:

IL(o,A, Y,R, t) = DE(o,A, Y,R, t) + PE(o,A, Y,R, t) (6.9)

The reason to include the propagation effect in the IL metric, but not
in the CL metric can be explained with the following rationale. Whether a
breach of confidentiality will propagate depends on specific attack capabil-
ities, i.e. on whether an attack is capable of learning additional data when
it has observed a part of it. This act of data reconstruction and learning is
actually a self-contained attack step and should be explicitly included into
an attack model. For example, the sole fact that an attack compromises an
encryption key does not directly implies that all data encrypted by this key
is compromised. It is compromised if an attack actually captures and reads
the data protected with this key. This behaviour and dependency should
be explicitly modelled as part of an attack model. In contrast, a breach of
integrity of some data will propagate independently on a considered attack,
but depends on the attacked system behaviour, i.e. how a system further
uses the corrupted object. For example, if a public key is modified, then all
data signed by this compromised key can not be decrypted if the decryption
state is also part of a system.

The direct effect DE is calculated in analogy to CL, where AS〈Int,o〉 is
defined similarly to AS〈Cnf,o〉, but Int ∈ as.AV replaces the corresponding
term in equation (6.5).

The intuition for the propagation effect is as follows: if an object o′ ∈ O

is computed in a state s′ ∈ S based on an object o that has already been
corrupted in a state s ∈ S〈o〉 then o′ is also considered corrupted. To derive
this propagation effect PE with respect to each such object o′ we need to
consider the four aspects that make up elements of equation (6.10) below.

First, we need to check whether o′ immediately or transitively depends
on o. The immediate dependency is already captured in data model DM
by (o, o′) ∈ D. We say that transitive dependency exists, if it is possible
to construct such a sequence of objects γ of length n that γ = (γk | γ1 =
o, γn = o′, 1 ≤ k < n : (γk, γk+1) ∈ D)4. We formalise this test as a function
κ : O × O → {0, 1} that returns 1 if such a sequence γ exists, otherwise it
returns 0.

κ(o, o′) =

{

1, if ∃γ = (γk | γ1 = o, γn = o′, 1 ≤ k < n : (γk, γk+1) ∈ D)

0, otherwise

4We use the subscript notation, i.e. γi, to access the ith element of the sequence γ.

110 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

The next two elements are the cost of o′ as expressed by a stakeholder
R and the probability that o will be actually attacked by some time τ ≤ t

in the first place.
Finally, the propagation effect occurs only when the system Y will transit

from a state s ∈ S〈o〉 to a state s′ where o′ is computed from o immediately
or transitively. Such a state s′ can be returned by the labelling function lD,
if immediate dependency between o and o′ exists. However, if an immedi-
ate dependency does not exist, but a transitive dependency exists then we
need to consider a sequence of states ω (of length n − 1) along which the
transitive dependency, captured by a sequence of objects γ (of length n),
occurs. We construct ω in such a way that ω = (ωk | 1 ≤ k < n − 1 : ωk ∈
lD((γk, γk+1))). Since there can be several valid sequences of states relating
o and o′, we denote by Ωo,o′ a set of such state sequences. In other words,
Ωo,o′ is the set of all state sequences along which o′ can be compromised
when o is attacked.

The propagation effect given the four elements described above is calcu-
lated as follows:

PE(o,A, Y,R, t) =
∑

o′∈O

κ(o, o′) cost(o′, R)
∑

s∈S〈o〉

p(E1(o,A), τ)
∑

ω∈Ωo,o′

P (s0, s, ω, t)

(6.10)

In equation (6.10), P (s0, s, ω, t) is the interval transition probability that
the system that starts at s0 will first pass the state s (where asset o is
attacked by A), and then will go through each state from the sequence ω.
This probability can be computed recursively as follows:

P (s0, s, ω, t) = φ(s0, s, τ) P (s, ω1, ω[2..], t− τ) (6.11)

We denote by ω1 the first element of the sequence ω and by ω[2..] a suffix

of this sequence ω starting from the 2nd element. The validity of equation
(6.12) can be proven by simple induction.

Theorem 1 Given a system Y , its two distinct states s0 and s, and a
sequence of states ωi of length i then the interval transition probability
P (s0, s, ω

i, t) that the system starts at s0 will, first, pass the state s, and
then will go through each state from the sequence ωi can be computed as
follows:

P (s0, s, ω
i, t) = φ(s0, s, τ) P (s, ωi

1, ω
i
[2..], t− τ) (6.12)

Proof 1 We show this by induction over i.
For the basic step we consider a sequence that has only one element,

i.e. ω1 = (sj). Equation (6.12) applied for this case gives the following
expression:

P (s0, s, sj , t) = φ(s0, s, τ) P (s, sj , ∅, t− τ) (6.13)

6.3. APPLICATION TO SMART METER 111

In equation (6.13), P (s, sj , ∅, t − τ) can be interpreted as the interval
transition probability that the system starts at s and enters state sj . This,
in turn, is a simple interval transition probability φ(s, sj , t − τ). Thus, we
should show that

P (s0, s, sj , t) = φ(s0, s, τ) φ(s, sj , t− τ) (6.14)

To show validity of equation (6.14) we interpret P (s0, s, sj , t) as occur-
rence of two events: (e1) the SMC reaches state s by some time point τ given
that it enters state s0 at time 0; (e2) the SMC reaches state sj by some time
point t given that it enters state s at time τ . Thus, P (s0, s, sj , t) = p(e1, e2).
Next, p(e1, e2) can be expressed through conditional probabilities as

p(e1, e2) = p(e2 | e1) p(e1) (6.15)

In equation (6.15), p(e2 | e1) means that state sj is reached when the
SMC enters s at time τ < t. That is, in turn, is equal to standard SMC
interval transition probability φ(s, sj , t− τ) where we start process in state
s at time 0. Simply by construction, p(e1) is the SMC interval transition
probability φ(s0, s, τ). Thus,

p(e2 | e1) p(e1) = φ(s, sj , t− τ) φ(s0, s, τ) (6.16)

Obviously, equations (6.16) and (6.14) are identical.
For the inductive step we assume that equation (6.12) holds for a

sequence of length n, i.e. ωn = (s1, s2, ..., sn).
Now we need to show that equation (6.12) holds for a sequence of length

n + 1, i.e. for ωn+1 = (s1, s2, ..., sn, sn+1). We write the equation for ωn+1

as follows:

P (s0, s, ω
n+1, t) = φ(s0, s, τ) P (s, ωn+1

1 , ωn+1
[2..] , t− τ) (6.17)

where in equation (6.17) we have

P (s, ωn+1
1 , ωn+1

[2..] , t− τ) = P (s, s1, ω
n, t− τ) (6.18)

As it comes from our inductive assumption, equation (6.12) holds for
the right part of equation (6.18). Thus, equation (6.12) obviously holds for
equation (6.17). �

6.3 Application to Smart Meter

In this section we apply our methodology on an open platform device devel-
oped based on the design from the European project SecFutur [17], where
a Trusted Sensor Network (TSN) was a case study (described in Section 2).
We illustrate the application of our methodology and show how confiden-
tiality and integrity losses capture the security risks associated with data
assets.

112 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

The TSN is built of a set of metering devices, database servers, client
applications, and a communication infrastructure. Recall that the main
goal of this system is to measure energy consumption at households and
to associate measurements with the clients’ data for billing purposes. The
overall specification of this infrastructure consists of 7 main scenarios that
have a range of diverse security considerations [3]. Consequently, there
are many assets identified in these scenarios, e.g. measurements (meter
readings), a set of user account data (customer, administrator, operator), a
set of certificates (calibration, installation, manufacturer), communication
configurations, functional settings, event records, commands, control and
command messages, etc. In this section, we study a metering device and
focus on measurements as an asset.

We consider three stakeholders: user, utility provider, and national regu-
latory agency. The stakeholder costs of losing confidentiality or integrity for
measurements are shown in Table 6.3. To capture stakeholder estimations
we adopt a common linguistic scale [123] {insignificant, minor, moderate,
major, catastrophic} to encode these costs, which we further map to a nu-
merical vector {0, 0.1, 0.5, 0.8, 1} where 0 means “no cost” and 1 means “ex-
tremely high costs”. Note that we use this simplified numerical scale only
for exemplification. In practice, one would use intervals or even continuous
scales. Moreover, the selected linguistic scale can also change from one ap-
plication domain to another. CORAS suggests deciding on such scales as a
result of step 4 for each risk assessment. Park et al. [124] introduce an algo-
rithm to automatically score and rank assets by estimating their criticality
for the business and organisation. Our methodology does not impose spe-
cific requirements on this form of the scale, and therefore, it can be adapted
for a particular case.

Table 6.3: Stakeholder costs expressed for measurements

User Utility
provider

National
agency

Confidentiality major minor insignificant
Integrity moderate major minor

6.3.1 System Modelling

Figure 6.5 depicts a system model for a metering device used in the TSN
scenario. This functional model is expressed as an UML activity diagram.
The system expects a command (cmd) from an administrator of a utility
company. On receipt, it proceeds to registration, configuration, or cali-
bration procedures. When the device is calibrated it starts collecting raw
data (raw msr), processing them into ready measurements (msr), writing
them into the memory and creating a unique id (id msr), sending them to

6.3. APPLICATION TO SMART METER 113

the server, and waiting for an acknowledgement (ack). If an acknowledge-
ment has not arrived a meter continues to collect measurements; otherwise,
it proceeds to the verification procedure. If verification succeeds the device
searches for the measurement by id (id msr), deletes this measurement from
storage, and waits for the next command from the server. If verification fails,
the device reads the measurement from storage and resends it.

init

configure calibrate

process
write to

storage
package

collect send

resend

read from

storage

delete from

 storage

verify

cmd

msr

msr, id_msr

msr, id_msr

ack

id_msr

msr, id_msr

cmd

raw_msr

register

Figure 6.5: The metering device functional model

Construction of state and data models (introduced in Section 6.2.2) can
be accomplished by traversing and transforming control and data flows of
the UML activity model. UML activity diagrams can be directly trans-
formed into a state model [125]. Alternatively, UML activities can be first
transformed into some variant of Stochastic Petri Nets (SPNs) [126]. They
offer easier translation from UML activity diagrams and also provide great
capabilities such as dealing with concurrency and various forms of depen-
dency. These variants of SPNs can be further used to generate Markov and
none-Markov models, i.e. SMC in our case. For the purpose of this illus-
tration we directly move on to the state model and omit intermediate steps
(the used semantic function is explained in Appendix C). A data model can
be obtained by traversing the UML activity and utilising its built-in data
flows. Note that we use the UML activity as an example. Our approach is
not limited to this choice.

Figure 6.6(a) depicts the state model (SM). The numbers on arcs are
probabilities of the transitions (P) and the numbers on states are mean
state execution times of normal distributions (H). To obtain this data, de-
sign phase estimation methods exist. We employ prototyping for execution
time estimates as a viable alternative. Details of the designed scenario are
described in Appendix B. The object references next to each state corre-
spond to the labelling function lO. Our metering device model includes a
simplified execution platform built of two components: a link and a device.
The link is a communication network, and the device is a meter itself. The
init, package, send, wait for acknowledgement, resend, and wait for command
states are allocated on the link, and the rest of the states are executed on the

114 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

device. This corresponds to the labelling function lC . Figure 6.6(b) depicts
the data model (DM), where the labels on dependency arcs are names of
corresponding states from SM. This corresponds to the labelling function
lD.

init 10

register 50

configure 50

collect 155

process 12

write to storage 8

package 14

send 10

wait for ack 100

verify 45

delete from

storage12

wait for

command
100

resend 10

calibrate 63

O1

O1

O1

O1
O1, O2

O3, O4

O3, O4 O3, O4

O5

O5

O4

O1

O3, O4

O2, O3

0
.0

1

0
.0

3

0
.9

6 0.02

0.98
0.03

0.97

0.98

0.01

read from

storage 3O4

0.
25

0.75

0.87

0.
13

0
.0

1

O1 - cmd

O2 - raw_msr

O3 - msr

O4 - id_msr

O5 - ack

(a) State model

verify

O2

O3

O4

O5

process

read from

storage

wrtie to

storage

O1

(b) Data model

Figure 6.6: System model for the metering device

6.3.2 Attack Modelling

Privacy and integrity of measurements are two serious concerns for smart
metering devices [127, 128, 113]. Privacy can be violated by eavesdropping
energy consumption measurements that are passed over the communica-
tion network used by meters. By collecting the meter readings an attacker
can reveal personal information, e.g. individual’s behaviour, habits, activ-
ities, and preferences [129, 130]. Integrity of measurements can be broken
by modifying the original data sent by a metering device. By fabricating
energy meter readings an attacker can manipulate energy costs, or even sab-
otage operation of a control center that rely on accurate measurements for
estimating the power grid state [113]. In this section, we consider these two
attacks, i.e. eavesdropping of measurements and measurements spoofing, as
examples. Respective annotated attack models in the form of attack graphs
are depicted in Figures 6.7(a) and 6.7(b).

To conduct the eavesdropping attack an attack should first succeed to
sniff the data packets (pkt) sent over the media (link). This, in turn, requires
that an attack connects to the media and captures packets. Thereafter,
the attack filters required packets, and, finally, decodes and reads them.
Then, the attack proceeds capturing the next packet or it goes into the idle
state (inactive state for an attack) where it can start over. Similar to the
eavesdropping attack, the measurements spoofing attack starts with inter-
cepting, decoding, and reading the required packets. Thereafter, it modifies
the measurements and inserts them back into the used media. The attack
step annotations in Figures 6.7(a) and 6.7(b) follow the syntax introduced

6.3. APPLICATION TO SMART METER 115

in Section 6.2.2. The idle state in both attacks allows us to model sporadic
presence of an attack in the deployment environment.

Connect

(, link,)

Capture

(pkt, link,)

Filter

(pkt, link,)

Idle

Decode&Read

(msr, link, Cnf)
0.5

0.5

0.3

0.7

(a) Measurement eavesdropping

Connect

(, link,)

Capture

(pkt, link,)
Filter

(pkt, link,)

Idle

Decode&Read

(msr, link, Cnf)

Modify&Insert

(msr, link, Int)
0.5

0.5

0.3

0.7

(b) Measurement spoofing

Figure 6.7: Two attacks against measurements

In addition to annotations, each attack step is associated with a prob-
ability distribution (the labelling function lAS). Arnold et al. [131] discuss
that there are two alternative approaches to obtain such distributions: (1)
based on historical or empirical data; and (2) based on expert opinions.
For our illustrative example, we employ the former approach by running
experiments with the earlier constructed prototype. We use the kernel den-
sity estimations [132] to obtain the needed distribution functions from these
samples.

6.3.3 Calculating Metrics

In this section, we show CL and IL metrics calculated for measurements
(mrs) as a data asset. To solve SMC models, we use the PRISM model
checker [133]. Even though PRISM does not allow direct modelling of SMCs,
we have implemented transformation that approximates a SMC as a DTMC
(discrete-time markov chain) which analysis is supported by PRISM. The
details of this transformation are discussed in Appendix A. We have devel-
oped a Python script to support this activity. The calculations of CL and
IL are also supported by a Python script.

A composition of the attack and system models gives the following sets
of compromising attack steps (used in equation 6.7) and system states (used
in equation 6.8) introduced in Section 6.2.3:

AS〈Cnf,msr〉 = {Decode&Read packets}

AS〈Int,msr〉 = {Modify&Insert packets}

S〈mrs〉 = {package, send, resend}

We show the values observed when confidentiality (CL) and integrity
losses (IL) stabilise. In reality the risks can change over time, which is also
the case in our illustrative example, but we do not show the whole trend
since the risks stabilise relatively quick (see Appendix D for more details).

116 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

Figure 6.8(a) depicts the calculated confidentiality and integrity losses of
measurements. These figures show that both the user and utility provider
stakeholders have noticeable risks associated with CL and IL for measure-
ments; whereas CL and IL for a national regulatory agency are much lower.
Additionally, the results clearly demonstrate that the users have risks asso-
ciated with both confidentiality and integrity of measurements; while IL of
measurements for the utility provider exceeds its CL.

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

0.04	

User	 U�lity
provider	

Na�onal
agency	

C
L/
IL
	

conf.	loss,	CL	

integrity	loss,	IL	

(a) Original design

0	

0.001	

0.002	

0.003	

0.004	

0.005	

0.006	

0.007	

0.008	

0.009	

User	 U�lity
provider	

Na�onal
agency	

C
L/
IL
	

conf.	loss,	CL	

integrity	loss,	IL	

(b) Modified design

Figure 6.8: Visualisation of calculated CL and IL for stakeholders

The confidentiality loss stabilises for the user and utility provider stake-
holders at 0.035 and 0.004 respectively; and for national agency it is equal
to 0 due to the zero costs expressed by this stakeholder for the measure-
ment asset. Thus, confidentiality loss for the user are about 8 times higher
than for the utility provider. The integrity loss stabilises for the user, utility
provider, and national agency at 0.02, 0.03, and 0.003 respectively. We can
see that the utility provider bears the highest relative IL, but that is still
comparable to IL of the user. The national agency bears the lowest risk both
in terms of CL and IL. This can be logically explained by the fact that a na-
tional regulatory agency is mostly concerned about availability of an energy
grid rather then about integrity and confidentiality of measurements.

It should be mentioned that due to a narrowed down set of considered
assets (i.e. measurements only) in our example, stakeholder-wise comparison
of CL and IL is not as informative as it could be in a general case with
multiple assets. In general case, different stakeholders can value different
data objects. However, what our example demonstrates distinctly is how
the proposed metrics reflect reduction of risks when mitigation measures
are applied. That, in turn, indicates how each stakeholder benefits when
the original design is modified for strengthening its security aspects [134].

To illustrate our statement, we illustrate how a modification of a de-
sign can act as a mitigation against the two attacks. We modify the state
“collect”, so that the system in Figure 6.6 sends measurements in chunks
of 10 readings. By this, the mean execution time of this state (“collect”) is
changed from 155 to 1550 ms.

6.3. APPLICATION TO SMART METER 117

Figure 6.8(b) shows results for a modified system, and we observe a sig-
nificant drop in initial risks (as described shortly). In particular, it shows
that CL for the user and utility provider converges to 0.008 and 0.001 re-
spectively. Thus, these risks are reduced by factor of 4 in comparison with
the risks derived from the original design. Similar, a significant drop is ob-
served for integrity losses, i.e. IL for all stakeholders is 3–4 times lower than
in the original design.

The cause of the observed risk reductions can be explained by the fact
that the probability of measurement existence in a communication chan-
nel, which corresponds to the p(E1(o,A), t) component in equation (6.3),
decreases in case of the modified design. Note that the layouts for Fig-
ures 6.8(a) and 6.8(b) are similar since the consequence component, which
corresponds to cost(o,R) in equation 6.2, is the same for both calculations,
while the probability of asset violation is changing due to the introduced
modification.

Figure 6.9 visualises the same results, but in a different plane. From
this visualisation one can easily compare risks imposed by an original and
modified designs with respect to different stakeholders.

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

0.04	

CL	

User Utility

provider

National

agency

original design

modified design

(a) Confidentiality loss

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

IL	

User Utility

provider
National

agency

original design

modified design

(b) Integrity loss

Figure 6.9: Alternative view on calculated CL and IL

Once the risks for the stakeholders are estimated as confidentiality and
integrity losses, the next step is evaluation of the obtained risks to make
decision. This is an extensive decision problem that typically involves other
criteria (e.g. resource footprint of countermeasures, quality of service re-
quirements, etc.). One also could proceed deciding on an acceptance risk
level and accept only those design alternatives which risks lie within the
acceptance level (as suggested by CORAS).

This demonstrates that there is a potential for visualising and reasoning
about the proposed metrics as a design progresses and gets refined. It also
shows how simple design decisions can affect the security risks associated
with data assets of a system. Thus, our metrics has potential to guide a
system engineer by bringing awareness about security to the design phase.

118 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

6.4 Extending Losses to System Level

As we have stated in Section 6.2, confidentiality loss of a system Y is a
function (denoted by the symbol ⊗) of confidentiality losses for each data
asset oi that is subject to an attack A.

CL(Y,A,R, t) = ⊗iCL(oi, A,R, t) (6.19)

The similar statement applies to the integrity loss. We also have mentioned
that the actual functions will depend on the properties of the data assets
in question and stakeholder’s take on them. In this section, we discuss the
form of these functions.

To begin with, confidentiality and integrity losses of an asset can be con-
sidered as an expected loss for stakeholders (a negative variant of an expected
value). For example, confidentiality loss of an asset o can be represented as
follows:

CL(o,A,R, t) = p(o,A, t) · cost(o,R) + (1− p(o,A, t)) · 0 (6.20)

In equation (6.20) the first summand represents the risk of the asset o

losing its confidentiality previously presented as equation (6.2). The second
summand naturally complements the formula with the “risk” of the asset o
not losing its confidentiality. Clearly, the cost of staying uncompromised is
equal to 0. Similar reasoning can be applied to integrity loss.

Now, we consider a system Y that has several assets o1, o2, ..., on. Fol-
lowing the reasoning above, we define confidentiality and integrity loss for
the system Y as the sum of respective expected losses of each asset in the
system.

CL(Y,A,R, t) =
∑

oi∈Asset

CL(oi, A,R, t) (6.21)

IL(Y,A,R, t) =
∑

oi∈Asset

IL(oi, A,R, t) (6.22)

The expression in equation (6.21) gives a simple way to extend the met-
rics proposed in our work to the system level. However, it also sets additional
requirements on the cost function that we discuss further.

For example, let us consider a password and a phone number as two
ways to authenticate access to some resource. If an attacker modifies only
the password or the phone number, an owner still can access the resource by
using an unaltered alternative. Therefore, the risks associated with losing
one of these assets can be comparatively low. However, when both means
are modified by the attacker, the security risks for a stakeholder increase
drastically since it becomes impossible to access the resource. This naive

6.4. EXTENDING LOSSES TO SYSTEM LEVEL 119

example illustrates that higher or lower risks are tightly connected to the
way the costs are estimated by a stakeholder. In particular, the cost of losing
a certain asset depends on the context (i.e. the state of and interdependence
with other assets) and so does the risk.

This concept can be explained from the utility theory standpoint. Utility
is a subjective measure of the amount of satisfaction (or dissatisfaction)
a stakeholder would derive. Thus, the amount of dissatisfaction is much
higher when both assets (a password and a phone number) are corrupted in
comparison with the case when only one of them is corrupted. Moreover,
the dissatisfaction associated with corruption of both assets might not be
perceived as equal to the sum of the dissatisfactions when each asset is
corrupted alone.

To account for such a phenomenon, we suggest to refine the notion of cost
used in equations (6.2) and (6.9) for calculating confidentiality and integrity
losses. In the rest of this section, we discuss the refined form of this cost
function.

The notion of cost used earlier in our work is the cost of losing confi-
dentiality or integrity of a certain asset. We have assumed in the earlier
sections, that a cost for a certain asset is independent from other assets.
Now we relax this assumption by introducing a cost function cost′ to assign
the cost of compromising an asset in relation to other assets. This function
expresses the cost of losing confidentiality for a certain asset given that none
of the other assets is compromised, as well as the cost when any of possible
combinations of other assets are compromised. We refer to this cost function
as full cost function.

For convenience we use the following simplified notation.

• We denote by cost(o) a cost expressed by stakeholder R (we omit R

in the notation).

• We denote by po(t) a probability that asset o will be compromised by
time t given an attack A (we omit A in the notation).

• We denote by AssetY ⊆ Asset the set of assets in the system Y .

• We denote by cost′(o) the full cost function of an asset o for stakeholder
R (we omit R in the notation).

We now design the full cost function that is a refinement of the initial cost
function that we have worked with in the earlier sections. We write cost(oi |
oj) to denote “the cost of asset oi given that oj has been compromised while
other assets from AssetY have not been compromised”. The cost cost(o)
that we have used before should be interpreted as cost(o | ∅) that is “the
cost of asset o when none of the other assets is compromised”. It is also
clear that cost(oi | oj) is equal to cost(oi) when a stakeholder does not see
any relation between oi and oj in terms of their costs.

Figure 6.10 illustrates relative costs for our example with a password and
a phone number for authentication before accessing a resource.

120 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

cost

passw
.

phone

passw
. | phone

phone | passw
.

Figure 6.10: An example of cost for compromised assets in the context of
other assets

We define the full cost function cost′ as follows:

cost′(o) =
∑

x∈2AssetY

w(o | x) cost(o | x) (6.23)

Equation (6.23) expresses that the cost of losing confidentiality (in-
tegrity) of a certain asset o is equal to a weighted sum of costs of losing
confidentiality of this asset with respect to any possible combination of
other assets. w(o | x) is a probability of compromising an asset o given
that a considered subset of assets x ∈ 2AssetY has been compromised too.

To give an example of how this can be applied to confidentiality loss of a
system, we consider a system Y with two assets o1 and o2. We substitute a
simple expression for cost in equations (6.2) by a full cost function derived
in equation (6.23).

CL(Y, t) = po1(t)cost
′(o1) + po2(t)cost

′(o2) =

po1(t)
(

po1|ō2(t)cost(o1 | ō2) + po1|o2(t)cost(o1 | o2)
)

+ po2(t)
(

po2|ō1(t)cost(o2 | ō1) + po2|o1(t)cost(o2 | o1)
)

(6.24)

By expanding expression (6.24) and by applying the formula for a prod-
uct of two dependent events, we obtain the following result:

6.5. DISCUSSIONS 121

CL(Y, t) = po1ō2(t)cost(o1 | ō2) + po2ō1(t)cost(o2 | ō1)

+ po1o2(t)
(

cost(o1 | o2) + cost(o2 | o1)
)

(6.25)

According to equation (6.25) confidentiality loss for a system that has
two assets is the sum of three components: (1) the loss associated with only
o1 being compromised; (2) the loss of only o2 being compromised; and (3)
the loss of both assets being compromised. Another way of looking at the
notion of cost (or consequence of a compromise) can be the actual costs of
recovery, i.e. the risk to the whole system with respect to its assets is equal
to (1) the costs associated with recovering a system when only one of the
assets is compromised (2) and the costs associated with recovering when
both assets are compromised. Note that these costs may not be the same
and that is what we account for.

It is important to mention that the probabilities that correspond to
weights in equation (6.23) can be computed using the formal models intro-
duced in Section 6.2. However, in cases when high precision is not required,
we suggest to consider using a simple average instead of the weighted sum.
For instance, the use of precisely computed probabilities for the weighted
sum will be an overkill when the cost function is designed based on expert
estimates that possess a high degree of uncertainty by nature.

6.5 Discussions

In this section, we discuss different insights around the proposed metrics
and their derivation method gained in the course of this work.

Attack modelling is central to security research. In common with cur-
rent attack-based analysis frameworks, our methodology deals with known
attacks as opposed to unknown zero-day attacks. Preparing a system for
zero-day attacks is also an important concern, but most embedded systems
fail to protect against even known attacks due to a lack of security consid-
erations already at the design phase and also due to general unawareness
about or oversight of potential security problems [11]. Moreover, Bilge and
Dumitras [135] demonstrate that the number of launches of an attack when
it is transformed from a zero-day to known attack only grows. Nonetheless,
predicting unknown attacks is an emerging research challenge. Todays re-
search efforts on predicting and discovering security vulnerabilities [136, 137]
is aligned with this task.

In its turn, when known attacks are considered, it is important to ex-
amine a set of attacks that are reasonable for a particular domain to obtain
meaningful results. The question that arises in this context is how to obtain
this set of attacks. For this purpose, SEED promotes to employ repositories
designed to constantly collect all known attacks, so that a system engineer

122 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

can reuse this knowledge. To fulfil this mission, as any repository, it should
be regularly updated and enriched with new information.

Among prerequisites for conducting quantitative analysis is an assump-
tion that quantitive characteristics of an attack model and a system are
determined. One can potentially argue about difficulties of obtaining real-
istic data about the timing aspects of an attack and system at the design
phase, and therefore, question reliability of results of the proposed security
analysis. We nonetheless propose that an easier and more effective explo-
ration of security threats and impacts is already a valuable input to design
decisions, even when it is subject to some uncertainties. This enables a
‘what if’ approach which allows understanding the sensitivity of the system
to potential attacks and design decisions. For example, one can investigate
which design alternative is more or less sensitive to certain attacks by look-
ing at trends in variations of confidentiality and integrity losses. One can
spot some jumps and drops in these trends that may indicate the need for
further investigation. One may not be concerned about the difference be-
tween 0.2 and 0.25 (on the scale from 0 to 1) of calculated values for the
metrics considering this difference be insignificant given input data uncer-
tainties. However, one will be more careful comparing two assets that yield
0.2 and 0.9 for confidentiality loss.

The need for quantification of an attack and system models is not a new
challenge. The research areas that enable quantitative estimations of timing
aspects of attacks and system at earlier design stages constantly progress.
Arnold et al. [131] briefly discuss two alternative approaches to obtain data
about quantitive behaviour of an attack: (1) based on historical or empirical
data; and (2) based on expert opinions. The most desired data, that is when
the first approach is used, are actual measurements from experiments in a
real environment. The main issue with this approach is the cost of such
experiments. High costs can be associated with both preparation for an ex-
periment and additional costs that can be imposed by the need to deal with
possible consequences. Moreover, experiments in a real environment are
often time-consuming which is also an issue in the light of time-to-market
requirements coming from significant commercial pressure. As an alterna-
tive, the practitioners propose the honeypot-based technique [138, 139]. The
main critique against these techniques [140] is that such experiments are con-
ducted under controlled conditions, and therefore, can not exhibit the real
behaviour of an attack. When measurements are obtained by observation or
by conduction experiments (following the first approach mentioned above),
one can use a range of fitting tools, e.g. G-Fit [141], and kernel density
estimation tools [132] to build distributions required for our method.

As an alternative to sample-based techniques, one can employ expert-
based estimates. The main advantage of this approach is that it does not re-
quire expensive and time-consuming deployment of experiments, and there-
fore, can be used to provide a relatively quick input. For example, Sommes-
tad et al. report the results of employing the experts’ judgements to obtain

6.5. DISCUSSIONS 123

such complex estimations as success rates of code execution [142] and denial-
of-service attacks [143], effectiveness of intrusion detective systems [144], to
name a few. The disadvantage will be that the use of expert estimates
introduces (potentially large) uncertainties.

Uncertainties can be categorised in two types [120]: aleatory (due to
inherent randomness of a considered object) or epistemic (due to lack of
knowledge about an object). Epistemic uncertainty is generally considered
as reducible by collecting more data and measurements; whereas aleatory is
irreducible. Both these uncertainties are present when attack and system
models are quantified at the design phase. Epistemic uncertainty can be
addressed by refining an attack model or by considering a larger group of
experts. Aleatory uncertainty is addressed in attack modelling by employ-
ing stochastic models where system and attack dynamics are assessed by
assigning probability distributions. Parsons [145] extensively discusses dif-
ferent types of imperfect information, its source, and also methods to handle
such information. Feng and Xie [146] propose an algorithm that combines
two sources of information (expert knowledge and knowledge from observed
cases) by constructing a Bayesian network. In our work, we use probability
distributions for quantification of attack and system models in presence of
uncertainties.

The next natural question that may arise is what form these distribu-
tions should have. In research literature, there are different opinions with
this regard. Exponential distributions are widely used in attack modelling
as a default choice. Arnold et al. [131] justify this choice by the fact that
the exponential distribution has maximal entropy. This means that the ex-
ponential distribution is the most random of all distributions with a given
mean. This is an appropriate consideration when expert estimates are used.
In contrast, Nico et al. [147] point that the exponential distribution is not
apt due to its memoryless property that does not account for ageing and
learning curve of an attacker. Jurgenson and Willemson [148] justify the
use of normal distributions for attack tree parameters by arguing that hu-
mans tend to think in terms of normal distribution, and therefore, it is the
most natural distribution when human experts evaluate the parameters. In
turn, Almasizadeh and Azgomi [140] suggest to use the mixture of uniform
distributions. Finally, Madan et al. [149] argue that a variety of distribu-
tions should be used in the context of security analysis – hypo-exponential,
hyper-exponential, Weibull, log-logistic, and so on – since various distribu-
tions can capture different particularities of attack behaviours. We agree
with the need to be able to use diverse distributions depending on the na-
ture of an attack, and therefore, we have adopted a flexible formalism –
semi-Markov chains – that allows any type of distribution.

Our method assumes that system is annotated with such information as
execution time distributions. The need for techniques to acquire such quan-
titive estimations already at the design phase in the domain of embedded
systems is also a recognised research challenge. The model-based engineer-

124 CHAPTER 6. QUANTIFYING RISKS TO DATA ASSETS

ing community provides a set of techniques and methodologies for design-
based (UML) performance estimations that aim to support early design-
space exploration, e.g. COMPLEX [150], PUMA [151], Co-Fluent [152],
and SPEU [153]. Our work uses these precursors and insights as a premise.
With respect to this issue, we also believe that it is not appropriate to as-
sume that there is no knowledge about system time characteristics at the
design phase. As we discussed is Section 2.1, the pure waterfall life-cycle
model is not realistic for modern engineering. This implies that a design
model can be actually annotated with performance characteristics reusing
data from the previous iterations. This case is in the spirit with round-trip
approaches of system refinement developed in the area of the model-driven
engineering [154].

7
Related Work

In this chapter we describe works related to the contributions of this the-
sis. We discuss those works that target similar objectives or that employ
similar methodologies. Figure 7.1 depicts a diagram of the research areas in-
volved in this thesis. These are subtopics from system engineering, security
engineering, and embedded systems.

Security

engineering

System

engineering

Embedded

systems

Risk analysis

Threat analysis Performance analysis

Resources

Model-based engineering

Reuse of building blocks

Development processes

Section 7.1

Section 7.3

Section 7.5.1-7.5.3

Section 7.5.4

Our

contributions

Section 7.2Section 7.6

Section 7.4

Figure 7.1: Research areas involved in this thesis

The first two sections focus on the intersection of subtopics from system
engineering and embedded systems. In particular, Section 7.1 describes
approaches for composing a system from reusable elements; and Section 7.2
is concerned with conduction of performance analysis of embedded systems

125

126 CHAPTER 7. RELATED WORK

at the design phase.
SEED rests on combining ontology and model-based technologies to sup-

port the processes of capturing and applying security knowledge and reuse.
We summary existing works that target this challenge in Section 7.3. This
section belongs to the system engineering circle in Figure 7.1.

The next section covers a topic on the intersection of security and system
engineering. Thus, Section 7.4 describes works concerned with modelling of
security knowledge.

We dedicate Section 7.5 to methods for designing of security-enhanced
systems. In this part, Sections 7.5.1 – 7.5.3 review works that are lies on
the interception of security and system engineering areas in Figure 7.1; and
Section 7.5.4 is related to a crossover of all three research areas.

Finally, Section 7.6 is concerned about risks and attacks. Two subsec-
tions of this part belong to the intersection of system and security engineer-
ing areas.

7.1 Composing a System from Reusable Blocks

The growing complexity of systems motivates methods for their construc-
tion as composition of reusable blocks. This approach brings a range of
benefits: it allows reducing the development time and cost, improving the
quality of reusable artefact, utilising better expertise of engineers from var-
ious domains, to name a few. In our work, we exploit the MBE method
SPACE (reviewed in Section 2.2.4) where the notion of a building block
is used. However, there are other widely spread approaches that can po-
tentially support reusability of security solutions across different systems.
In this section, we describe two such approaches, namely component-based
(Section 7.1.1) and aspect-oriented paradigms (Section 7.1.2). Section 7.1.3
positions SEED with respect to these works.

7.1.1 Component-based Development

A component is a core concept used in component-based approaches for
system development. It is a reusable block that encapsulates some sys-
tem functions or services. The widely accepted definition of a component
is given by Szyperski [155]: “A software component is a unit of composi-
tion with contractually specified interfaces and explicit context dependencies
only. A software component can be deployed independently and is subject to
composition by third parties.”

Originally, components are meant to be delivered as binary units de-
ployed and composed at run-time. However, this requirement is often moved
in case of embedded systems to the design phase due to an overhead cre-
ated by a component framework [156]. We proceed to describe the basic
concepts and terminology used in component-based system development ap-
proaches [157, 158].

7.1. COMPOSING A SYSTEM FROM REUSABLE BLOCKS 127

To enable component-based design, each component must adhere a spe-
cific component model that defines a set of rules and conventions to describe
a component. In particular, a component is defined by its interfaces. Each
interface reflects properties of the component that are visible externally (i.e.
for other components and a system as a whole). Interfaces can be repre-
sented as a set of operations with a list of input and output parameters,
i.e. operation-based interfaces. Alternatively, interfaces can be considered
as entities that send and receive data, i.e. port-based interfaces. One can
distinguish provided (e.g. operations provided for their environment) and
required (e.g. operations required from their environment) interfaces. Addi-
tionally, the notion of rich interfaces is introduced [157] to refer to interfaces
that contain additional information about interfaces, e.g. declaration of their
extra-functional properties such as the execution time. These rich interfaces
enable certain verifications when composing components.

The process that establishes connection between components (i.e. the
composition of their functions) is called component composition, binding [158],
or wiring [159]. The result of composition of two or more components is re-
ferred to as an assembly. In some component models, the composition of
components is supported through connectors that are mediators between
components. A component model is supported (at the design- or run-time)
by a component framework that is an infrastructure that manages resources
for components.

A set of challenges arises when adopting component-based development
approaches for embedded systems [160]. For example, the temporal proper-
ties of embedded systems require that components provide timing charac-
teristics as a part of their interfaces. This is a difficult task if a component
is considered to be a software unit since temporal properties depend on the
underlying hardware. However, the need to utilise benefits of component
frameworks for the world of embedded systems determines the tendency
of developing component-based approaches for these domains as well, e.g.
AUTOSAR [161] for automotive industry, ROBOCOP [162] for consumer
electronics domains, and ProCom [163] for embedded systems focused on
a class of such systems that perform real-time controlling tasks. Hošek et
al. [164, 165] compare ten component frameworks focusing on those that
provide support for execution. Besides general features related to compo-
nent models and frameworks (e.g. presence of connectors, type of interfaces)
the authors consider a set of requirements that are coming from the domain
of embedded systems. They are, for example, support for coupling with
hardware or modelling real-time attributes.

7.1.2 Aspect-oriented Development

Aspect-orientation enforces the separation of concerns principle [166]. This
principle promotes identification of different concerns in a system and their
separation encapsulating them into reusable artefacts, e.g. modules. These

128 CHAPTER 7. RELATED WORK

artefacts can be analysed in isolation and applied in several applications. In
aspect-oriented modelling (AOM), reusable modules usually realise so-called
crosscutting concerns. The concern is called crosscutting if a requirement,
that it expresses, cuts across a whole system. Reusable modules that im-
plement crosscutting concerns provide such extra-functional properties as
security, safety, or other quality of service properties as opposed to tra-
ditional functional units of decomposition used in component-based devel-
opment. The terminology of AOM is not so mature as the terminology
of component-based development. However, we have identified some basic
concepts used in AOM approaches that deal with the security concern.

A primary system model [167] is a base model of a system (both its func-
tionality and architecture) under development. This primary system model
is further extended with a so-called aspect that is a reusable implementation
of some function that fulfils a crosscutting concern. Each aspect has two
forms: a generic aspect is an application independent model of an aspect,
and a context-specific aspect is a generic aspect instantiated for a given ap-
plication. To transform a generic aspect into a context-specific aspect, a
set of adaptation rules are applied. Basically, these adaptation rules specify
how to map the abstract syntax of a generic aspect into the syntax of a
certain application domain. Finally, a context-specific aspect is integrated
into a primary system model that results in an integrated system model. The
integration is done by applying a set of composition rules that can be imple-
mented as an engine that takes primary system model and context-specific
aspects as an input and produces an integrated system model. Alternatively,
composition rules can be represented as a set of instructions for an engineer
that describe steps to be taken for composition.

The comprehensive and extensive conceptual reference model of aspect-
oriented modelling constituents is presented by Wimmer et al. [168]. Below,
we overview two AOM approaches that deal with the security and depend-
ability concerns. These approaches employ UML for functional modelling
of a system and its aspects.

France et al. [167] represent a generic aspect (referred to as “generalised
form of a solution”) as a pattern that describes common characteristics of a
solution. These patterns are realised as UML model templates. The adap-
tation is implemented as instantiation of a pattern by binding (i.e. relating)
its template parameters to application-specific values. The composition is
realised by merging UML models of a primary system model with context-
specific aspects. This merge can be controlled and managed by so called
composition directives. For example, composition directives can be used to
specify that some elements of a primary system model should be removed,
added, or modified in a certain way. They also can predefine the order when
several aspects are composed with one primary system model. Thus, vary-
ing composition directives several (potentially different) integrated system
models can be obtained. Further, an integrated system model is analysed
to reveal conflicts or undesirable properties, and to investigate whether the

7.1. COMPOSING A SYSTEM FROM REUSABLE BLOCKS 129

used aspect provides the required level of dependability.
Mouheb et al. [169] present another approach for AOM. A primary sys-

tem model is a UML model where some elements are annotated with stereo-
types and tags that express security requirements, e.g. confidentiality and
integrity of data. Additionally, a primary system model is extended with
specifications of join points used to support composition of a primary sys-
tem model and aspects. In particular, join points specify where an aspect
should be integrated in a primary system model, e.g. before or after a spe-
cific operation. An aspect is a UML class model that is extended with a
set of stereotypes from a specific UML profile provided by the authors. For
example, one of the stereotypes provided by this profile is a pointcut that
is used to specify where in a primary model an aspect should be inserted.
Similar to join points, a pointcut can specify, for instance, that an aspect
should be inserted before or after a UML operation or call. Each aspect
can provide several functions that are referred to as advice in the mentioned
profile. The adaptation of a generic aspect, i.e. creation of a context-specific
aspect, is done as matching join points from a primary system model and
pointcuts from a generic aspect. The composition is defined as actual weav-
ing of aspects into a primary system model.

Aspect-oriented modelling has already been applied to development of
embedded systems. For example, Wehrmeister and Berkenbrock [170, 171]
use aspects, namely aspects crosscutting overview diagram, for modelling
of non-functional requirements of real-time embedded systems within the
AMoDE-RT (Aspect-oriented Model-Driven Engineering for Real-Time sys-
tems) design approach. The authors show [171] that one can increase the
reuse of developed artefacts by encapsulation of non-functional requirements
in aspects. Zhang [172] extends AADL (Architecture Analysis and Design
Language) components with a set of aspects from the railway domain.

7.1.3 SEED and Reusable Blocks

Approaches that allow composing a system from reusable elements have been
increasingly popular in recent research. Each approach has its own syntax
and framework (i.e. theoretical foundations supported by tools) to integrate
a reusable unit (i.e. a component, aspect, or building block) into a system
model. When such approaches are adopted, a security countermeasure that
enforces security properties can be represented in the form of a reusable
unit.

We have described the two approaches in Sections 7.1.1 and 7.1.2 where
a security countermeasure can be encapsulated into a component or into an
aspect. In our work, we employ the notion of reusable building blocks used in
the MBE method SPACE (reviewed in Section 2.2.4). By employing SPACE
we enjoy a range of capabilities provided by this method. They are, for
example, a tool-set based on Eclipse Modelling Framework called Arctis [42]
and a rich library of already implemented RBBs [43] including the one that

130 CHAPTER 7. RELATED WORK

model security countermeasures. Moreover, the modelling language used
by SPACE allows us to analyse system models and elicit new information
required to support integration of a relevant set of security countermeasures.

Our contribution enhances the step composition and analysis from Fig-
ure 2.9 when it comes to decide on a set of security countermeasures ex-
pressed as reusable building blocks. In particular, we elaborate methods to
select a set of security building blocks that are suitable for a system under
development according to identified security needs.

Notice that the ideas of the SEED approach are not limited to SPACE
reusable building blocks. The SEED foundation level imposes the require-
ment that it should be possible to encapsulate a security solution as a
reusable element. Both components and aspects satisfy this requirement.
Thus, any of the above mentioned concepts (i.e. components or aspects)
can be potentially employed for implementing the SEED realisation level.

7.2 Performance Analysis at Design Phase

This section reviews methods for obtaining performance estimates from de-
sign models (Section 7.2.1) and other methods that use performance esti-
mations obtained from other sources in system models (Section 7.2.2).

7.2.1 Obtaining Estimates from System Models

There is a range of tools that enable performance analysis when only a de-
sign of a system is available. Robert and Perrier [152] and Piel et al. [173]
present CoFluent and Gaspard2 methodologies and tools to execute perfor-
mance analysis at the design phase. These techniques use UML/MARTE
models to describe architecture and application designs. In addition to the
MARTE profile, CoFluent employs the SysML [174] modelling language.
Both CoFluent and Gaspard2 methodologies use a different chain of trans-
formations to generate SystemC TLM 1 code for its further simulation in
suitable tools.

The use of performance analysis while composing a system with RBBs at
the early design phases is a subject of active research. Woodside et al. [175,
151] develop and apply the PUMA 2 approach for performance analysis of
RBBs represented as security aspects. Woodside et al. start exploiting
the UML SPT 3 profile, but their further works adapt this methodology
for the MARTE profile. In this work, the authors generate LQN 4 models
that are analysed by a solver and simulator. Similarly, Wehrmeister et
al. [176] presents the AMoERT 5 methodology when the aspect-oriented

1Transaction Level Model
2Performance by Unified Model Analysis
3Schedulability, Performance and Time
4Layered Queueing Networks
5Aspect-oriented Model-Driven Engineering for Real-Time systems

7.2. PERFORMANCE ANALYSIS AT DESIGN PHASE 131

paradigm is used. In this work, the authors propose the GenErTiCa tool to
generate Java code for a specific predefined (though selected by an engineer)
target platform. Bondarev et al. [177] present the CARAT 6 toolkit for
performance evaluation where RBBs conform to a specific component model.
The authors use their own modelling language to describe the application
logic and architecture that are synthesised into an executable system model
used for the task scheduling.

The field of design-space exploration is also concerned with estimating
performance at early design phases. Herrera et al. [150] propose a methodol-
ogy called COMPLEX that uses MARTE modelling. Within this methodol-
ogy a simulation infrastructure (called SCoPE+) is developed that generates
executable models of the system. SCoPE+ consumes a set of inputs for this
purpose. Among these inputs are descriptions of hardware and allocation
of functional components on this hardware. Oliveira et al. [153] present the
SPEU methodology for exploration using analytical estimations.

We can distinguish two categories of methods that allow obtaining per-
formance evaluation results when only a design model is available. The
methods of the first group (CoFluent and AMoERT) take a set of applica-
tion and platform models as an input and generate code, e.g. C and Sys-
temC. Afterwards, the generated code is executed in a simulation tool. The
methods of the second group (PUMA, CARAT, and Gaspard2) use models
as a means to input required data into analytical performance analysis tools.

In this thesis, we capitalise on the outlined methods. The SPACE
method employed in our work enables code generation for functional models
(i.e. UML activities) where Java code is produced from state machines for
a certain predefined execution platform (e.g. ServiceFrame [44]). Thus, one
can relate the SPACE methodology to the first category of the classification
outlined above except the fact that transformations are bound to a specific
predefined execution platform. In our work, we complement SPACE models
with an execution platform described as MARTE models. These MARTE
models can be converted into the corresponding simulation code using meth-
ods developed in the approaches mentioned above. Therefore, there is a
potential to simulate SPACE models on a desired execution platform (that
is modelled in MARTE), once a formalised and tooled allocation of SPACE
models onto MARTE models is defined. Moreover, our work complements
the approaches described above since it enables reuse of outcomes of SBBs
performance evaluation conducted by corresponding domain experts.

Note that the outlined above approaches (e.g. CoFluent and Gaspard2)
introduce some constraints on the original semantics and on usage conven-
tions of MARTE models to enable their further analysis. Similarly, we make
some assumptions on MARTE models when designing the support (methods
and tools) for model-based compatibility analysis.

6Component Architectures Analysis Tool

132 CHAPTER 7. RELATED WORK

7.2.2 Using Estimates in System Models

Ciccozzi et al. [154] propose a meta-model used to propagate results of mon-
itoring extra-functional properties at the code level back to a system model
in order to improve it. The authors refer to this approach as round-trip sup-
port and the meta-model is called as back-propagation meta-model. This
approach is developed for the CHESS modelling language [178].

We find that our approach shares the idea of using values calculated
at the later development phases (code level) for refinement of a system
model. Thus, we promote to use information about performance of SBBs
(possibly obtained when experimenting with already implemented artefact)
for making decision at the design phase. In our work, we exploit MARTE
models to capture platform-specific constraints of embedded systems and
SBBs. The proposed MARTE compatible profile allows capturing more
information about SBBs performance analysis. This includes the outcomes
(also captured by Ciccozzi et al.) as well as the used workload and the
observed resource footprint. Elaboration of a back-propagation model goes
beyond our scope, but we find that it can greatly facilitate the task of
feeding information into our performance evaluation profile and ontology.
This information (structured, captured, and searchable) aids an embedded
system engineer to select an appropriate SBB to satisfy required security
(or other extra-functional) properties.

Desnitsky et al. [179] present an approach (referred to as configuration
model by the authors) to find an optimal set of security components (similar
to SBBs) based on information about embedded system capabilities (avail-
able resource) and security components demands. This data is manually
entered into a tool. Configuration is implemented as multi-criteria optimi-
sation problem on a set of security components.

In SEED we develop a technique for compatibility-based selection of
SBBs. We find the configuration technique proposed by Desnitsky et al. [179]
as complimentary to our model-based compatibility analysis method that
can be realised on top of the developed resource ontologies. In continuity,
Desnitsky and Kotenko [180] also propose to take into consideration hidden
conflicts when selecting security components. The author distinct three
types of conflicts: type 1– conflict due to a lack of consistency between a
security component and the device specification; type 2 – conflict between
the protection functions of several security components; and type 3 – conflict
between several basic components within a complex security component. In
this vein, our compatibility analysis can be seen as a technique supporting
identification of conflicts of type 1. Identification of conflicts of type 2 can
be supported by our security ontologies given that the conflicting relation
is added directly into the ontologies or other rules for identification of such
conflicts based on knowledge stored in the ontologies are elaborated.

7.3. MARRYING ONTOLOGIES AND MODELS 133

7.3 Marrying Ontologies and Models

The use of ontologies to support tasks of model-driven engineering is an
interesting research topic [32]. The potential of ontology technologies ap-
plied to the system and software engineering to formalise general modelling
is outlined by Tetlow et al. [181]. Recall that ontologies are used to repre-
sent knowledge as a set of domain concepts and their relations. Similarly,
the conceptual description of a domain through meta-modelling is performed
while creation of a DMSL [36]. Both technologies suggest a range of benefits.
For example, one of the main benefits of the ontology technology is its auto-
mated querying services while DSMLs enjoy wider adoption in development
environments and tools. Therefore, it is not a surprise that researchers try
to find a logical synergy to exploit advantages of both of these technologies
to facilitate designing of complex systems.

Walter et al. [182] in their recent work employ ontologies to improve
the practice of domain-specific modelling (DSM). The authors have devel-
oped a framework for DSMLs that relies on the ontology reasoning services
(e.g. the inconsistency checker) to guide a designer and to validate incom-
plete structural domain models. Dibowski et al. [102] present the ontological
framework to describe devices for the building automation domain. Jian-
jun et al. [183] use ontology to configure embedded control systems based
on a functional model of a system that is intended to express the user de-
mand. Wagelaar [184] combines the ontology technology with the model-
driven architecture principles to enable reuse of platform-independent to
platform-specific models (PSMs) transformations. Tekinerdoğan et al. [185]
employ ontologies to support selection of PSMs, where a system platform is
described as a set of high level properties.

Even thought inspired by the same idea of combining ontology and mod-
elling technologies, we employ this synergy for a quite distinct purpose and
in a different way. In our work, we combine the ontology and DSM technolo-
gies to assist the development of security-enhanced systems. First, we em-
ploy DSM to constantly populate the developed ontologies with the domain-
specific security knowledge. Similar, to the works mentioned above we use
knowledge stored in the ontologies to guide a system engineer, but our inten-
tion is selection of SBBs. Furthermore, we use MARTE models and extend
them with additional concepts to formulate platform-specific constraints as
a basics for composition of a system and SBBs. Using these constraints,
we elaborate on the notion of model-based compatibility as one of possible
criteria for selection of a set of SBBs.

7.4 Modelling Security Knowledge

To support knowledge intensive tasks in a semi-automatic way a structured
representation of this knowledge is required. Ontology is a suitable technique
for this purpose. A number of ontologies for capturing security knowledge

134 CHAPTER 7. RELATED WORK

have been proposed.
Herzog et al. [72] and Fenz and Ekelhart [73] introduce two ontologies

that formalise the domain of information security from different aspects;
Kim et al. [74] present an ontology for annotating web-services; Karyda et
al. [75] propose an ontology to assist reuse of the experts’ security knowledge
in the area e-government applications. Extended surveys and classification
of security ontologies can be found in works of Blanco et al. [186], Souag
et al. [187], and Gärtner et al. [188] where the authors discuss 28, 17, and
14 security ontologies respectively. In total, we can see 41 distinct security
ontologies proposed by researchers. In our work, we adopt the ontology
presented by Herzog et al. [72] since it is built upon classic components of
risk analysis.

Souag et al. [189] try to build a complete ontology to support security
requirements elicitation based on their earlier survey [187]. The authors
evaluate on 10 experts their hypothesis whether a complete and usable on-
tology will suffice to support security requirements elicitation. The results
show that only a good ontology is not enough. Souag et al. conclude that a
bridge between requirements elicitation and security knowledge (ontologies)
is needed. With respect to this observation of the authors, we equipped a
system engineer with the set of methods that provide a bridge between the
security knowledge stored in the ontologies and the system design models.

Once security knowledge is acquired it is important to maintain its fresh-
ness and consistency. It is also important to establish a strategy for knowl-
edge integration and sharing among different projects. These concerns have
been left outside the scope of this thesis. However, these aspects are ad-
dressed by other researchers.

For example, Ruhroth et al. [190] discuss this topic and propose a work-
flow for ontology adaptation. The author extend the standard OWL’s im-
port mechanism with new operators (e.g. add, hide, change) that can be
used to adapt ontologies for project-specific needs. These new operations
can be used, for example, to hide a part of and ontology if it is needed.
To support consistency of an ontology while updating it, Javed et al. [191]
propose to follow a set of change patterns (e.g. for concept splitting and
merging). These patterns are also adopted by Ruhroth et al. [190].

7.5 Security-enhanced System Design

This section summarises our review of methods developed to assist a sys-
tem engineer in integrating security mechanisms into a system design. We
start discussing methods to deal with security aspects that are designed for
general systems in Section 7.5.1 followed by ontology-based approaches in
Section 7.5.2. Thereafter, Section 7.5.3 briefly describes approaches related
to selection of security measures given a repository of available alternatives.
Finally, we discuss methods that target embedded systems in Section 7.5.4.

7.5. SECURITY-ENHANCED SYSTEM DESIGN 135

7.5.1 General Methods to Deal with Security

The challenge of integrating security mechanisms into various types of sys-
tems has been addressed by several approaches. They are, for instance,
MDSE7/UMLsec, MDS8/SecureUML, security aspects, security patterns,
and AVATAR, to name a few.

MDSE/UMLsec [109, 192, 193] is one of the first approaches developed
for integration of security related information into UML specifications of a
system. In particular, UMLsec is a UML profile that is used to incorpo-
rate security requirements (such as the fair exchange principle and secure
communication links) in the form of corresponding stereotypes (i.e. “fair
exchange” and “secure link” respectively) and their tags (e.g. those tags
that allow specifying an adversary) into various UML models (e.g. class or
activity models). These stereotypes allow a system engineer to specify a
proper set of security requirements for a system under development. There-
after, a system design should be enhanced to meet the augmented security
requirements using such techniques as, for example, security patterns [108]
or direct refinement of an initial system design. The use of UMLsec al-
lows formally verifying if the resulted system design meets the annotated
security requirements. Additionally, there are some works that complement
the UMLsec methodology with the security requirements elicitation phase.
Thus, Houmb et al. [194] propose a methodology to elicit requirements from
stakeholders employing a heuristics-based tool empowered by the common
criteria standard [195].

MDS/SecureUML [196, 197] deals with design and verification of role-
based access control systems. SecureUML is a security modelling language
that should be combined with other languages used for a system design.
Thus, it enables a system engineer to model both security and functional
aspects of a system simultaneously. The merge of languages is proposed to
be implemented through a so-called “dialect”. A dialect is used to match
meta-models and syntax of corresponding functional and security languages.
In particular, a dialect shows what elements of a system design language
are SecureUML resources and what actions are applied to these resources.
Thus, SecureUML can help to express such information as which elements
of a system model shall be considered as resources and what actions are
permitted under these resources.

The aspect-oriented paradigm presented by Georg et al. [198] identifies
security as a crosscutting concern. To deal with this concern, security func-
tions are encapsulated as aspects that are woven into the initial (primary)
system model. In this approach, security requirements are elicited by means
of composing a system model with a threat model and checking if the at-
tack succeeds. Thereafter, a suitable security aspect is encapsulated into a
system design. Aspect-Oriented Risk-Driven Development (AORDD) is an

7Model-Driven Security Engineering
8Model-Driven Security

136 CHAPTER 7. RELATED WORK

approach developed by Georg et al. [238] (that extends the earlier contri-
butions [198]) to calculate the fitness of different security countermeasures
as a trade-off between different criteria, e.g. provided security level, project
and deployment effort. The fitness score for a particular security counter-
measure is calculated with a specially constructed Bayesian Belief Network.
Further, Houmb et al. [199] add to AORDD the performance analysis step
employing the PUMA tool.

Security patterns [108, 200] are intended to capture security solutions
for common security challenges. In general, a pattern is an extremely broad
concept that can be used to encapsulate expert knowledge of any kind (e.g.
a reoccurring structure, process, activity, or just some kind of “thing”) along
all phases of a system development. To be able to cover such diverse informa-
tion, patterns are defined in a highly generic form. In particular, each pat-
tern describes a solution in a human-readable text (sometimes referred to as
patterns’s documentation), which is sometimes augmented with UML mod-
els to help developers to understand a pattern. Schmidt et al. [201] develop
an approach called Security Engineering Process using Patterns (SEPP). In
this process, the authors introduce a special type of patterns called Secu-
rity Problem Frames (SPFs). SPFs consider generic security requirements
omitting possible means to satisfy these requirements. The SPF descrip-
tion contains the following fields: name, intent, a frame diagram, informal
description, a security template, and an effect. Each field is defined in a tex-
tual form, as a UML model, or in some other formal notation. Thereafter,
the authors introduce the notion of a Concretised Security Problem Frame
(CSPF) that describes generic security countermeasures linked to related
SPFs. It is the responsibility of a system engineer to select and instanti-
ate both SPFs and CSPFs to proceed with the SEPP method. Uzunov et
al. [202] survey the state-of-the-art in security patterns and methodologies
for applying them for securing distributed systems.

Ramón et al. [203] proposes an approach for automatically generating se-
curity software artefacts from security models called ModelSec. The authors
propose to separate modelling of system requirements from modelling of se-
curity requirements. The authors build a dedicated DSML for modelling of
security requirements. When security requirements are modelled, abstract
security mechanisms (called security design models) are mapped to corre-
sponding security requirements. This mapping is built of two parts. First,
a part of the mapping is captured in the model-to-model transformation
(security requirements to a security design model). For example, authenti-
cation requirements are mapped to AuthenticationDecision. Thereafter, a
skeleton obtained after applying the transformation must be completed by
engineers with information related to the design of the system. The sys-
tem design information is still abstract in the security design model (e.g.
EJB). When a security design model is constructed, a security implemen-
tation model that expresses the implementation details of a concrete target
platform is built around this security design model (e.g. BEA WebLogic

7.5. SECURITY-ENHANCED SYSTEM DESIGN 137

that is an implementation of EJB).
Other approaches that are designed to assist a system engineer to se-

cure a system can also be mentioned. For example, Hamid et al. [204]
enforce the notion of security (and dependability) patterns supported by
formal validations. Pedroza et al. [205] propose a SysML-based environment
called AVATAR to model and verify safety, authenticity, and confidentiality
properties. Sectet [206] deals with integration of security requirements into
inter-organisational workflows by handling security policies.

The recent work of Uzunov et al. [207] provides a comprehensive survey,
comparison, and classification of many other methodologies to assist in de-
signing security-enhanced systems. Other surveys and systematic reviews
are conducted by Basin et al. [197], Kasal et al. [208], Nguyen et al. [209],
Jensen and Jaatun [210], and Lucio et al. [211].

Compared with the SEED approach proposed in our work where the
security-related knowledge is captured by DSSMs, the approaches mentioned
above still require in-depth security knowledge from a system engineer or
presence of a security expert. For example, it is not clear how a system
engineer should select a suitable security aspect in the AORDD method. It
is assumed as the given knowledge since the authors know a priori how to
model relevant attacks and how to construct and weave a security aspect. In
the SEPP method, selection and instantiation of both SFPs and CSPFs are
supposed to be done by a system engineer that can be cumbersome due to
their complicated structure. In contrast, we provide a bridge between secu-
rity domain experts and embedded system engineers. The SEED approach
defines a structured methodology (i.e. concepts, methods, processes, and
tools) to create and select a suitable set of security measures represented in
the form of reusable building blocks that can be integrated into a system
under development. Thus, our approach produces a guideline on where and
why a specific security countermeasure should be applied.

A security pattern is a powerful concept to assist in analysing and de-
veloping secure software in a systematic manner exploiting the “body of
accumulated knowledge” represented as a pattern. However, due to its un-
fixed (though flexible) syntax, their application is thought to be manual.
This statement is supported by the fact that security patterns, in general,
do not make any assumption on the used design language for a system im-
plementation. Thus, application of current security patterns can be hardly
automated.

ModelSec shares our intention to collect security concerns in a separate
model (called security requirements model in ModelSec), but the authors do
not elaborate further on the idea of separating security experts and system
engineers constantly mixing these two roles. In contrast, SEED allows sep-
arating the task of designing a security mechanism from a system design by
exploiting the principle of application domain specialisation.

Once a security mechanism is integrated into a system model it is im-
portant to verify that it is properly integrated and provides claimed security

138 CHAPTER 7. RELATED WORK

properties. SEED explicitly prescribe this step (see step 7.a in Figure 5.17).
Many of the methods mentioned above provide some means for conducting
such security analysis. UMLsec, for example, complies an integrated model
into a set of first-order logic axioms and verifies them by a prolog-based
tool. SecureUML, in turn, uses the SecureMOVA tool that allows verify-
ing security properties expresses as OCL constraints [212]. In the presented
version of the SEED realisation we enjoy verification utilities provided by
the SPACE method (see Section 2.2.4 for more detail).

7.5.2 Ontology-based Approaches

There is a set of works that share our inspiration of using ontologies for
capturing security knowledge and applying it afterwards. These are, for ex-
ample, works of Gärtner et al. [188] and Daramola et al. [213]. The authors
focus on security requirements, which are use cases written in a natural
language, while we work with design models that represent system func-
tionality and execution platform. Both works use misuse cases for security
analysis, but when Gärtner et al. [188] generate them based on security-
domain knowledge applied to regular requirements use cases, the approach
suggested by Daramola et al. [213] requires that such misuse cases are for-
mulated by a system engineer as an input into the elicitation process. To
generate misuse cases Gärtner et al. [188] use heuristics (captured by the
ontologies) to identify parts of requirements that are susceptible to security
issues. In our approach we have developed a set of methods for this purpose.
However, we think that these methods can be only enriched by using other
heuristics applied to design models.

Kang and Liang [214] propose an ontology-based method for MDA (Model-
Driven Architecture). For this purpose, the authors develop a set of new
ontologies: ontologies to support security analysis at the PIM (Platform In-
dependent Model) level; ontologies to support security analysis at the PSM
(Platform Specific Model) level; and ontologies to support security analy-
sis at the code level. In these ontologies the authors capture only relation
between concepts located in different levels of abstraction (i.e. PIM, PSM,
code), while within one level of abstraction concepts are not interrelated.
For example, it is clear that attack should be related to assets and risks,
and security goals (confidentiality) must be related to assets. By omitting
these details, the authors lose a lot of relevant information. Moreover, ac-
cording to the authors to identify security issues a system engineer needs
to be aware about security (that is often not the case) or try to identify
such issues by studying the ontologies. Similarly, we have developed a set of
ontologies (core security ontology, core evaluation ontology, etc.), however,
our intention is to use these ontology in methods (e.g. asset identification)
to support a system engineer by (semi-)automatically identifying security
issues in a system model. Finally, we also provide a process for security ex-
perts to constantly enrich the ontology, while Kang and Liang [214] assume

7.5. SECURITY-ENHANCED SYSTEM DESIGN 139

that the ontology will not evolve.
Dritsas et al. [215] develop an ontology with an intention to support

design and development of e-commerce systems. However, the support is
limited to asking a proper competence questions formulated by a system
engineer. While our ontology can also be adapted for this purpose (as any
ontology) we also provide extra support in a form of three methods described
in earlier chapters.

7.5.3 Selection of Security Countermeasures

An important step that precedes actual integration of security building
blocks is the selection of these. We have observed that the model-based
(model-driven) methods mentioned above do not address this task in detail.
However, approaches for selection of security measures are under develop-
ment in the context of security patterns [108].

Selection of security patterns is based on their classification. Such clas-
sification can be built of just three classes (Fernandez et al. [216]) or be
represented as a multi-dimensional matrix of classes (VanHilst et al. [217])
including such categories as an architectural layer (e.g. network), a lifecycle
stage (e.g. design), and a domain (e.g. enterprise systems). In our work the
basics for selection of concrete SBBs are domains, security goals, defence
strategies, and assets. Thus, there are some overlapping concepts compared
to the dimensions elaborated for security patterns. However, SEED pro-
poses that only the domain dimension is selected by an embedded system
engineer following the guideline. Selection of other categories is done by
applying the elicitation technique and querying the security ontologies.

Hafiz et al. [218] organise security patterns according to the CIA9 goal
model, a pattern’s application context (i.e. core security, perimeter security,
and exterior security), a problem domain, and their classification based on
the STRIDE10 model. All these classifications are formalised in tabular or
tree forms. In addition to this method, Washizaki et al. [219] develop the
Dimensional Graph (DG) concept to formalise the multi-dimension classifi-
cation of security patterns. Each DG uses a UML object diagram to show
relations of a pattern to a set of dimensions of interest. We formalise our
categories as the core security ontology, which allows utilising advantages of
the ontology technology querying services for the selection of concrete SBBs.

Nguyen [220] propose to use a feature model from the software product
lines domain. This feature model describes in what ways security patterns
can differ from each other. The authors distinct five types of relations be-
tween patterns: “depends on”, “benefits from”, “alternative to”, “impairs”,
and “conflicts with”. In the current state of our core security ontology, two
out of these five relations are represented. These are “depends on” (when

9Confidentiality, Integrity, and Availability
10Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and

Elevation of privilege

140 CHAPTER 7. RELATED WORK

a SBB issues another asset that also requires protection) and “alternative
to” (two SBBs are alternative when they provide similar security proper-
ties). We believe that the core security ontology will only benefit when
it is complemented by additional relations between SBBs as discussed by
Nguyen [220].

7.5.4 Methods to Deal with Security for Embedded

Systems

A number of model-based approaches to enforce security within embedded
systems are proposed. The Ruiz et al. [221, 222] approach requires that
a system engineer defines a set of security properties for a scenario. This
assumption already requires that an embedded system engineer has a good
expertise in security. Each security property is further linked to threats
and attacks through so-called threat model. Attacks and threats are mod-
elled in order to describe the capabilities of intruders to cause harm in a
system. Finally, these threat models are associated with a set of static and
dynamic tests to enable the later testing of a system integrated with security
mechanisms. In our approach, we propose a method to systematically elicit
required security properties consulting the security knowledge captured in
DSSMs. Therefore, our approach addresses the situation when an embed-
ded system engineer has just limited expertise in security. We believe that
our approach can be complemented by the Ruiz et al. [221] idea to link
threats with a corresponding set of tests. However, we envisage that there
is also a need to extend this idea linking security properties and threats
to verification facilities (besides tests). This enhancement will provide re-
quired assurance already at the design phase as opposed to postponing all
checks until the first prototype of a system is available when testing can be
performed [223].

Hamid et al. [224] attempt to model trust properties as reusable patterns
for specific domains. While that work shares our aspirations for reusability,
we consider security concerns rather than trust relations.

Similar to our work Eby et al. [225] adopt principles of domain-specific
modelling. They propose to integrate a Security Analysis Language (SAL)
into a DSML for the embedded systems domain (that reminds us the Se-
cureUML approach). However, they focus on security of information flows.

Saadatmand and Leveque [226] develop a method for incorporating secu-
rity aspects into the ProCom component model. The authors consider two
security goals, namely confidentiality and authentication. This approach
proposes to use (manual) annotations to identify those parts of a system
model where integration of security aspects is needed. In contrast to this
work we have developed the asset elicitation technique to identify vulnerable
parts of a system avoiding manual tagging of a system model.

Apvrille and Roudier [227, 228] propose a model-driven environment for
developing secure embedded systems called SysML-Sec. The authors pro-

7.6. RISKS AND ATTACKS 141

vide a set of extra constructs (based on SysML) for adding security related
information into a system design as well as connect their environemnt to
some verification facilities, e.g. for evaluation of real-time constraints in
presence of integrated security mechanisms. The main intention of the au-
thors is to support collaboration of system designers with security experts;
whereas SEED aims at providing a means to bring security expertise to
system engineers when security experts are not easily available within the
development process.

Fayyad and Noll [229] report the recent development of the nSHIELD
project (new SHIELD). This project is an extension of the earlier SHIELD
project. In combination these two research projects address a complex prob-
lem of analysing security, privacy, and dependability (SPD) attributes of
embedded components and a system of interconnected components. Obvi-
ously, the scope of this work (and these two research projects) overlays with
SEED, but it is also clear that the scope of nSHIELD goes beyond our focus.
Thus, the authors target to provide an aggregated metric that accounts for
the SPD triple (a SPD level metric), while we focus on only the security
attribute. The authors look at the large context of system-of-systems, while
we focus on supporting system engineers in designing security-enhanced em-
bedded systems. We think that extension of the scope of our work to the
system-of-systems level is a valuable direction for SEED.

7.6 Risks and Attacks

In this section we focus on a group of methods that support quantitative
analysis of system security. In particular, we look at risk and attack mod-
elling methods and mainly relate them to the method for calculating CL/IL
metrics presented in Chapter 6.

7.6.1 Risk Analysis

There are general methods that specify main steps of any risk analysis.
These methods are CRAMM (CCTA Risk Analysis and Management Me-
thod) [230], ISRAM (Information Security Risk Analysis Method) [231],
OCTAVE (Operationally Critical Threat, Asset, and Vulnerability Evalua-
tion) [232], Boyer and McQueen [233], etc. These methods usually prescribe
basic steps of risk analysis while leaving out details of their implementation.

A set of standards addresses security risk management, for example,
NIST SP800-30 (Risk Management Guide for Information Technology Sys-
tems) [234] and ISO 31010 (Risk management – Risk assessment tech-
niques) [235]. NIST creates foundations of risk management program and
contains basic guidance that broadly covers conduction of risk assessment
of federal information systems and organisations. As pointed by Lund et
al. [106] this guidance should be complemented with a risk analysis process
and cannot be considered as full fledged analysis method. ISO 31010 is a

142 CHAPTER 7. RELATED WORK

supporting standard for ISO 31000. Similar to NIST SP800-30, ISO 31010
provides guidance for conduction of risk assessment, but does not specify
any type of method or techniques that can be used in a specific application
domain. CORAS is based on ISO 31000. Our work can be considered as
contributing into a range of risk assessment techniques that are specific for
design phases of the embedded system development.

Several models for risk evaluation exist that have slightly different in-
gredients. For example, risk for physical security is often modelled as
R = P × V ×D [236, 237] where P is the probability of threat occurrence,
V is vulnerabilities of the system, and D is consequences. Another model
represents security risks as R = U × C [106, 234] where U is the likelihood
of unwanted incidents and C is consequences. These models resemble each
other, i.e. the unwanted incident component in the latter model combines
the first two components in the former. We base our work on the second
model and focus on evaluating the U component.

Next relevant area of research is model-based risk analysis methods
which encompasses such methods as CORAS [123], AORDD [238], and Cy-
SeMoL [239]. While following the same basic structure of risk analysis, these
methods provide richer support for analysts.

CORAS [106] is a general approach to risk analysis (well-established
and already applied in numerous domains). It specifies 8 steps. CORAS
uses a graphical notation to structure the elicited assets, threat scenarios,
related vulnerabilities, and unwanted incidents. This notation is supported
by formal calculus that enables calculation of risks. CORAS has a broad
scope and can be adopted for a large variety of systems (not even limited to
IT systems) and on any stage of a system development life-cycle.

We aim at providing tools for system engineers when designing a system.
In particular, the output provided by our method can be used by system
engineers to reason about the protection needed for data assets in the context
of a given design. The main input of our method is a system model that is
further formally analysed to obtain a risk value. System modelling (target
of the analysis) is also strongly encouraged by CORAS, however, the main
source of inputs in CORAS is a serious of workshops and interviews where
modelling is used to facilitate communication between the analyst team and
stakeholders. In our method there is a set of inputs that can be obtained
as a result of such workshops, e.g. attack step probability distributions
and cost functions for assets. It goes beyond our purposes to define a rigid
structure of these workshops. Here, we can envisage that the principles for
this process defined by CORAS give strong foundations. Similar to CORAS,
our approach can be classified as asset-driven risk analysis method since it
focuses on evaluating risks with respect to data assets present in a system
under consideration that are identified early in the risk analysis process.
However, we focus on data objects as assets while CORAS can work with any
notion of assets conditioned by the fact that CORAS is developed to work
with a large variety of systems. Our scope is narrower (embedded systems)

7.6. RISKS AND ATTACKS 143

that, in turn, allows us to provide additional assistance for system engineers
when identifying the assets (e.g. the asset elicitation technique). Finally,
it is worth mentioning that CORAS also supports such important tasks as
documentation, facilitating communication during structured brainstorming
sessions, giving advice on changes, and has additional support to deal with
legal aspects. These constituents are outside of the scope of this thesis.

Sommestad et al. [239] propose a method for risk assessment of enter-
prise systems. It has also been applied for SCADA systems. The authors’
intention is to connect system architecture models to cyber security assess-
ment concepts. The employed theory is probabilistic rational model (a ver-
sion of Bayesian networks). In this framework the authors define a 3-layer
of abstraction. At the first layer there is a model of the security domain
(one permanent model) called an AbstractPRM created based on Common
Criteria [195]. Besides entities and relations it contains also quantifiable
conditional dependencies, which values are refined on the next two layers.
The second layer is a ConcretePRM that specialises subclasses and rela-
tions from the AbstractPRM according to a system domain, e.g. asset is
refined as DataStore, Host, and Zone (the same is done for countermeasure,
attack, etc.). Finally, the third layer is an instance of the ConcretePRM.
This method is implemented within the framework called CySeMoL (Cy-
ber Security Modeling Language). Thus, the main idea of CySeMoL is to
capture dependencies among different elements of risk analysis and system
architecture, so that a system engineer is equipped to derive risks associated
with a certain architecture.

Similar to our work, CySeMoL is intended to relax the need of having
a security expert closely involved in the loop when analysing security of a
system. This distinguishes CySeMoL and our approach from the CORAS
methodology where security experts are closely involved into the risk analy-
sis process. On one hand, this enables creating additional support; however,
on the other hand, it limits the scope of these methods. In the CySeMoL
framework, all information related to security is implanted into the Con-
cretePRM; similar, in SEED the information related to assets, attacks, and
countermeasures is fetched from the SEED repositories. With CySeMoL the
authors aim to provide a means to analysis “system-of-systems” security. By
defining confidentiality and integrity losses metrics, we focus on providing a
means for security analysis of design models of embedded systems that are
usually relatively small systems. Obviously, it is impossible to guarantee
security at the system-of-systems level when there are no considerations for
security at its ends that are often embedded systems in the modern world.
Thus, our method can be considered as complementary to CySeMoL.

Aime et al. [240] aim to identify suitable sources of data to conduct
risk analysis and to formalise it so that this data can be utilised for auto-
matic elaboration. For this purpose, the authors develop an experimental
framework (that targets mostly enterprise IT systems) called AMBRA. For
processing, one needs to provide a system description in special languages:

144 CHAPTER 7. RELATED WORK

Positif System Description Language (PSDL) that allows describing software
and hardware infrastructure; W3C’s Web Service Choreography Description
Language (WSCDL) to describe provided by a system services; and Positif
Security Policy Language (PSPL) to provide security policy descriptions.
The main mechanics for identification of known vulnerabilities in a system
design is pattern matching. The authors slightly discuss potential security
metrics. In particular, they focus on different combinations of vulnerabili-
ties present in a system model, e.g. counting vulnerability or summing up
their scores.

Similar to Aime et al. [240] we rely on formal descriptions of a system for
automating asset identification. However, in our work we derive these formal
descriptions from conventional engineering artefacts. The main benefit of
such an approach is that an existing models created in a course of designing
a system can be reused for security analysis. As opposed to counting vulner-
abilities, we provide probabilistic risk metrics that accounts for uncertainties
naturally present due to unpredictable behaviour of attackers.

Surveys of risk analysis methods and corresponding metrics are presented
by Verendel [241], Sulaman et al. [242], Rudolph and Schwarz [243], Krautse-
vich et al. [244], and Jansen [245] among others. For example, Verendel [241]
analyses more than 100 approaches and metrics to quantify security. The
conclusion of the author, that is highly relevant for our work, is that CIA
(Confidentiality, Integrity, Availability) quantification methods are under-
represented. Sulaman et al. [242] study 57 papers. The authors conclude
that most of the existing methods are qualitative and not quantitative. We
contribute to the class of quantitative methods. Sulaman et al. also state
that most of the methods are developed for IT systems in general and not
for specific types of IT systems. With respect to this observation, we provide
support for the design phase of embedded systems.

Chen et al. [246] present a holistic approach for assessment of cybersecu-
rity of complex computing systems. The authors point out the importance
of using workflows (descriptions of how a system provided its functionality)
as basics of cybersecurity analysis. Chen et al. use a wide range of sources
of information for their analysis. These are security goals (e.g. availability),
workflow description, system description (e.g. network topology, configura-
tion of devices and subsystems), attack model (e.g. attacker strategies and
entry points), and evidence (e.g. probability to success). These information
is used to construct three types of graphs. These are G-graph (that combines
security goals and workflows), GS-graphs (that embeds system descriptions
into a G-graph), and GSA-graph (that embeds attack models into a GS-
graph). These structures (generally referred to as security argument graphs)
are generated automatically (details are presented by Tippenhauer [247]).
Vu et al. [248] describe a tool called CyberSAGE that support the presented
approach.

We find that Chen et al. approach differ from SEED from many per-
spectives and at the same time it shares a lot of commonalities with SEED.

7.6. RISKS AND ATTACKS 145

For example, SEED emphasises knowledge capturing and reuse of it, while
this concept is not distinct in the Chen et al. approach; for quantitative
analysis we employ Markovian processes, while Chen et al. exploit Boolean
algebra for the assessment; we focus on certain modelling languages (e.g.
MARTE, SPACE), while Chen et al. leave these details outside of their
approach. As we mentioned above, Chen et al. [246] use a wide range of
sources of information for their analysis. One can draw similarities to in-
formation consumed by our methods, i.e. security properties (comparable
to security goals of Chen et al.), functional models (comparable to work-
flow descriptions of Chen et al.), execution platform models (comparable
to system descriptions of Chen et al.), attack models (comparable to attack
models of Chen et al. annotated with quantitative information, i.e. evidence
in terms of Chen et al.). Differently from our methods, Chen et al. generate
intermediate graphs (i.e. security argument graphs) for conducting analy-
sis. One of the benefits from generating these intermediate structures is that
they can be used for understanding the causes of obtained results. This, for
example, can be a valuable input for debugging. We believe provision of
such additional information will only strength SEED.

Being a complex subject, security can be measured from different per-
spectives. Sanders [12] provides classification of security metrics into or-
ganisational, technical, and operational security metrics. Organisational
metrics describe how effectively organisational programs attain cybersecu-
rity; technical metrics score the system security level; and operational met-
rics evaluate risks to an operational environment of a system. The authors
also emphasises that security metrics should be used to measure security
throughout the whole system life-cycle. In this part of the thesis, we de-
velop security metrics that target to support system engineers when a system
is under design. The metrics that we propose can be categorised as both
operational and technical security metrics according to classification given
by Sanders [12].

7.6.2 Attack Modelling

Another type of method that quantifies security of a system is based on
attack modelling. Although all approaches mentioned above also include
some form of attack modelling, this is the main focus of methods from this
group. Hence, a lot of details about system behaviour are omitted.

Methodologies for attack modelling have been in a focus of researchers
for some time. Weiss [249] describes already in 1991 so-called threat logical
trees that resemble modern attack trees. However, the term attack tree
was actually coined by Schneier [250, 251] by the end of that decade. A
comprehensive survey of attack modelling approaches based on direct acyclic
graphs is presented by Kordy et al. [121]. We briefly mention approaches
that are not in the scope of this survey, but still relevant to our work.

Almasizadeh and Azgomi [140] define a state-based stochastic model to

146 CHAPTER 7. RELATED WORK

quantify different aspects of security, namely Mean-Time to Security Failure
(MTSF), attack path probability, and steady-state security. A system is ab-
stracted away as a set of defender transitions, i.e. as backward transitions
in an attack model. Semi-Markov chains are employed as a formalism where
transitions are associated with uniform distributions. Vigo et al. [252] con-
sider a similar set-up capturing attacker and defender behaviours. However,
they adopt a game-theoretical approach for quantification.

Madan et al. [253] propose a method to quantify security attributes of
intrusion-tolerant systems (SITAR). The measured quantities are availabil-
ity of a system and MTSF. All analysis is done based on a single model
of the intrusion-tolerant system, i.e. attack and system behaviours, and
countermeasure reactions are described within one model. The underly-
ing formalism is a semi-Markov chain. Computations are developed for the
steady-state distribution.

The novelty of our approach for quantification of risks is that it explicitly
accounts for both elements (system and attacks), but avoids mixing them in
a single model specifically created for security analysis. Such an approach
has several benefits. A system engineer and a security expert can work sep-
arately on the artefacts belonging to their own fields of responsibility and
professional expertise. In addition, the approach enables the reuse of self-
contained attack models across several systems in one application domain
(e.g. different designs of metering devices from the smart grid application
domain), because these systems can face the same attacks. It also intro-
duces a new dimension into security analysis – analysis of the impact of
a system design itself on security. Thus, our method allows analysing a
situation when an attack vector remains the same, but the system itself is
modified. Moreover, to our knowledge this is the first method that aims to
support system engineers in quantifying risks to data assets in the context
of embedded system design models from multiple stakeholder perspectives.

The attack modelling research also focuses on providing methodologies
to support elicitation of potential attacks, obtaining sound probabilities to
success for attack steps, efficiently propagation these probabilities through
the model (from leaves to upper nodes in case of attack trees), and finding
more realistic models for representing attack behaviour.

Buldas and Lenin [254] realise that an unrealistic assumption of attack
trees is that the steps should be executed in a predefined order, whereas a
realistic attack can violate the order, e.g. skipping, reordering, and retrying
steps. This work extends the results of Jürgenson and Willemson [255, 256]
who deal with effective propagation of probability to success along a tree
assuming that all attack steps are attempted independently in parallel.

Arnold et al. [131] provide formalism for time-dependent analysis of at-
tack trees. The measured quantity is the time to success – the probability
distribution for a system to be successfully attacked as time progresses. The
authors also develop an effective method for evaluation of formalised attack
scenarios based on acyclic phase-type distributions.

7.6. RISKS AND ATTACKS 147

Philips and Swiler [257] early introduce an idea of an attacker profile as a
way to account for attacker capabilities that should be taken into considera-
tion when calculating probabilities of attack steps success. The authors also
bring attack templates to facilitate generation of attack graphs for a cer-
tain system. These effort has been further extended by other researchers in
different contexts, e.g. by LeMay et al. [258], and by Pieters and Davaryne-
jad [259].

LeMay et al. [258] propose a new probabilistic execution model of an
attack. Differently from the methods mentioned above where behaviour of
attackers is considered to be a Markovian process, LeMay et al. introduce
the “look ahead” function that calculates the probability of the current state
based on the future state. For this purpose, the authors consider a sophis-
ticated attack model introducing a set of subjective factors to characterise
the attack behaviour: attack preferences, goals, and skills. All these factors
form an attack profile. The calculated metrics are time to compromise, the
probability of taking a certain path, and the probability of being in a certain
attack step. Ford et al. [260] present a tool that implements this approach
(called ADVISE) in the Möbius Eclipse tool.

Pieters and Davarynejad [259] also investigate how attacker profiles af-
fect probabilities of success for an attack step. The authors distinguish
static attacker properties (skills) and dynamic attacker properties (invest-
ment schemes). The former is predefined and does not change as an attack
is carried out; while the latter is strategically chosen by an attacker and can
change over time. These two types of properties when aggregated are given
as inputs into a so-called control strength function that gives the probability
of success for an attack step.

Atzeni et al. [261] develop an idea of attack personas (adapted from
the human-computer interaction research) to support experts in elicitation
of potential attacks. An attack persona is a behavioural specification of
archetypical attackers on a system.

We believe that such methodologies can be adopted to enrich and strength
the attack model component used in our work. In our method we employ
a basic attack model concept that captures the minimum elements of an
attack model required for our analysis, and thus, giving a certain degree of
flexibility for adopting state-of-the-art results in attack modelling.

In line with current attack-based analysis frameworks, our methodology
deals with known attacks as opposed to unknown zero-day attacks. Predict-
ing and preparing a system for zero-day attacks is also an important area
of research. However, modern systems fail to protect against even known
attacks due to lack of security considerations at the design phase. Moreover,
Bilge and Dumitras [135] demonstrate that a number of launches of a certain
attack when it transients from a zero-day to known attack only grows.

8
Conclusions and Future Work

By coming to the end of the journey, we conclude this thesis and givie an
overview on the contributions of this work as well as discuss some interesting
directions for future studies and research.

8.1 Conclusions

The increased use of embedded systems in countless applications has led to
a boost in their complexity and a need for constant connectivity to open
networks. As a result, these systems operate with different categories of
data which often include sensitive information. In these realities the task of
assuring security properties of embedded systems becomes more challenging
which immediately leads to an emergent need in specific methods and tools
to support the development of embedded systems.

In this work, we have focused on some aspects of the aforementioned
challenge and identified the basic principles currently developed by the re-
search community to address these aspects. These aspects and principles
are outlined below. First, the complexity and resource scarcity of embedded
systems can no longer sustain the practice of adding security measures at
the late development phases. To overcome this issue, the focus on security
should be shifted to the design phase following the principles of model-
based engineering. Second, although security attracts more attention, there
are still a fewer security experts than embedded system engineers. The need
to share the knowledge of the security experts and apply it in multiple do-
mains in an effective way emerges. We tackle this issue by implementing
the principle of separation of concerns. Finally, complexity of embedded

149

150 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

systems and modern security solutions encourages that security solutions
are adjusted to a certain application domain, so that their integration into
an embedded system design is less of a burden. We exploit the principle of
domain specialisation to address this issue.

To address the named challenge, we have developed an approach called
SEED that is built around the basic principles mentioned above. With the
help of SEED, security experts gain an opportunity to describe developed
security solutions in a reusable manner and embedded system engineers
can select a suitable set of security solutions based on an analysis of both
system’s security needs and its resource constraints.

SEED rests on two concepts introduced in this thesis, namely Domain-
Specific Security Model (DSSM) and Performance Evaluation Record (PER).
The DSSM and PER concepts described in Chapter 4 are relatively easy to
use since they are UML models that are formalised as ontologies: the core
security ontology and the core evaluation ontology respectively. These con-
cepts serve as tools for security experts to capture their knowledge about
existing security solutions. Each DSSM enables characterising common se-
curity issues of a specific application domain in a form of security properties.
Thereafter, security properties are linked to available solutions that can be
used for their enforcement. Each PER is used to characterise the resource
overhead created by a security measure, quality of provided extra-functional
properties, and an evaluation technique applied. The underlying ontologies
allow storing the knowledge provided by experts and inspecting this knowl-
edge when it is needed for embedded system engineers.

Additionally, the SEED approach is combined with a set of methods and
tools (described in Chapter 5 and Chapter 6) that support an embedded sys-
tem engineer in selecting a suitable set of security measures to be integrated
into a system design.

The methods, explained in Chapter 5, assist an engineer to consistently
use the knowledge provided by security experts. The first method, called
asset elicitation technique, allows analysing a system design and identifying
its security needs by consulting DSSMs. The method conducts inspection
of functional and execution platform models, represented as SPACE and
MARTE models respectively, and consult DSSMs to obtain a set of security
properties that are recommended for implementation. A set of security so-
lutions that satisfy security properties are also retrieved from DSSMs. The
second method developed in this thesis examines resource constraints of
security solutions stored in PERs. This technique, called model-based com-
patibility analysis, matches platform-related constraints of a system under
development and those required by security solutions.

Chapters 4 – 5 also describe a set of tools integrated into the MagicDraw
environment as a plug-in that support the SEED approach. These tools
use technologies provided by model-driven engineering, e.g. modelling and
transformation facilities. Using the metering infrastructure domain as an
example, we have shown that the introduced concepts (DSSM and PER)

8.1. CONCLUSIONS 151

can be employed by a security expert to describe the security knowledge.
Consequently, we have demonstrated that it can be used to support an
embedded system engineer to integrate a suitable set of security solutions
exploring this security knowledge. This infrastructure has been provided by
our industrial collaborators as a use case within the European FP7 SecFutur
project.

Next, Chapter 6 focuses on providing a technique for quantifying secu-
rity risks associated with design models of embedded systems. In particular,
we have formalised confidentiality loss and integrity loss as two probabilis-
tic metrics that quantify risks associated with data assets within embedded
systems. These metrics reflect both the stakeholder take on assets and ex-
posure of these assets to security breaches. This is achieved by accounting
for system design, attack scenarios, and different stakeholder preferences
regarding data assets. We have adopted stochastic processes as the com-
putation ground for derivation of these metrics. This allows taking into
consideration the time-dependent nature and various uncertainties of in-
volved components. Thereafter, we have extended the losses computed for
each asset to a system as a whole. More specifically, we have analysed this
case from the standpoint of the expected utility and adapted the form of
the function that aggregates confidentiality and integrity loss computed for
each asset to a system level.

We have devised two application scenarios for these metrics: they can
be used to analyse how certain stakeholders benefit when SBBs are inte-
grated into a system design complementing SEED; and these metrics can
be employed to analyse impact of other design decisions on security of a
system under development. In addition, we have applied the metrics on a
smart metering device and shown their usage for visualising of and reason-
ing about security risks. Thus, we have illustrated how our methodology
allows analysing the impact of design decisions on risks in question, which
demonstrates their potential to increase awareness of engineers about secu-
rity implications for a system at earlier phases.

The SEED approach developed in this thesis contributes to the emerging
practice of systematic treatment of security aspects in embedded systems.
It is one more step towards providing support to embedded system engi-
neers when designing security-enhanced systems. We conclude with a few
reflections about the problem and solution spaces investigated during this
work.

Our work rests on the premise that security functions encapsulated into
reusable SBBs are basic elements used to support designing of security-
enhanced embedded systems. However, it is possible to envisage that en-
forcement of security properties in an embedded system is not limited to
the task of incorporating SBBs. In particular, we find that realisation (at
the design phase) of the system functionality itself and a choice of the hard-
ware/software components for an execution platform have also a consider-
able impact on security properties. For example, if several alternative ways

152 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

to allocate security assets on available components exist, the selected alloca-
tion may affect security of a system when components differ in terms of their
tamper resistance. This, in turn, affects a range of SBBs selected for their
integration into an embedded system. While these aspects might be well
understood by security experts, there is a shortage of support for embedded
system engineers to adopt them when designing a system. We believe that
this knowledge possessed by security experts made available for reuse will
empower system engineering teams to be more security conscious. Towards
this need we have employed the notions of attack scenarios and developed
the two metrics of confidentiality and integrity losses that together allow
analysing sensitivity of system risk levels with respect to design decisions.

In Chapter 5 we conclude that the use of DSMLs can improve the asset
elicitation technique thanks to richer semantics tailored to an application
domain. On the other hand, the use of a specific DSML will limit appli-
cability of SEED (or any other approach) confining it to a certain domain.
To increase applicability of DSMLs for general approaches is an important
challenge. We believe that one way to address it is to elaborate suitable ab-
straction layers that will allow adapting an approach for a range of DSMLs.
To achieve this flexibility we have structured SEED in two levels of ab-
straction, namely foundation and realisation. The foundation level is the
technology-ignorant level that defines basic principles. The realisation level
refines the formulated principles according to a selected DSML.

In conclusion, we must mention that there are still other processes where
an embedded system is not composed from separate functional and non-
functional elements, e.g. building blocks. These processes may have many
other emerging challenges when dealing with a task of supporting engineers
in developing security-enhanced embedded systems. This is also an inter-
esting direction of work, but it is outside of the scope of this thesis.

8.2 Future Work

There are of course many ways to enrich and build upon the work described
in this thesis. In the following, we outline some of them.

8.2.1 Enhancing SEED

The current version of the core security ontology refines the asset concept
by two sub-classes, namely data in transit and data stationary. One path
for future work is to study what are other important assets to be included
into the ontology. These can be refined types of data assets or even asset
of different nature, e.g. algorithms, pieces of hardware and software. Secu-
rity measures can be also considered as assets. However, once new assets
are introduced, they should be traceable into a system model to automate
their elicitation. The currently employed SPACE modelling language is a
general language for modelling of distributed applications. Its semantics

8.2. FUTURE WORK 153

does not allow identifying other classes of assets within functional models
specified with this language. To tackle this issue, a more expressive, i.e.
more domain-specific, language should be employed for the SEED realisa-
tion. This language should allow identifying newly introduced assets auto-
matically from functional and platform models of a system. For example,
in the current state of the SEED realisation, pieces of hardware and soft-
ware can be already identified within a system model since we use MARTE
that has appropriate semantics to express embedded system resources. In
overall, this direction will require studying both a range of possible assets
and existing DSMLs analysing their suitability for extension of the asset
elicitation technique.

The representation of security properties is an active and interesting
topic. In our work, a tuple consisting of the protected asset, provided se-
curity goal, and used defence strategy represents a security property. This
convention limits the range of considered security properties to those that
can be expressed by such a tuple. However, some security properties can be
only expressed, for example, with respect to an operation and an involved
actor. Therefore, we think that employment of a more powerful language
to express security properties will increase the applicability of the SEED
approach. Thus, we propose this topic as another potential direction for
future work.

The domain specialisation principle adopted by SEED dictates that se-
curity needs of a system vary based on the nature of an application since it
imposes different set of assets that can be present in a system. For example,
banking application will have transaction records while metering devices
will have measurements as one of their typical assets. Besides the need
for security protection also depends on present threats imposed by different
deployment environments of a system, i.e. the context where a considered
embedded system is used. For example, a metering device deployed in a
controlled office environment will be exposed to a set of attacks that are
different from the attacks possible when the same device is deployed in an
opened public environment. The nature of an application is accounted for
in SEED by introducing the notion of an application domain. The next step
will be to systematically elaborate the threat related element. We envis-
age two alternative solutions to account for threats when capturing security
knowledge. First, one can refine the domain concept including information
about context in the definition of the domain itself. For example, instead
of specifying a “metering devices” domain, one can define such domains
as “metering devices in households” and “metering devices in office build-
ings”. Another alternative is to encapsulate these considerations in a special
threat ontology. In such a way, one can create a set of threat context pro-
files for one application domain. For example, when there is the metering
devices domain, it can be associated with several sets of threat profiles that
will characterise threats imposed by different deployment environments, e.g.
households, office buildings, and public locations. We find that the latter

154 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

alternative gives more flexibility.
In SEED we propose to constantly update the enriched security ontology

when capturing the domain-specific security knowledge. Therefore, an im-
portant question of maintaining consistency of the enriched ontology arises.
In particular, an obvious problem with such an update is pollution of the
ontology with concrete SBBs that have different names but refer to the same
implementation. Some issues can be resolved by built-in ontology services
together with such constructs as owl:sameAs or owl:differentFrom. How-
ever, additional support is needed to ensure that two (or more) concrete
SBBs under different names are equal implementations as an example. We
envisage that techniques from the area of model comparison or models diff
(applied to functional and platform models of concrete SBBs) can be em-
ployed to address the mentioned issue.

The starting point of SEED is when an embedded system engineer has an
initial version of a functional model of a system and some decisions about a
used platform are taken. However, for security-critical systems, e.g. defence
applications, the security requirements drive and affect the functionality of
a system. Therefore, identifying alternative model-based approaches that
start directly from security assets and their security goals can be another
subject to study.

The SEED approach provides an infrastructure for capturing diverse
performance evaluation results where both resource footprint indices and
quality of service characteristics are stored. The natural development of
this direction is the use of this data for different kinds of trade-off analyses.
Thus, a path for future work will be the exploration of other criteria and
strategies to reuse the performance analysis results stored within PERs.

In our work we introduce the notion of model-based compatibility using
the hardware resource model defined in MARTE. The natural extension of
this course of work is to consider software model for compatibility analysis.
The software resource model provides modelling artefacts to describe APIs.
This will allow analysing software execution support (API), software services
and interfaces.

Finally, availability of advanced and engineer-friendly tools is always
a question when it comes to engineering processes. In our work, we use
MagicDraw as a platform for our supporting tools since it is selected as
an integrating environment within the SecFutur project. However, model-
driven engineering increasingly prioritises open standards. Therefore, the
migration to such environments as Eclipse Modelling Framework can be a
potential thread for future work.

8.2.2 Strengthening Security Metrics

In our work we proposed two metrics for quantification of security risks
in design models. These are confidentiality and integrity losses. A natu-
ral extension of this direction would be development of models to enable

8.2. FUTURE WORK 155

quantification of the third element of the CIA triad – availability. This
will require the definition of an event when data becomes unavailable and
mapping it to the formal models.

We envisage that accounting for SBBs and other defences will also nat-
urally fit our work in this area. Obviously, added countermeasures should
be accounted as affecting the probability distributions time to success of at-
tack steps. Attack countermeasure trees researched by Roy et al. [262, 263],
defence trees proposed by Bistarelli et al. [264], and attack-defence trees
studied by Kordy et al. [265, 266] are examples of such formalisms. How-
ever, these integrated SBBs can also influence execution time distributions
at system states since added security features may require extra compu-
tations. The main challenge in this part will be to provide such a means
for adjusting the execution time and time to success probability distribu-
tions when a certain SBB is selected by a system engineer. Naively, one
can think about re-doing the whole analysis for obtaining execution time
and time to success. However, a natural approach would be treating this
as compositional security analysis, when integration of a SBB corresponds
to updating system and attack models with a new component. In this vein,
the research question can be formulated as follows: given the results of the
earlier assessment, how to reuse them by adjusting these results when a
system is updated with a new component (a SBB) without repeating time-
and resource-consuming assessments?

We have formalised a system model as a semi-Markov chain and mainly
rely on transient probabilities when defining confidentiality and integrity
losses. Exploitation of other Markovian statistics to provide even more
elaborate and expressive definitions of risks to data assets can also be a viable
direction for future works. For example, using the already formalised models
one can obtain the number of times that the process enters a certain state
through a given time interval. This, in turn, can be used to enhance the cost
functions that may be sensitive to the number of times a confidential data
item has been observed by an attacker as an example. Another interesting
measure is a first passage time that is a measure of how long it takes to
reach a given state from another state. We believe that such statistics can
complement the current state of our method.

In our work, we extensively use the cost and full cost functions for ex-
pressing consequences when a data asset is attacked. However, it is not a
trivial task to construct these functions. To assign these costs stakehold-
ers may need to consider business values of the company and its strategy.
We can envisage that these cost functions can be built as a result of inter-
views and workshops with involved parties, and by automatically profiling
asset users [124]. We think that construction of an effective and sustain-
able method to obtain adequate cost functions is an interesting direction for
future works.

Attack process modelling is central to security research. In common with
many current attack-based analysis frameworks, our methodology deals with

156 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

known attacks as opposed to unknown zero-day attacks. While it is equally
important to prepare a system to function under known attacks, detection
of unknown attacks is also a research challenge. The methodology proposed
in our work will only benefit when zero-day attacks are also considered.

Finally, we contribute to support a system engineer by defining two met-
rics for quantifying security risks to data assets. This is an important step,
but still only a small part of the big problem of securing our systems and in-
frastructures. To achieve better security it should be measured from various
angles. Therefore, we believe that researchers and practitioners should aim
for constructing a holistic security measuring infrastructure (eco-system).
This framework should enable measuring security throughout the whole life-
cycle and on all organisational levels.

A
Semi-markov Chain Approximation

The main difference between Semi-Markov Chains (SMCs) and Discrete-
time Markov Chains (DTMCs) is that each state of a SMC is additionally
annotated with holding time distributions [76]. In this work, we have used a
transformation that approximates a SMC as a DTMC. The obtained DTMC
can be then computed using such powerful model checkers as PRISM [133].
This, in turn, enables conducting transient analysis for SMCs required for
computation of the confidentiality and integrity loss metrics defined in Chap-
ter 6.

Proposed approximation

Figures A.1(a) and A.1(b) illustrate an idea of the proposed approximation.
A SMC depicted in Figure A.1(a) has two states s1 and s2. The SMC moves
to state s2 from s1 with the transition probability ps1s2 and to state s1 from
s2 with the transition probability ps2s1 . However, before making a transition
the process holds for some time τs1s2 in a current state. This holding time
for each state is given by assigning a probability mass function that expresses
the time that a system will stay in a state before proceeding to a next state
as exemplified in Figure A.1(a). In our example, hs1s2(t) and hs2s1(t) are
holding times in states s1 and s2 respectively. Note that in general case
holding time can depend on the next transition, therefore, the notation for
holding times contains both the initial state and the destination. Hence,
hs1s2(t) is interpreted as holding time for a process in state s1 given that

157

158 APPENDIX A. SEMI-MARKOV CHAIN APPROXIMATION

S1 S2
hS

1
S
2

hS
2
S
1

(a) Original SMC

S10 S20

S11

S
1

S
2

S21

S1m S2m

...

...

......

..
.

(b) Transformed DTMC

Figure A.1: Overview of the proposed approximation

the next transition is taken into state s2. Thus,

P (τsisj = t) = hsisj (t), i = 1, 2, . . . , N ; j = 1, 2, . . . , N ; t = 1, 2, (A.1)

We consider a case where holding time distributions are discrete distri-
butions. There is also an assumption that all holding times are at least one
time unit in length, i.e. hsisj (0) = 0.

We propose to construct an equivalent DTMC by expanding each origin
state in a SMC by a set of DTMC states that emulate the holding process
as exemplified in Figure A.1(b). This DTMC has two sets of states. The
states s10, s11, ..., s1m, ... correspond to an original state s1 and the states
s20, s21, ..., s2n, ... correspond to an original state s2. The states in each
of such sets are internally related by “internal” transitions. In particular,
there is a transition for each pair of states s1i and s1(i+1) (s2i and s2(i+1)).
Additionally, since there is a transition from s1 to s2 in the original SMC,
each state s1i has a transition to s20 in the approximating DTMC. Similarly,
each state s2i has a transition to s10.

The proposed approximation can be understood with the following intu-
ition. For example, let us assume that the original SMC decides to stay for τ
time units in state s1. The corresponding behaviour of the DTMC from Fig-
ure A.1(b) is that it moves from state s10 to state s1τ along s1i : 0 < i < τ

states only. Now let us assume that the original SMC decides to move
from s1 to s2 after holding in s1 for τ time units. This behaviour is emu-
lated by the approximating DTMC as a move into s1(τ−1) from s10 along
s1i : 0 < i < τ − 1 and then taking the transition from s1(τ−1) to s20.

159

Formalisation

We consider a SMC as shown in Figure A.2(a). This model has n + 1
states. Table A.1 shows transition probabilities for this model (see row 2)
and holding time distributions (see row 3). We say that each hs0si(t) is a
vector {ai1, a

i
2, . . . , a

i
m, . . . } where aiτ = hs0si(τ) for any valid τ = 1, 2,

For simplicity, we also assume that hs0s1(τ) = hs0s2(τ) = · · · = hs0sn(τ) =
aτ for any valid τ = 1, 2,

S0 S1
ps0s1

S2

Sn

ps0s2

p
s
0s
n

...

(a) Original SMC

Sj

S1

p x
is
1

S2

Sn

...

...

x0

x1

xi

xm

r1

ri

rm

...

...

...

p x i
s 2

pxisj

p
x
isn

(b) Approximating DTMC

Figure A.2: Illustration of the proposed approximation

Table A.1: Transition probabilities and holding time distributions

s1 s2 . . . sn
transition probabilities from s0 ps0s1 ps0s2 . . . ps0sn
holding time distributions for s0 hs0s1(t) hs0s2(t) . . . hs0sn(t)

A DTMC approximated from the SMC is shown in Figure A.2(b). This
figure shows the approximation applied only for the state s0. In the ap-
proximating DTMC model, the original state s0 from the SMC is replaced
by an additional set of states x0, x1, . . . , xm, Moreover, new transitions
from each xi to sj (denoted as pxisj), and from each xi to x(i+1) (denoted as
ri+1) are added. The transition probability matrix for this DTMC model is
summarised in Table A.2. In this table, ri and pxisj are calculated according

160 APPENDIX A. SEMI-MARKOV CHAIN APPROXIMATION

to equations (A.2) and (A.3) respectively.

ri =

1− a1, i = 1

1−
ai

∏i−1
k=1 rk

, otherwise
(A.2)

pxisj = (1− ri+1) ps0sj (A.3)

Recall that aτ is a probability of holding in a current state for τ time units.
Derivation of these expressions are explained in the last rubric of this ap-
pendix.

Table A.2: Transition probabilities for a resulting DTMC

x0 x1 x2 . . . xm . . . s1 s2 . . . sn
x0 0 r1 0 . . . 0 . . . px0s1 px0s1 . . . px0sn

x1 0 0 r2 . . . 0 . . . px1s1 px1s1 . . . px1sn

. .
xm 0 0 0 . . . 0 . . . pxms1 pxms1 . . . pxmsn

. .

Preliminary results

We apply the proposed approximation to a SMC that has 15 states. The
transition matrix is depicted in Table A.3. Table A.4 shows holding time
distributions (probability mass functions) in each state. We assume that
holding time distributions do not depend on the next transition. In some
literature such distributions are referred to as waiting time.

Table A.3: Transition probabilities for an example system

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14
s0 0 0.03 0.01 0.96 0 0 0 0 0 0 0 0 0 0 0
s1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s3 0 0 0 0 0.02 0.98 0 0 0 0 0 0 0 0 0
s4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
s5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
s6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
s7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
s8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
s9 0 0 0 0 0.13 0 0 0 0 0 0.87 0 0 0 0
s10 0 0 0 0 0 0 0 0 0 0 0 0.03 0 0.97 0
s11 0 0 0 0 0.25 0 0 0 0 0 0 0 0.75 0 0
s12 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
s13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
s14 0 0 0.01 0.01 0.98 0 0 0 0 0 0 0 0 0 0

161

Table A.4: Holding time distributions for an example system

s0 s1 s2 s3 s4 s5 s6 s7
holding time
distribution

N (10, 3) N (50, 8) N (50, 8) N (63, 8) N (155, 15) N (12, 3) N (8, 3) N (14, 3)

s8 s9 s10 s11 s12 s13 s14
holding time
distribution

N (10, 3) N (100, 2) N (45, 7) N (3, 1) N (10, 3) N (12, 3) N (10, 3)

When the proposed approximation has been applied, we obtain a DTMC
model that has 1100 states. Thereafter, we compute transient probabilities
for the DTMC model in PRISM [133] and compare these results obtained
by solving the original SMC model (equation 2.2) analytically. We take a
time interval t of 1000 units.

The results are depicted in Figure A.3. This figure shows that there is
only a slight divergence (0.46%) of the analytically obtained results from
the ones obtained from the approximating DTMC.

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

p	

system	 states	

by	 solving	 system	 equa<on	 (2.2)	

by	 proposed	 approxima<on	

Figure A.3: Preliminary results

In general case the used probability mass functions for holding time of
states can have a long tail (countably infinite). However, for the implemen-
tation of the proposed approximation, we assume that the vector hs0si(t) is
actually finite. This means that starting from some time point τ : τ ≤ t we
assume that hs0si(t) = 0. We refer to this truncated version of hs0si(t) as
h′
s0si

(t). To deal with the remaining tail, we add the aggregated probability
into the last element of the new vector h′

s0si
(t). In particular,

h′
s0si

(τ) = 1−
∑

k<τ

hs0si(k) (A.4)

Obviously, this is not exact and the error should be estimated.
A rationale of cutting off this tail is an insight that an exact approxi-

mation can lead to a large number of newly added states xi. This, in turn,
leads to the state explosion problem. We envisage that when there are tools

162 APPENDIX A. SEMI-MARKOV CHAIN APPROXIMATION

to estimate the introduced error, one can balance the needed precision and
the cost of computations.

Derivation of transition probabilities

In this section we explain derivation of the expressions for ri (shown in
system of equations (A.2)) and pxisj (shown in equation (A.3)). We focus
on the SMC and its approximating DTMC that are depicted in Figure A.2(a)
and Figure A.2(b) respectively.

The validity of equation (A.2) for ri lies in solving the following system
of equations:

r1 = 1− a1

r1r2 = 1− a2 − a1

r1r2r3 = 1− a3 − a2 − a1

. . .

r1r2r3 . . . rm = 1− am − · · · − a3 − a2 − a1

(A.5)

The rationale behind this system of equations is explained as follows:
if a system proceeds along the transition r1 (in the approximating DTMC
from Figure A.2(b)), it means that it will stay in s0 for t > 1 (in the SMC
from Figure A.2(a)). In other words,

r1 = P (ξ > 1) = 1− P (ξ ≤ 1) = 1− (hs0si(1) + hs0si(0)) = 1− a1 (A.6)

Similarly, if a system proceeds along the transition from r1 to r2, it
means that it will stay in s0 for t > 2. Thus,

r1r2 = P (ξ > 2) = 1− P (ξ ≤ 2) = 1−
2

∑

k=0

hs0si(k) = 1− a2 − a1 (A.7)

The same logic is applied up to the rm state to obtain the system of
equations (A.5). We exclude a0 since a0 = hs0sj (0) = 0.

Now, we show that equation (A.3) for pxisj exhibits the behaviour of an
approximating DTMC that is equal to the behaviour of an original SMC.
Recall that we focus on the SMC and its approximating DTMC that are
depicted in Figure A.2(a) and Figure A.2(b) respectively.

We know that one of the ways to come to si from s0 by t is to hold in
s0 for t and then take the transition to si. This behaviour can be expressed
as:

φSMC
s0si

(t) = hs0si(t) ps0si (A.8)

163

In terms of the approximating DTMC, this transition from s0 to si cor-
responds to moving into state xt−1 from x0 and then taking the transition
from xt−1 to si. This behaviour can be expressed as:

φDTMC
s0si

(t) =

t−1
∏

k=1

rk pxt−1si (A.9)

where pxt−1si = (1−rt) ps0si according to equation (A.3). To check whether
the SMC and the DTMC exhibit similar behaviour, we need to show that
φSMC
s0si

(t) = φDTMC
s0si

(t). That is, we need to show that

hs0si(t) =

t−1
∏

k=1

rk (1− rt) (A.10)

This is straightforward by replacing rt with the expression from equation (A.2).
Note that the expression pxisj = (1 − ri+1) ps0sj also yields correct

properties with respect to transitions outgoing from one state. In particular,

rm + (1− rm)
n
∑

j=1

px(m−1)sj = 1 (A.11)

B
Scenario Setup

Figure B.1(a) describes the setup for our scenario used in Chapter 6. There
are four main components: a manufacturer, a metering device, an admin-
istrator, and a collector. Operations of these components imitate a setup
designed for the TSN infrastructure [3] within the SecFutur project [17].

A manufacturer represents an organisation that produces the device and
is also responsible for its maintainance. This actor can connect to the me-
tering device to provide or revoke guarantees that this device is produced
according to (legal) specifications. These guarantees are stored on the device
in a form of a manufacturer certificate. In our scenario, the manufacturer
talks to a metering device once per year. An administrator combines func-
tions of a calibrator and a configurator. Thus, the administrator is respon-
sible for configuring and for calibrating the meter and its sensors according
to certain rules. For this scenario, we set a configuration period to three
times per year and a calibration period to twelve times per year. A col-
lector collects measurements received from metering devices, verifies, and
acknowledge these measurements. Both the collector and the administrator
are implemented as one component. Figure B.1(b) shows basic actions for
this component that reflect functions of the collector and the administrator.
The metering device is described in Section 6.3.

For our prototype, we use the hardware and firmware provided by the
open-source project OpenEnergyMonitor 1. The manufacturer, the admin-
istrator and the collector are implemented on a Raspberry Pi platform 2

1http://www.openenergymonitor.org/emon/
2http://www.raspberrypi.org

165

http://www.openenergymonitor.org/emon/
http://www.raspberrypi.org

166 APPENDIX B. SCENARIO SETUP

metering

device

administrator

manufacturer

communication

communication

Icons made by Freepik from www.flaticon.com is licensed by CC BY 3.0

(a) Main actors

configure

verify

measurements

calibrate

observe

receive

measurements

(b) The administrator component
(simplified UML activity)

Figure B.1: Scenario setup used for the prototype

equipped with an additional radio board (RFM12B 3). The metering device
is implemented based on the Arduino platform 4 assembled with the same
radio module. The measurement eavesdropping and spoofing attacks are
also implemented on the same Raspberry Pi platform.

To obtain the probability distributions used in Chapter 6 we conducted
100 experiments for each metering device state and measured its execution
time. Thereafter, we calculated mean and standard deviation and used
these two values as the corresponding parameters for a normal distribution.
A similar approach was used for obtaining time to success probability dis-
tributions for the two attacks mentioned above. However, we applied the
Kernel Density Estimation (KDE) by finding the curve that fitted best the
shape of our samples (by adjusting the bandwidth parameter). For this pur-
pose, we used the Python SciPy 5 library implementation of the KDE (the
gaussian kde function).

3http://www.hoperf.com/rf/fsk_module/RFM12B.htm
4http://www.arduino.cc
5http://www.scipy.org

http://www.hoperf.com/rf/fsk_module/RFM12B.htm
http://www.arduino.cc
http://www.scipy.org

C
From Engineering Artefacts to Formal

Models

In this part, we explain how the formal models introduced in Section 6.2,
i.e. data and state models, have been obtained from engineering artefacts.
We focus on UML models used for the SEED realisation. In particular, we
consider UML activity models as a functional model (and its slight mod-
ification SPACE) and UML class models annotated with stereotype from
MARTE::HRM as an execution platform model.

Concrete syntax

In this section, we outline some parts of UML activities and MARTE con-
crete syntax. This provides basics to assist the reader in creating a link
between syntactical constructs and abstract syntax, and its mapping onto
the formal data and state models.

In general, an (UML) activity model can be built of activities and ac-
tions where each activity is built of actions. For the sake of simplicity and
without loss of generality, we assume that there is only one activity since
nested activities is just a syntactic sugar and they can be flattened. Actions
and activities are related to each other by directed edges that create two
types of flows: a control flow and an object flow. Intuitively, a control flow
determines a logical flow of activities/actions and an object flow carries data
objects. Similar to SPACE, we require that only one edge can leave and ar-
rive to an action. Control and data flow edges can be connected to special
types of nodes that are called control nodes. These are decision, merge, join,
and fork nodes. They serve for coordinating flows in an activity.

167

168
APPENDIX C. FROM ENGINEERING ARTEFACTS TO

FORMAL MODELS

UML 2.4.1 specifies two syntactical constructions to express an object
flow, namely as pins attached to outgoing and incoming nodes, and as an
object node associated with an activity edge. SPACE adopts the pin no-
tation. Note that in the standard [28] an object node associated with an
activity edge implies that this edge is split into two object flows: incoming
and outgoing. For simplicity we converge both notations to one activity
edge, that is an object flow, associated with an object. Usually, an engineer
does not need to create explicitly a special edge to denote an object flow,
but rather he/she annotates an existing control flow with an object.

UML does not define explicitly means for assigning transition probabil-
ities to edges and execution time distributions to actions. However, this
information can be easily added into activity models by using the comment
structure. Note that since we assume that only one edge can leave an action,
a system engineer only needs to explicitly annotate with probabilities those
edges that are outgoing from decision control nodes.

As a model of an execution platform we consider a UML class model
annotated with stereotypes from MARTE::HRM (e.g. as depicted in Fig-
ure 5.4). In general, a wide range of structural UML elements can be an-
notated with these stereotypes. For the sake of this explanation, we will
consider a small part of UML syntax. Hence, we assume that a compo-
nent of an execution platform is represented as a class. The structure of an
execution platform is represented by relating classes to each other with as-
sociation links. These links can capture different kinds of relations between
components, but we omit these details in this section.

The allocation information can be captured in models using the concepts
from the MARTE::Alloc package. In particular, we use the allocation model
defined in this package. This model serves to map the application model
elements (logical parts) to the execution platform elements (physical parts).
There are several syntactical constructs to capture an allocation link that
provide various notations. A system engineer can use the allocate or assign
stereotypes. We consider this variety as syntactic sugaring. An allocation
link has two ends: source and target. In case of the SEED realisation, the
source is a behaviour element of a functional model (action) and target is a
structural element of an execution platform.

Abstract syntax

Now we formalise the concrete syntax outlined above to enable definition
of a semantic function that maps UML models of a system into the formal
models introduced in Section 6.2.2.

We say that a UML system model (YUML) is built of two elements,
namely a functional model (FM) and its execution platform model (EP).
A functional model FM is a tuple (v0, V, E, P, lex) where the first three el-
ements compromise a graph, P : E → [0, 1] is a function that associates
probabilities to edges, and lex : V → F is a labelling function that asso-
ciates execution time probability distributions to each activity node V . An

169

execution platform model EP is a tuple (C, lal) where C is a set of com-
ponents and lal : V → 2C is an allocation function that associates activity
nodes with components of an execution platform. We also use the following
helper functions:

• Two functions mapping an activity node and edge to their particular
types, namely kindV : V → KV and kindE : E → KE , where KV =
{executable, merge, join, fork, decision, timer, other} and KE =
{object, control}.

• Two functions that return the source and target nodes of a given edge,
i.e. source : E → V and target : E → V respectively.

• A function that returns an object flowing along a certain edge, namely
getobj : E → O where O is a set of object nodes.

Semantic Mapping

Transformation of a UML activity diagram into a state machine is the ongo-
ing research subject [125, 267]. We capitalise on this research area. Briefly,
this transformation can be summarised as follows. Each action node from a
UML activity diagram is transformed into a state; and transitions from an
activity diagram are directly transformed into transitions between states.
Control nodes, i.e. decision, merge, join, and fork, are transformed employ-
ing a set of rules. Figure C.1 summarises the basic transformation rules for
control and object flows when a control node is encountered. We develop
these rules from studies conducted by Ouchani et al. [125], Herrmann and
Kraemer [267], and Störrle [268], and from the semantic interpretation of
control nodes provided by UML 2.4.1 [28]. In this appendix, we assume
that there are no nested control nodes. If such cases exist we assume that
there is a function removeNested that flattens such constructions. Detail
elaboration of this function is outside of the scope of this appendix.

v
p,o

p'

p''

v'

v''

s

pp'',o

s'

s''

p p',o

(a) Decision

s''

p ,o

p' ,o'

s

s'

v''

p,o
v

v'
p' ,o'

(b) Merge

p ,o
v

v'
p' ,o'

join(o ,o')
v'' s''

join(o ,o')
s

s'

p ,o

p' ,o'

(c) Join

v'

v''

p,o
v

s'' s

s'p ,o p,o

(d) Fork

Figure C.1: Transformation rules for control nodes

170
APPENDIX C. FROM ENGINEERING ARTEFACTS TO

FORMAL MODELS

In this section, we describe a semantic mapping of FM and EP (an
UML system model) into SD and DM (the formal system model introduced
in Section 6.2) by a function [[·]] adopted for our case studies. The semantic
function [[·]] is defined as follows:

• Initial state. An initial state s0 of SM is a direct mapping of an initial
state v0 of FM, i.e. s0 = v0.

• System states. A set of states S of SM is built of two subsets S1 and
S2 as S = S1 ∪ S2. These two subsets are formed as follows:

– The subset S1 includes all executable and timer vertices from V ,
namely S1 = {v | v ∈ V, kindV (v) ∈ {executable, timer}}.

– The subset S2 includes vertices that correspond to the join control
node (observe state sj in Figure C.1(c)), namely S2 = {v | v ∈
V, kindV (v) = join}

• Transitions and transition probabilities. To obtain the transition ma-
trix P , we need to transform control flows of FM. This flow is governed
in FM by a set of control nodes. To deal with these constructs of UML
activity models we need to consider five basic cases. These cases are
analysed below.

1. In the trivial case there are two vertices in FM connected directly
by an edge e ∈ E. This edge e is directly transformed into a
relation between corresponding states in SM by assigning the
same probability P (e) to P (s, s′). Note, that P (s, s′) = 0 if such
an edge e does not exist. Thus,

P (s, s′) = P (e) where

e ∈ E, [[v]] = s, v = source(e),

[[v′]] = s′, v′ = target(e)

2. A decision node is a node that selects between its outgoing flows.
If there is a decision node vd between two vertices v and v′ in
FM then the mapping function needs to collapse two edges e

(connecting v and vd) and e′ (connecting vd and v′) into one
relation between corresponding states s and s′ in SM. This case
is illustrated in Figure C.1(a) and can be expressed as follows:

P (s, s′) = P (e) · P (e′) where

e ∈ E, e′ ∈ E, vd = target(e),

kindV (vd) = decision, [[v]] = s, v = source(e),

vd = source(e′), [[v′]] = s′, v′ = target(e′)

171

3. A merge control node brings together multiple alternate flows.
If there is a merge node vm between two vertices v and v′′ in
FM then the mapping function needs to collapse two edges e

(connecting v and vm) and ej (connecting vm and v′′) into one
relation between the corresponding states s and s′′. This case is
illustrated in Figure C.1(b) and can be expressed as follows:

P (s, s′′) = P (e) where

e ∈ E, e′′ ∈ E, vm = target(e),

kindV (vm) = merge, [[v]] = s, vi = source(e),

vm = source(e′′), [[v′′]] = s′′, v′′ = target(e′′)

4. A join control node synchronises the incoming flows. If there
is a join node vj between two vertices v and v′′ in FM then
the mapping function creates two relations between the corre-
sponding mapped states s, sj , and s′′. This case is illustrated in
Figure C.1(c) and can be expressed as follows:

P (s, sj) = P (e) where

e ∈ E, [[vj]] = sj , vj = target(e),

kindV (vj) = join, [[v]] = s, v = source(e)

and

P (sj , s
′′) = P (e′) where

e ∈ E, e′′ ∈ E, [[vj]] = sj , vj = target(e),

kindV (vj) = join, [[v]] = s, v = source(e),

kindV (v) ∈ {executable, timer}, [[v′′]] = s′′,

v′′ = target(e′′), vj = source(e′′)

5. A fork node splits a flow into multiple concurrent flows and ac-
tions of these flows are carried out in parallel. The semantic
function maps these parallel flows to an interleaved sequence of
states (which is shown to be a correct refinement by Kraemer
and Herrmann [267]). For simplicity, we demonstrate the map-
ping function that splits the flow into two parallel flows. This case
is illustrated in Figure C.1(d) and can be expressed as follows:

172
APPENDIX C. FROM ENGINEERING ARTEFACTS TO

FORMAL MODELS

P (s, s′) = P (s′, s′′) = P (e) where

e′ ∈ E, e′′ ∈ E, kindV (vf) = fork, [[v]] = s,

v = source(e), vf = target(e), vf = source(e′),

vf = source(e′′), [[v′]] = s′, v′ = target(e′),

[[v′′]] = s′′, v′′ = target(e′′)

Note that when a fork vertex is encountered it affects the rest of
the transformation since all subgraphs starting from this fork ver-
tex should be interleaved. We refer to this interleaving procedure
as forkEffect.

• Holding time. A holding time distribution for a state s ∈ S from SM
is a direct mapping of execution time for a corresponding vertex in
FM. Thus, {H(s) | s ∈ S} = {lex(v) | v ∈ V, [[v]] = s}. A holding
time distribution for state sj (a node created when a join node is
encountered) is a distribution of inter-arrival time between the first
and the last objects (o and o′) arrived into a corresponding join node.

• Data dependencies. We say that two distinct data objects o and o′

are immediately dependent, and therefore, (o, o′) ∈ D if there is such
a vertex v in FM that o is its incoming object and o′ is its outgoing
object.

D = {(o, o′) | v ∈ V, [[v]] = s, e, e′ ∈ E,

v = target(e), kindE(e) = object,

o = getobj(e), v = source(e′),

kindE(e
′) = object, o′ = getobj(e′)}

• Labelling functions. Finally, we need to provide the mapping for three
labelling functions defined for SM and DM, i.e. lC , lO, and lD.

– The labelling function lC is easily obtained from the allocation
lal from EP by direct mapping. In particular, a state s ∈ S is
associated with a set of components C ′ ⊂ C, i.e. lC(s) = C ′,
where for the corresponding vertex v ∈ V : lal(v) = C ′. Thus,

lC(s) = {c | c ∈ C, v ∈ V, [[v]] = s, c ∈ lal(v)}

– To obtain the labelling function lO, we say that all objects com-
ing in and outgoing from a vertex v along activity edges in FM
are associated with a corresponding state s in SM as objects
associated with this state. Thus,

173

lO(s) =
{

{o, o′} | v ∈ V, [[v]] = s, e ∈ E,

e′ ∈ E, v = target(e), kindE(e) = object,

o = getobj(e), v = source(e′),

kindE(e
′) = object, o′ = getobj(e′)

}

– Finally, for any dependency (o, o′) ∈ D the labelling function lD
is defined as follows:

lD(o, o′) = {s | [[v]] = s, v ∈ V, e ∈ E,

e′ ∈ E, v = target(e), v = source(e′),

kindE(e) = object, kindE(e
′) = object,

o = getobj(e), o′ = getobj(e′)}

The semantic mapping function introduced above assumes the existence
of dependencies between two distinct objects that enter and leave the same
node. However, UML does not explicitly define such semantics. Therefore,
the DM model obtained after applying [[·]] should be additionally reviewed
by an engineer to exclude incorrectly assumed dependencies. Figure C.2
depicts the process for transforming of a UML system model, i.e. YUML =
(FM,PM), into a formal model, i. e. Y = (SM,DM), introduced in
Section 6.2.2.

UML models

YUML=(FM, EP)

[[YUML]] ValidationY=(SM', DM')

Y=(SM, DM)

Figure C.2: Application of the semantic function to a UML system model

D
Experiment Details

In this appendix we give additional details of the computations discussed
in Chapter 6. Figure D.1 illustrates inputs used for our example and its
respective outputs.

There are three types of input elements. These are system design models,
attack models, and stakeholder estimates (see equation 6.4). In Chapter 6
we used two design alternatives (original and modified designs), two at-
tacks (eavesdropping and spoofing), and 30 stakeholder cost estimates (three
stakeholders, two security goals, and five data objects). Two mentioned
system designs and attacks are described in Sections 6.3.1 and Section 6.3.2
respectively. Additionally, Tables A.3 and A.4 summarise transition and
holding time probabilities (shown in Figure 6.6) in a matrix form. Table D.1
complements Table 6.3 by giving details about stakeholder cost estimates
for all data objects involved into the example from Section 6.3. To calculate
confidentiality loss, we combine each design model with the eavesdropping
attack. Analogously we combine a system model with the spoofing attack
when computing integrity loss.

Figure D.2 contains four subfigures that depict calculated values for risks
to confidentiality and integrity of measurements over time. There are fluc-
tuations in the CL and IL values in the beginning (up to 17s for CL and up
to 10s for IL in Figures D.2(a) and D.2(b) respectively) and, thereafter, the
curves are stabilising or experiencing only small oscillations. Technically this
behaviour corresponds to stabilisation of underlying SMCs to their steady-
states that is the long run behaviour. We use values observed after the
stabilisation points for the figures discussed in Section 6.3.3, i.e. Figures 6.8
and Figure 6.9. In particular, these points are 17s for CL and 10s for IL in

175

176 APPENDIX D. EXPERIMENT DETAILS

case of the original design (e.g. Figure 6.8(a)) and 443 for CL and for IL in
case of the modified design (e.g. Figure 6.8(b)).

Eavesdropping

attack (Section 6.3.2)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

IL

User Utility

provider
National

agency

original design

modified designCL/IL

(Section 6.2.3)

Spoofing attack

(Section 6.3.2)

Modified design of a

meter (Section 6.3.3,

Tables A.3 and A.4)

Stakeholder cost estimates

(Section 6.3 and Table D.1)

Original design of a

meter (Section 6.3.1,

Tables A.3 and A.4)

Figures D.2

Figures 6.8 and 6.9

Figure D.1: Illustration of input and output data

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

0.09	

0.1	

0	 5	 10	 15	 20	

CL	

Time,	 s	

User	

U1lity	 provider	

Na1onal	 agency	

(a) Original design, confidentiality loss

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0	 5	 10	 15	 20	

IL	

Time,	 s	

User	

U+lity	 provider	

Na+onal	 agency	

(b) Original design, integrity loss

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

0.08	

2	 20	 200	

CL	

Time	 (lg),	 s	

User	

U0lity	 provider	

Na0onal	 agency	

(c) Modified design, confidentiality loss

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

0.07	

2	 20	 200	

IL	

Time	 (lg),	 s	

User	

U/lity	 provider	

Na/onal	 agency	

(d) Modified design, integrity loss

Figure D.2: Visualisation of calculated CL and IL

177

Table D.1: Stakeholder cost estimates (I – Integrity and C – Confidentiality)

Asset Goal User Utility provider National agency

Measurements
I moderate (0.5) major (0.8) minor (0.1)
C major (0.8) minor (0.1) insignificant (0)

Commands
I insignificant (0) moderate (0.5) major (0.8)
C insignificant (0) moderate (0.5) minor (0.1)

Raw measurements
I minor (0.1) minor (0.1) insignificant (0)
C moderate (0.5) minor (0.1) insignificant (0)

Measurement ids
I insignificant (0) minor (0.1) insignificant (0)
C insignificant (0) minor (0.1) insignificant (0)

Acknowledgements
I insignificant (0) insignificant (0) insignificant (0)
C insignificant (0) insignificant (0) insignificant (0)

Bibliography

[1] Markus Voelter, Sebastian Benz, Christian Dietrich, Birgit Engel-
mann, Mats Helander, Lennart C. L. Kats, Eelco Visser, and Guido
Wachsmuth. DSL Engineering – Designing, Implementing and Using
Domain-Specific Languages. Dslbook.org, 2013.

[2] Frank Alexander Kraemer. Engineering Reactive Systems: A Com-
positional and Model-Driven Method Based on Collaborative Building
Blocks. PhD thesis, Norwegian University of Science and Technology,
August 2008.

[3] Deliverable D2.1b: Documentation of Use Cases, Requirements and
Success Factor Indicators. EU SecFutur project, 2012.

[4] Charles Q. Choi. Cisco IP Phones Vulnerable. http://www.spectrum.
ieee.org, 2013, 2013.

[5] Peter Clarke. Embedded Systems Next for Hack Attacks. http://
www.eetimes.com, 2013.

[6] Srivaths Ravi, Anand Raghunathan, Paul Kocher, and Sunil Hattan-
gady. Security in Embedded Systems: Design Challenges. ACM Trans-
actions on Embedded Computing Systems, 3(3):461–491, August 2004.

[7] Stephanie Neil. Securing Devices By Design. http://www.

automationworld.com, 2015.

[8] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice. Morgan & Claypool Publishers,
2012.

[9] Paul Kocher, Ruby Lee, Gary McGraw, and Anand Raghunathan.
Security as a New Dimension in Embedded System Design. In Annual
Design Automation Conference (DAC), pages 753–760. ACM, 2004.

[10] Peter Skaves. FAA Aircraft Systems Information Security Protection
Overview. In Integrated Communication, Navigation, and Surveillance
Conference (ICNS), pages A1–1–A1–17. IEEE, 2015.

[11] David Basin and Srdjan Capkun. The Research Value of Publishing
Attacks. Communications of the ACM, 55(11):22–24, 2012.

179

http://www.spectrum.ieee.org
http://www.spectrum.ieee.org
http://www.eetimes.com
http://www.eetimes.com
http://www.automationworld.com
http://www.automationworld.com

180 BIBLIOGRAPHY

[12] William H. Sanders. Quantitative Security Metrics: Unattainable
Holy Grail or a Vital Breakthrough within Our Reach? IEEE Se-
curity & Privacy, 12(2):67–69, 2014.

[13] MagicDraw. http://www.magicdraw.com, last visited May 2013.

[14] Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker,
A. Joe Turner, and Paul R. Young. Computing As a Discipline. Com-
munications of the ACM, 32(1):9–23, 1989.

[15] Ida Solheim and Ketil Stølen. Technology Research Explained. Tech-
nical report, SINTEF ICT, A313, 2007.

[16] Joseph E. McGrath. Groups: Interaction and Performance. Prentice-
Hall, 1983.

[17] The SecFutur project: Design of Secure and Energy-efficient Embed-
ded Systems for Future Internet Application. http://www.secfutur.
eu.

[18] James K. Peckol. Embedded Systems: A Contemporary Design Tool.
John Wiley & Sons, 2007.

[19] Alan M. Davis. Software Requirements: Analysis and Specification.
Prentice Hall Press, 1990.

[20] German Ministry of Defense. V Model: Software Lifecycle Process
Model, Geenral Reprint No 250., 1992.

[21] Barry W. Boehm. A Spiral Model of Software Development and En-
hancement. IEEE Computer Society Press, 1988.

[22] Bruce Powel Douglass. Real Time UML Workshop for Embedded Sys-
tems. Elsevier, 2007.

[23] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano Lavagno,
Claudio Passerone, and Alberto Sangiovanni-Vincentelli. Metropo-
lis: An Integrated Electronic System Design Environment. Computer,
IEEE, 36(4):45–52, 2003.

[24] Ludovic Apvrille, Waseem Muhammad, Rabéa Ameur-Boulifa, Sophie
Coudert, and Renaud Pacalet. A UML-based Environment for Sys-
tem Design Space Exploration. In IEEE International Conference on
Electronics, Circuits and Systems (ICECS), pages 1272–1275, 2006.

[25] Petru Eles. Lecture notes: Real-time and embedded systems. Techni-
cal report, Linköping university, Department of Computer and Infor-
mation Science (IDA), 2012.

[26] Peter Marwedel. Embedded System Design: Embedded Systems Foun-
dations of Cyber-Physical Systems. Springer Netherlands, 2011.

http://www.magicdraw.com
http://www.secfutur.eu
http://www.secfutur.eu

BIBLIOGRAPHY 181

[27] Bran Selic. The Pragmatics of Model-driven Development. IEEE
Computer Society Press, 20:19–25, 2003.

[28] Object Management Group. Unified Modeling Language: Superstruc-
ture, version 2.4.1. Document number: formal/2011-08-06, 2011.

[29] Jean Bézivin. On the Unification Power of Models. Software and
System Modeling, 4:171–188, 2005.

[30] Object Management Group. http://www.omg.org, last visited July
2013.

[31] Object Management Group. Meta-Object Facilities: Core Specifica-
tion, version 2.0. Document number: formal/06-01-01, 2001.

[32] Dragan Gasevic, Dragan Djuric, and Vladan Devedzic. Model Driven
Engineering and Ontology Development. Springer-Verlag Berlin Hei-
delberg, 2009.

[33] Krzysztof Czarnecki and Simon Helsen. Feature-based Survey of
Model Transformation Approaches. IBM Systems Journal, 45(3):621–
645, 2006.

[34] Hans Vangheluwe. Invited Talk: Promises and Challenges of Model-
Driven Engineering. In European Conference on Software Maintenance
and Reengineering (CSMR), pages 3 – 4. IEEE, 2011.

[35] Holger Giese, Tihamér Levendovszky, and Hans Vangheluwe. Sum-
mary of the Workshop on Multi-Paradigm Modeling: Concepts and
Tool. In International Conference on Models in Software Engineering
(MoDELS), pages 252 – 262. Springer Berlin Heidelberg, 2007.

[36] Steven Kelly and Juha-Pekka Tolvannen. Domain-Specific Modeling:
Enabling Full Code Generation. John Wiley & Sons, 2008.

[37] Grischa Liebel, Nadja Marko, Matthias Tichy, Andrea Leitner, and
Jörgen Hansson. Assessing the State-of-Practice of Model-Based En-
gineering in the Embedded Systems Domain. In International Con-
ference on Model-Driven Engineering Languages and Systems (MoD-
ELS), pages 166 – 182. Springer International Publishing, 2014.

[38] Florian Noyrit, Sébastien Gérard, François Terrier, and Bran Selic.
Consistent Modeling Using Multiple UML Profiles. In International
Conference on Model Driven Engineering Languages and Systems
(MoDELS), pages 392 – 406. Springer Berlin Heidelberg, 2010.

[39] François Lagarde, Huáscar Espinoza, François Terrier, and Sébastien
Gérard. Improving UML Profile Design Practices by Leveraging Con-
ceptual Domain Models. In IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 445–448, 2007.

http://www.omg.org

182 BIBLIOGRAPHY

[40] Bran Selic. A Systematic Approach to Domain-specific Language De-
sign Using UML. In Object and Component-Oriented Real-Time Dis-
tributed Computing (ISORC), pages 2 – 9. IEEE Computer Society,
2007.

[41] Object Management Group. UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems, version 1.1. Document
number: formal/2011-06-02, 2011.

[42] Frank Alexander Kraemer, Vidar Sl̊atten, and Peter Herrmann. Tool
Support for the Rapid Composition, Analysis and Implementation
of Reactive Services. Journal of Systems and Software, Elsevier,
82(12):2068 – 2080, 2009.

[43] Frank Alexander Kraemer and Peter Herrmann. Automated Encap-
sulation of UML Activities for Incremental Development and Ver-
ification. In International Conference on Model Driven Engineer-
ing, Languages and Systems (MoDELS), volume 5795, pages 571–585.
Springer-Verlag, 2009.

[44] Frank Alexander Kraemer and Peter Herrmann. Reactive Semantics
for Distributed UML Activities. In Formal Techniques for Distributed
Systems (FMOODS/FORTE), pages 17 – 31. Springer Berlin Heidel-
berg, 2010.

[45] Frank Alexander Kraemer and Peter Herrmann. Formalising
Collaboration-oriented Service Specifications Using Temporal Logic.
In Networking and Electronic Commerce Research Conference, 2007.

[46] Linda Ariani Gunawan, Peter Herrmann, and Frank Alexander Krae-
mer. Towards the Integration of Security Aspects into System Devel-
opment using Collaboration-Oriented Models. In International Con-
ference on Security Technology (SecTech), volume 58, pages 72 – 85.
Springer Berlin Heidelberg, 2009.

[47] Linda Ariani Gunawan, Frank Alexander Kraemer, and Peter Her-
rmann. A Tool-Supported Method for the Design and Implementation
of Secure Distributed Applications. In Engineering Secure Software
and Systems (ESSoS), pages 142 – 155. Springer Berlin Heidelberg,
2011.

[48] Linda Ariani Gunawan and Peter Herrmann. Compositional Verifica-
tion of Application-Level Security Properties. In Engineering Secure
Software and Systems (ESSoS), pages 75 – 90. Springer Berlin Heidel-
berg, 2013.

[49] Eclipse Modeling Framework Project (EMF). http://www.eclipse.
org/modeling/emf/, last visited July 2013.

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

BIBLIOGRAPHY 183

[50] Kermeta. http://www.kermeta.org, last visited July 2013.

[51] Frédéric Jouault and Jean Bézivin. KM3: a DSL for Metamodel Speci-
fication. In IFIP WG 6.1 international conference on Formal Methods
for Open Object-Based Distributed Systems (FMOODS), pages 171–
185. Springer Berlin Heidelberg, 2006.

[52] Graphiti – a Graphical Tooling Infrastructure. http://www.eclipse.
org/graphiti/, last visited July 2013.

[53] Graphical Modeling Project (GMP). http://www.eclipse.org/

modeling/gmp/, last visited July 2013.

[54] Xtext. http://www.eclipse.org/Xtext/, last visited July 2013.

[55] Enterprise Architecture. http://www.sparxsystems.com/products/
ea/index.html, last visited July 2013.

[56] Rhapsody. http://www-03.ibm.com/software/products/us/en/

ratirhapfami/, last visited July 2013.

[57] MDT-UML2Tools. http://www.wiki.eclipse.org/MDT-UML2Tools,
last visited July 2013.

[58] Papyrus project. http://www.papyrusuml.org, last visited July 2013.

[59] Meta Object Facility (MOF) 2.0 Query/View/Transformation (QVT).
http://www.omg.org/spec/QVT/, last visited July 2013.

[60] ATL. http://www.eclipse.org/atl/, last visited July 2013.

[61] Henshin. http://www.eclipse.org/henshin/, last visited July 2013.

[62] EMorF. http://www.emorf.org, last visited July 2013.

[63] B. Chandrasekaran, John R. Josephson, and V. Richard Benjamins.
What are Ontologies and Why Do We Need Them? In Intelligent
Systems, volume 14, pages 20–26. IEEE Educational Activities De-
partment, 1999.

[64] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. OWL 2
Web Ontology Language Structural Specification and Functional-Style
Syntax, http://www.w3.org/TR/owl2-syntax/, last visited January
2013.

[65] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language
for RDF. http://www.w3.org/TR/rdf-sparql-query/, last visited
January 2013.

[66] Protégé Editor. http://www.protege.stanford.edu, last visited
March 2013.

http://www.kermeta.org
http://www.eclipse.org/graphiti/
http://www.eclipse.org/graphiti/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/Xtext/
http://www.sparxsystems.com/products/ea/index.html
http://www.sparxsystems.com/products/ea/index.html
http://www-03.ibm.com/software/products/us/en/ratirhapfami/
http://www-03.ibm.com/software/products/us/en/ratirhapfami/
http://www.wiki.eclipse.org/MDT-UML2Tools
http://www.papyrusuml.org
http://www.omg.org/spec/QVT/
http://www.eclipse.org/atl/
http://www.eclipse.org/henshin/
http://www.emorf.org
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/rdf-sparql-query/
http://www.protege.stanford.edu

184 BIBLIOGRAPHY

[67] The OWL API. http://www.owlapi.sourceforge.net, last visited
March 2013.

[68] Matthew Horridge and Sean Bechhofer. The OWL API: A Java API
for OWL Ontologies. Semantic web, IOS Press, 2(1):11 – 21, 2011.

[69] SPARQL in Protégé-OWL. http://www.protege.stanford.edu/

doc/sparql/, last visited March 2013.

[70] Apache Jena Project. http://www.jena.apache.org/, last visited
February 2013.

[71] OWL Web Ontology Language. http://www.w3.org/TR/owl-ref/,
last visited July 2013.

[72] Almut Herzog, Nahid Shahmehri, and Claudiu Duma. An Ontology
of Information Security. Journal of Techniques and Applications for
Advanced Information Privacy and Security, IGI Global, pages 278–
301, 2007.

[73] Stefan Fenz and Andreas Ekelhart. Formalizing Information Secu-
rity Knowledge. In ACM Symposium on Information, Computer and
Communications Security (ASIACCS), pages 183–194. ACM, 2009.

[74] Anya Kim, Jim Luo, and Myong Kang. Security Ontology for Annotat-
ing Resources. In International Conference on On the Move to Mean-
ingful Internet Systems (OTM), pages 1483 – 1499. Springer Berlin
Heidelberg, 2005.

[75] Maria Karyda, Theodoros Balopoulos, Lazaros Gymnopoulos, Spy-
ros Kokolakis, Costas Lambrinoudakis, Stefanos Gritzalis, and Stelios
Dritsas. An Ontology for Secure e-government Applications. In Inter-
national Conference on Availability, Reliability and Security (ARES),
pages 1033–1037. IEEE Computer Society, 2006.

[76] Ronald A. Howard. Dynamic Probabilistic Systems, Volume II: Semi-
Markov and Decision Processes. John Wiley & Sons, New York, 1971.

[77] Bill Whyte and John Harrison. State of Practice in Secure Software:
Experts’ Views on Best Ways Ahead. Software Engineering for Secure
Systems: Industrial and Research Perspectives, IGI Global, 2011.

[78] Acceleo. http://www.eclipse.org/acceleo/, last visited February
2013.

[79] Aamer Nadeem and Younus Javed. A Performance Comparison of
Data Encryption Algorithms. In International Conference on Informa-
tion and Communication Technologies (ICICT), pages 84 – 89. IEEE,
2005.

http://www.owlapi.sourceforge.net
http://www.protege.stanford.edu/doc/sparql/
http://www.protege.stanford.edu/doc/sparql/
http://www.jena.apache.org/
http://www.w3.org/TR/owl-ref/
http://www.eclipse.org/acceleo/

BIBLIOGRAPHY 185

[80] R. Stephen Preissig. Data Encryption Standard (DES) Implementa-
tion on the TMS320C6000, Application Report, 2000.

[81] Massimiliano Raciti and Simin Nadjm-Tehrani. Embedded Cyber-
Physical Anomaly Detection in Smart Meters. In Conference on Crit-
ical Information Infrastructures Security (CRITIS), pages 34 – 45.
Springer Berlin Heidelberg, 2012.

[82] Petri Selonen. A Review of UML Model Comparison Approaches. In
Nordic Workshop on Model Driven Engineering, pages 37 – 51. IT
University of Göteborg, 2007.

[83] Lars Bendix and Pär Emanuelsson. Diff and Merge Support for Model-
based Development. In Workshop on Comparison and versioning of
software models (CVSM), pages 31 – 34. ACM, 2008.

[84] EMF Compare; http//:www.eclipse.org/emf/compare/, last vis-
ited April 2013.

[85] Geri Georg, Kyriakos Anastasakis, Behzad Bordbar, Siv Hilde Houmb,
Indrakshi Ray, and Manachai Toahchoodee. Verification and Trade-
Off Analysis of Security Properties in UML System Models. In IEEE
Transactions on Software Engineering, volume 36, pages 338 – 356.
2010.

[86] OMAP3530. http://www.ti.com/product/omap3530, last visited
February 2013.

[87] Ontology Language Manchester Syntax. http://www.w3.org/TR/

owl2-manchester-syntax/, last visited May 2013.

[88] HermiT Reasoner. http://www.hermit-reasoner.com, last visited
september 2013.

[89] Vinay Igure and Ronald Williams. Taxonomies of Attacks and Vul-
nerabilities in Computer Systems. Communications Surveys Tutorials,
IEEE, 10(1):6 – 19, 2008.

[90] Anton V. Uzunov and Eduardo B. Fernandez. An Extensible Pattern-
based Library and Taxonomy of Security Threats for Distributed Sys-
tems. Computer Standards & Interfaces, Elsevier, 36(4):734 – 747,
2014.

[91] Srivaths Ravi, Anand Raghunathan, and Srimat Chakradhar. Tamper
Resistance Mechanisms for Secure Embedded Systems. In Interna-
tional Conference on VLSI Design (VLSID), pages 605 – 611. IEEE,
2004.

http//:www.eclipse.org/emf/compare/
http://www.ti.com/product/omap3530
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.hermit-reasoner.com

186 BIBLIOGRAPHY

[92] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001.

[93] Jesús M. Hermida, Maŕıa Teresa Romá-Ferri, Andrés Montoyo, and
Manuel Palomar. Reusing UML Class Models to Generate OWL On-
tologies - A Use Case in the Pharmacotherapeutic Domain. In Inter-
national Conference on Knowledge Engineering and Ontology Devel-
opment (KEOD), pages 281–286. INSTICC Press, 2009.

[94] Zhuoming Xu, Yuyan Ni, Wenjie He, Lili Lin, and Qin Yan. Automatic
Extraction of OWL Ontologies from UML Class Diagrams. World
Wide Web, 2012.

[95] XSD Type System. http://www.w3.org/, last visited March 2013.

[96] Simple Part-whole Relations in OWL Ontologies. http://www.w3.

org/2001/sw/BestPractices/OEP/SimplePartWhole/, last visited
March 2013.

[97] Object Management Group. Ontology Definition Metamodel, version
1.0. Document number: formal/2009-05-01, 2009.

[98] Texas Instruments. http://www.ti.com, last visited March 2013.

[99] Cryptography for C64x+-based Devices. http://www.ti.com/tool/
c64xpluscrypto, last visited January 2013.

[100] Andy Seaborne. SPARQL 1.1 Property Paths, http://www.w3.

org/TR/2010/WD-sparql11-property-paths-20100126/, last vis-
ited Jan. 2013.

[101] Ray Kamal. Embedded Systems: Architecture, Programming and De-
sign. Tata McGraw-Hill, 2009.

[102] Henrik Dibowski and Klaus Kabitzsch. Ontology-Based Device De-
scriptions and Device Repository for Building Automation Devices.
EURASIP Journal of Embedded Systems, Hindawi Publishing Corp.,
pages 3:1 – 3:17, 2011.

[103] Michael Unterkalmsteiner, Tony Gorschek, A.K.M. Moinul Islam,
Chow Kian Cheng, Rahadian Bayu Permadi, and Robert Feldt. Evalu-
ation and Measurement of Software Process Improvement – A System-
atic Literature Review. IEEE Transactions on Software Engineering,
38(2):398 – 424, 2012.

[104] Nathan Baddoo and Tracy Hall. De-motivators for Software Process
Improvement: an Analysis of Practitioners Views. Journal of Systems
and Software, Elsevier Science Inc., pages 23 – 33, 2003.

http://www.w3.org/
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/
http://www.ti.com
http://www.ti.com/tool/c64xpluscrypto
http://www.ti.com/tool/c64xpluscrypto
http://www.w3.org/TR/2010/WD-sparql11-property-paths-20100126/
http://www.w3.org/TR/2010/WD-sparql11-property-paths-20100126/

BIBLIOGRAPHY 187

[105] Mahmood Niazi, David Wilson, Didar Zowghi, and Bernard Wong. A
Model for the Implementation of Software Process Improvement: An
Empirical Study. In Conference on Product Focused Software Process
Improvement (PROFES), pages 1 – 16. Springer Berlin Heidelberg,
2004.

[106] Mass Soldal Lund, Bjørnar Solhaug, and Ketil Stølen. Model-Driven
Risk Analysis: The CORAS Approach. Springer Publishing Company,
Incorporated, 2010.

[107] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl
Landwehr. Basic Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Transactions on Dependable and Secure Comput-
ing, pages 11 – 33, 2004.

[108] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson,
Frank Buschmann, and Peter Sommerlad. Security Patterns: Inte-
grating Security and Systems Engineering. John Wiley & Sons, 2005.

[109] Jan Jürjens. Secure System Development with UML. Springer-Verlag
Berlin Heidelberg, 2005.

[110] Philip Koopman. Better Embedded System Software. Drumnadrochit
Education LLC, 2010.

[111] J. Efrim Boritz. Is Practitioners’ Views on Core Concepts of Infor-
mation Integrity. International Journal of Accounting Information
Systems, Elsevier, 6(4):260 – 279, 2005.

[112] Donn B Parker. Toward a New Framework for Information Security,
The Computer Security Handbook. New York, NY: John Wiley & Sons,
2002.

[113] Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang. Smart
Grid – The New and Improved Power Grid: A Survey. In IEEE
Communications Surveys and Tutorials, pages 944 – 980, 2012.

[114] Frances M. Cleveland. Cyber Security Issues for Advanced Metering
Infrastructure (AMI). IEEE Power and Energy Society General Meet-
ing: Conversion and Delivery of Electrical Energy in the 21st Century,
pages 1 – 5, 2008.

[115] SP 800-27 Rev. A: Engineering Principles for Information Technol-
ogy Security (A Baseline for Achieving Security). Technical report,
National Institute of Standards and Technology (NIST), 2004.

[116] ISO/IEC 27000, Information technology – Security techniques – Infor-
mation security management systems. Technical report, International
Organization for Standardization (ISO), 2009.

188 BIBLIOGRAPHY

[117] The Smart Grid Interoperability Panel – Cyber Security Working
Group, Guidelines for Smart Grid Cyber Security: Vol. 1, Smart
Grid Cyber Security Strategy, Architecture, and High-Level Require-
ments. Technical report, NIST Interagency or Internal Report, (NIS-
TIR 7628).

[118] Dimitrios N. Serpanos and Artemios G. Voyiatzis. Security Challenges
in Embedded Systems. ACM Transactions on Embedded Computing
Systems, 12(1):66:1 – 66:10, 2013.

[119] Le Minh Sang Tran, Bjørnar Solhaug, and Ketil Stølen. An Ap-
proach to Select Cost-Effective Risk Countermeasures Exemplified in
CORAS. In Data and Applications Security and Privacy (DBSec),
pages 266 – 273. Springer Berlin Heidelberg, 2013.

[120] Armen Der Kiureghian and Ove Ditlevsen. Aleatory or Epistemic?
Does It Matter? Journal of Structural Safety, Risk Acceptance and
Risk Communication Risk Acceptance and Risk Communication, El-
sevier, 31(2):105 – 112, 2009.

[121] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer.
DAG-Based Attack and Defense Modeling: Don’t Miss the Forest for
the Attack Trees. Computer Science Review, Elsevier, abs/1303.7397,
2014.

[122] Ronald A. Howard. Dynamic Probabilistic Systems. 2, Semi-Markov
and Decision Processes. John Wiley & Sons, 1971.

[123] Folker den Braber, Ida Hogganvik, Soldal Lund, Ketil Stølen, and
Fredrik Vraalsen. Model-Based Security Analysis in Seven Steps – a
Guided Tour to the CORAS Method. BT Technology Journal, Kluwer
Academic Publishers-Consultants Bureau, 25(1):101–117, 2007.

[124] Youngja Park, Christopher Gates, and Stephen C. Gates. Estimat-
ing Asset Sensitivity by Profiling Users. In European Symposium on
Research in Computer Security (ESORICS), pages 94–110. Springer
Berlin Heidelberg, 2013.

[125] Samir Ouchani, Otmane Mohamed, and Mourad Debbabi. A For-
mal Verification Framework for SysML Activity Diagrams. Journal of
Expert Systems with Applications, Elsevier, 41(6):2713–2728, 2014.

[126] Gianfranco Ciardo, Reinhard German, and Christoph Lindemann. A
Characterization of the Stochastic Process Underlying a Stochastic
Petri Net. IEEE Transactions on Software Engineering, 20(7):506 –
515, 1994.

[127] Martin Erich Jobst. Security and Privacy in the Smart Energy Grid.
In Smart Grid Security Workshop (SmartGridSec). ACM, 2014.

BIBLIOGRAPHY 189

[128] Wenye Wang and Zhuo Lu. Cyber Security in the Smart Grid: Sur-
vey and Challenges. Computer Networks, Elsevier, 57(5):1344 – 1371,
2013.

[129] Hyun Sang Cho, Tatsuya Yamazaki, and Minsoo Hahn. AERO: Ex-
traction of User’s Activities from Electric Power Consumption Data.
IEEE Transactions on Consumer Electronics, 56(3):2011 – 2018, 2010.

[130] Mikhail A. Lisovich and Stephen B. Wicker. Privacy Concerns in
Upcoming Residential and Commercial Demand-response Systems. In
IEEE Proceedings on Power Systems, volume 1, pages 1 – 10, 2008.

[131] Florian Arnold, Holger Hermanns, Reza Pulungan, and Mariëlle
Stoelinga. Time-dependent Analysis of Attacks. In Conference on
Principles of Security and Trust (POST), pages 285 – 305. Springer
Berlin Heidelberg, 2014.

[132] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Ele-
ments of Statistical Learning: Data Mining, Inference, and Prediction.
Springer Series in Statistics, 2009.

[133] Gethin Norman, Marta Kwiatkowska, and David Parker. PRISM
4.0: Verification of Probabilistic Real-time Systems. In International
Conference on Computer Aided Verification (CAV), pages 585 – 591.
Springer-Verlag, 2011.

[134] Maria Vasilevskaya and Simin Nadjm-Tehrani. Model-based Secu-
rity Risk Analysis for Networked Embedded Systems. In Interna-
tional Conference on Critical Information Infrastructures Security
(CRITIS). Springer, 2014.

[135] Leyla Bilge and Tudor Dumitras. Before We Knew It: An Empirical
Study of Zero-Day Attacks In The Real World. In ACM Conference
on Computer and Communications Security (CCS), pages 833 – 844,
2012.

[136] Omar H. Alhazmi and Yashwant K. Malaiya. Modeling the Vulnerabil-
ity Discovery Process. In IEEE International Symposium on Software
Reliability Engineering (ISSRE), pages 129–138, 2005.

[137] Andy Ozment. Improving Vulnerability Discovery Models. In ACM
Workshop on Quality of Protection (QoP), pages 6 – 11, 2007.

[138] Erland Jonsson and Tomas Olovsson. A Quantitative Model of the
Security Intrusion Process Based on Attacker Behavior. IEEE Trans-
actions on Software Engineering, 23(4):235 – 245, 1997.

[139] Mohamed Kaâniche, Yves Deswarte, Eric Alata, Marc Dacier, and
Vincent Nicomette. Empirical Analysis and Statistical Modelling of

190 BIBLIOGRAPHY

Attack Processes Based on Honeypots. CoRR, http: // www. arxiv.
org/ abs/ 0704. 0861 , 2007.

[140] Jaafar Almasizadeh and Mohammad Abdollahi Azgomi. A Stochas-
tic Model of Attack Process for the Evaluation of Security Metrics.
Journal of Computer Networks, Elsevier, 57(10):2159 – 2180, 2013.

[141] Axel Thümmler, Peter Buchholz, and Miklos Telek. A Novel Approach
for Phase-type Fitting with the EM Algorithm. IEEE Transactions
on Dependable Secure Computing, 3(3):245 – 258, 2006.

[142] Teodor Sommestad, Hannes Holm, and Mathias Ekstedt. Estimates
of Success Rates of Remote Arbitrary Code Execution Attacks. Infor-
mation Management & Computer Security, 20(2):107–122, 2012.

[143] Teodor Sommestad, Hannes Holm, and Mathias Ekstedt. Estimates
of Success Rates of Denial-of-Service Attacks. In IEEE International
Conference on Trust, Security and Privacy in Computing and Com-
munications (TrustCom), pages 21 – 28, 2011.

[144] Teodor Sommestad, Hannes Holm, and Mathias Ekstedt. Quantifying
the Effectiveness of Intrusion Detection Systems in Operation through
Domain Experts. In IEEE International Conference on Trust, Security
and Privacy in Computing and Communications, pages 21–28, 2011.

[145] Simon Parsons. Current Approaches to Handling Imperfect Informa-
tion in Data and Knowledge Bases. IEEE Transactions on Knowledge
and Data Engineering, 8(3):353 – 372, 1996.

[146] Nan Feng and Jing Xie. A Bayesian Networks-based Security Risk
Analysis Model for Information Systems Integrating the Observed
Cases with Expert Experience. Scientific Research and Essays,
7(10):1103–1112, 2012.

[147] David M. Nicol, William H. Sanders, and Kishor S. Trivedi. Model-
based Evaluation: from Dependability to Security. IEEE Transactions
on Dependable and Secure Computing, pages 48 – 65, 2004.

[148] Aivo Jürgenson and Jan Willemson. Processing Multi-Parameter At-
tack Trees with Estimated Parameter Values. In International Confer-
ence on Advances in Information and Computer Security (IWSEC),
pages 308 – 319. Springer-Verlag, 2007.

[149] Bharat B. Madan, Kalyanaraman Vaidyanathan, and Kishor S.
Trivedi. A Method for Modelling and Quantifying the Security At-
tributes of Intrusion Tolerant Systems. Journal of Performance Eval-
uation, Elsevier, 56(1 – 4):167 – 186, 2004.

http://www.arxiv.org/abs/0704.0861
http://www.arxiv.org/abs/0704.0861

BIBLIOGRAPHY 191

[150] Fernando Herrera, Héctor Posadas, Pablo Peñil, Eugenio Villar, Fran-
cisco Ferrero, Raúl Valencia, and Gianluca Palermo. The COMPLEX
Methodology for UML/MARTE Modeling and Design Space Explo-
ration of Embedded Systems. Journal of Systems Architecture, Else-
vier, 60(1):55 – 78, 2014.

[151] Murray Woodside, Dorina C. Petriu, Dorin B. Petriu, Hui Shen,
Toqeer Israr, and Jose Merseguer. Performance by Unified Model
Analysis (PUMA). In ACM Workhsop on Software and Performance
(WOSP), pages 1–12. ACM, 2005.

[152] Thomas Robert and Vincent Perrier. CoFluent Methodology for UML.
A CoFluent Design, White Paper, 2010.

[153] Marcio F. da S. Oliveria, Lisane B. de Brisolara, Luigi Carro, and
Flavio R. Wagner. Early Embedded Software Design Space Explo-
ration Using UML-Based Estimation. In International Workshop on
Rapid System Prototyping, pages 24 – 32. IEEE Computer Society,
2006.

[154] Federico Ciccozzi, Antonio Cicchetti, and Mikael Sjödin. Round-trip
Support for Extra-functional Property Management in Model-driven
Engineering of Embedded Systems. Information and Software Tech-
nology, Butterworth-Heinemann, 55(6):1085 – 1100, 2012.

[155] Clemens Szyperski. Component Software: Beyond Object-Oriented
Programming. Addison-Wesley Longman Publishing Co., Inc., 2002.

[156] Ivica Crnkovic. Component-based Approach for Embedded Systems.
In International Conference on Software Engineering (ICSE), pages
712–713. IEEE, 2005.

[157] Ed Brinksma, Geoff Coulson, Ivica Crnkovic, Andy Evans, Sébastien
Gérard, Susanne Graf, Holger Hermanns, Bengt Jonsson, Anders
Ravn, Philippe Schnoebelen, François Terrier, Angelika Votintseva,
and Jean-Marc Jézéquel. Component-based Design and Integration
Platforms. Technical report, Project IST-2001-34820. ARTIST, 2003.

[158] Ivica Crnkovic, Séverine Sentilles, Aneta Vulgarakis, and Michel Chau-
dron. A Classification Framework for Software Component Models.
IEEE Transaction on Software Engineering, 37(5):593 – 615, 2011.

[159] Ivica Crnkovic. Building Reliable Component-Based Software Systems.
Artech House, Inc., 2002.

[160] Ivica Crnkovic. Managing Complexity and Predictability in Embedded
Systems: Applying Component-based Development. In International
Workshop on Software Engineering for Embedded Systems (SEES),
pages 1–1. IEEE Press, 2012.

192 BIBLIOGRAPHY

[161] Alberto Sangiovanni-Vincentelli and Marco Di Natale. Embedded Sys-
tem Design for Automotive Applications. IEEE Computer Society
Press, 40(10):42–51, 2007.

[162] Hugh Maaskant. Dynamic and Robust Streaming in and between Con-
nected Consumer-Electronic Devices, chapter A Robust Component
Model for Consumer Electronic Products, pages 167 – 192. Springer
Netherlands, 2005.

[163] Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson, and
Ivica Crnković. A Component Model for Control-Intensive Distributed
Embedded Systems. In International Symposium on Component-
Based Software Engineering (CBSE), pages 310 – 317. Springer Berlin
Heidelberg, 2008.

[164] Petr Hošek, Tomáš Pop, Tomáš Bureš, Petr Hnětynka, and Michal
Malohlava. Comparison of Component Frameworks for Real-Time Em-
bedded Systems. In International Conference on Component-Based
Software Engineering (CBSE), pages 21–36. Springer-Verlag Berlin,
Heidelberg, 2010.

[165] Tomáš Pop, Petr Hnětynka, Petr Hošek, Michal Malohlava, and Tomáš
Bureš. Comparison of Component Frameworks for Real-time Em-
bedded Systems. Journal of Knowledge and Information Systems,
Springer London, 40(1):127 – 170, 2014.

[166] Edsger W. Dijkstra. On the Role of Scientific Thought. Selected Writ-
ings on Computing: A Personal Perspective, Springer-Verlag, pages
60 – 66, 1982.

[167] Robert France, Indrakshi Ray, Geri Georg, and Sudipto Ghosh.
Aspect-Oriented Approach to Early Design Modelling. IEEE Pro-
ceedings Software, 151(4):173 – 185, 2004.

[168] Manuel Wimmer, Andrea Schauerhuber, Gerti Kappel, Werner Rets-
chitzegger, Wieland Schwinger, and Elizabeth Kapsammer. A Survey
on UML-based Aspect-oriented Design Modeling. ACM Computing
Surveys, 43(4):28:1 – 28:33, 2011.

[169] Makan Pourzandi, Djedjiga Mouheb, Chamseddine Talhi, Vitor Lima,
Mourad Debbabi, and Lingyu Wang. Weaving Security Aspects into
UML 2.0 Design Models. In Workshop on Aspect Oriented Modeling
(AOM), pages 7 – 12. ACM, 2009.

[170] Marco A. Wehrmeister and Gian R. Berkenbrock. AMoDE-RT: Ad-
vancing Model-Driven Engineering for Embedded Real-Time Systems.
In IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC), pages 1 – 7,
2013.

BIBLIOGRAPHY 193

[171] Marco A. Wehrmeister, Carlos Eduardo Pereira, and Franz J. Ram-
mig. Aspect-Oriented Model-Driven Engineering for Embedded Sys-
tems Applied to Automation Systems. IEEE Transactions on Indus-
trial Informatics, 9(4):2373–2386, 2013.

[172] Lichen Zhang. Aspect-oriented Modeling of Railway Cyber Physical
Systems Based on the Extension of AADL. In IEEE International
Conference on High Performance Computing and Communications &
IEEE International Conference on Embedded and Ubiquitous Comput-
ing, pages 2104 – 2111, 2013.

[173] Éric Piel, Samy Meftali, Jean luc Dekeyser, Rabie Ben Atitallah, Smäıl
Niar, Anne Etien, and Pierre Boulet. Gaspard2: from MARTE to
SystemC Simulation. In Workshop on Modeling and Analysis of Real-
Time and Embedded Systems (at DATE), 2008.

[174] Object Management Group. Systems Modeling Language: version 1.3.
Document number: formal/2012-06-01, 2012.

[175] Murray Woodside, Dorina C. Petriu, Dorin B. Petriu, Jing Xu, Tauseef
Israr, Geri Georg, Robert France, James M. Bieman, Siv Hilde Houmb,
and Jan Jürjens. Performance Analysis of Security Aspects by Weav-
ing Scenarios Extracted from UML models. Journal of Systems and
Software, Elsevier Science Inc., 82(1):56 – 74, 2009.

[176] Marco A. Wehrmeister, Edison P. Freitas, Carlos E. Pereira, and Franz
Rammig. GenERTiCA: A Tool for Code Generation and Aspects
Weaving. In IEEE International Symposium on Object Oriented Real-
Time Distributed Computing (ISORC), pages 234 – 238, 2008.

[177] Egor Bondarev, Michel Chaudron, and Peter H. N. de With. CARAT:
a Toolkit for Design and Performance Analysis of Component-Based
Embedded Systems. In Conference on Design, Automation and Test
in Europe (DATE), pages 1024 – 1029. EDA Consortium, 2007.

[178] ARTEMIS-JU-216682, CHESS. http://www.chess-project.ning.

com/, last visited March 2013.

[179] Andrey Chechulin, Vasily Desnitsky, and Igor Kotenko. Configuration-
based Approach to Embedded Device Security. In International Con-
ference on Mathematical Methods, Models and Architectures for Com-
puter Network Security (MMM-ACNS), pages 270 – 285. Springer
Berlin Heidelberg, 2012.

[180] Igor Kotenko and Vasily Desnitsky. Expert Knowledge Based Design
and Verification of Secure Systems with Embedded Devices. In IFIP
WG 8.4, 8.9, TC 5 International Cross-Domain Conference (CD-
ARES), pages 194 – 210. Springer International Publishing, 2014.

http://www.chess-project.ning.com/
http://www.chess-project.ning.com/

194 BIBLIOGRAPHY

[181] Phil Tetlow, Jeff Z. Pan, Daniel Oberle, Evan Wallace, Michael
Uschold, and Elisa Kendall. Ontology Driven Architectures and Poten-
tial Uses of the Semantic Web in Systems and Software Engineering.
http://www.w3.org/2001/sw/BestPractices/SE/ODA/, last visited
may 2013.

[182] Tobias Walter, Fernando Silva Parreiras, and Steffen Staab. An
Ontology-based Framework for Domain-specific Modeling. In Soft-
ware & Systems Modeling, volume 13, pages 83 – 108. Springer Berlin
Heidelberg, 2014.

[183] Jianjun Yi, Ying Cheng, and Chunhua Gu. A Reconfigurable De-
sign Method of Embedded Control System based on Ontology. In In-
ternational Conference on E-Product E-Service and E-Entertainment
(ICEEE), pages 1 – 4. IEEE, 2010.

[184] Dennis Wagelaar. Platform Ontologies for the Model-Driven Architec-
ture. PhD thesis, Vrije Universiteit Brussel, Department of Computer
Science, 2010.

[185] Bedir Tekinerdoğan, Sevcan Bilir, and Cem Abatlevi. Integrating Plat-
form Selection Rules in the Model Driven Architecture Approach. In
European Conference on Model Driven Architecture: Foundations and
Applications (MDAFA), pages 159–173. Springer-Verlag, 2003.

[186] Carlos Blanco, Joaquin Lasheras, Rafael Valencia-Garćıa, Eduardo
Fernández-Medina, Ambrosio Toval, and Mario Piattini. A System-
atic Review and Comparison of Security Ontologies. In International
Conference on Availability, Reliability and Security (ARES), pages
813 – 820. IEEE, 2008.

[187] Amina Souag, Camille Salinesi, and Isabelle Comyn-Wattiau. On-
tologies for Security Requirements: A Literature Survey and Clas-
sification. In Advanced Information Systems Engineering Workshops
(CAiSE), volume 112, pages 61 – 69. Springer Berlin Heidelberg, 2012.

[188] Stefan Gärtner, Thomas Ruhroth, Kurt Schneider, and Jan Jürjens.
Maintaining Requirements for Long-Living Software Systems by In-
corporating Security Knowledge. In IEEE International Requirements
Engineering Conference (RE), pages 103 – 112, 2014.

[189] Amina Souag, Raul Mazo, Camille Salinesi, and Isabelle Comyn-
Wattiau. A Security Ontology for Security Requirements Elicitation.
In International Symposium Engineering Secure Software and Systems
(ESSoS), volume 8978, pages 157 – 177. Springer International Pub-
lishing, 2015.

[190] Thomas Ruhroth, Stefan Gärtner, Jens Bürger, Jan Jürjens, and Kurt
Schneider. Towards Adaptation and Evolution of Domain-Specific

http://www.w3.org/2001/sw/BestPractices/SE/ODA/

BIBLIOGRAPHY 195

Knowledge for Maintaining Secure Systems. In International Confer-
ence Product-Focused Software Process Improvement(PROFES), vol-
ume 8892, pages 239–253. Springer International Publishing, 2014.

[191] Muhammad Javed, Yalemisew M. Abgaz, and Claus Pahl. Ontology
Change Management and Identification of Change Patterns. Journal
of Data Semantics, Springer-Verlag, 2(2):119 – 143, 2013.

[192] Thomas Ruhroth and Jan Jürjens. Supporting Security Assurance
in the Context of Evolution: Modular Modeling and Analysis with
UMLsec. In IEEE International Symposium on High-Assurance Sys-
tems Engineering (HASE), pages 177 – 184, 2012.

[193] Denis Hatebur, Maritta Heisel, Jan Jürjens, and Holger Schmidt. Sys-
tematic Development of UMLsec Design Models Based on Security
Requirements, in: Fundamental Approaches to Software Engineer-
ing. In International Conference on Fundamental Approaches to Soft-
ware Engineering: Part of the Joint European Conferences on The-
ory and Practice of Software (FASE/ETAPS), Springer-Verlag, pages
232–246. Springer-Verlag, 2011.

[194] Siv Hilde Houmb, Shareeful Islam, Eric Knauss, Jan Jürjens, and Kurt
Schneider. Eliciting Security Requirements and Tracing Them to De-
sign: an Integration of Common Criteria, Heuristics, and UMLsec.
Journal of Requirements Engineering, Springer-Verlag New York,
Inc., 15(1):63 – 93, 2010.

[195] Common Criteria for Information Technology Security Evaluation,
Version 3.1., Revision 4, CCMB-2012-09-001, 2012.

[196] Torsten Lodderstedt, David Basin, and Jürgen Doser. SecureUML: A
UML-Based Modeling Language for Model-Driven Security. In Inter-
national Conference on The Unified Modeling Language (UML), pages
426–441. Springer-Verlag, 2002.

[197] David Basin, Manuel Clavel, and Marina Egea. A Decade of Model-
Driven Security. In ACM Symposium on Access Control Models and
Technologies (SACMAT), pages 1 – 10, 2011.

[198] Geri Georg, Indrakshi Ray, Kyriakos Anastasakis, Behzad Bordbar,
Manachai Toahchoodee, and Siv Hilde Houmb. An Aspect-Oriented
Methodology for Designing Secure Applications. Information and Soft-
ware Technology, Elsevier, 51(5):846 – 864, 2009.

[199] Siv Hilde Houmb, Geri Georg, Dorina Petriu, Behzad Bordbar, In-
drakshi Ray, Kyriakos Anastasakis, and Robert France. Balancing Se-
curity and Performance Properties During System Architectural De-
sign. Software Engineering for Secure Systems: Industrial and Re-
search Perspectives, IGI Global, pages 155 – 191, 2011.

196 BIBLIOGRAPHY

[200] Eduardo Fernandez-Buglioni. Security Patterns in Practice: Design-
ing Secure Architectures Using Software Patterns. Wiley Publishing,
2013.

[201] Holger Schmidt, Denis Hatebur, and Maritta Heisel. A Pattern-Based
Method to Develop Secure Software. Software Engineering for Secure
Systems: Industrial and Research Perspectives, IGI Global, pages 32
– 74, 2011.

[202] Anton V. Uzunov, Eduardo B. Fernandez, and Katrina Falkner. Se-
curing Distributed Systems Using Patterns: A Survey. Computers &
Security, Elsevier, 31(5):681 – 703, 2012.

[203] Óscar Sánchez Ramón, Fernando Molina, Jesús Garćıa Molina, José
Ambrosio, and Toval Álvarez. ModelSec: A Generative Architecture
for Model-Driven Security. Journal of Universal Computer Science,
15(15):2957 – 2980, 2009.

[204] Brahim Hamid, Sigrid Gürgens, Christophe Jouvray, and Nicolas
Desnos. Enforcing S&D Pattern Design in RCES with Modeling
and Formal Approaches. In ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems (MoDELS), pages
319–333, 2011.

[205] Gabriel Pedroza, Ludovic Apvrille, and Daniel Knorreck. AVATAR: A
SysML Environment for the Formal Verification of Safety and Security
Properties. In IEEE International Conference on New Technologies
of Distributed Systems (NOTERE), pages 1 – 10, 2011.

[206] Michael Hafner, Mukhtiar Memon, and Muhammad Alam. Modeling
and Enforcing Advanced Access Control Policies in Healthcare Sys-
tems with SECTET. In Models in Software Engineering, pages 132 –
144. Springer-Verlag, 2008.

[207] Anton V. Uzunov, Eduardo B. Fernandez, and Katrina Falkner. Engi-
neering Security into Distributed Systems: A Survey of Methodologies.
Journal of Universal Computer Science, 18(20):2920 – 3006, 2012.

[208] Kresimir Kasal, Johannes Heurix, and Thomas Neubauer. Model-
Driven Development Meets Security: An Evaluation of Current Ap-
proaches. In Hawaii International Conference on System Sciences
(HICSS), IEEE, pages 1–9, 2011.

[209] Phu H. Nguyen, Jacques Klein, Yves Le Traon, and Max E. Kramer. A
Systematic Review of Model Driven Security. In Asia-Pacific Software
Engineering Conference (APSEC), volume 1, pages 432 – 441. IEEE,
2013.

BIBLIOGRAPHY 197

[210] Jostein Jensen and Martin Gilje Jaatun Security in Model Driven
Development: A Survey. In International Conference on Availability,
Reliability and Security (ARES), IEEE, pages 704–709. IEEE, 2011.

[211] Levi Lucio, Qin Zhang, Phu H. Nguyen, Moussa Amrani, Jacques
Klein, Hans Vangheluwe, and Yves Le Traonb. Advances in Model-
driven Security. Advances in Computers, Elsevier, 93:103 – 152, 2014.

[212] David Basin, Manuel Clavel, Jürgen Doser, and Marina Egea. Auto-
mated Analysis of Security-design Models. Journal of Information and
Software Technology, Butterworth-Heinemann, 51(5):815–831, 2009.

[213] Olawande Daramola, Guttorm Sindre, and Thomas Moser. Ontology-
Based Support for Security Requirements Specification Process. In
Workshops On the Move to Meaningful Internet Systems (OTM),
pages 194–206. Springer Berlin Heidelberg, 2012.

[214] Wentao Kang and Ying Liang. A Security Ontology with MDA for
Software Development. In International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CYBERC), pages
67–74. IEEE Computer Society, 2013.

[215] Stelios Dritsas, Lazaros Gymnopoulos, Maria Karyda, Theodoros
Balopoulos, Spyros Kokolakis, Costas Lambrinoudakis, and Stefanos
Gritzalis. Employing Ontologies for the Development of Security Crit-
ical Applications: The Secure e-poll Paradigm. In IFIP Conference
e-Commerce, e-Business, and e-Government (I3E), pages 187–201.
Springer US, 2005.

[216] Eduardo B. Fernandez, Hironori Washizaki, Nobukazu Yoshioka, At-
suto Kubo, and Yoshiaki Fukazawa. Classifying Security Patterns. In
Asia-Pacific Web Conference on Progress in WWW Research and De-
velopment (APWeb), volume 4976, pages 342 – 347. Springer Berlin
Heidelberg, 2008.

[217] Michael VanHilst, Eduardo B. Fernández, and Fabŕıcio A. Braz. A
Multi-Dimensional Classification for Users of Security Patterns. Jour-
nal of Research and Practice in Information Technology, Australian
Computer Society Inc., 41(2), 2009.

[218] Munawar Hafiz, Paul Adamczyk, and Ralph E. Johnson. Organizing
Security Patterns. In 4, editor, Software, IEEE, volume 24, pages
52–60, 2007.

[219] Hironori Washizaki, Eduardo B. Fernandez, Katsuhisa Maruyama, At-
suto Kubo, and Nobukazu Yoshioka. Improving the Classification of
Security Patterns. In International Workshop on Database and Expert
Systems Application (DEXA), pages 165 – 170. IEEE, 2009.

198 BIBLIOGRAPHY

[220] Phu H. Nguyen, Jacques Klein, and Yves Le Traon. Model-Driven Se-
curity with A System of Aspect-Oriented Security Design Patterns. In
Workshop on View-Based, Aspect-Oriented and Orthographic Software
Modelling (VAO), pages 51:51–51:54. ACM, 2014.

[221] Jose Fran. Ruiz, Rajesh Harjani, Antonio Mana, Vasily Desnitsky, Igor
Kotenko, and Andrey Chechulin. A Methodology for the Analysis and
Modeling of Security Threats and Attacks for Systems of Embedded
Components. In Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing (PDP), pages 261 – 268. IEEE
Computer Society, 2012.

[222] Jose Fran. Ruiz, Marcos Arjona, Antonio Mana, and Niklas Carstens.
Secure Engineering and Modelling of a Metering Devices System.
In International Conference on Availability, Reliability and Security
(ARES), pages 418–427. IEEE, 2013.

[223] Yomna Ali, Sherif El-Kassas, and Mohy Mahmoud. A Rigorous
Methodology for Security Architecture Modeling and Verification. In
International Conference on System Sciences (HICSS), pages 1 – 10.
IEEE, 2009.

[224] Brahim Hamid, Nicolas Desnos, Cyril Grepet, and Christophe Jou-
vray. Model-Based Security and Dependability Patterns in RCES
– the TERESA Approach. In International Workshop on Secu-
rity and Dependability for Resource Constrained Embedded Systems
(S&D4RCES). ACM, 2010.

[225] Matthew Eby, Jan Werner, Gabor Karsai, and Akos Ledeczi. Integrat-
ing Security Modeling into Embedded System Design. IEEE Interna-
tional Conference and Workshops on the Engineering of Computer-
Based Systems (ECBS), pages 221 – 228, March 2007.

[226] Mehrdad Saadatmand and Thomas Leveque. Modeling Security As-
pects in Distributed Real-Time Component-Based Embedded Sys-
tems. In International Conference on Information Technology : New
Generations (ITNG), pages 437 – 444. IEEE, 2012.

[227] Ludovic Apvrille and Yves Roudier. SysML-Sec: A Model-driven
Environment for Developing Secure Embedded Systems. In 8ème
Conférence sur la Sécurité des Architectures Réseaux et des Systèmes
d’Information (SAR-SSI), Mont-de-Marsan, France, 2013.

[228] Ludovic Apvrille and Yves Roudier. SysML-Sec – A Model Driven
Approach for Designing Safe and Secure Systems. In International
Conference on Model-Driven Engineering and Software Development
(Modelsward). SCITEPRESS Digital Library, 2015.

BIBLIOGRAPHY 199

[229] Seraj Fayyad and Josef Noll. Security and Safety Composition
Methodology. In International Conference on Advances in Human-
oriented and Personalized Mechanisms, Technologies, and Services
(CENTRIC), 2014.

[230] B. Barber and J. Davey. The Use of the CCTA Risk Analysis and
Management Methodology CRAMM in Health Information Systems.
In International Congress on Medical Informatics (MEDINFO), pages
1589 – 1593, 1992.

[231] Bilge Karabacak and Ibrahim Sogukpinar. ISRAM: Information Secu-
rity Risk Analysis Method. Computers & Security, Elsevier, 24(2):147
– 159, 2005.

[232] Alberts Christopher, Sandra Behrens, Richard Pethia, and William
Wilson. Operationally Critical Threat, Asset, and Vulnerability Eval-
uation (OCTAVE) Framework, Version 1.0. Technical report, Techni-
cal Report CMU/SEI-99-TR-017. ESC-TR-99-017, Carnegie Mellon.
Software Engineering Institute, 1999.

[233] Wayne Boyer and Miles McQueen. Ideal Based Cyber Security Tech-
nical Metrics for Control Systems. In International Conference on
Critical Information Infrastructures Security (CRITIS), pages 246 –
260. Springer-Verlag, 2007.

[234] Gary Stoneburner, Alice Y. Goguen, and Alexis Feringa. SP 800-30:
Risk Management Guide for Information Technology Systems. Tech-
nical report, National Institute of Standards & Technology (NIST),
2002.

[235] IEC 31010 – Risk Management – Risk Assessment Techniques. Tech-
nical report, International Organization for Standardization (ISO),
2009.

[236] DHS Risk Steering Committee. DHS Risk Lexicon, 2010.

[237] Francesco Flammini, Stefano Marrone, Nicola Mazzocca, and Valeria
Vittorini. Petri Net Modelling of Physical Vulnerability. In Workshop
Critical Information Infrastructure Security (CRITIS), volume 6983,
pages 128 – 139. Springer Berlin Heidelberg, 2013.

[238] Geri Georg, Kyriakos Anastasakis, Behzad Bordbar, Siv Hilde Houmb,
Indrakshi Ray, and Manachai Toahchoodee. Verification and Trade-
off Analysis of Security Properties in UML System Models. IEEE
Transactions on Software Engineering, 36(3):338–356, 2010.

[239] Teodor Sommestad, Mathias Ekstedt, and Pontus Johnson. A Prob-
abilistic Relational Model for Security Risk Analysis. Computers &
Security, Elsevier, 29(6):659 – 679, 2010.

200 BIBLIOGRAPHY

[240] Marco D. Aime, Andrea Atzeni, and Paolo C. Pomi. AMBRA: Au-
tomated Model-based Risk Analysis. ACM Workshop on Quality of
Protection, pages 43 – 48, 2007.

[241] Vilhelm Verendel. Quantified Security is a Weak Hypothesis: A Crit-
ical Survey of Results and Assumptions. In New Security Paradigms
Workshop (NSPW), pages 37 – 50. ACM, 2009.

[242] Sardar Muhammad Sulaman, KimWeyns, and Martin Höst. A Review
of Research on Risk Analysis Methods for IT Systems. In International
Conference on Evaluation and Assessment in Software Engineering
(EASE), pages 86 – 96. ACM, 2013.

[243] Manuel Rudolph and Reinhard Schwarz. A Critical Survey of Security
Indicator Approaches. In International Conference on Availability,
Reliability and Security (ARES), pages 291 – 300. IEEE, 2012.

[244] Leanid Krautsevich, Fabio Martinelli, and Artsiom Yautsiukhin. For-
mal Approach to Security Metrics.: What Does “More Secure” Mean
for You? In European Conference on Software Architecture (ECSA),
pages 162 – 169. ACM, 2010.

[245] Wayne Jansen. Directions in Security Metrics Research. National
Institute of Standards & Technology (NIST), 2009.

[246] Binbin Chen, David M. Nicol, William H. Sanders, Rui Tan,
William G. Temple, Nils Ole Tippenhauer, An Hoa Vu, and David
K. Y. Yau. Go with the Flow: Toward Workflow-Oriented Security
Assessment. In New Security Paradigms Workshop (NSPW), pages 65
– 76. ACM, 2013.

[247] Nils Ole Tippenhauer, William G. Temple, An Hoa Vu, Bin-
bin Chen, David M. Nicol, Zbigniew Kalbarczyk, and William H.
Sanders. Automatic Generation of Security Argument Graphs. CoRR,
abs/1405.7475.

[248] An Hoa Vu, Nils Ole Tippenhauer, Binbin Chen, David M. Nicol, and
Zbigniew Kalbarczyk. CyberSAGE: A Tool for Automatic Security As-
sessment of Cyber-Physical Systems. In International Conference on
Quantitative Evaluation of Systems (QEST), pages 384–387. Springer
International Publishing, 2014.

[249] Jonathan D. Weiss. A System Security Engineering Process. In Na-
tional Computer Security Conference, pages 572 – 581. National Insti-
tute of Standards and Technology/National Computer Security Cen-
ter, 1991.

[250] Chris Salter, O. Sami Saydjari, Bruce Schneier, and Jim Wallner. To-
ward a Secure System Engineering Methodology. In Workshop on New
Security Paradigms (NSPW), pages 2 – 10. ACM, 1998.

BIBLIOGRAPHY 201

[251] Bruce Schneier. Attack Trees: Modeling Security Threats. In Dr.
Dobb’s Journal, volume 24, pages 21 – 29, 1999.

[252] Roberto Vigo, Alessandro Bruni, and Ender Yüksel. Security Games
for Cyber-Physical Systems. In Nordic Conference on Secure IT Sys-
tems (NordSec), volume 8208, pages 17 – 32. Springer Berlin Heidel-
berg, 2013.

[253] Bharat B. Madan, Katerina Goševa-Popstojanova, Kalyanaraman
Vaidyanathan, and Kishor S. Trivedi. A Method for Modeling and
Quantifying the Security Attributes of Intrusion Tolerant Systems.
Journal of Performance Evaluation, Elsevier, 56(1 – 4):167 – 186,
2004.

[254] Ahto Buldas and Aleksandr Lenin. New Efficient Utility Upper
Bounds for the Fully Adaptive Model of Attack Trees. In International
Conference on Decision and Game Theory for Security (GameSec),
volume 8252, pages 192 – 205. Springer International Publishing, 2013.

[255] Aivo Jürgenson and Jan Willemson. On Fast and Approximate At-
tack Tree Computations. In International Conference Information
Security, Practice and Experience (ISPEC), volume 6047, pages 56 –
66. Springer Berlin Heidelberg, 2010.

[256] Aivo Jürgenson and Jan Willemson. Computing Exact Outcomes of
Multi-parameter Attack Trees. In Confederated International On the
Move to Meaningful Internet Systems (OTM), volume 5332, pages
1036 – 1051. Springer Berlin Heidelberg, 2008.

[257] Cynthia Phillips and Laura Painton Swiler. A Graph-based System
for Network-Vulnerability Analysis. In Workshop on New Security
Paradigms (NSPW), pages 71 – 79. ACM, 1998.

[258] Elizabeth LeMay, Michael D. Ford, Ken Keefe, William H. Sanders,
and Carol Muehrcke. Model-based Security Metrics Using ADversary
View Security Evaluation (ADVISE). In International Conference on
Quantitative Evaluation of Systems (QEST), pages 191 – 200. ACM,
2011.

[259] Wolter Pieters and Mohsen Davarynejad. Calculating Adversarial Risk
from Attack Trees: Control Strength and Probabilistic Attackers. In
International Workshop on Quantitative Aspects in Security Assur-
ance (QASA), pages 201–215. Springer International Publishing, 2014.

[260] Michael D. Ford, Ken Keefe, Elizabeth LeMay, William H. Sanders,
and Carol Muehrcke. Implementing the ADVISE security modeling
formalism in Möbius. In Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 1 – 8, 2013.

202 BIBLIOGRAPHY

[261] Andrea S. Atzeni, Cesare Cameroni, Shamal Faily, John Lyle, and
Ivan Flechais. Here’s Johnny: A Methodology for Developing Attacker
Personas. In International Conference on Availability, Reliability and
Security (ARES), pages 722 – 727. IEEE Computer Society, 2011.

[262] Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. ACT: Attack
Countermeasure Trees for Information Assurance Analysis. In INFO-
COM IEEE Conference on Computer Communications Workshops,
pages 1 – 2, 2010.

[263] Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. Cyber Security
Analysis Using Attack Countermeasure Trees. In Annual Workshop
on Cyber Security and Information Intelligence Research (CSIIRW),
number 28:1 – 28:4. ACM, 2010.

[264] Stefano Bistarelli, Fabio Fioravanti, and Pamela Peretti. Defense Trees
for Economic Evaluation of Security Investments. In International
Conference on Availability, Reliability and Security (ARES). IEEE,
2006.

[265] Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick
Schweitzer. Foundations of Attack-defense Trees. In International
Conference on Formal Aspects of Security and Trust (FAST), pages
80–95. Springer-Verlag, 2011.

[266] Zaruhi Aslanyan and Flemming Nielson. Pareto Efficient Solutions
of Attack-Defence Trees. In International Conference on Principles of
Security and Trust (POST), pages 95–114. Springer Berlin Heidelberg,
2015.

[267] Frank Alexander Kraemer and Peter Herrmann. Transforming Col-
laborative Service Specifications into Efficiently Executable State Ma-
chines. In International Workshop on Graph Transformation and Vi-
sual Modeling Techniques (GT-VMT), volume 7, pages 1 – 15. Elec-
tronic Communication of the EASST, 2007.

[268] Harald Störrle. Semantics and Verification of Data Flow in UML 2.0
Activities. Electronic Notes in Theoretical Computer Science, Elsevier,
127(4):35 – 52, 2004.

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology
Linköping Studies in Arts and Science

Linköping Studies in Statistics

Linköpings Studies in Information Science

Linköping Studies in Science and Technology
No 14 Anders Haraldsson: A Program Manipulation

System Based on Partial Evaluation, 1977, ISBN 91-

7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification of

Time Margins in Digital Designs, 1977, ISBN 91-7372-

157-3.

No 18 Mats Cedwall: Semantisk analys av process-

beskrivningar i naturligt språk, 1977, ISBN 91- 7372-

168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compiler

and its Implications for Ideal Hardware, 1978, ISBN

91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries in

a Meta-Database System 1978, ISBN 91- 7372-232-4.

No 51 Erland Jungert: Synthesizing Database Structures

from a User Oriented Data Model, 1980, ISBN 91-

7372-387-8.

No 54 Sture Hägglund: Contributions to the Development

of Methods and Tools for Interactive Design of

Applications Software, 1980, ISBN 91-7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement in a

Well-Structured Pattern Matcher through Partial

Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-

Computer Interface in Commercial Systems, 1981,

ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Abstract

Prolog Machine and its Application to Partial

Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques

and Tools for Expert Systems, 1981, ISBN 91-7372-

489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in

large Software Systems, 1982, ISBN 91- 7372-527-7.

No 94 Hans Lunell: Code Generator Writing Systems, 1983,

ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Ad vances in Minimum Weight

Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Programming

Environment based on Incremental Compilation,

1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning

Systems. An Experimental Operations Planning

System for Turning, 1984, ISBN 91-7372- 805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum

Decompositions of Polygons, 1987, ISBN 91-7870-

133-3.

No 165 James W. Goodwin: A Theory and System for Non-

Monotonic Reasoning, 1987, ISBN 91-7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Automated

Synthesis of VLSI Systems, 1987, ISBN 91-7870-225-9.

No 174 Johan Fagerström: A Parad igm and System for

Design of Distributed Systems, 1988, ISBN 91-7870-

301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic of

Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an

Object Oriented Knowledge Base, 1989, ISBN 91-

7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and

Verification Method , 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical

Foundations of Truth Maintenance, 1989, ISBN 91-

7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support

and Discourse Management in User Interface

Management Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowledge

Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interactive

Design in Multiple Inheritance Hierarchies, 1991,

ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic

Formalism with Explicit Defaults, 1991, ISBN 91-

7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic

Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-

Cognitive and Computational Aspects, 1992, ISBN

91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract

Machines: Contributions to a Methodology for the

Implementation of Logic Programs, 1992, ISBN 91-

7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-

bound Object References, 1992, ISBN 91-7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data

Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause

Logic with External Polymorphic Functions, 1992,

ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Manage-

ment Systems with an Active Expert Methodology,

1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity of

Reasoning about Plans, 1992, ISBN 91-7870-979-2.

No 292 Mats Wirén: Stud ies in Incremental Natural

Language Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slicing

with Applications to Debugging and Testing, 1993,

ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using

Classification and Defaults, 1993, ISBN 91-7871-078-2

No 312 Arne Jönsson: Dialogue Management for Natural

Language Interfaces - An Empirical Approach, 1993,

ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Physical

Environments: Compositional Modelling and Frame-

work for Verification, 1994, ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision Support

and Learning. A Study of Discrete-Event

Manufacturing Simulation at Asea/ ABB 1968-1993,

1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode

Switching Physical Systems, 1995, ISBN 91-7871-516-

4.

No 383 Andreas Kågedal: Exploiting Groundness in Logic

Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,

Identification and Recovery from Problematic

Control Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,

1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by

Testability Analysis and Transformations, 1996, ISBN

91-7871-654-3.

No 416 Hua Shu: Distribu ted Default Reasoning, 1996, ISBN

91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial

Training from an Organisational Learning

Perspective - Development and Evaluation of the

SSIT Method , 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Stud ies in Action Planning:

Algorithms and Complexity, 1996, ISBN 91-7871-704-

3.

No 437 Johan Boye: Directional Types in Logic

Programming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:

Participatory Design in Practice, 1996, ISBN 91-7871-

728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in

Description Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Relational

Database Technology for Finite Element Analysis

Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for

Complex Product Models, 1996, ISBN 91-7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions in

Unification-Based Formalisms, 1997, ISBN 91-7871-

857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-

ming: A Multi-Level View of Query Answering,

1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -

En stud ie av hur ekonomiska styrsystem utformas

och används efter företagsförvärv, 1997, ISBN 91-

7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-

ments-Driven Impact Analysis in Object-Oriented

Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Coop-

erative Perspective on Knowledge-Based Decision

Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management

Systems for Monitoring and Control, 1997, ISBN 91-

7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in

a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity

for Temporal and Spatial Formalisms, 1997, ISBN 91-

7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Heteroge-

neous Real-Time Systems, 1997, ISBN 91-7219-035-3.

No 503 Johan Ringström: Compiler Generation for Data-

Parallel Programming Languages from Two-Level

Semantics Specifications, 1997, ISBN 91-7219-045-0.

No 512 Anna Moberg: Närhet och d istans - Stud ier av kom-

munikationsmönster i satellitkontor och flexibla

kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a

Parallel Data Server for Telecom Applications, 1998,

ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault Prevention

- An Empirical Study in Software Engineering, 1998,

ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for

Prioritizing Software Requirements, 1998, ISBN 91-

7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy

Functional Languages, 1998, ISBN 91-7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level Synthe-

sis, 1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data - From

Discrete to Continuous, 1999, ISBN 91-7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based on Col-

laborative Dialogue with a Learning Companion,

1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-

graphical d ispersion in organisations, 1999, ISBN 91-

7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and

Evaluation of a Distribu ted Mediator System for

Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating

Inhibitory Mechanisms in Mental Image

Reinterpretation - Towards Cooperative Human-

Computer Creativity, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design

Knowledge - An Assessment of Commenting

Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narratives,

1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organizational

Aspects of Requirements Engineering Methods - A

practice-oriented approach, 1999, ISBN 91-7219-541-

X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Overload

Management in Real-Time Database Systems, 1999,

ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the

Design of Information Systems and Services in the

Public Sector: A Methods Approach, 1999, ISBN 91-

7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on the

Analysis of Impacts of Information Technology:

From Case Stud ies in Health -Care towards General

Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-

Supported Taskforce Training, 1999, ISBN 91-7219-

547-9.

No 607 Magnus Merkel: Understanding and enhancing

translation by parallel text processing, 1999, ISBN 91-

7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory

data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive

Systems: A Generic Layered Architecture

Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken -

En stud ie av logiker i fyra projekt, 1999, ISBN 91-

7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive

Simulation, and Visualization of Object-Oriented

Models in Scientific Computing, 2000, ISBN 91-7219-

709-9.

No 637 Esa Falkenroth: Database Technology for Control

and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and Knowledge

Together: Information Systems Design for Autonomy

and Control in Command Work, 2000, ISBN 91-7219-

796-X.

No 660 Erik Larsson: An Integrated System-Level Design for

Testability Methodology, 2000, ISBN 91-7219-890-7.

No 688 Marcus Bjäreland: Model-based Execution

Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action

Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Provi-

sion - Managing Mandatory and Discretionary Use

of Information Technology, 2001, ISBN -91-7373-126-

9.

No 724 Paul Scerri: Designing Agents for Systems with Ad -

justable Autonomy, 2001, ISBN 91 7373 207 9.

No 725 Tim Heyer: Semantic Inspection of Software

Artifacts: From Theory to Practice, 2001, ISBN 91

7373 208 7.

No 726 Pär Carlshamre: A Usability Perspective on Require-

ments Engineering - From Methodology to Product

Development, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Management to

Task Management in Electronic Mail, 2002, ISBN 91

7373 258 3.

No 745 Johan Åberg: Live Help Systems: An Approach to

Intelligent Help for Web Information Systems, 2002,

ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Teamwork

Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for Time

Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-supported

Interorganisational Collaboration - A Case Study in

the Swedish Public Sector, 2002, ISBN 91-7373-314-8.

No 749 Sofie Pilemalm: Information Technology for Non-

Profit Organisations - Extended Participatory Design

of an Information System for Trade Union Shop

Stewards, 2002, ISBN 91-7373-318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory

of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of Dis-

tributed Tactical Operations, 2002, ISBN 91-7373-421-

7.

No 772 Pawel Pietrzak: A Type-Based Framework for Locat-

ing Errors in Constraint Logic Programs, 2002, ISBN

91-7373-422-5.

No 758 Erik Berglund: Library Communication Among Pro-

grammers Worldwide, 2002, ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented Dynamic

Systems Using a Logic-Based Framework, 2002, ISBN

91-7373-424-1.

No 779 Mathias Broxvall: A Study in the Computational

Complexity of Temporal Reasoning, 2002, ISBN 91-

7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for Enabling

Interoperability of Structured and Object-Oriented

Analysis and Design Tools, 2002, ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En stud ie av

den Internetbaserade encyklopedins bruksegenska-

per, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coord ination of

Complex Systems´ Development, 2003, ISBN 91-

7373-604-X

No 808 Klas Gäre: Tre perspektiv på förväntningar och

förändringar i samband med införande av

informationssystem, 2003, ISBN 91-7373-618-X.

No 821 Mikael Kindborg: Concurrent Comics -

programming of social agents by child ren, 2003,

ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of

Information Systems with GIS Functionality in

Public Health Informatics: A Requirements

Engineering Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time

Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of

Communication-Intensive Heterogeneous Real-Time

Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic Behaviour of

Large Distributed Systems to Improve Development

and Testing --- An Empirical Study in Software

Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineering

Tool Data Representation and Exchange, 2004, ISBN

91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:

Stud ies in Complex Information Navigation for

Digital TV, 2004, ISBN 91-7373-940-5.

No 869 Jo Skåmedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-935-9.

No 870 Linda Askenäs: The Roles of IT - Stud ies of

Organising when Implementing and Using

Enterprise Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of Ontolo-

gies in Information-Provid ing Dialogue Systems,

2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-

Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Pred ictable and Efficient

Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:

Ubiquitous Computing Environments for Healthcare

Professionals, 2004, ISBN 91-7373-971-5

No 882 Robert Eklund: Disfluency in Swedish human-

human and human-machine travel booking d i-

alogues, 2004, ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign

Linguistic Elements in Spoken Swedish. Stud ies of

Productive Processes and their Mod elling using

Finite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-in-

ventory systems - Modelling and Analysis in both a

trad itional and an e-business context, 2004, ISBN 91-

85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interaction,

2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy

and Management Control - Theoretical Framework

and Empirical Evidence, 2004, ISBN 91-85295-82-5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre

Perspectives on Interaction Design, 2004, ISBN 91-

85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of

interaction design for sociable use, 2004, ISBN 91-

85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Scheduling

Techniques for Real-Time Embedded Systems, 2004,

ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Stud ies of Fault-

Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as

Constructing and Opposing Customer Focus: Three

Case Stud ies on Management Accounting and

Customer Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other

Extensions to Temporal Action Logic, 2005, ISBN 91-

85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual

Servoing for Unmanned Helicopter, 2005, ISBN 91-

85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test

Generation Techniques for Digital Systems, 2005,

ISBN: 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Informa-

tion Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing Algorithms for Con-

straint Satisfaction and Related Problems - Methods

and Applications, 2005, ISBN 91-85297-99-2.

No 963 Calin Curescu: Utility-based Optimisation of

Resource Allocation for Wireless Networks, 2005,

ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic

Situations, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability

Analysis for Interacting Finite State Systems, 2005,

ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for

Groups in Distributed Services, 2005, ISBN 91-85457-

54-X.

No 983 Sorin Manolache: Analysis and Optimisation of

Real-Time Systems with Stochastic Behaviour, 2005,

ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standard s-Based Application

Integration for Business-to-Business

Communications, 2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for

Automated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Reusable and

Reconfigurable Real-Time Software using Aspects

and Components, 2006, ISBN 91-85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending

the design and development agenda, 2006, ISBN 91-

85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling

and Simulation of Mechanical Systems with Detailed

Contact Analysis, 2006, ISBN 91-85497-43-X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact

Satisfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level Lan-

guage for Modeling with Partial Differential Equa-

tions, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based

Embedded System Designs, 2006, ISBN 91-85523-79-8

No 1018 Ioan Chisalita: Communication and Networking

Techniques for Traffic Safety Systems, 2006, ISBN 91-

85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The

Significance of Tools in Cognition and Cooperation,

2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code Gener-

ation for Digital Signal Processors, 2006, ISBN 91-

85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of Equa-

tion-Based Simulation Programs, 2006, ISBN 91-

85523-68-2.

No 1030 Robert Nilsson: A Mutation-based Framework for

Automated Testing of Timeliness, 2006, ISBN 91-

85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic

Generation of Tests from Programs and

Specifications, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,

2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian

Algorithms for Dimensionality Reduction in Natural

Language Processing, 2006, ISBN 91-85643-88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of Glasses -

Applying Systemic Accident Models on Road Safety,

2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which cannot

be seen - A Cognitive Systems Engineering

perspective on requirements management, 2006,

ISBN 91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for Semantic

Web Technology, 2007, ISBN 91-85643-31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion in

Software Testing, 2007, ISBN 978-91-85715-74-9.

No 1075 Almut Herzog: Usable Security Policies for Runtime

Environments, 2007, ISBN 978-91-85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and

upper bounds for Satisfiability and related problems,

2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architectures,

2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and Compre-

hensible Data Mining Models - An Evolu tionary

Approach, 2007, ISBN 978-91-85715-34-3.

No 1089 Traian Pop: Analysis and Optimisation of

Distributed Embedded Systems with Heterogeneous

Scheduling Policies, 2007, ISBN 978-91-85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-

related Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous Shape

Writing for Text Entry and Control, 2007, ISBN 978-

91-85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007, ISBN

978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting so-

cially through embodied action, 2007, ISBN 978-91-

85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Management

in Conversational Recommender Systems, 2007,

ISBN 978-91-85831-47-0.

No 1120 Thomas Gustafsson: Management of Real-Time

Data Consistency and Transient Overloads in

Embedded Systems, 2007, ISBN 978-91-85831-33-3.

No 1127 Alexandru Andrei: Energy Efficient and Pred ictable

Design of Real-time Embedded Systems, 2007, ISBN

978-91-85831-06-7.

No 1139 Per Wikberg: Eliciting Knowledge from Experts in

Modeling of Complex Systems: Managing Variation

and Interactions, 2007, ISBN 978-91-85895-66-3.

No 1143 Mehdi Amirijoo: QoS Control of Real-Time Data

Services under Uncertain Workload , 2007, ISBN 978-

91-85895-49-6.

No 1150 Sanny Syberfeldt: Optimistic Replication with For-

ward Conflict Resolution in Distributed Real-Time

Databases, 2007, ISBN 978-91-85895-27-4.

No 1155 Beatrice Alenljung: Envisioning a Future Decision

Support System for Requirements Engineering - A

Holistic and Human-centred Perspective, 2008, ISBN

978-91-85895-11-3.

No 1156 Artur Wilk: Types for XML with Application to

Xcerpt, 2008, ISBN 978-91-85895-08-3.

No 1183 Adrian Pop: Integrated Model-Driven Development

Environments for Equation-Based Object-Oriented

Languages, 2008, ISBN 978-91-7393-895-2.

No 1185 Jörgen Skågeby: Gifting Technologies -

Ethnographic Stud ies of End -users and Social Media

Sharing, 2008, ISBN 978-91-7393-892-1.

No 1187 Imad-Eldin Ali Abugessaisa: Analytical tools and

information-sharing methods supporting road safety

organizations, 2008, ISBN 978-91-7393-887-7.

No 1204 H. Joe Steinhauer: A Representation Scheme for De-

scription and Reconstruction of Object

Configurations Based on Qualitative Relations, 2008,

ISBN 978-91-7393-823-5.

No 1222 Anders Larsson: Test Optimization for Core-based

System-on-Chip, 2008, ISBN 978-91-7393-768-9.

No 1238 Andreas Borg: Processes and Models for Capacity

Requirements in Telecommunication Systems, 2009,

ISBN 978-91-7393-700-9.

No 1240 Fredrik Heintz: DyKnow: A Stream-Based Know-

ledge Processing Middleware Framework, 2009,

ISBN 978-91-7393-696-5.

No 1241 Birgitta Lindström: Testability of Dynamic Real-

Time Systems, 2009, ISBN 978-91-7393-695-8.

No 1244 Eva Blomqvist: Semi-automatic Ontology Construc-

tion based on Patterns, 2009, ISBN 978-91-7393-683-5.

No 1249 Rogier Woltjer: Functional Modeling of Constraint

Management in Aviation Safety and Command and

Control, 2009, ISBN 978-91-7393-659-0.

No 1260 Gianpaolo Conte: Vision-Based Localization and

Guidance for Unmanned Aerial Vehicles, 2009, ISBN

978-91-7393-603-3.

No 1262 AnnMarie Ericsson: Enabling Tool Support for For-

mal Analysis of ECA Rules, 2009, ISBN 978-91-7393-

598-2.

No 1266 Jiri Trnka: Exploring Tactical Command and

Control: A Role-Playing Simulation Approach, 2009,

ISBN 978-91-7393-571-5.

No 1268 Bahlol Rahimi: Supporting Collaborative Work

through ICT - How End-users Think of and Adopt

Integrated Health Information Systems, 2009, ISBN

978-91-7393-550-0.

No 1274 Fredrik Kuivinen: Algorithms and Hardness Results

for Some Valued CSPs, 2009, ISBN 978-91-7393-525-8.

No 1281 Gunnar Mathiason: Virtual Full Replication for

Scalable Distributed Real-Time Databases, 2009,

ISBN 978-91-7393-503-6.

No 1290 Viacheslav Izosimov: Scheduling and Optimization

of Fault-Tolerant Distribu ted Embedded Systems,

2009, ISBN 978-91-7393-482-4.

No 1294 Johan Thapper: Aspects of a Constraint

Optimisation Problem, 2010, ISBN 978-91-7393-464-0.

No 1306 Susanna Nilsson: Augmentation in the Wild : User

Centered Development and Evaluation of

Augmented Reality Applications, 2010, ISBN 978-91-

7393-416-9.

No 1313 Christer Thörn: On the Quality of Feature Models,

2010, ISBN 978-91-7393-394-0.

No 1321 Zhiyuan He: Temperature Aware and Defect-

Probability Driven Test Scheduling for System-on-

Chip, 2010, ISBN 978-91-7393-378-0.

No 1333 David Broman: Meta-Languages and Semantics for

Equation-Based Modeling and Simulation, 2010,

ISBN 978-91-7393-335-3.

No 1337 Alexander Siemers: Contributions to Modelling and

Visualisation of Multibody Systems Simulations with

Detailed Contact Analysis, 2010, ISBN 978-91-7393-

317-9.

No 1354 Mikael Asplund: Disconnected Discoveries:

Availability Stud ies in Partitioned Networks, 2010,

ISBN 978-91-7393-278-3.

No 1359 Jana Rambusch: Mind Games Extended:

Understanding Gameplay as Situated Activity, 2010,

ISBN 978-91-7393-252-3.

No 1373 Sonia Sangari: Head Movement Correlates to Focus

Assignment in Swedish,2011,ISBN 978-91-7393-154-0.

No 1374 Jan-Erik Källhammer: Using False Alarms when

Developing Automotive Active Safety Systems, 2011,

ISBN 978-91-7393-153-3.

No 1375 Mattias Eriksson: Integrated Code Generation, 2011,

ISBN 978-91-7393-147-2.

No 1381 Ola Leifler: Affordances and Constraints of

Intelligent Decision Support for Military Command

and Control --- Three Case Stud ies of Support

Systems, 2011, ISBN 978-91-7393-133-5.

No 1386 Soheil Samii: Quality-Driven Synthesis and

Optimization of Embedded Control Systems, 2011,

ISBN 978-91-7393-102-1.

No 1419 Erik Kuiper: Geographic Routing in Intermittently-

connected Mobile Ad Hoc Networks: Algorithms

and Performance Models, 2012, ISBN 978-91-7519-

981-8.

No 1451 Sara Stymne: Text Harmonization Strategies for

Phrase-Based Statistical Machine Translation, 2012,

ISBN 978-91-7519-887-3.

No 1455 Alberto Montebelli: Modeling the Role of Energy

Management in Embodied Cognition, 2012, ISBN

978-91-7519-882-8.

No 1465 Mohammad Saifullah: Biologically-Based Interactive

Neural Network Models for Visual Attention and

Object Recognition, 2012, ISBN 978-91-7519-838-5.

No 1490 Tomas Bengtsson: Testing and Logic Optimization

Techniques for Systems on Chip, 2012, ISBN 978-91-

7519-742-5.

No 1481 David Byers: Improving Software Security by

Preventing Known Vulnerabilities, 2012, ISBN 978-

91-7519-784-5.

No 1496 Tommy Färnqvist: Exploiting Structure in CSP-

related Problems, 2013, ISBN 978-91-7519-711-1.

No 1503 John Wilander: Contributions to Specification,

Implementation, and Execution of Secure Software,

2013, ISBN 978-91-7519-681-7.

No 1506 Magnus Ingmarsson: Creating and Enabling the

Useful Service Discovery Experience, 2013, ISBN 978-

91-7519-662-6.

No 1547 Wladimir Schamai: Model-Based Verification of

Dynamic System Behavior against Requirements:

Method , Language, and Tool, 2013, ISBN 978-91-

7519-505-6.

No 1551 Henrik Svensson: Simulations, 2013, ISBN 978-91-

7519-491-2.

No 1559 Sergiu Rafiliu: Stability of Adaptive Distribu ted

Real-Time Systems with Dynamic Resource

Management, 2013, ISBN 978-91-7519-471-4.

No 1581 Usman Dastgeer: Performance-aware Component

Composition for GPU-based Systems, 2014, ISBN

978-91-7519-383-0.

No 1602 Cai Li: Reinforcement Learning of Locomotion based

on Central Pattern Generators, 2014, ISBN 978-91-

7519-313-7.

No 1652 Roland Samlaus: An Integrated Development

Environment with Enhanced Domain -Specific

Interactive Model Validation, 2015, ISBN 978-91-

7519-090-7.

No 1663 Hannes Uppman: On Some Combinatorial

Optimization Problems: Algorithms and Complexity,

2015, ISBN 978-91-7519-072-3.

No 1664 Martin Sjölund: Tools and Methods for Analysis,

Debugging, and Performance Improvement of

Equation-Based Models, 2015, ISBN 978-91-7519-071-6.

No 1666 Kristian Stavåker: Contribu tions to Simulation of

Modelica Models on Data-Parallel Multi-Core

Architectures, 2015, ISBN 978-91-7519-068-6.

No 1680 Adrian Lifa: Hardware/ Software Codesign of

Embedded Systems with Reconfigurable and

Heterogeneous Platforms, 2015, ISBN 978-91-7519-040-

2.

No 1685 Bogdan Tanasa: Timing Analysis of Distributed

Embedded Systems with Stochastic Workload and

Reliability Constraints, 2015, ISBN 978-91-7519-022-8.

No 1691 Håkan Warnquist: Troubleshooting Trucks ---

Automated Planning and Diagnosis, 2015, ISBN 978-

91-7685-993-3.

No 1702 Nima Aghaee: Thermal Issues in Testing of

Advanced Systems on Chip, 2015, ISBN 978-91-7685-

949-0.

No 1715 Maria Vasilevskaya: Security in Embedded Systems:

A Model-Based Approach with Risk Metrics, 2015,

ISBN 978-91-7685-917-9.

Linköping Studies in Arts and Science
No 504 Ing-Marie Jonsson: Social and Emotional

Characteristics of Speech-based In-Vehicle

Information Systems: Impact on Attitude and

Driving Behaviour, 2009, ISBN 978-91-7393-478-7.

No 586 Fabian Segelström: Stakeholder Engagement for

Service Design: How service designers identify and

communicate insights, 2013, ISBN 978-91-7519-554-4.

No 618 Johan Blomkvist: Representing Future Situations of

Service: Prototyping in Service Design, 2014, ISBN

978-91-7519-343-4.

No 620 Marcus Mast: Human-Robot Interaction for Semi-

Autonomous Assistive Robots, 2014, ISBN 978-91-

7519-319-9.

Linköping Studies in Stat ist ics

No 9 Davood Shahsavani: Computer Experiments De-

signed to Explore and Approximate Complex Deter -

ministic Models, 2008, ISBN 978-91-7393-976-8.

No 10 Karl Wahlin: Roadmap for Trend Detection and As-

sessment of Data Quality, 2008, ISBN 978-91-7393-

792-4.

No 11 Oleg Sysoev: Monotonic regression for large

multivariate datasets, 2010, ISBN 978-91-7393-412-1.

No 13 Agné Burauskaite-Harju: Characterizing Temporal

Change and Inter-Site Correlations in Daily and Sub-

daily Precipitation Extremes, 2011, ISBN 978-91-7393-

110-6.

Linköping Studies in Informat ion Science

No 1 Karin Axelsson: Metodisk systemstrukturering- att

skapa samstämmighet mellan informationssystem-

arkitektur och verksamhet, 1998. ISBN-9172-19-296-8.

No 2 Stefan Cronholm: Metodverktyg och användbarhet -

en stud ie av datorstödd metod baserad

systemutveckling, 1998, ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om

anveckling med kalkylprogram, 1999. ISBN-91-7219-

606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos infor-

mationssystem och affärsprocesser, 2000, ISBN 91-

7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för

processbestämning vid verksamhetsanalys, 2001,

ISBN 91-7373-067-X.

No 6 Ulf Melin: Koord ination och informationssystem i

företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability - Un-

derstanding Information Technology as a Tool for

Business Action and Communication, 2003, ISBN 91-

7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra system-

utvecklingsverksamheter - en taxonomi för

metau tveckling, 2003, ISBN91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens värden ---

 Effekter av IT i äld reomsorg, 2004, ISBN 91-7373-963-

4.

No 10 Ewa Braf: Knowledge Demanded for Action -

Stud ies on Knowledge Mediation in Organisations,

2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration method

and computerized tool sup port, 2005, ISBN 91-85297-

48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att

organisera systemförvaltningsverksamhet med hjälp

av effektiva förvaltningsobjekt, 2005, ISBN 91-85297-

60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,

motivation, IT-system och andra förutsättningar för

polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese
Christiansson: Mötet mellan process och komponent

- mot ett ramverk för en verksamhetsnära

kravspecifikation vid anskaffning av komponent-

baserade informationssystem, 2006, ISBN 91-85643-

22-X.

	Introduction
	Motivation
	Problem Formulation
	Contributions
	Research Method
	List of Publications
	Outline

	Background
	Embedded Systems Engineering
	Modelware Zoo
	Main Concepts
	UML
	MARTE
	SPACE
	Tools

	Ontology Technologies
	Semi-Markov Chains
	Metering Infrastructure

	SEED: Bird's Eye View
	Introduction to SEED
	The SEED Foundation
	Creation of a System Model
	Capturing the Domain-specific Security Knowledge
	Role of an Application Domain
	Development of a Security-enhanced Embedded System

	Capturing of the Domain-specific Security Knowledge
	Developed Concepts and Artefacts
	Domain-specific Security Model
	Performance Evaluation Record

	Capturing Security Knowledge

	Application of the Domain-specific Security Knowledge
	System Model
	Modelling a Functional Behaviour of a System
	Modelling an Execution Platform

	Association with DSSMs
	Asset Elicitation and Search for Security Properties
	Asset Elicitation on a Functional Model
	Search for Security Properties
	Asset Elicitation Utilising a Platform Model

	Search for Concrete SBBs
	Compatibility-based Selection of SBBs
	Introduction into the Compatibility Analysis
	Ontologies for Compatibility Analysis
	Model-based Compatibility Analysis
	Scalability and Performance

	Extended Form of the Process
	Discussions

	Quantifying Risks to Data Assets
	Overview
	Introducing Risks
	Security Goals and Risks to Data Assets
	Application Scenarios

	Proposed Metrics
	Confidentiality Loss and Integrity Loss
	Basic Terms: Domain, Attack, and System
	Metrics and Their Derivation

	Application to Smart Meter
	System Modelling
	Attack Modelling
	Calculating Metrics

	Extending Losses to System Level
	Discussions

	Related Work
	Composing a System from Reusable Blocks
	Component-based Development
	Aspect-oriented Development
	SEED and Reusable Blocks

	Performance Analysis at Design Phase
	Obtaining Estimates from System Models
	Using Estimates in System Models

	Marrying Ontologies and Models
	Modelling Security Knowledge
	Security-enhanced System Design
	General Methods to Deal with Security
	Ontology-based Approaches
	Selection of Security Countermeasures
	Methods to Deal with Security for Embedded Systems

	Risks and Attacks
	Risk Analysis
	Attack Modelling

	Conclusions and Future Work
	Conclusions
	Future Work
	Enhancing SEED
	Strengthening Security Metrics

	Semi-markov Chain Approximation
	Scenario Setup
	From Engineering Artefacts to Formal Models
	Experiment Details

