
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

23

Manuscript received January 5, 2012

Manuscript revised January 20, 2012

Security Issues in Web Services
 Kuyoro Shade O.

†
 Ibikunle Frank

††
 Awodele O.

 †
and Okolie Samuel O.

†

†Babcock University, Ilishan-Remo, Ogun State, Nigeria ††Covenant University Otta, Ogun State, Nigeria

Summary
Web Services are a promising solution to an age-old need: fast

and flexible information sharing among people and businesses.

They represent the next phase of distributed computing, building

on the shoulders of the previous distributed models. Web

Services leverage the ubiquity of the Internet to link applications,

systems, and resources within and among enterprises to enable

exciting, new business processes and relationships with

customers, partners, and suppliers around the world. They enable

access to data that has previously been locked within corporate

networks and accessible only by using specialized software.

Along with the benefits of Web Services comes a serious risk:

sensitive and private data can be exposed to people who are not

supposed to see it. The security issues of Web Services in a

distributed environment are a major concern of research. Web

Services will never attain their tremendous potential unless we

learn how to manage the associated risks. The paper therefore

focuses on the general framework of security issues and the

proposed solution to web services security risks.

Key words:
security, web services, distributed computing, link applications.

1. Introduction

Web Services (Neil, 2003) are loosely coupled self-

contained, self-describing and modular applications that

can be described, published, located and invoked over a

network. Web services can be provided on any platform

and may be written in any programming language. Web

services are the newest incarnation of middleware for

distributed computing and unlike all previous forms of

middleware, it is a simpler, standards-based, and more

loosely coupled technology for connecting data, systems,

and organizations. Web Services essentially involve the

three roles of Service Oriented Architecture (SOA):

service provider, service requester and service broker. A

service provider could be an industry, business or a

company capable of providing service. A requester also

could be a company or a business that is in need of the

service, where as the broker is a place, entity or a system

that helps both service provider and service requester to

discover each other. Basically, four technologies form the

basis of Web services: eXtensible Markup Language

(XML); Simple Object Access Protocol (SOAP); Web

Services Description Language (WSDL); and Universal

Description, Discovery, and Integration (UDDI).

XML: eXtensible Markup Language (XML) was created

as a structured self-describing way to represent data that is

totally independent of application, protocol, vocabulary,

operating system, or even programming language. XML

was initially developed to overcome the limitations of

HTML, which is good at describing how things should be

displayed but is poor at describing what data to be

displayed.

SOAP: Simple Object Access Protocol (SOAP) is used

for communication among different Web Services. SOAP

was created as a way to transport XML from one computer

to another via a number of standard transport protocols.

HTTP is the most common and the most prevalent

transport used by the Web itself. SOAP (Mcintosh and

Austel, 2005) messages flow from originator to an

ultimate receiver through a SOAP message path. A SOAP

message consists of Soap Envelope which contains Soap

Body element and an optional Soap Header element. The

Soap Header element may contain a set of child elements

that describe message processing that the sender expects a

recipient to perform. Below is a typical SOAP listing.

01 <Soap: Envelope—-

02 <Soap: Header (optional)>

03 <Soap: Body> (mandatory)

04 <get Quote symbol = “——”/>

05 </Soap: Body>

06 </Soap: Envelope>

Listing 1: A Simple SOAP message

SOAP envelope is used to encapsulate the SOAP message.

SOAP header is the optional part of the SOAP protocol.

Header contains information for the SOAP node, the

processor of the SOAP message, how to process the

SOAP message. This may be authentication, routing etc.

Soap body contains the targeted to the SOAP message

receiver. Get Quote element is the child of SOAP body.

WSDL: Web Service Description Language (WSDL) is

used to describe the functionalities of the services. It is an

XML language that defines what the input and output

structure will be for a Web service, and what one expects

to see in the payload XML message. WSDL is how one

service tells another which way to interact with it, where

the service resides, what the service can do, and how to

invoke it. Once the requester receives the WSDL

document for the candidate Web service, it must be

validated. The simplest method of doing this is to provide

a digital signature of the WSDL document for the

requester to use. Requesters cannot connect to most

providers without some form of authentication.

UDDI: Universal Description Discovery and Integration

(UDDI) is used as a registry of information for Web

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

24

Services, that is, to publish and discover information.

UDDI service is an industry-wide effort to bring a

common standard for business-to-business (B2B)

integration. It defines a set of standard interfaces for

accessing a database of Web services. The purpose of

UDDI is to allow users to discover available Web services

and interact with them dynamically. The process can be

divided into three phases: Searching (discovery), Binding

and Executing.

Web Service is an attractive and powerful technology for

development of distributed application as well as for

integration. Web Services provides interoperability across

security policy domains. But, while they offer attractive

advantages, Web Services also present daunting

challenges relating to privacy and security. These range

from random acts of Net vandalism to sophisticated,

targeted acts of information theft, fraud, or sabotage. What

makes security for Web Services so challenging is the

distributed, heterogeneous nature of these services. For

wide acceptability by the developers and consumers in

business-to-business (B2B) and business-to-consumers

(B2C) scenarios, Web services must be secured. Therefore

study of security issues in Web Services is a need of the

hour. This work presents what the security challenges of

Web Services are and how to face them. The following

section describes the security trend of web services. The

remaining sections are arranged as follows. Section 3.0

presents general security frameworks of web services,

section 4.0 describes various security threats to web

services, section 5.0 presents current technologies in web

services security, section 6.0 highlights the proposed

solution to web services security risks and section 7.0

concluded the discussion with some future directions.

2. Security Trend of Web Services

Twenty years ago life was reasonably simple for the

security professionals. Sensitive data resided on

monolithic back-office data stores. There were only a

few physical access paths to the data, which were

protected by well-understood operating system access

control mechanisms. Policies, procedures, and tools had

been in place for many years to protect legacy data

stores. Then, several years ago, Web-based applications

came on scene with the advent of e-commerce such that

secure access to Web servers was extremely important.

Today, there are many mature perimeter security

technologies, such as Secure Socket Layer (SSL),

firewalls, and Web authentication/authorization servers

that enforce security between browser clients and

corporate Web servers.

Figure 1 illustrates new and existing security

mechanisms for securing Web Services at different

security tiers.

Fig. 1 A typical Web Service Security implementation

3. General Security Framework

Some core security services that are fundamental to end-

to-end application security across multitier applications

are defined here. They are:

Authentication: verifies that principals (human users,

registered system entities, and components) are who they

claim to be. The result of authentication is a set of

credentials, which describes the attributes (identity, role,

group, and clearance) that may be associated with the

authenticated principal.

Authorization: grants permission for principals to access

resources, providing the basis for access control, which

enforces restrictions of access to prevent unauthorized use.

Access controls ensure that only authorized principals may

modify resources and that resource contents are disclosed

only to authorize principals.

Cryptography: provides cryptographic algorithms and

protocols for protecting data and messages from disclosure

or modification. Encryption provides confidentiality by

encoding data into an unintelligible form with a reversible

algorithm, which allows the holder of the decryption

key(s) to decode the encrypted data. A digital signature

provides integrity by applying cryptography to ensure that

data is authentic and has not been modified during storage

or transmission.

Availability: states that resources, services should be

available to authorized parties at all times.

Accountability: ensures that principals are accountable

for their actions. Security auditing provides a record of

security-relevant events and permits the monitoring of a

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

25

principal’s actions in a system. Non-repudiation provides

irrefutable proof of data origin or receipt.

Security administration: defines the security policy

maintenance life cycle embodied in user profiles,

authentication, authorization, and accountability

mechanisms as well as other data relevant to the security

framework.

Integrity: asserts that no one has tampered with a message

since it was initially created. This assures the sender and

the receiver that every bit produced by the sender is

received by the recipient in precisely unaltered form. Data

integrity is accomplished by using digital signatures.

Messages in which data integrity is required must

explicitly or implicitly include the identity and credentials

of the sender to enable this kind of message-level security.

Confidentiality: keeps the message secret. This process

requires encryption, which scrambles the message in such

a way that only authorized identities can decrypt and see

the data. To do this, a shared secret and an algorithm for

encrypting and decrypting the message is exchanged. In

the real world, these algorithms are very challenging

mathematical functions with keys that are very large

numbers, and the time to do the analysis is technically

infeasible even with modern computers.

Non-repudiation: proves that one identity sent the data

only to another identity. This then proves that the specific

transaction was entered into by the recipient, and neither

party can refute or deny that it occurred later. If the

transaction is challenged legally, a contract that was

supposedly executed must be shown to have been entered

into by both parties. Each party must have seen the

contract signed, and their identities -confirmed

traditionally by validating wet signatures on paper and

notary witnesses- must have been confirmed at the time of

signing. These are difficult, and as yet legally

unchallenged, tenants to uphold in a digital and

anonymous world, but that day is coming. Non-

repudiation depends on public key cryptography

technology.

4. Security Threats to Web Services

There are many complexities specific to, and inherent in

Web services that complicate their security. Numerous

threats can compromise the confidentiality, integrity, or

availability of a Web service or the back-end systems that

a Web service might expose. Some of these threats are

shared with conventional Web application systems (Web

sites), while others are specific to Web services. The

following are the general security threats that can occur in

any Web application.

SQL Injections: When SQL statements are dynamically

created as software executes, there is an opportunity for a

security breach. If the hacker is able to break perimeter

security and pass fixed inputs into the SQL statement, then

these inputs can become part of the SQL statement. SQL

injections can be generated by inserting spatial values or

characters into SOAP requests, Web form submissions, or

URL parameters. A hacker who knows his SQL can use

this technique to gain access to privileged data, log-in to

password-protected areas without a proper log-in, remove

database tables, add new entries to the database, or even

log-in to an application with admin privileges.

Capture and Replay Attacks: As Web messages are

transmitted over the Internet, they are prone to man-in-the-

middle attacks. Such an attack occurs when a malicious

party gains access to some point between the peers in a

message exchange. For instance, a hacker might capture

and replay a SOAP request to make a monetary transfer,

or modify the request before it reaches its destination -

ultimately causing severe losses for any of the peers in the

message exchange.

Buffer Overflows: Native applications can suffer from

unchecked input data sizes. If inputs are not validated, a

buffer overflow attack can transpire remotely via SOAP

requests or Web form submissions. Buffer overflow

attacks occur when a hacker manages to specify more data

into one or more fields and write to the buffer beyond the

size of the memory allocated to hold the data. Buffer

overflows can result in application or system crashes or,

when crafted carefully, they can even allow attackers to

compromise the system and access unauthorized

information or initiate unauthorized processes. The hacker

can exploit this weakness so that the function returns to a

hacker-designated function, or so that the function

executes a hacker designated procedure.

Denial-of-Service Attacks: Denial-of-service (DoS)

attacks are launched to compromise system availability.

There are two ways to mount DoS attacks. First, attackers

can consume Web application resources to a point where

other legitimate users can no longer access or use the

application. This can be accomplished by sending a query

for large amounts of data. The second approach can occur

when attackers lock users out of their accounts or even

cause the entire application to fail by overloading the

service with a large number of requests. Attackers could

combine these two approaches with Web service specific-

attacks to maximize damage.

Improper Error Handling: Many application servers

return details if an internal error occurred. Such details

typically include a stack trace. These details are useful

during development and debugging, but once the

application is deployed, it is important that such details do

not find their way to regular users because the details may

include information about the implementation and could

expose vulnerabilities. For instance, an error message

about a bad SQL query indicates to a malicious user that

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

26

his or her inputs are used to generate database queries,

thus possibly exposing SQL injection vulnerability.

Another instance, a request that includes a wrong

username or password should not be met with a response

that indicates whether or not the username is valid; this

would make it easier for an attacker to identify valid

usernames, and then use them to guess the passwords.

Eavesdropping: Eavesdropping is another security risk

posed to web services. Classified information and

transactions are frequently transmitted using Web services.

By carefully examining the data, attackers can eavesdrop

to intercept SOAP messages and read all of the

information contained therein. Therefore, it is important to

maintain a secure transmission so that this type of

eavesdropping by unauthorized parties is eliminated.

Some of the most damaging things that get sniffed include

passwords and credit card information.

Session Hijacking: Session hijacking involves gaining

illegal control of a legal user’s session state. It occurs

when an attacker steals a valid session ID (valid session

cookie), and uses it to gain that particular user’s privileges

in the application. By intercepting or sniffing SOAP

messages, an attacker can hijack a user’s session in the

same ways as with normal web application attacks,

however once a hacker is authenticated as a valid user he

may perform more dangerous activities.

5. Web Services Security Current Technology

WS-Security: WS-Security is a building block that is

intended to be used in conjunction with other Web

Services and application specific protocols; to

accommodate a wide variety of security models. WS-

Security (Kearney et al., 2004) does not claim to provide a

complete solution to securing Web services. The XML

signature and XML encryption specifications provide

standard methods for digitally signing and encrypting

XML documents including SOAP messages. Not only can

whole documents be signed or encrypted, but also

individual parts. WS-Security defines how XML signature

data can be included in a SOAP message. This provides

persistent confidentiality beyond a single SOAP

communication.

Secure Socket Layer: Secure Socket Layer (SSL) is a

protocol or technology, which is used to protect

companies from Web Service Security attacks. SSL used

in encryption technique, which are in turn used to

implement for data protection. SSL creates a secure tunnel

in between originator and destination computers based on

public key encryption technique. A common protective

measure is to send messages over a secure connection that

is using SSL. For instance, an SSL connection between

two points may be sufficient for simple applications. For

multiple Web Services, complete message or individual

part of messages may be encrypted and signed to protect

the confidentiality and integrity of Web Service messages

(Kearney et al., 2004).

XML Encryption: XML Encryption provides end-to-end

security for applications that require secure change of

structured data. XML Encryption is mainly ensuring

confidentiality to encrypt the XML data. XML based

Encryption is the natural way to handle requirements for

security in data interchange applications. XML Encryption

is not intended to replace or supersede Secure Socket

Layer (SSL). Rather, it provides a mechanism for security

requirements that are not covered by SSL. XML

encryption is ideal for confidentiality. XML Encryption

does not introduce any new cryptography algorithms or

techniques. RSA Encryption may still be used for actual

encryption.

SAML: Security Assertion Markup Language (SAML) is

a protocol for asserting authentication and authorization

information. It also provides attributes of an end-user in

XML format. It allows information to be placed on a

SOAP message. SAML servers can be accessed for

authentication and authorization data in order to enable

Single- Sign-On (SSO). If the recipient of this SOAP

message trusts the sender of the SAML data, the end user

can also be authorized for the Web Service.

XACML: eXtensible Access Control Markup Language

or XML-Access Control Markup

Language (XACML) is designed to express access control

rules in XML format. Although the two technologies are

not explicitly linked, XACML may be used in conjunction

with SAML. An authorization decision expressed in a

SAML assertion may have been based on rules expressed

in XACML.

6. Proposed Solution

The main objective of this work is to bring into focus the

review of security issues in Web services and discuss a

common framework of general security issues. Also some

new security issues in Web Service Security (WSS) along

with their attacks are highlighted. The key to effective

Web services security is to know the threats as described

above, understand the technical solutions for mitigating

these threats, and then establish and follow a defined

engineering process that takes security into consideration

from the beginning and throughout the Web service life

cycle. This process can be established in the following

four steps:

1. Determine a suitable Web service security architecture.

2. Adhere to technology standards.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.1, January 2012

27

3. Establish an effective Web services testing process.

4. Create and maintain reusable, re-runnable tests.

By following these four steps, one can ensure complete

Web service security.

7. Conclusion

Web services security is still a work in progress and one

needs to understand the potential security risks and

proactively minimize those risks so that Web services are

less vulnerable to attack. In the present work a review of

security issues in Web services is done under a common

security framework. Some new security issues are

highlighted. New security architecture based upon Web

services that support authentication, authorization and

integrity is a central point for future research.

References
[1] Cerami E. (2002). Web Services Essentials: Distributed

Applications with XML-RPC, SOAP, UDDI & WSDL.

O'Reilly Publisher

[2] Hartman B., Flinn D. J., Beznosov K. and Kawamoto S.

(2003). Mastering Web Services Security. Wiley Publishing

Inc. Indianapolis, Indiana

[3] Kearney P., Chapman J., Edwards N., Gifford M. and He I.

(2004). An Overview of Web Services Security. BT tech.

Journal. 22(1): 27-42

[4] Mcintosh, M.; Austel, P.(2005). XML Signature Element

Wrapping Attacks and Countermeasures. Fairfax. Virginia.

USA

[5] Michael N. H.; Singh, M. P.(2005). Service-Oriented

Computing: Key concepts and principles. IEEE Internet

computing. 9(1):75-81

[6] Neil. M.O. (2003). Web-Service Security. Tata Mcgraw-Hill

Pub. New York

[7] Peterson G. and Lipson H. (2006). Security Concepts,

Challenges, and Design Considerations for Web Services

Integration. Carnegie Mellon University and Cigital, Inc

[8] Rami Jaamour (2005). Securing Web Services. Information

System Security www.infosectoday.com

[9] Sinha S. , Sinha, S. K. and Purkayastha B. S. (2010).

Security Issues in Web Services: A Review and

Development Approach of Research Agenda. Assam

University Journal of Science & Technology: Physical

Sciences and Technology. 5(2):134-140

Kuyoro Shade O. received the B.Sc. and M.Sc. degrees in Computer

Science from Olabisi Onabanjo University (2004) and University of

Ibadan (2010) respectively. She is an assistant lecturer at Computer

Science Department, Babcock University, Ogun State, Nigeria. Her

research interests are in the area of computer networking, machine

learning and artificial intelligence.

Ibikunle Frank is a Senior Lecturer at Computer Science Department,

Covenant University Otta, Ogun State, Nigeria His research interest is in

the area of computer networking.

Awodele Oludele is a Senior Lecturer at Computer Science Department,

Babcock University Ilishan-Remo, Ogun State, Nigeria. His research

interest is in the area of artificial intelligence.

Okolie Samuel O. is a Senior Lecturer at Computer Science Department,

Babcock University Ilishan-Remo, Ogun State, Nigeria. His research

interest is in the area of numerical analysis.

	Eavesdropping: Eavesdropping is another security risk posed to web services. Classified information and transactions are frequently transmitted using Web services. By carefully examining the data, attackers can eavesdrop to intercept SOAP messages and...

