
Security in Embedded Systems:
Design Challenges

SRIVATHS RAVI and ANAND RAGHUNATHAN

NEC Laboratories America

PAUL KOCHER

Cryptography Research

and

SUNIL HATTANGADY

Texas Instruments Inc.

Many modern electronic systems—including personal computers, PDAs, cell phones, network
routers, smart cards, and networked sensors to name a few—need to access, store, manipulate, or
communicate sensitive information, making security a serious concern in their design. Embedded
systems, which account for a wide range of products from the electronics, semiconductor, telecom-
munications, and networking industries, face some of the most demanding security concerns—on
the one hand, they are often highly resource constrained, while on the other hand, they frequently
need to operate in physically insecure environments.

Security has been the subject of intensive research in the context of general-purpose computing
and communications systems. However, security is often misconstrued by embedded system design-
ers as the addition of features, such as specific cryptographic algorithms and security protocols, to
the system. In reality, it is a new dimension that designers should consider throughout the design
process, along with other metrics such as cost, performance, and power.

The challenges unique to embedded systems require new approaches to security covering all as-
pects of embedded system design from architecture to implementation. Security processing, which
refers to the computations that must be performed in a system for the purpose of security, can
easily overwhelm the computational capabilities of processors in both low- and high-end embedded
systems. This challenge, which we refer to as the “security processing gap,” is compounded by in-
creases in the amounts of data manipulated and the data rates that need to be achieved. Equally
daunting is the “battery gap” in battery-powered embedded systems, which is caused by the dispar-
ity between rapidly increasing energy requirements for secure operation and slow improvements
in battery technology. The final challenge is the “assurance gap,” which relates to the gap between
functional security measures (e.g., security services, protocols, and their constituent cryptographic
algorithms) and actual secure implementations. This paper provides an introduction to the chal-
lenges involved in secure embedded system design, discusses recent advances in addressing them,
and identifies opportunities for future research.

Authors’ addresses: S. Ravi and A. Raghunathan, NEC Laboratories America, Princeton, NJ;
email: {sravi,anand}@nec-labs.com; P. Kocher, Cryptography Research, San Francisco, CA; email:
paul@cryptography.com; Sunil Hattangady, Texas Instruments Inc., Dallas, TX; email: sunil@ti.
com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 1539-9087/04/0800-0461 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004, Pages 461–491.

462 • S. Ravi et al.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—System

architectures; C.2.0 [Computer Systems Organization]: Computer-Communication Networks—
General (Security and protection); C.3 [Computer Systems Organization]: Special-purpose and
application-based systems—Real-time and Embedded Systems; C.5.3 [Computer Systems Or-

ganization]: Computer Systems Implementaion—VLSI Systems; D.4.6 [Software]: Operating
Systems—Security and Protection; E.3 [Data]: Data encryption; K.6.5 [Computing Milieux]:
Management of Computing and Information Systems—Security and Protection

General Terms: Security, Design

Additional Key Words and Phrases: Embedded systems, security, architecture, hardware design,
processing requirements, battery life, security protocols, cryptographic algorithms, encryption, de-
cryption, authentication, security attacks, tamper resistance

1. INTRODUCTION

Today, an increasing number of embedded systems need to deal with security
in one form or another—from low-end systems such as wireless handsets, net-
worked sensors, and smart cards, to high-end systems such as network routers,
gateways, firewalls, and storage and web servers. Technological advances that
have spurred the development of these electronic systems have also ushered
in seemingly parallel trends in the sophistication of attacks they face. It has
been observed that the cost of insecurity in electronic systems can be very
high. A recent computer crime and security survey [Computer Security Insti-
tute] from the Computer Security Institute (CSI) and Federal Bureau of In-
vestigation (FBI) revealed that just 223 organizations sampled from various
industry sectors had lost hundreds of millions of dollars due to computer crime.
Figure 1(a) summarizes the costs from various security attacks including theft
of proprietary information, financial fraud, virus attack, and denial of service.
Other estimates include a staggering figure of nearly $1 billion in productivity
loss due to the “I Love You” virus attack [Counterpane]. With an increasing pro-
liferation of such attacks, it is not surprising that inadequate security is becom-
ing a bottleneck to the adoption of next-generation data applications and ser-
vices. For example, in the mobile appliance world, a recent survey [ePaynews]
revealed that nearly 52% of cell phone users and 47% of PDA users feel that se-
curity is the single largest concern preventing the adoption of mobile commerce
(see Figure 1(b)).

With the evolution of the Internet, information and communications secu-
rity has gained significant attention [World Wide Web Consortium 1998; U.S.
Department of Commerce 1999]. A wide variety of challenging security con-
cerns must be addressed, including data confidentiality and integrity, authen-
tication, privacy, denial of service, nonrepudiation, and digital content protec-
tion. Various security protocols and standards such as WEP [IEEE Standard
802.11], WTLS [WAP 2002], IPSec [IPSec], and SSL [SSL] are used today
to secure a range of data services and applications. While security protocols
and cryptographic algorithms address security considerations from a “func-
tional” perspective, many embedded systems are constrained by the environ-
ments they operate in, and by the resources they possess. For such systems,
there are several factors that are moving security considerations from being
an afterthought into a mainstream system (hardware/software) design issue.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 463

Fig. 1. (a) The cost of insecurity (source: [Computer Security Institute]) and (b) factors preventing
the adoption of mobile commerce (source: [ePaynews]).

For example:

� The processing capabilities of many embedded systems are easily over-
whelmed by the computational demands of security processing, leading to
failures in sustaining required data rates or number of connections.

� Battery-driven systems and small form-factor devices such as PDAs, cell
phones, and networked sensors are often severely resource constrained. It
is challenging to implement security in the face of limited battery capacities,
limited memory, and so on.

� An ever increasing range of attack techniques for breaking security, such as
software, physical, and side-channel attacks, require that the system be se-
cure even when it can be logically or physically accessed by malicious entities.
Countermeasures to these attacks need to be built in during system design.

This paper presents an overview of the challenges in the area of secure em-
bedded system design. Section 2 introduces the reader to various security con-
cerns in embedded systems. Section 3 provides a brief overview of basic security
concepts. Section 4 describes the design challenges that arise from various em-
bedded system security requirements. Sections 5 and 6 examine some of these
challenges in detail. Section 5 analyzes the performance, battery life, and flex-
ibility issues associated with security processing in embedded systems, while
Section 6 provides an overview of the various threats possible to an embedded
system. Section 7 presents case studies that depict how advanced architectures
can be used to address some of these challenges. Section 8 concludes with a
brief look ahead into the secure embedded system design roadmap.

2. SECURITY REQUIREMENTS OF EMBEDDED SYSTEMS

Embedded systems often provide critical functions that could be sabotaged by
malicious entities. Before discussing the common security requirements of em-
bedded systems, it is important to note that there are many entities involved in
a typical embedded system design, manufacturing, and usage chain. Security
requirements vary depending on whose perspective we consider.

For example, let us consider a state-of-the-art cellular handset that is capable
of wireless voice, multimedia, and data communications. Figure 2 illustrates

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

464 • S. Ravi et al.

Fig. 2. Security requirements for a cell phone.

Fig. 3. Common security requirements of embedded systems.

security requirements from the viewpoint of the provider of HW/SW compo-
nents inside the cell phone (e.g., baseband processor, operating system), the
cell phone manufacturer, the cellular service provider, the application service
provider (e.g., mobile banking service), the content provider (e.g., music or
video), and the end user of the cell phone. The end user’s primary concerns may
include the security of personal data stored and communicated by the cell phone,
while the content provider’s primary concern may be copy protection of the mul-
timedia content delivered to the cell phone, and the cell phone manufacturer
might additionally be concerned with the secrecy of proprietary firmware that
resides within the cell phone. For each of these cases, the set of untrusted (poten-
tially malicious) entities can also vary. For example, from the perspective of the
content provider, the end user of the cell phone may be an untrusted entity.
While this section outlines broad security requirements typical of embedded
systems, the security model for each embedded system will dictate the combi-
nation of requirements that apply.

Figure 3 lists the typical security requirements seen across a wide range of
embedded systems, which are described as follows:

� User identification refers to the process of validating users before allowing
them to use the system.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 465

� Secure network access provides a network connection or service access only
if the device is authorized.

� Secure communications functions include authenticating communicating
peers, ensuring confidentiality and integrity of communicated data, prevent-
ing repudiation of a communication transaction, and protecting the identity
of communicating entities.

� Secure storage mandates confidentiality and integrity of sensitive informa-
tion stored in the system.

� Content security enforces the usage restrictions of the digital content stored
or accessed by the system.

� Availability ensures that the system can perform its intended function and
service legitimate users at all times, without being disrupted by denial-of-
service attacks.

3. BASIC SECURITY CONCEPTS

Several functional security primitives have been proposed in the context of net-
work security. These include various cryptographic algorithms used for encrypt-
ing and decrypting data, and for checking the integrity of data. Broadly, cryp-
tographic algorithms can be classified into three classes—symmetric ciphers,
asymmetric ciphers, and hashing algorithms, which are briefly described below
(for a detailed introduction to cryptography, we refer the reader to Stallings
[1998] and Schneier [1996]).

� Symmetric ciphers require the sender and receiver to use the same secret key
to encrypt and decrypt data. They are typically used for ensuring confiden-
tiality of data, and can be chosen from two classes—block and stream ciphers.
Block ciphers operate on similar-sized blocks of plaintext (original data) and
ciphertext (encrypted data). Examples of block ciphers include DES, 3DES,
AES, and so on. Stream ciphers such as RC4 convert a plaintext to ciphertext
one bit (or byte) at a time. For both classes of symmetric ciphers, encryption
or decryption then proceeds through a repeated sequence (rounds) of mathe-
matical computations. For example, block ciphers such as 3DES, IDEA, and
AES use operations such as permutations and substitutions.

� Asymmetric ciphers (also called public-key algorithms), on the other hand,
use a private (secret) key for decryption, and a related public (nonsecret)
key for encryption or verification. They are typically used in security proto-
cols for verifying certificates that identify communicating entities, generating
and verifying digital signatures, and for exchanging symmetric cipher keys.
These algorithms rely on the use of computationally intensive mathematical
functions, such as modular exponentiation, for encryption and decryption.
RSA, Diffie–Hellman, and so on are examples of asymmetric ciphers.

� Hashing algorithms such as MD5 and SHA provide ways of mapping mes-
sages (with or without a key) into a fixed-length value, thereby providing “sig-
natures” for messages. Thus, integrity checks can be performed on communi-
cated messages by (a) having the sender “securely sending” the actual hash
value of a message along with the message itself, (b) allowing the receiver to

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

466 • S. Ravi et al.

compute the hash value of the received message, and (c) comparing the two
signatures to verify message integrity.

Security solutions to meet the various security requirements outlined in
Section 2 typically rely on the aforementioned cryptographic primitives, or on
security mechanisms that use a combination of these primitives in a specific
manner (e.g., security protocols). Various security technologies and mechanisms
have been designed around these cryptographic algorithms in order to provide
specific security services. For example:

� Security protocols provide ways of ensuring secure communication channels
to and from the embedded system. IPSec [IPSec] and SSL [SSL] are popu-
lar examples of security protocols, widely used for Virtual Private Networks
(VPNs) and secure web transactions, respectively (we will be examining se-
curity protocols in greater detail in Section 5).

� Digital certificates provide ways of associating identity with an entity, while
biometric technologies [Reid 2003] such as fingerprint recognition and voice
recognition aid in end-user authentication. Digital signatures, which func-
tion as the electronic equivalent of handwritten signatures, can be used to
authenticate the source of data as well as verify its identity.

� Digital Rights Management (DRM) protocols, such as OpenIPMP
[OpenIPMP], MPEG [MPEG], ISMA [ISMA], and MOSES [MOSES], provide
secure frameworks for protecting application content against unauthorized
use.

� Secure storage and secure execution require that the architecture of the sys-
tem be tailored for security considerations. Simple examples include the
use of hardware to monitor bus transactions and block illegal accesses to
protected areas in the memory [Discretix], authentication of firmware that
executes on the system, application isolation to preserve the privacy and
integrity of code and data associated with a given application or process
[Lie et al. 2000], HW/SW techniques to preserve the privacy and integrity
of data throughout the memory hierarchy [Suh et al. 2003], execution of en-
crypted code [Best 1981; Kuhn 1997], and so on.

4. SECURE EMBEDDED SYSTEM DESIGN CHALLENGES

Designers of a large and increasing number of embedded systems need to sup-
port various security solutions in order to deal with one or more of the security
requirements described earlier. These requirements present significant bottle-
necks during the embedded system design process, which are briefly described
below:

� Processing Gap: Existing embedded system architectures are not capable of
keeping up with the computational demands of security processing, due to in-
creasing data rates and complexity of security protocols. These shortcomings
are most felt in systems that need to process very high data rates or a large
number of transactions (e.g., network routers, firewalls, and web servers),
and in systems with modest processing and memory resources (e.g., PDAs,

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 467

wireless handsets, and smartcards). In this paper, we will examine the two
sides of the processing gap issue (requirements and availability) and study
various solutions proposed to address this mismatch.

� Battery Gap: The energy consumption overheads of supporting security on
battery-constrained embedded systems are very high. Slow growth rates in
battery capacities (5–8% per year) are easily outpaced by the increasing en-
ergy requirements of security processing, leading to a battery gap. Various
studies [Carman et al. 2000; Perrig et al. 2002; Potlapally et al. 2003] show
that the widening battery gap would require designers to make energy-aware
design choices (such as optimized security protocols, custom security hard-
ware, and so on) for security.

� Flexibility: An embedded system is often required to execute multiple and di-
verse security protocols and standards in order to support (i) multiple security
objectives (e.g., secure communications, DRM, and so on), (ii) interoperability
in different environments (e.g., a handset that needs to work in both 3G cellu-
lar and wireless LAN environments), and (iii) security processing in different
layers of the network protocol stack (e.g., a wireless LAN enabled PDA that
needs to connect to a virtual private network, and support secure web brows-
ing may need to execute WEP, IPSec, and SSL). Furthermore, with security
protocols being constantly targeted by hackers, it is not surprising that they
keep continuously evolving (see also Section 5.4). It is, therefore, desirable
to allow the security architecture to be flexible (programmable) enough to
adapt easily to changing requirements. However, flexibility may also make
it more difficult to gain assurance of a design’s security.

� Tamper Resistance: Attacks due to malicious software such as viruses and
trojan horses are the most common threats to any embedded system that is
capable of executing downloaded applications [Howard and LeBlanc 2002;
Hoglund and McGraw 2004; Ravi et al. 2004]. These attacks can exploit vul-
nerabilities in the operating system (OS) or application software, procure ac-
cess to system internals, and disrupt its normal functioning. Because these
attacks manipulate sensitive data or processes (integrity attacks), disclose
confidential information (privacy attacks), and/or deny access to system re-
sources (availability attacks), it is necessary to develop and deploy various
HW/SW countermeasures against these attacks.

In many embedded systems such as smartcards, new and sophisticated at-
tack techniques, such as bus probing, timing analysis, fault induction, power
analysis, electromagnetic analysis, and so on, have been demonstrated to
be successful in easily breaking their security [Ravi et al. 2004; Anderson
and Kuhn 1996, 1997; Kommerling and Kuhn 1999; Rankl and Effing; Hess
et al. 2000; Quisquater and Samyde 2002; Kelsey et al. 1998]. Tamper resis-
tance measures must, therefore, secure the system implementation when it
is subject to various physical and side-channel attacks.

Later in this paper (see Section 6), we will discuss some examples of em-
bedded system attacks and related countermeasures.

� Assurance Gap: It is well known that truly reliable systems are much more
difficult to build than those that merely work most of the time. Reliable

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

468 • S. Ravi et al.

systems must be able to handle the wide range of situations that may oc-
cur by chance. Secure systems face an even greater challenge: they must
continue to operate reliably despite attacks from intelligent adversaries who
intentionally seek out undesirable failure modes. As systems become more
complicated, there are inevitably more possible failure modes that need to
be addressed. Increases in embedded system complexity are making it more
and more difficult for embedded system designers to be confident that they
have not overlooked a serious weakness.

� Cost: One of the fundamental factors that influence the security architecture
of an embedded system is cost. To understand the implications of a security-
related design choice on the overall system cost, consider the decision of
incorporating physical security mechanisms in a single-chip cryptographic
module. The Federal Information Processing Standard (FIPS 140-2) [FIPS]
specifies four increasing levels of physical (as well as other) security require-
ments that can be satisfied by a secure system. Security Level 1 requires
minimum physical protection, Level 2 requires the addition of tamper-evident
mechanisms such as a seal or enclosure, while Level 3 specifies stronger de-
tection and response mechanisms. Finally, Level 4 mandates environmental
failure protection and testing (EFP and EFT), as well as highly rigorous de-
sign processes. Thus, we can choose to provide increasing levels of security
using increasingly advanced measures, albeit at higher system costs, design
effort, and design time. It is the designer’s responsibility to balance the secu-
rity requirements of an embedded system against the cost of implementing
the corresponding security measures.

5. SECURITY PROCESSING REQUIREMENTS AND ARCHITECTURES

Security processing refers to the computations that must be performed in a
system for the purpose of security. In this section, we will analyze the chal-
lenges imposed by security processing on embedded system design in greater
detail, using the popular Secure Sockets Layer (SSL) protocol as an example.
Section 5.1 examines the working of the SSL protocol. Section 5.2 analyzes the
workload imposed by SSL on a typical embedded processor. Section 5.3 further
examines how various embedded processors fare against the workload imposed
by security processing and provides a quantitative analysis of the processing
gap in both low- and high-end embedded systems. Section 5.4 explores the
flexibility concerns arising from the evolutionary nature of security protocols,
while Section 5.5 presents the impact of security processing on battery life in
battery-powered embedded systems. Finally, Section 5.6 presents a taxonomy
of security processing architectures that can address various aspects of the
outlined problems.

5.1 Anatomy of a Security Protocol

The cryptographic primitives described in Section 3 are used to provide the
basic services offered by most security protocols: encryption, peer authentica-
tion, and integrity protection for data exchanged over the underlying unpro-
tected networks. In this section, we will examine the functioning of a popular

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 469

Fig. 4. The SSL protocol, with an expanded view of the SSL record protocol.

security protocol SSL [SSL], which is widely used for secure connection-oriented
transactions.

The SSL protocol is typically layered on top of the transport layer of the net-
work protocol stack, and is either embedded in the protocol suite or is integrated
with applications such as web browsers. The SSL protocol itself consists of two
main layers as shown in Figure 4. The SSL record protocol, which forms the
first layer, provides the basic services of confidentiality and integrity. The second
layer includes the SSL handshake, SSL change cipher, and SSL alert protocols.
Let us now examine how the SSL record protocol is used to process application
data. The first step involves breaking the application data into smaller frag-
ments. Each fragment is then optionally compressed. The next step involves
computing a message authentication code (MAC), which facilitates message
integrity. The compressed message plus MAC is then encrypted using a sym-
metric cipher. If the symmetric cipher is a block cipher, then a few padding bytes
may be added. Finally, an SSL header is attached to complete the assembly of
the SSL record. The header contains various fields including the higher-layer
protocol used to process the attached fragment.

Of the three higher-layer protocols, SSL handshake is the most complex and
consists of a sequence of steps that allows a server and client to authenticate
each other and negotiate the various cipher parameters needed to secure a
session. For example, the SSL handshake protocol is responsible for negotiating
a common suite of cryptographic algorithms (cipher-suite), which can then be
used for session key exchange, authentication, bulk encryption, and hashing.
The cipher-suite RSA-3DES-SHA1, for example, indicates that RSA can be used
for key agreement (and authentication), while 3DES and SHA1 can be used for
bulk encryption and integrity computations, respectively. More than 30 such
cipher suite choices exist in the OpenSSL implementation [OpenSSL] of the
SSL protocol, resulting from various combinations of cipher alternatives for
implementing the individual security services.

Finally, the SSL change cipher protocol allows for dynamic updates of cipher
suites used in a connection, while the SSL alert protocol can be used to send

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

470 • S. Ravi et al.

Fig. 5. Typical sequence of client-side operations performed during an SSL session.

alert messages to a peer. Further details of the SSL protocol can be found in
SSL and Stallings [1998].

5.2 Security Processing Workloads

We will now examine the workload imposed by security processing by consid-
ering the SSL protocol as an example.

Figure 5 shows the typical (client-side) sequence of operations for a secure
session that uses the SSL protocol. The first stage involves loading the client
certificate from local storage, decrypting it using a symmetric cipher, and per-
forming an integrity check. Once the SSL handshake is initiated, the client
and server exchange a sequence of messages that result in the client-side oper-
ations as shown in the figure. The objectives of these operations include (i) server

authentication, where the client verifies the digital signature of the trusted cer-
tificate authority (CA) on the server certificate using the public key of the CA,
followed by an integrity check, (ii) client authentication, where the client op-
tionally generates a digital signature by hashing some data using the MD5 or
SHA-1 algorithms, concatenating the digest, and signing the result with its pri-
vate key, and (iii) key exchange, where the client generates a 48-byte premaster
secret (used to generate the secret key for the SSL record protocol) and encrypts
it with the public key of the server. The specific manner in which these objectives
are met depends on the cipher suite being used, but the ultimate result of a suc-
cessful handshake is that the client and server have completed any necessary
authentication steps and share a secret key. Once the connection is established,
secure transmission of data proceeds through the SSL record protocol.

Figure 6 shows a function call graph obtained for an SSL session us-
ing the OpenSSL implementation [OpenSSL]. The profile has several hun-
dred functions which can be classified from a functional perspective into
four categories: asymmetric computations (e.g., function RSA public decrypt,
which implements the RSA algorithm), symmetric computations (e.g., func-
tion des encrypt2, which implements the basic DES cipher), hashing opera-
tions (functions such as SHA1 Update and MD5 Update, which implement the
SHA-1 and MD5 algorithms), and protocol processing computations (e.g., func-
tions such as initialize ctx that initializes the session context, block host order

and block data order that reorder bytes for endianness, record assembly, and
so on).

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 471

Fig. 6. Function call graph for the OpenSSL implementation of the SSL protocol (client-side).

A quantitative breakup of the processing workload imposed by the above
components is given in Figure 7, for three different transaction sizes (1 KB,
100 KB, 1 MB). The measurements were performed on an iPAQ H3670 PDA,
which contains an Intel SA-1110 StrongARM processor clocked at 206 MHz.
From the figure, we can see that the protocol processing workload, which refers
to the workload due to noncryptographic computations, increases with transac-
tion size. The cryptographic processing workload is dominated by asymmetric
ciphers for small transactions, and by symmetric ciphers for large transactions.

5.3 Security Processing Gap

We will now analyze how the workload imposed by security processing, in rela-
tion to the processing capabilities of embedded processors, leads to a “security
processing gap.” In order to quantify the security processing gap, we considered
the client-side workload imposed by a single secure session between a client and
server using the SSL protocol on various embedded processors. For our exper-
iments, we considered the following platforms: (i) PDAs featuring StrongARM
(206 MHz SA-1110) and XScale (400 MHz) processors, (ii) a workstation hav-
ing a 768 MHz Pentium III Coppermine processor, and (iii) a server having a
2.8 GHz Xeon processor. The OpenSSL implementation [Open SSL] of the SSL
protocol was used with varying data sizes (10K–1M) to obtain an estimate of
the processing requirements in MIPS (millions of instructions per second). To

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

472 • S. Ravi et al.

Fig. 7. Breakup of SSL workload into cryptographic and noncryptographic components.

avoid biases due to network effects, tests were performed with both the client
and server running on the same processor.

Figure 8 plots the processing requirements in MIPS for performing SSL
record protocol processing (using 3DES for bulk data encryption and SHA for
integrity) for different data rates in both low- and high-end embedded systems.
Data rates typical of cellular (128 kbps–2 Mbps), wireless LAN (2–60 Mbps)
and the lower-end of access network (≈100 Mbps) technologies that will be
supported by current and emerging low- and high-end embedded systems are
indicated in the figure.

The MIPS capabilities of the considered processors are indicated by hori-
zontal dashed lines in Figure 8. In low-end systems such as PDAs, the MIPS
capabilities of embedded processors such as StrongARM SA-1110 and XScale
are around 150 and 250 MIPS, respectively. If we assume that these processors
are completely dedicated to SSL record protocol processing over a single ses-
sion, they can sustain data rates of 1.8 and 3.1 Mbps, respectively. Any higher
data rates are unattainable, leading to the so-called “security processing gap.”

Note that the security processing gap is quite severe in practice. In a typical
usage scenario, the processor executes multiple secure and nonsecure appli-
cations and is, therefore, not completely dedicated to security processing. For
example, if the SA-1110 processor can devote only 10% of its resources to the
secure SSL session, then the achievable data rates are less than 180 kbps.

The security processing gap is also seen in high-end systems. Processors
such as Pentium III and Xeon are only capable of achieving SSL data rates of
7.3 and 29 Mbps, respectively. Thus, higher ranges of wireless LAN data rates
as well as wired network data rates cannot be attained without architectural
improvements.

5.4 Flexibility Concerns

A fundamental requirement of many embedded systems is the ability to interop-
erate in different environments. Hence, embedded systems are often required to

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 473

Fig. 8. Processing requirements for the SSL record protocol at different data rates.

support distinct security processing standards, for example, security protocols
at different layers of the network protocol stack.

Complicating the above picture is the fact that even a single security proto-
col standard typically allows for a wide range of cryptographic algorithms. To
illustrate this scenario, let us consider the SSL protocol [SSL], which supports
the use of different ciphers for its operations (authenticating the server and
client, transmitting certificates, establishing session keys, and so on). For key
exchange, cryptographic algorithms such as RSA and Diffie–Hellman/DSA are
possible choices. For symmetric encryption, an RSA key-exchange-based SSL
cipher suite could need to support 3DES, RC4, RC2, or DES, along with the
appropriate message authentication algorithm (SHA-1 or MD5). Since an em-
bedded system may have to communicate with a variety of clients or servers, it is
desirable to support most, if not all, of the combinations allowed in the standard.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

474 • S. Ravi et al.

Fig. 9. Evolution of security protocols.

Finally, security protocols are not only diverse, but are also continuously
evolving over time. This has been and is still witnessed in the wired network
domain, wherein, protocol standards are revised to enable new security services,
add new cryptographic algorithms, or drop weaker ciphers. Figure 9 tracks
the evolution of popular security protocols in the wired domain (IPSec [IPSec]
and TLS [TLS]). We can see that even a well-established protocol such as TLS
is subject to constant modifications (e.g., in June 2002, TLS was revised to
accommodate the new symmetric encryption standard, AES).

The evolutionary trend is much more pronounced today in the wireless
domain, where security protocols can be termed to be still in their infancy.
Figure 9 also outlines the evolution of the wireless security protocols, WTLS
[OMA] and MET [MeT 2001]. Many of the security protocols used in the wire-
less domain are adaptations of the wired security protocols. For example, WTLS
bears a close resemblance to the SSL/TLS standards. However, it is possible
that future security protocols would be specifically tailored from scratch for the
wireless environment. This presents a significant challenge to the design of a
security processing architecture, since flexibility and ease-of-adaptation to new
standards become important design considerations in additional to traditional
objectives such as power, performance, and so on.

5.5 Battery Life

The computational requirements of security protocols stemming from the in-
herent complexity of cryptographic algorithms suggest that the energy con-
sumption of these algorithms can be very high. For battery-powered embedded
systems, the energy drawn from the battery directly influences the system’s
battery life, and, consequently, the duration and extent of its mobility, and
its overall utility. To illustrate the impact of security processing on battery
life, consider the energy consumption of a wireless handheld (Symbol PPT2800
PocketPC) conducting a secure wireless session that employs 3DES for bulk
data encryption and SHA for message authentication. When the handheld is

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 475

Fig. 10. The energy consumption profile of a sample secure wireless session (source: Karri and
Mishra [2002]).

Fig. 11. Energy consumption data for various symmetric ciphers (source: Potlapally et al. [2003]).

securely transmitting 64 kB of data, Figure 10 shows that a considerable part
(nearly 21%) of the overall energy consumption is spent on security processing.

Figure 11, for example, shows significant variations in the energy consump-
tion profile of various symmetric ciphers (measured on an iPAQ 3870 PDA run-
ning the OpenSSL cryptographic suite [OpenSSL]). Energy numbers for the
key setup phase and energy-per-byte numbers for the encryption/decryption
phases are shown for each cipher. The results are reported for one specific
mode of each block cipher—ECB or electronic code book, where a given plain-
text block always encrypts to the same ciphertext block for the same key. The
only exception is RC4, which is a stream cipher. We can see from Figure 11
that the key setup costs are the smallest for AES and IDEA, and the largest for
Blowfish. However, the per-byte energy cost of Blowfish encryption/decryption
is the smallest. In the case of sufficiently large data transactions, one would

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

476 • S. Ravi et al.

Fig. 12. Taxonomy of security processing architectures.

expect the cost of key setup to be amortized by the low per-byte encryption cost.
A detailed analysis of the energy consumption of other cryptographic algorithms
and the SSL protocol can be found in Potlapally et al. [2003]. The study also il-
lustrates that significant “energy versus security” trade-offs can be explored by
identifying and varying parameters provided in a security protocol—although
embedded systems engineers would be well advised to avoid using new or mod-
ified algorithms (that have not been subject to widespread review) because of
the extreme and often nonintuitive security risks involved.

While the above examples illustrate that the energy requirements for secu-
rity must be reduced, improvements on the supply side (battery) can also ben-
efit the so-called battery gap. It must be noted here that there has only been
a slow growth (5–8% per year) in the battery capacities [Lahiri et al. 2002].
However, recent successes with alternative technologies such as fuel cells
[SFC; PolyFuel] show considerable promise.

5.6 Architectures for Security Processing

A variety of approaches have been developed to address the challenges imposed
by security processing. The security processing gap can be addressed either
by reducing the security processing workloads (alleviating demand), or by en-
hancing the processing capabilities of the embedded system (improving supply).
On the demand side, advances in cryptography have led to new and efficient
cryptosystems such as ECC [Rosing 1998; Menezes 1993], NTRU [NTRU], and
AES [AES], which provide efficient alternatives to conventional choices. How-
ever, their usage in security protocols is not yet widespread, in part due to the
preference to use established (and hence higher assurance) algorithms instead
of faster ones where the security risks are unknown. For example, flaws have
been found in the original NTRU signature scheme, as well as the updated ver-
sion intended to fix the problem [Gentry and Szydlo 2002]. Enhancements on
the supply side of the security processing gap are, therefore, crucial. Figure 12
shows three generations of security processing architectures, and compares
them in terms of performance and energy consumption efficiencies, flexibility,
as well as design turn-around times.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 477

First-generation solutions perform security processing by executing secu-
rity software on the processors embedded in the system. While good flexibility
and fast design times are possible with software-based solutions, these solu-
tions are not efficient in terms of their performance and energy consumption
characteristics.

With cryptographic algorithms being a significant part of the security pro-
cessing workload, the embedded processor can offload cryptographic compu-
tations to custom cryptographic hardware, which can be designed to deliver
high performance and consume lower energy. Such architectures constitute the
second-generation solutions. These include, for example, embedded processors
interfacing with cryptographic hardware on a high-speed bus or processors
with special-purpose cryptographic hardware in the pipeline (instruction set
extensions).

Since second-generation solutions sacrifice the flexibility and design times
of the first-generation solutions, third-generation solutions have been proposed
that can capture the benefits of both the first- and second-generation solutions.
These solutions have a common characteristic that the embedded processor
can offload large portions of the security protocol (not just cryptographic
algorithms) to the security protocol processing engine. Since they are based
on programmable engines, third-generation solutions are typically capable of
performing the bookkeeping necessary to support multiple concurrent security
processing streams.

We now provide a brief overview of various second- and third-generation
security processing architectures. A more detailed description of architectural
alternatives for security processing is provided in Kocher et al. [2004].

5.6.1 Cryptographic Hardware Accelerators. Highest levels of efficiency
in processing are often obtained through custom hardware implementations.
Since cryptographic (asymmetric, symmetric, hash) algorithms form a signif-
icant portion of security processing workloads, various companies offer cus-
tom hardware implementations of these cryptographic algorithms, for systems
ranging for low-power mobile appliances and smartcards to high-performance
network routers and application servers [Discretix; Safenet]. Several vendors
also offer integrated microcontrollers that contain embedded processors, cryp-
tographic accelerators, and other peripherals [Infineon Technologies; STMicro-
electronics].

5.6.2 Embedded Processor Enhancements for Accelerating Cryptographic

Computations. There have been several attempts to improve the security
processing capabilities of general-purpose processors. Because most micropro-
cessors today are word-oriented, researchers have targeted accelerating bit-
level arithmetic operations such as the permutations performed in DES/3DES.
Multimedia instruction set architecture (ISA) extensions such as those in
PA-RISC’s Max-2 [Lee 1996] or IA-64 [Intel Corp. 2000] already incorpo-
rate instructions for permutations of 8-bit or larger subwords. For arbi-
trary bit-level permutations, efficient instructions have been recently pro-
posed [Lee et al. 2001]. Instruction set extensions have also been proposed

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

478 • S. Ravi et al.

for other operations such as substitutions, rotates, and modular arithmetic
[Burke et al. 2000].

Many such extensions have already been applied to low-end embedded pro-
cessors used in the wireless handset domain. For example, the SmartMIPS
[MIPS] cryptographic enhancements extend the basic 32-bit MIPS ISA to speed
up security processing. Similar features are also found in the ARM SecureCore
family [ARM-SEC]. The security processing capabilities of SecureCore proces-
sors can also be further extended by adding custom-designed cryptographic pro-
cessing units through a coprocessor interface. This is useful for delivering high
performance, without having to redesign the basic processor core. The MOSES
security processor developed at NEC [Ravi et al. 2002; Potlapally et al. 2002a,
2002b] extends the basic instruction set of an embedded processor with addi-
tional instructions that accelerate various symmetric, asymmetric, and hashing
algorithms used in security protocols.

5.6.3 Security Protocol Engines. While cryptographic accelerators allevi-
ate the performance and energy bottlenecks of security processing to some ex-
tent, achieving very high data rates or extreme energy efficiency requires a
holistic view of the entire security processing workload. In addition to crypto-
graphic algorithms, security protocols often contain a significant protocol pro-
cessing component, including packet header/trailer parsing, classification etc.
Security protocol engines accelerate all or most of the functionality present
in a security protocol, resulting in higher efficiency than cryptographic ac-
celerators. For example, the 7811 security processor from HIFN [HIFN] can
be used in VPNs to perform IPSec processing at very high data rates (nearly
250 Mbps). In addition, these protocol engines, if programmable, can be used
to execute multiple protocols efficiently. Again, the 7811 security processor pro-
vides high-performance support for not only IPSec, but also layer 2 protocols
such as PPP [PPP] and PPTP [PPTP].

Similar efforts have also been seen recently in security architectures for low-
power embedded systems. For example, the MOSES security processor from
NEC [Ravi et al. 2002] has been designed to function as a coprocessor in appli-
cation chips for mobile terminals so that significant portions (more than just
the cryptographic parts) of security protocols can be offloaded and accelerated.

In summary, programmable security protocol engines are being used increas-
ingly by embedded system designers when both flexibility and efficiency are
required.

6. TAMPER RESISTANCE AND THE ASSURANCE GAP

Modern cryptography can provide extremely robust security against specific
(usually mathematical) attacks, such as brute force and factoring. Progress
on the underlying mathematics has had an unintended consequence: rather
than attempt easy-to-understand but futile attacks, intelligent adversaries fo-
cus their efforts on more subtle and complex attacks.

At the highest level, the process of creating security requires eliminating
undesirable functionality. For example, a cellular telephone network should
prevent unauthorized calls from being placed. A functional measure, such as a

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 479

cryptographic handshake, may be necessary to impose this restriction, but is ir-
relevant if an undocumented test mode or a buffer overflow enables adversaries
to bypass the functional measure and make calls.

While today’s engineering methods are well suited for developing complex
functional systems, they are often poorly suited to the task of preventing
undesired functionality. Conventional testing works well for detecting overt
functionality-based flaws, but is notoriously ineffective at detecting latent se-
curity problems. Similarly, engineering abstractions frequently conceal security
risks present in one layer from being visible to engineers working on others.

The strongest aspects of a design tend to be much more obvious than the
weakest aspects, but the strength of a system is determined by the easiest at-
tack. As a result, products are frequently built with lofty security objectives,
but have low assurance of meeting these goals. For example, product advertise-
ments frequently boast about the use of large keys, yet the difference between
128-bit and 256-bit AES is irrelevant in light of the risks posed by implemen-
tation weaknesses. Unfortunately, low-assurance designs are easy to produce
and appear attractive to unsophisticated customers, even though they may only
provide an illusion of security.

6.1 Understanding the Requirements

At the beginning of a security engineering effort, it is important to define what
security capabilities are required, such as which attacks must be prevented. An
orthogonal issue is the required level of assurance, that is, the probability that
these goals have been met. Projects with overly ambitious security or assurance
requirements will suffer from increased development cost, time, and effort.
Similarly, systems whose requirements are ambiguous or specify inadequate
capabilities or assurance have dramatically higher risk.

Hardware development projects always involve difficult trade-offs. For exam-
ple, the choice of whether to support hardware testing capabilities (e.g., scan
or JTAG) involves a trade-off between convenience and security risks. Simi-
larly, choosing between the financial and schedule impact required to address
physically invasive attacks, and the risk of leaving a system exposed is not
easy. Therefore, it is critical to have a clear understanding of the different ways
in which an embedded system can be “attacked.” Figure 13 lists the various
categories of techniques used to attack a device. At the top level, attacks have
been classified into two broad categories: physical and side-channel attacks,
and logical attacks.

Physical and side-channel attacks [Ravi et al. 2004; Anderson and Kuhn
1996; Anderson and Kuhn 1997; Kommerling and Kuhn 1999; Rankl and Effing;
Hess et al. 2000; Quisquater and Samyde 2002; Kelsey et al. 1998] refer to
attacks that exploit the system implementation and/or identifying properties
of the implementation. Physical and side-channel attacks are generally clas-
sified into invasive and noninvasive attacks. Invasive attacks involve getting
access to the appliance to observe, manipulate, and interfere with the system
internals. Because invasive attacks typically require relatively expensive in-
frastructure, they are much harder to deploy. Examples of invasive attacks

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

480 • S. Ravi et al.

Fig. 13. Examples of attack threats faced by embedded systems.

include microprobing and design reverse engineering. Non-invasive attacks, as
the name indicates, do not require the device to be opened. While these attacks
may require an initial investment of time or creativity, they tend to be cheap and
scalable (compared to invasive attacks). There are many forms of non-invasive
attacks such as timing attacks, fault induction techniques, power and electro-
magnetic analysis based attacks, and so on. In the sections that follow, we will
be examining some of the noninvasive attacks in more detail.

Logical attacks are easy to deploy against systems capable of executing down-
loaded software, and exploit weaknesses or bugs in the overall architecture
(HW/SW) as well as flaws in the design of the cryptographic algorithm or secu-
rity protocol. These attacks are discussed in the next section.

6.2 Logical Attacks

Logical attacks typically involve sending messages to a device and observing its
responses. Often, the adversary’s goal is to trick a device into revealing keys or
running malicious software. Common examples include software attacks such
as buffer overflow exploits, subverted device code updates, and so on.

Logical attacks often exploit design or implementation flaws. Although tech-
niques such as code reviews and sandboxing can be used to reduce the density
of critical defects, these gains are largely being overshadowed by increases in
software complexity. As a result, logical attacks pose a massive challenge for
virtually every security engineering effort—hence, the assurance gap.

The range of issues that can lead to logical attacks is extremely broad
(see Howard and LeBlanc [2002] and Hoglund and McGraw [2004] for a good
high-level introduction to these issues). While there is no way to make a
complete list of security mistakes, some common design and implementation
problems include: buffer overflows, failure to secure code update processes,
use of insecure cryptographic algorithms, cryptographic protocol flaws, key

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 481

management failures, random number generator defects, use of debug modes
that bypass security, improper error handling, incorrect algorithm implemen-
tations, security parameter negotiation weaknesses, improper reuse of keys,
poor user interfaces, use of weak passwords, operator errors, pointer errors,
operating system weaknesses, sequence counter overflows, solving the wrong
problem, inability to reestablish security after compromises, and so on.

Countermeasures for logical attacks are typically designed with one or more
of the following considerations:

� to ensure privacy and integrity of sensitive code and data during every stage
of execution in an embedded system;

� to determine with certainty that it is safe from a security standpoint to exe-
cute a given program;

� to identify and remove software bugs and design flaws that make the system
vulnerable to such attacks.

In many embedded systems, the first mentioned consideration is often ad-
dressed through various hardware and software changes so as to regulate
the accesses of various software components (operating system, downloaded
code, and so on) to different portions of the system (registers, memory regions,
security coprocessors, and so on) during different stages of execution (boot
process, normal execution, interrupt mode, and so on). Examples of such mea-
sures include the use of dedicated hardware to protect sensitive memory lo-
cations [Discretix], secure bootstrapping [Arbaugh et al. 1997], use of crypto-
graphic file systems [Blaze 1993; Goh et al. 2003], and so on. Secure software
execution is often achieved through software authentication and validation
checks, sandboxing (restricted environments for code execution), run-time mon-
itors that detect security policy violations [Kiriansky et al. 2002], use of safety
proof carrying code [Necula and Lee 1996], and so on. Lastly, verification meth-
ods for finding security flaws in trusted software, security protocols and their
implementations are also becoming important [Detlefs et al. 1998; Chess 2002;
Clarke et al. 1998; Lowe 1998].

We refer the reader to Ravi et al. [2004] and Kocher et al. [2004] for a detailed
survey of system-level tamper-resistance mechanisms against software attacks.

6.3 Fault Induction

Security depends on more than just correct software. If the hardware ever fails
to make correct computations, security can be jeopardized.

For example, almost any computation error can compromise RSA implemen-
tations using the Chinese Remainder Theorem (CRT). The computation in-
volves two major subcomputations, one that computes the result modulo p and
the other modulo q, where p and q are the factors of the RSA public modulus
n [Schneier 1996]. If, for example, the mod p computation result is incorrect,
the final answer will be incorrect modulo p, but correct modulo q. Thus, the
difference between the correct answer and the computed answer will be an ex-
act multiple of q, allowing the adversary to find q by computing the greatest
common divisor (GCD) of this difference and n.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

482 • S. Ravi et al.

To deter this specific attack, RSA implementations can check their answers
by performing a public-key operation on the result and verifying that it re-
generates the original message. Unfortunately, error detection techniques for
symmetric algorithms are not nearly as elegant, and there are many other kinds
of error attacks. As a result, many cryptographic devices include an assortment
of glitch sensors and other features designed to detect conditions likely to cause
computation errors. For further discussion of this topic, see [Boneh et al. 2001].

6.4 Timing Analysis

For many devices, even computing the correct result does not ensure security.
In 1996, one of us (Paul Kocher) showed how keys could be determined by
analyzing small variations in the time required to perform cryptographic com-
putations. The attack involves making predictions about secret values (such as
individual key bits), then using statistical techniques to test the prediction by
determining whether the target device’s behavior is correlated to the behavior
expected by the prediction.

To understand the attack, consider a computation that begins with a known
input and includes a sequence of steps, where each step mixes in one key bit
and takes a nonconstant amount of time. For example, for a given input, two
operations are possible for the first step, depending on whether the key bit is
zero or one.

For the attack, the adversary observes a set of inputs and notes the approxi-
mate total time required for a target device to process each. Next, the adversary
measures the correlation between the measured times and the estimated time
for the first step assuming the first step mixes in a zero bit. A second correlation
is computed using estimates with a bit value of one. The estimates using the
correct bit value (the one actually used by the target device) should show the
strongest correlation to the observed times.

What makes the attack interesting is that “obvious” countermeasures often
do not work. For example, quantizing the total time (e.g., delaying to make the
total computation take an exact multiple of 10 ms) or adding random delays
increases the number of measurements required, but does not prevent the at-
tack. Obviously, making all computations take exactly the same amount of time
would eliminate the attack, but few programs operate in exactly constant time.
Writing constant-time code (particularly in high-level languages) can be tricky.

Fortunately, there are techniques that can reliably prevent timing attacks in
many systems. For example, message blinding can be used with RSA and other
public-key cryptosystems to prevent adversaries from correlating input/output
values with timing measurements. For further information about timing at-
tacks, see [Kocher 1996].

6.5 Power Analysis

Timing channels are not the only way that devices leak information. For ex-
ample, the operating current drawn by a hardware device is correlated to
computations it is performing. In most integrated circuits, the major contrib-
utors to power consumption are the logic gates and losses due to the parasitic

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 483

capacitance of the internal wiring. Power consumption increases if more state
transitions occur, or if transitions are occurring predominately at gates with
greater size or capacitive load. There are two main categories of power analysis
attacks, namely, simple power analysis (SPA) and differential power analysis
(DPA).

SPA attacks rely on the observation that in some systems the power profile of
cryptographic computations can be directly used to interpret the cryptographic
key used. For example, SPA analysis can be used to break RSA implementations
by revealing differences between the multiplication and squaring operations
performed during modular exponentiation. In many cases, SPA attacks have
also been used to augment or simplify brute-force attacks. For example, it has
been shown in Messerges et al. [2002] that the brute-force search space for a
SW DES implementation on an 8-bit processor with 7 bytes of key data can be
reduced to 240 keys from 256 keys with the help of SPA.

DPA attacks use statistical techniques to determine secret keys from com-
plex, noisy power consumption measurements. For a typical attack, an adver-
sary repeatedly samples the target device’s power consumption through each
of several thousand cryptographic computations. Typically, these power traces
are collected using high-speed A/D converters, such as those found in digital
storage oscilloscopes.

After the data collection, the adversary makes a hypothesis about the key.
For example, if the target algorithm is the Data Encryption Standard (DES),
a typical prediction might be that the 6 key bits entering S box 4 are equal to
‘011010’. If correct, an assertion of this form allows the adversary to compute
four bits entering the second round of the DES computation. If the assertion is
incorrect, however, an effort to predict any of these bits will be wrong roughly
half the time.

For any of the four predicted bits, the power traces are divided into two
subsets: one set where the predicted bit value is 0, and a second set where
the predicted value is 1. Next, an average trace is computed for each subset,
where the nth sample in each average trace is the average of the nth samples
in all traces in the subset. Finally, the adversary computes the difference of the
average traces.

If the original hypothesis is incorrect, the criteria used to create the subsets
will be approximately random. Any randomly chosen subset of a sufficiently
large data set will have the same average as the main set. As a result, the
difference will be effectively zero at all points, and the adversary repeats the
process with a new guess.

If the hypothesis is correct, however, the choice of the subsets will be corre-
lated to the actual computation. In particular, the second-round bit will have
been ‘0’ in all traces in one subset and ‘1’ in the other. When this bit is actually
being manipulated, its value will have a small effect on the power consump-
tion, which will appear as a statistically-significant deviation from zero in the
difference trace. For a complete attack, the adversary would use a single data
set to test hundreds of hypotheses until the entire key is known.

The approach allows adversaries to pull extremely small “signals” from ex-
tremely noisy data, often without even knowing the design of the target system.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

484 • S. Ravi et al.

These attacks are of particular concern for devices such as smartcards that
must protect secret keys while operating in hostile environments. Counter-
measures that reduce the quality of the measurements (such as running other
circuits simultaneously) only increase the number of samples the adversary
needs to collect, and do not prevent the attack. For further information about
DPA, see Kocher et al. [1999].

Attacks such as DPA that involve many aspects of system design (hardware,
software, cryptography, and so on) pose additional challenges for embedded
system engineering projects because security risks may be concealed by lay-
ers of abstraction. Countermeasures used to mitigate these attacks are also
frequently mathematically rigorous, nonintuitive, and require patent licens-
ing [DPA PATENTS]. As a result, projects requiring effective tamper resistance,
particularly when used for securing payments, audiovisual content, and other
high-risk data, remain expensive and challenging.

7. CASE STUDIES

Several innovative solutions are emerging to address the various design chal-
lenges outlined in this paper. In this section, we will consider two recent ex-
amples from commercial products to illustrate state-of-the-art solutions used
to alleviate the challenges of security processing gap and software attacks.

7.1 Addressing the Security Processing Gap for Wireless Handsets: OMAP 1610

The OMAP 1610 processor is a single-chip application processor from Texas
Instruments that is designed to deliver high performance for 2.5G and 3.5G
mobile applications [Texas Instruments]. A system-level block diagram of the
dual-core processor is shown in Figure 14. It consists of an enhanced ARM926
microprocessor plus the TMS320C55x DSP. The DSP can be used to not only
enhance the performance of multimedia applications but also security com-
putations. Public-key computations are typically offloaded to the DSP, while
symmetric and hashing operations are offloaded to cryptographic hardware ac-
celerators. Cryptographic hardware accelerators supporting DES, 3DES, AES,
SHA-1, and MD5 are included.

The crypto engines (DSP and hardware accelerators) are accessible to se-
curity applications through Certicom’s Security Builder cryptographic suite
[Certicom] (Figure 15). Thus, they can be used to accelerate all applications
such as Certicom’s SSL, IPSec, and PKI toolkits as well as other third-party
applications that use the Security Builder API. The small code size and ef-
ficient implementation of the Security Builder SW makes it suitable for the
resource-constrained devices that use OMAP 1610.

Other features included in the OMAP 1610 processor for security processing
are (a) a true hardware based random-number generator, (b) a secure bootloader
for checking the integrity of device-code, and (c) a secure execution mode, en-
abling secure key storage and run-time authentication. To realize the latter two
options, the OMAP 1610 architecture provides 48 kB of secure ROM and 16 kB
of secure RAM on-chip.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 485

Fig. 14. System-level block diagram of the OMAP 1610 application processor [Texas Instruments].

7.2 Thwarting Software Attacks: ARM TrustZone

The TrustZone security technology [York 2003] from ARM provides an exam-
ple of how hardware architectures can help provide tamper resistance against
software attacks. The basic objective of TrustZone is to establish a clear sepa-
ration of trusted code, including code that performs security critical operations,
from untrusted code that can potentially compromise security. The trusted
code is evolved from a “trusted code base” that resides in a secure area of
the embedded system. The fundamental concept of evolving and enforcing a
trust boundary at every stage of execution was first proposed in Arbaugh et al.
[1997]. The trusted code base is responsible for regulating the security of the
entire system, starting from the system boot sequence. In addition, the trusted
code is responsible for all security tasks that involve manipulation of secret
keys.

The trusted code base is protected by implementing a separate secure domain
as shown in Figure 16. This is in addition to the user and privileged modes that
are typically used to implement application-OS separation. Nonsecure appli-
cations are denied access to the secure domain, while trusted applications are
identified before they are provided access. This access policy is enforced through
the addition of a security tag called “S-bit” throughout the architecture. The
S-bit defines the security operation state of the system and is used to denote

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

486 • S. Ravi et al.

Fig. 15. Offload architecture for security in OMAP 1610 [Certicom-OMAP-WP 2003].

Fig. 16. Separation of secure and nonsecure domains in ARM TrustZone [York 2003].

parts of the system (ARM core, memory system, selected peripherals, and so on)
that are secure. Access to the S-bit is through a separate processor operating
mode called monitor mode, which itself can be accessed through a limited and
predefined set of entry points. The monitor mode is responsible for controlling

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 487

Fig. 17. Components of an embedded system demarcated into secure and nonsecure
areas [York 2003].

the S-bit, verifying that data and instruction accesses made by an application
are permitted, and ensuring a secure transition between secure and nonsecure
states.

The use of TrustZone to secure a typical embedded system is shown in
Figure 17, wherein the security perimeter of the system extends beyond the
processor core to the memory hierarchy and peripherals. The overall system
architecture is divided into secure and nonsecure regions. For example, the
boot code is stored securely in the on-chip boot ROM, since modifications to the
boot process would render any security scheme ineffective. The memory is seg-
mented into secure and nonsecure areas. The S-bit and the monitor mode are
used to ensure that secure data are not leaked to the nonsecure area. Exception
handling is also partitioned into normal and secure areas. Because interrupts
can be used to freeze the processor when it is processing sensitive information,
the monitor mode is used to process critical interrupts.

In summary, the TrustZone technology provides an architecture-level secu-
rity solution to enforce a separation between trusted and untrusted code. More
generally, the concepts of software isolation and sandboxing enable untrusted
or less trusted code to coexist safely with trusted code, which allows system
designers greater flexibility while providing higher levels of security against
software attacks.

8. CONCLUSIONS AND A LOOK AHEAD

Security is critical to enabling a wide range of applications involving embedded
systems. While some aspects of security have been addressed in the context
of traditional general-purpose computing systems, embedded systems usher
in many new challenges. This paper highlighted the security-related problems
faced by designers of embedded systems, and outlined recent technological de-
velopments and innovations to address them. Several issues, however, remain
open at the intersection of security and embedded system design.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

488 • S. Ravi et al.

The interplay of flexibility, performance, power consumption, and security
level makes choosing the “right” security solution a highly complicated process.
In addition to these metrics, cost and design turn-around times play a crucial
role in deciding the security architecture. In many design scenarios today, it
becomes hard to evaluate the effectiveness of a given security solution, or to
trade-off between the above metrics, due to the absence of complete system-level
analysis and evaluation tools.

Technological advances in allied areas will have an impact on secure embed-
ded system design. For example, developments in the semiconductor fabrication
industry can alter the choice of security hardware used. The increasing success
of technologies such as field programmable logic devices (PLDs) in meeting good
performance and lower design turn around times is prompting designers to ex-
amine (or re-examine) their usage as the underlying HW fabric. Consequently,
their impact on performance and power consumption of any cryptographic ar-
chitecture needs to be carefully studied.

Further efforts are also needed in designing the cryptographic algorithms
and security protocols that are suited to the constraints and requirements
of low-end embedded systems (e.g., in an ambient intelligence setup, where
devices may need to support only specific security services). Scalability in
algorithms and protocols makes it easier for a security scheme to be effective
in a wide range of devices. However, because new lightweight cryptographic
techniques require extensive review before they can be considered trustworthy,
there is a gap of many years between when research is done in this area and
when embedded systems developers can safely begin to take advantage of the
results.

Efficient security processing alone is of limited use if an embedded system
does not successfully address attacks that could potentially compromise its se-
curity. The attacks described in this paper are applicable to a wide range of em-
bedded systems. A clear cost/risk analysis is necessary to determine the levels of
attack resistance that a device must support. Since attacks continue to increase
in sophistication, the development of countermeasures remains a challenging
and on-going exercise. It is also important to remember that countermeasures
applicable to one system (e.g., smartcards) may not be able to applicable to
other embedded systems (e.g., PDAs or smart phones). Thus, system-specific
attack-resistance measures are essential.

In summary, we envision that security will increasingly impact various as-
pects of the embedded system design process, including hardware circuits and
microarchitecture, software, system architecture, and design methodologies.

REFERENCES

AES Algorithm (Rijndael) Information. Available at http://csrc.nist.gov/encryption/aes/

rijndael.
ANDERSON, R. AND KUHN, M. 1996. Tamper Resistance—A Cautionary Note. Available at http:

//www.cl.cam.ac.uk/users/rja14/tamper.html.
ANDERSON, R. AND KUHN, M. 1997. Low cost attacks on tamper resistant devices. In IWSP:

International Workshop on Security Protocols. Lecture Notes on Computer Science. 125–
136.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 489

ARBAUGH, A., FARBER, D. J., AND SMITH, J. M. 1997. A secure and reliable bootstrap architecture.
In Proceedings of IEEE Symposium on Security and Privacy. 65–71.

ARM SecurCore. Available at http://www.arm.com.
BEST, R. M. 1981. Crypto Microprocessor for Executing Enciphered Programs. U.S. patent

4,278,837.
BLAZE, M. 1993. A cryptographic file system for UNIX. In Proceedings of the ACM Conference on

Computer and Communications Security. 9–16.
BONEH, D., DEMILLO, R., AND LIPTON, R. 2001. On the importance of eliminating errors in crypto-

graphic computations. Cryptology 14, 2, 101–119.
BURKE, J., MCDONALD, J., AND AUSTIN, T. 2000. Architectural support for fast symmetric-

key cryptography. In Proceedings of the International Conference on ASPLOS. 178–
189.

CARMAN, D. W., KRUS, P. S., AND MATT, B. J. 2000. Constraints and Approaches for Distributed
Sensor Network Security. Tech. rep. #00-010, NAI Labs, Network Associates, Inc., Glenwood,
MD.

CERTICOM CORP. Security Builder. Available at http://www.certicom.com/.
CERTICOM AND TEXAS INSTRUMENTS INC. 2003. Wireless Security: from the inside out. Available at
http://focus.ti.com/pdfs/vf/wireless/certicom_ti_wp.pdf.

CHESS, B. 2002. Improving computer security using extended static checking. In Proceedings of

the IEEE Symposium on Security and Privacy. 148–161.
CLARKE, E. M., JHA, S., AND MARRERO, W. 1998. Using state space exploration and a natural

deduction style message derivation engine to verify security protocols. In Proceedings of the IFIP

Working Conference on Programming Concepts and Methods.
COMPUTER SECURITY INSTITUTE. 2002 Computer Crime and Security Survey. Available at http://www.
gocsi.com/press/20020407.html.

Counterpane Internet Security, Inc. Available at http://www.counterpane.com.
DETLEFS, D. L., LEINO, K., NELSON, G., AND SAXE, J. 1998. Extended Static Checking. Tech. rep.,

Systems Research Center, Compaq Inc.
CryptocellTM. Discretix Technologies Ltd. Available at http://www.discretix.com.
Discretix Technologies Ltd. Available at http://www.discretix.com.
DPA PATENTS. U.S. Patents Nos. 6,278,783; 6,289,455; 6,298,442; 6,304,658; 6,327,661; 6,381,699;

6,510,518; 6,539,092; 6,640,305; and 6,654,884. Available at http://www.cryptography.com/

technology/dpa/licensing.html.
ePaynews—Mobile Commerce Statistics. Available at http://www.epaynews.com/statistics/

mcommstats.html.
FIPS PUB 140-2. Security Requirements for Cryptographic Modules. Available at http://csrc.

nist.gov/publications/fips/fips140-2/fips1402.pdf.
GENTRY, C. AND SZYDLO, M. 2002. Cryptanalysis of the revised NTRU signature scheme. In Pro-

ceedings of EUROCRYPT. 299–320.
GOH, E., SHACHAM, H., MODADUGU, N., AND BONEH, D. 2003. SiRiUS: Securing remote untrusted

storage. In Proceedings of the ISOC Network and Distributed Systems Security (NDSS) Sympo-

sium. 131–145.
HESS, E., JANSSEN, N., MEYER, B., AND SCHUTZE, T. 2000. Information leakage attacks against smart

card implementations of cryptographic algorithms and countermeasures. In Proceedings of the

EUROSMART Security Conference. 55–64.
HIFN INC. Available at http://www.hifn.com.
HOGLUND, G. AND MCGRAW, G. 2004. Exploiting Software: How to Break Code. Pearson Higher

Education.
HOWARD, M. AND LEBLANC, D. 2002. Writing Secure Code. Microsoft Press.
IEEE STANDARD 802.11. LAN/MAN Standards Committee of the IEEE. Wireless LAN Medium Access

Control (MAC) and Physical Layer (PHY) Specification.
INFINEON TECHNOLOGIES. SLE 88 family. http://www.infineon.com.
INTEL CORP. 2000. Enhancing Security Performance through IA-64 Architecture. Available at
http://developer.intel.com/design/security/rsa2000/itanium.pdf.

IPSec Working Group. Available at http://www.ietf.org/html.charters/ipsec-charter.html.
INTERNET STREAMING MEDIA ALLIANCE. Available at http://www.isma.tv/home.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

490 • S. Ravi et al.

KARRI, R. AND MISHRA, P. 2002. Minimizing energy consumption of secure wireless session with
QoS constraints. In Proceedings of the International Conference on Communications. 2053–2057.

KELSEY, J., SCHNEIER, B., WAGNER, D., AND HALL, C. 1998. Side channel cryptanalysis of product
ciphers. In Proceedings of the ESORICS’98. 97–110.

KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. 2002. Secure execution via program sheperding.
In Proceedings of the 11th USENIX Security Symposium.

KOMMERLING, O. AND KUHN, M. G. 1999. Design principles for tamper-resistant smartcard proces-
sors. In Proceedings of the USENIX Workshop on Smartcard Technology (Smartcard ’99). 9–20.

KOCHER, P., JAFFE, J., AND JUN, B. 1999. Differential power analysis. Advances in Cryptology—

CRYPTO’99. Lecture Notes in Computer Science, vol. 1666. Springer-Verlag, Berlin, 388–397.
KOCHER, P., LEE, R., MCGRAW, G., RAGHUNATHAN, A., AND RAVI, S. 2004. Security as a new dimension

in embedded system design. In Proceedings of the Design Automation Conference. 753–760.
KOCHER, P. C. 1996. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other

systems. Advances in Cryptology—CRYPTO’96. Lecture Notes in Computer Science, vol. 1109.
Springer-Verlag, Berlin, 104–113.

KUHN, M. 1997. The TrustNo 1 Cryptoprocessor Concept. CS555 Report, Purdue University.
Available at http://www.cl.cam.ac.uk/mgk25/.

LAHIRI, K., RAGHUNATHAN, A., AND DEY, S. 2002. Battery-driven system design: A new frontier
in low power design. In Proceedings of the Joint Asia and South Pacific Design Automation

Conference/International Conference on VLSI Design. 261–267.
LEE, R. B., SHI, Z., AND YANG, X. 2001. Efficient permutations for fast software cryptography.

IEEE Micro 21, 6 (Dec.), 56–69.
LEE, R. B. 1996. Subword parallelism with Max-2. IEEE Micro 16, 4 (Aug.), 51–59.
LIE, D., THEKKATH, C. A., MITCHELL, M., LINCOLN, P., BONEH, D., MITCHELL, J. C., AND HOROWITZ, M.

2000. Architectural support for copy and tamper resistant software. In Proceedings of the ACM

Architectural Support for Programming Languages and Operating Systems (ASPLOS). 168–177.
LOWE, G. 1998. Towards a completeness result for model checking of security protocols. In Pro-

ceedings of the 11th Computer Security Foundations Workshop.

MENEZES, A. J. 1993. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers,
Boston, MA.

MESSERGES, T. S., DABBISH, E. A., AND SLOAN, R. H. 2002. Examining smart-card security under
the threat of power analysis attacks. IEEE Trans. Comput. 51, 5 (May), 541–552.

MOBILE ELECTRONIC TRANSACTIONS LTD. 2001. MeT PTD Definition (version 1.1). Available at
http://www.mobiletransaction.org/.

SmartMIPS. Available at http://www.mips.com.
MPEG Open Security for Embedded Systems (MOSES). Available at http://www.crl.co.uk/

projects/moses/.
Moving Picture Experts Group (MPEG). Available at http://mpeg.telecomitalialab.com.
NECULA, G. C. AND LEE, P. 1996. Proof-Carrying Code. Tech. Rep. CMU-CS-96-165, Carnegie

Mellon University.
NTRU Communications and Content Security. Available at http://www.ntru.com.
Open Mobile Alliance (OMA). Available at http://www.wapforum.org/what/technical.htm.
OPENIPMP. http://www.openipmp.org.
OpenSSL Project. Available at http://www.openssl.org.
PERRIG, A., SZEWCZYK, R., TYGAR, J. D., WEN, V., AND CULLER, D. E. 2002. SPINS: Security protocols

for sensor networks. Wireless Netw. 8, 5, 521–534.
POLYFUEL, INC. Available at http://www.polyfuel.com.
POTLAPALLY, N., RAVI, S., RAGHUNATHAN, A., AND JHA, N. K. 2003. Analyzing the energy consumption

of security protocols. In Proceedings of the International Symposium on Low Power Electronics

& Design. 30–35.
POTLAPALLY, N., RAVI, S., RAGHUNATHAN, A., AND LAKSHMINARAYANA, G. 2002a. Optimizing public-key

encryption for wireless clients. In Proceedings of the IEEE International Conference on Commu-

nications. 1050–1056.
POTLAPALLY, N., RAVI, S., RAGHUNATHAN, A., AND LAKSHMINARAYANA, G. 2002b. Algorithm exploration

for efficient public-key security processing on wireless handsets. In Proceedings of Design, Au-

tomation, and Test in Europe (DATE) Designers Forum. 42–46.

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

Security in Embedded Systems • 491

Point-to-Point Protocol (PPP), RFC 1661. The Internet Engineering Task Force. Available at
http://www.ietf.org/rfc/rfc1661.

Point-to-Point Tunneling Protocol (PPTP), RFC 2637. The Internet Engineering Task Force. Avail-
able at http://www.ietf.org/rfc/rfc2637.

QUISQUATER, J. J. AND SAMYDE, D. 2002. Side channel cryptanalysis. In Proceedings of the SECI.
179–184.

RANKL, W. AND EFFING, W. Smart Card Handbook. John Wiley and Sons, New York.
RAVI, S., RAGHUNATHAN, A., AND CHAKRADHAR, S. 2004. Tamper resistance mechanisms for secure

embedded systems. In Proceedings of the International Conference on VLSI Design. 605–611.
RAVI, S., RAGHUNATHAN, A., POTLAPALLY, N., AND SANKARADASS, M. 2002. System design method-

ologies for a wireless security processing platform. In Proceedings of the ACM/IEEE Design

Automation Conference, 777–782.
REID, P. 2003. Biometrics and Network Security. Prentice Hall PTR, Englewood Cliffs, NJ.
ROSING, M. 1998. Implementing Elliptic Curve Cryptography. Manning Publications Co.
SAFENET INC. Safenet EmbeddedIPT M . Available at http://www.safenet-inc.com.
SCHNEIER, B. 1996. Applied Cryptography: Protocols, Algorithms and Source Code in C. John

Wiley and Sons, New York.
SFC Smart Fuel Cell AG. Available at http://www.smartfuelcell.com.
SSL 3.0 Specification. Available at http://wp.netscape.com/eng/ssl3/.
STALLINGS, W. 1998. Cryptography and Network Security: Principles and Practice. Prentice Hall,

Englewood Cliffs, NJ.
STMICROELECTRONICS INC. ST19 Smart Card Platform Family. Available at http://www.st.com.
SUH, G. E., CLARKE, D., GASSEND, B., VAN DIJK, M., AND DEVADAS, S. 2003. AEGIS: Architecture for

tamper-evident and tamper-resistant processing. In Proceedings of the International Conference

on Supercomputing (ICS ’03). 160–171.
TEXAS INSTRUMENTS INC. OMAP Platform. Available at http://focus.ti.com/omap/docs/

omaphomepage.tsp.
TLS WORKING GROUP. Available at http://www.ietf.org/html.charters/tls-charter.html.
U.S. DEPARTMENT OF COMMERCE. 1999. The Emerging Digital Economy II. Available at http:

//www.esa.doc.gov/508/esa/TheEmergingDigitalEconomyII.htm.
WAP FORUM. 2002. Wireless Application Protocol 2.0. Technical White Paper. Available from
http://www.wapforum.org.

WORLD WIDE WEB CONSORTIUM. 1998. The World Wide Web Security FAQ. Available at
http://www.w3.org/Security/faq/www-security-faq.html.

YORK, R. 2003. A New Foundation for CPU Systems Security. ARM Limited. Available at
http://www.arm.com/armtech/TrustZone?OpenDocument.

Received March 2003; revised August 2003 and October 2003; accepted November 2003

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 3, August 2004.

