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CHAPTER 6

Security of Distributed Intelligence in Edge 
Computing: Threats and Countermeasures

Mohammad S. Ansari, Saeed H. Alsamhi, Yuansong Qiao, 
Yuhang Ye, and Brian Lee

Abstract Rapid growth in the amount of data produced by IoT sensors 
and devices has led to the advent of edge computing wherein the data is 
processed at a point at or near to its origin. This facilitates lower latency, 
as well as data security and privacy by keeping the data localized to the 
edge node. However, due to the issues of resource-constrained hardware 
and software heterogeneities, most edge computing systems are prone to 
a large variety of attacks. Furthermore, the recent trend of incorporating 
intelligence in edge computing systems has led to its own security issues 
such as data and model poisoning, and evasion attacks. This chapter pres-
ents a discussion on the most pertinent threats to edge intelligence. 
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Countermeasures to deal with the threats are then discussed. Lastly, ave-
nues for future research are highlighted.

Keywords Edge AI • Edge computing • Distributed intelligence • 
Federated learning • Threats to Edge AI

6.1  EdgE Computing: thrEats and ChallEngEs

As discussed in Chap. 1, edge computing refers to data processing at or 
near the point of its origin rather than onward transmission to the fog or 
cloud. The ‘edge’ is defined as the network layer encompassing the smart 
end devices and their users, and is identified by the exclusion of cloud and 
fog (Iorga et al. 2018). For instance, a smartphone is the edge between 
body things and the cloud, and a gateway in a smart home is the edge 
between home things and the cloud (Shi et al. 2016).

Although edge computing brings a lot of advantages, and is being used 
in a variety of scenarios, it is not without its share of security threats and 
challenges. In fact, the following factors work towards expanding the 
attack surface in the case of edge computing:

Hardware Constraints: Since most edge computing hardware (edge 
devices, and even edge servers) have lower computational power and 
storage capacity as compared to a fog or cloud server, they are incapable 
of running dedicated attack prevention systems like firewalls, and are 
therefore more vulnerable to attacks.

Software Heterogeneities: Most devices and servers operating in the edge 
layer communicate using a large variety of protocols and operating sys-
tems without a standardized regulation. This makes the task of design-
ing a unified protection mechanism difficult.

Most of these threats are exacerbated due to design flaws, implementa-
tion bugs, and device misconfigurations in the edge devices and servers 
(Xiao et al. 2019). Also, the lack of full-fledged user interfaces in many 
edge devices often makes it impossible to discern an ongoing/trans-
pired attack.

In light of the above, understanding the security threats (and defenses) 
in edge computing assumes utmost importance. This section presents an 
overview of the state-of-the-art in the security threats and countermea-
sures employed in edge computing.
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As depicted in Fig. 6.1, most attacks on edge computing infrastructure 
may be placed in one of the following four categories: DDoS attacks, side- 
channel attacks, malware injection attacks, and authentication and autho-
rization attacks (Xiao et  al. 2019). Each of these attacks and the 
countermeasure devised to deal with the corresponding attacks are dis-
cussed next.

6.1.1  DDoS Attack

In this type of attack, the goal of the adversary is to engage all the resources 
and bandwidth available at the target in order to prevent legitimate users 
from using the victimized system. In a typical DDoS attack, the attacker 
persistently sends a huge number of packets to the target (also referred to 
as ‘flooding’) thereby ensuring that all the resources of the target are 
exhausted in handling the malicious packets, and therefore genuine 
requests cannot be processed. Such attacks assume greater importance in 
the edge computing paradigms as they are computationally less powerful 
(than cloud servers), and therefore cannot run strong defense systems. 
Such attacks may be further categorized as UDP flooding attacks, ICMP 
flooding, SYN flooding, ping of death (PoD), HTTP flooding, and 
Slowloris (Xiao et al. 2019). Apart from the flooding attacks, another type 
of DDoS attack is a zero-day attack in which an attacker finds and utilizes 
a still-unidentified vulnerability in the target system to cause system 
shutdown.

Defenses and Countermeasures: Most potent solutions against flooding 
attacks utilize the detect-and-filter technique. The detection of malicious 

Fig. 6.1 Different types of attacks against edge computing systems (Xiao 
et al. 2019)
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flooding packets may either be on a per-packet basis wherein each indi-
vidual packet is inspected and discarded if deemed to be suspicious, or on 
a statistical basis wherein malicious packets are identified using parameters 
like packet entropy or by employing machine learning tools. Countering 
zero-day attacks on edge computing hardware is more difficult due to the 
unavailability of original source codes for the programs running on the 
machine, and also due to the fact that in many cases the software comes 
embedded in a firmware and is not amenable for inspection.

6.1.2  Side-Channel Attacks

These attacks operate by first capturing publicly available, non-privacy- 
sensitive information pertaining to the target (also called the side-channel 
information), and then inferring the private and protected data from this 
information by exploiting the correlations that are inherently present 
between the public and the private information. Typical examples of such 
attacks include capturing communication signals (e.g. packets or wave sig-
nals) to leak user’s private data, monitoring the power consumption of 
edge devices to reveal usage patterns, and targeting the filesystem (e.g. the 
/proc filesystem in Android) and sensors (e.g. microphone, camera) on 
end devices like smartphones.

Defenses and Countermeasures: Due to their passive nature, side- channel 
attacks are difficult to defend against. Some commonly suggested defense 
mechanisms include data perturbation and differential privacy. The most 
popular data perturbation algorithm is k-anonymity which modifies the 
identifier information in the data prior to publishing its sensitive attri-
butes. Lastly, it is important to note that ironically most defense mecha-
nisms are themselves vulnerable to side-channel attacks (Xiao et al. 2019).

6.1.3  Malware Injection Attacks

The infeasibility of installing a full-fledged firewall on resource-constrained 
edge devices makes them vulnerable to malware injection attacks, wherein 
an attacker stealthily installs malicious programs in a target system. Such 
malware injection may either be performed at the edge server or the edge 
device(s). Server-side injection attacks can further be divided into four 
types: SQL injection, cross-site scripting (XSS), XML signature wrapping, 
and Cross-Site Request Forgery (CSRF) & Server-Site Request Forgery 
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(SSRF) (Xiao et al. 2019). Device-side injection attacks typically target the 
firmware of the end devices.

In a SQL injection attack, the attacker aims to destroy the backend 
database by sending carefully crafted SQL queries containing malicious 
executable codes. In a XSS attack, the adversary injects malignant HTML/
JavaScript codes into the data content which may be accessed and exe-
cuted by a server leading to its compromise. A CSRF attack is one in 
which the edge server is tricked into executing malicious programs embed-
ded in web applications, and a SSRF attack is carried out by compromising 
and using an edge server to alter the internal data and/or services. Lastly, 
an XML signature wrapping attack works by intercepting and modifying a 
XML message, and re-transmitting it to a target machine in order to run 
tainted code.

Defenses and Countermeasures: To counter the server-side injection 
attacks, the detect-and-filter technique has been shown to be the most 
promising. Defense mechanisms against injection attacks generally rely on 
static analysis for malicious code detection and fine-grained access control. 
Research on devising means to mitigate firmware modification is also 
being carried out for prevention of such attacks.

6.1.4  Authentication and Authorization Attacks

The authentication and authorization processes in edge computing sys-
tems may also be susceptible to attacks. Such attacks may be put into four 
different categories: dictionary attacks, attacks targeting vulnerabilities in 
authentication mechanisms, attacks exploiting susceptibilities in authori-
zation protocols, and over-privileged attacks (Xiao et al. 2019). Dictionary 
attacks employ a credential/password dictionary to get past the authenti-
cation systems. Attacks targeting vulnerabilities in authentication mostly 
work by utilizing loopholes in the WPA/WPA2 security protocols. 
Authorization based attacks exploit the logical weaknesses or design flaws 
that may exist in authorization protocols used by the edge computing 
systems. In over-privileged attacks, the attacker tricks the victim system 
into assigning higher (than required) access rights to an app or device, 
which can then be used to perform malicious activities inside the network.

Defenses and Countermeasures: The most potent defense against dic-
tionary attacks is the addition of one more layer of authentication (typi-
cally known as two-factor authentication). To counter the attacks which 
target authentication protocols, two common approaches are enhancing 
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the security of the communication protocols, and hardening the crypto-
graphic implementation. The OAuth 2.0 protocol is the best defense 
against authorization attacks, and has been proven to be theoretically 
secure. To counter the over-privileged attacks, the most effective solution 
involves strengthening the permission models for the operating systems 
running on edge devices.

Most of the security threats and challenges, along with the associated 
countermeasures, discussed above pertain to edge computing systems 
which are configured as passive data aggregation and processing nodes 
with little to no intelligence built into them. However, the recent trend of 
incorporation of intelligence (in the form of inference generation, and 
even on-device training, in the context of machine learning) into the edge 
nodes/devices, brings its own share of issues and challenges, and the need 
for specialized defenses and countermeasures.

This chapter aims to highlight the threat landscape for the scenario 
where edge devices are becoming smarter with the inclusion of machine 
learning. Therefore, the remainder of the chapter focuses on the tech-
niques for incorporation of intelligence into edge computing systems, the 
security threats associated with such systems, and the pertinent counter-
measures and defenses that have been devised against attacks on edge 
intelligence. Section 6.2 presents a discussion on the need for, and the 
techniques to bring intelligence to the edge computing systems. Security 
threats targeted towards intelligent edge systems are highlighted in Sect. 
6.3 (For a quick summary, please refer to Table 6.1). Techniques that have 
been developed to defend against the threats, and mitigate the attacks on 
edge computing systems are discussed in Sect. 6.4. Section 6.5 contains a 
discussion on future research directions in the field of intelligent edge 
computing. Section 6.6 presents concluding remarks.

6.2  EdgE intElligEnCE

The incorporation of artificial intelligence into the constituents of edge 
layer is referred to as Edge AI. The two biggest advantages of Edge AI are 
briefly discussed below.

Faster Inference: For applications which utilize a pre-trained machine 
learning model to output classifications or predictions, processing data 
at the edge leads to faster results. This is primarily due to the elimina-
tion of the data transfer time between the edge and the cloud.
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Data Locality: Since most of the data processing and inference is per-
formed it the edge layer, the data actually never leaves this layer (and is 
not sent to the fog/cloud). Such data locality is of paramount impor-
tance in safeguarding user privacy in applications like health monitor-
ing, indoor localization, etc. Further, keeping the data on or near the 
source, and not transferring it to the cloud (which may be in a different 
country), alleviates regulatory/legal issues pertaining to the data.

Although the advantage of faster inference with the data remaining 
localized is interesting, the resource constraints in most constituents of the 
edge layer dictate that specialized techniques have to be employed for 
performing inference and training in Edge AI.

6.2.1  Lightweight Models for Edge AI

The first case is where an edge computing node is only used for inference 
using a pre-trained model. In such cases, the emphasis is to build light-
weight models capable of running in resource constrained environments. 
This discussion will focus on image processing models because a major 
portion of available research on light models for Edge AI deals with com-
puter vision. This is driven by the success of Convolutional Neural 
Networks (CNN) for image recognition and classification tasks, albeit 
with huge computational requirements. AlexNet was the first CNN vari-
ant which employed a technique called Group Convolution to reduce the 
number of parameters, and resulted in a 240 MB sized model (Krizhevsky 
et al. 2012). Xception used a more stringent version of group convolution 
to further reduce the number of model parameters (88 MB model size) 
(Chollet 2017). GoogleNet managed to reduce the parameter size to 
27 MB while maintaining the accuracy (Szegedy et al. 2015). However, 
the breakthrough which enabled CNN variants to be used on edge devices 
was MobileNet (Howard et al. 2017), which required approximately 8–9 
times less computation than standard CNN, and had model size of 16 MB 
(Howard et  al. 2017). MobileNetV2 further provided a performance 
improvement while reducing the model size to 14  MB (Sandler et  al. 
2018). SqueezeNet is even more efficient, and is capable of providing 
AlexNet level accuracy with only 5 MB of parameters (Iandola et al. 2016), 
which is a sufficiently small sized model for deployment on low- complexity 
embedded hardware like Raspberry Pi.

6 SECURITY OF DISTRIBUTED INTELLIGENCE IN EDGE COMPUTING… 
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6.2.2  Data and Model Parallelism

For cases where the edge computing nodes are to be used for training as 
well, techniques like data parallelism and model parallelism are employed.

Data Parallelism: In data parallelism, the training dataset is divided into 
non-overlapping partitions and fed to the participating nodes. 
Figure 6.2(a) depicts the data parallelism applied to a group of three 
machines. All nodes train the complete model using a subset of data. 
The advantage is that the training task is performed at multiple nodes 
concurrently (for different data sub-sets). Specialized algorithms like 
Synchronous Stochastic Gradient Descent (Sync-SGD) (Das et  al. 
2016), and Asynchronous Stochastic Gradient Descent (Async-SGD) 
(Zhang et al. 2013) have been devised to ensure timely and efficient 
update of the global weights and parameters of the model.

Model Parallelism: In model parallelism, the ML model is divided into 
partitions and each participant node is responsible for maintaining one 
partition. Figure 6.2(b) depicts the model parallelism applied to a group 
of four machines. Designing the model partitions is non-trivial and NP- 
complete in this case, as the participating machines may have different 
storage, computing, and networking capabilities (Dean et  al. 2012). 
Further, dividing the training dataset is also not straightforward in this 
case, as the logical partitions have to be decided in accordance with the 
partition scheme of the input layer.

To reduce the communication of a large number of parameters between 
participating devices, model compression is used. It has been demonstrated 
that quantizing the parameter bitwidth from 32 bits to 8 bits does not 

Fig. 6.2 (a) Data parallelism and (b) model parallelism
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impact the accuracy of CNN-like architectures significantly (Cheng et al. 
2017). Further, reducing the communication overhead by quantizing the 
gradients (computed using Stochastic Gradient Descent) is referred to as 
Gradient Compression or Gradient Quantization.

6.2.3  Federated Learning

Data collected by a lot of devices may not be amenable for sharing over a 
cloud due to reasons of privacy. Examples include data collected by health 
monitoring devices, CCTV recordings, etc. For such cases, a distributed 
ML technique called Federated Learning (FL) has been proposed 
(Konečný et al. 2016), which enables smart devices to collaboratively learn 
a shared prediction model while keeping all the training data on device. 
This effectively decouples the learning process from the need to store the 
data centrally, and goes beyond the use of pre-trained models to make 
predictions on mobile devices by bringing model training to the device. As 
shown in Fig. 6.3, FL works by first downloading the current model to an 
edge device. Thereafter, the model is updated using locally stored data, 
and updates are forwarded to a central server where they undergo a 

Fig. 6.3 Federated learning over multiple smartphones
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Federated Averaging with the updates from other users. Since the user 
data never leaves the device, and individual updates are not stored in the 
cloud, data security and privacy is ensured.

The updates in this case are not simple gradient updates as in the case 
of conventional distributed ML models. Instead, high-quality updates 
containing much more information than just the changes in gradients are 
computed, compressed, and sent for processing. This ensures convergence 
with reduced communication (up to 100 times (Konečný et  al. 2016)) 
between the edge device and the central server. Scheduling algorithms are 
used to ensure that training happens only when the device is idle, charg-
ing, and on a free wireless connection, so there is no degradation in the 
end-user experience. With most flagship phones nowadays coming with a 
dedicated AI chip, there are estimated to be approximately two billion 
smartphones with underutilized processing capability. Federated Learning 
can leverage this enormous pool of computing resources to improve exist-
ing models, or to train new ones from scratch.

The distribution of intelligence over a multitude of end devices is there-
fore slated to bring significant improvements in the way conventional IoT 
devices function. However, this distribution of intelligence to the edge 
nodes also opens up a plethora of security issues which are discussed next.

6.3  thrEats to EdgE ai
Despite their widespread usage by virtue of the advantages they offer, 
Edge AI paradigms are not without their share of limitations and points of 
concerns. Incorporating intelligence in the edge layer is a double edged 
sword in the sense that although the impact of a potential attack is limited 
to a localized environment, the less potent security protocols on the 
resource-constrained edge hardware make them more vulnerable to 
attacks. The situation is further aggravated by the casual attitude of human 
operators responsible for the configuration and maintenance of the edge 
devices. For instance, a survey of 439 million households using WiFi net-
works showed that approximately 50% of them were unsecured, and of the 
remaining, 80% have their router still configured with the default pass-
words (Shi et al. 2016). The figure is even poorer for public WiFi hotspots, 
with 89% of them being unsecured or poorly configured (Shi et al. 2016). 
Furthermore, updating or re-configuration of the security software on 
edge devices is non-trivial because there may be legacy devices for which 
support has ended, or the constrained hardware resources available on the 
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device may present restrictions on the authentication protocols that could 
be run on the device. Moreover, the heterogeneous nature of the edge 
networks means that there can be no uniform security policy. Lastly, 
microservers used in the edge computing environment lack the hardware 
protection mechanisms available on commodity servers (Roman 
et al. 2018).

A discussion on the threats to Edge AI systems can be divided into two 
distinct cases: threats to Edge AI used for inference, and threats to Edge 
AI used for learning/training (as in Federated Learning). Each of these 
scenarios are discussed separately below. It needs to be mentioned that in 
the discussion that follows, it is considered that the intelligence is located 
in the edge device. However, this is not a restrictive scenario. In fact, the 
attacks and countermeasure discussed below are equally relevant in the 
case where the machine intelligence is located in an edge server or a 
gateway.

6.3.1  Threats to Edge AI for Inference

The vast majority of Edge AI deployments at present are used for inferenc-
ing based on pre-trained models. This is suitable for edge devices due to 
the limited computing resources they offer. As discussed before, there has 
been progress in model compression that allow high performance models 
(e.g. SqueezeNet) to be run in resource-constrained environments. In 
such a standalone environment, where the edge devices use the pre-trained 
model independently, the most probable attack is the feeding of adver-
sarial examples to the model thereby causing the model to output incor-
rect predictions. Such attacks are referred to as Evasion Attacks and are 
discussed next.

6.3.2  Evasion Attacks

The susceptibility of machine learning models to adversarial samples, 
which essentially are carefully perturbed inputs that look and feel exactly 
the same as their untampered counterparts to a human, is well docu-
mented (Biggio and Roli 2018). Although it may seem that adversarial 
examples are available only for image recognition models (Kurakin et al. 
2016), the earliest reported instance of such an attack is for a machine 
learning based email spam filter, wherein it was shown that linear classifiers 
could be tricked easily by carefully crafted changes in the text (Dalvi et al. 
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2004). It is still not proven why adversarial samples work, but a commonly 
accepted hypothesis, called the tilted boundary hypothesis, asserts that 
since the model can never fit the data perfectly (at least theoretically), 
there would always be adversarial pockets of inputs existing between the 
classifier boundary and the actual sub-manifold of sampled data (Szegedy 
et al. 2013). Since the models devised to be used in the low resource envi-
ronments of edge computing are compressed variants of bigger, deeper, 
and more robust models, these are generally more prone to such adver-
sarial attacks. Evasion attacks can be of different types: Gradient based, 
Confidence-score based, Hard Label based, Surrogate model based, and 
Brute-force attacks (Moisejevs 2019).

Gradient based attacks require access to the model gradients (and thus 
belong to the category of Whitebox attacks). Theoretically, such attacks 
are the most potent as the attacker may use the model gradients to gain 
insights into the working of the model, and can then mathematically opti-
mize the attack. This approach is the most probable one to target hard-
ened models, as it has been shown that if an adversary has access to the 
model gradients, it is always possible to generate adversarial samples irre-
spective of the robustness of the model (Carlini and Wagner 2017). Some 
examples of such attacks include Elastic-Net attack based on L1 norm 
(Chen et al. 2018a), an L2 Norm based attack (Carlini and Wagner 2017), 
and an L∞ Norm based attack (Madry et al. 2017).

Confidence-score based adversarial attacks utilize the output confi-
dence score to get estimates of the gradients of the model. The adversary 
may then use these estimated gradients to orchestrate an attack similar to 
the gradient based attack. Since this approach does not require any infor-
mation about the composition of the model, this attack may be classified 
as a Blackbox attack. Examples include the Zeroth Order Optimization 
based attack (Chen et  al. 2017a), the Natural Evolutionary Strategies 
(NES) based attack (Ilyas et al. 2018), and the Simultaneous Perturbation 
Stochastic Approximation (SPSA) based attack (Uesato et al. 2018).

Label based attacks rely on estimating the gradients by using the hard 
labels generated by the model. Since only the label information is required 
by the adversary, such attacks are generally simple to implement, and 
require little hyperparameter tuning. Boundary Attack is the most power-
ful attack in this category. It works by starting from a large adversarial 
perturbation and seeks to incrementally reduce the perturbation while 
staying adversarial (Brendel et al. 2017).
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Surrogate model based attacks first try to build a replica of the target 
model. If the internals of the target model are not known, the adversary 
can reverse engineer the structure of the model by repeatedly querying the 
target model and observing the input-output pairs. If the target model is 
not available for querying, then the attacker can start by guessing the 
architecture in the case of the model being applied for a standard machine 
learning problem like image classification (Moisejevs 2019). Thereafter, 
the gradient based attack can be fine-tuned on this surrogate model, and 
then used on the actual model.

Lastly, Brute-force attacks, as the name implies, work by generating 
adversarial examples by resorting to transformations, perturbations and 
addition of noise to the data samples. Such attacks do not rely on mathe-
matical optimization, and therefore require no knowledge of the model. 
Such an approach is generally used by adversaries who have access to large 
computational resources, and do not have a timeline for the success of 
their attacks.

6.3.3  Privacy Attacks

The previous section discussed the issues pertaining to evasion attacks 
wherein the goal of the attacker is to cause the model to output incorrect 
predictions. However, there is another class of attacks, known as Privacy 
Attacks, which aim to siphon off valuable information from the data used 
by the model. For instance, an adversary may be interested in knowing 
whether a certain person is enrolled in a healthcare program. There are 
several other examples of such private information which an attacker may 
want to unravel: credit card details, location information, and household 
energy consumption. While the risk with disclosure of credit card informa-
tion is obvious, the availability of location and energy usage information 
of a person can inform the attacker about when the person is away for a 
vacation (consequently leaving his house unattended). There are two 
broad categories of such privacy attacks on machine learning systems:

Membership Inference Attacks: This is the case when the adversary has one 
or more data points, and wants to ascertain whether the data points 
were part of the training set or not (Shokri et al. 2017). For instance, an 
attacker might want to find out whether a given person X is included in 
a critical illness list in the healthcare records of a state. Such attacks are 
increasingly being targeted towards recommender systems, wherein the 
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training dataset may contain information such as gender, age, ethnicity, 
location, sexual orientation, immigration status, political affiliation, net 
worth and buying preferences. An attacker who knows a few pieces of 
information from these may be able to expose other details using mem-
bership inference. A detailed study of such attacks has been carried out 
(Truex et al. 2019), which concluded that several factors affected the 
potency of membership inference attacks. Firstly, the model becomes 
more vulnerable with increase in the number of classes. Also, the choice 
of the algorithm for training is also an important factor. Algorithms 
whose decision boundaries are not significantly impacted by an indi-
vidual training sample are less vulnerable.

Model Inversion Attacks: Such attacks, also known as Data Extraction 
attacks, work by extracting an average representation of each of the 
classes the target model was trained on. For instance, a model trained 
for facial recognition may be attacked in the following manner. First, a 
base image is chosen based upon the physical characteristics (age, gen-
der, ethnicity) of the person whose image is to be extracted from the 
model. Then the attacker can repeatedly query the target model with 
different modifications in the base image, until a desired confidence 
level is reached. It has been shown that the final image in such an attack 
scenario can be fairly demonstrative of the face of the person concerned 
(Fredrikson et al. 2015). With the increasing integration of ML based 
face recognition systems in modern day security and surveillance setups 
including the ones at airports, such attacks may lead to the divulgence 
of private and sensitive information like photographs, visa and passport 
details, travel itineraries, and much more. In another instance, it has 
been demonstrated that it is possible to extract credit card details and 
social security numbers from a text generator trained on private data 
(Carlini et al. 2019).

6.3.4  Threats to Edge AI for Training

This section deals with the threats that are pertinent for Edge AI systems 
which are used for performing both machine learning training and infer-
ence. Firstly, the convergence guarantee of the federated learning algo-
rithms has not still been theoretically established (Ma et al. 2019). Only 
approximate convergence may be guaranteed, and that too requires some 
unrealistic assumptions: (1) training data is shared across devices or dis-
tributed amongst the participating devices in an independent and 
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identically distributed (IID) manner, and (2) all participating devices are 
involved in communication of updates for each round.

Secondly, in the federated learning scenario, an adversary can take con-
trol over one or more participating devices to inject spurious and arbitrary 
updates in order to manipulate the training process. This is generally 
referred to as model poisoning or logic corruption. Also, a malicious intruder 
may also compromise the training data in order to adversely affect the 
training process. This is commonly known as data poisoning, and may be 
in the form of either the manipulation of the labels in the training data, or 
the modification of the input itself. It has been shown that an adversarial 
participant can infer properties associated with a subset of training data 
(Bagdasaryan et  al. 2018). Also, there may exist eavesdroppers on the 
broadcast link used by the centralized server to communicate the interme-
diate model state to the participants. Another way of classifying the poi-
soning attacks on Edge AI systems can be based on the characteristic that 
is targeted to be compromised. For instance, attacks targeting the avail-
ability of the system generally work by injecting a lot of spurious data into 
the training set, thereby ensuring that whatever classification boundary 
the model learns becomes useless. It has been shown that a 3% poisoning 
of the dataset can lead to more than 10% drop in accuracy (Steinhardt 
et al. 2017). Such attacks are the ML counterparts to the conventional 
Denial-of-Service attacks. Another class of attacks do not aim to affect the 
availability of the ML system, and instead target the integrity of the sys-
tem. Such attacks are more sophisticated than availability attacks, and 
leave the classifier functioning exactly as it should, but with one or more 
backdoor inputs embedded into the model. These backdoor inputs cause 
the classifier to output incorrect predictions thereby compromising the 
integrity of the model. An example of such a backdoor input is a spam 
email checking scenario wherein an attacker teaches a model that if a cer-
tain string is present in the input, then that input is to be classified as 
benign (Chen et al. 2017b).

Further, although the concept of federated learning is appealing, it 
remains to be seen how it performs with scaling up. Several practical issues 
are expected to creep up when the FL systems are scaled up to involve a 
huge number of devices: limited device storage, unreliable connectivity, 
and interrupted execution. Moreover, it is still unknown whether a signifi-
cant increase in the number of participating devices would translate to 
better accuracy and/or faster convergence of the model.
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There can be another way of looking at the threats that may affect Edge 
AI. Typically, an Edge AI system is composed of three major components: 
network, services, and devices. The network (generally wireless network) 
may be susceptible to DoS and man-in-the-middle attacks, as well as prone 
to disruptions by a rogue node or gateway. The services running on the 
nodes may be infiltrated to cause privacy leakage, privilege escalation, and 
service manipulation. Lastly, the edge devices may themselves be prone to 
physical damage, as well as data poisoning.

6.4  CountEring thE thrEats to EdgE ai
This section presents a discussion on the techniques available for dealing 
with the threats against Edge AI. Since the threats could be against the 
data, the model, or even the entire system (e.g. Federated Learning), the 
following discussion is structured accordingly. At the onset, it needs to be 
mentioned that no available countermeasure can be guaranteed to com-
pletely eliminate the threats to Edge AI systems, and it is by a judicious 
mix of the defense techniques that we can hope for a reasonable safe system.

6.4.1  Defenses against Data Poisoning

In a data poisoning attack on a machine learning system, the adversary 
injects malicious samples into the training pool. These tainted data sam-
ples are typically significantly different from the benign data points, and 
are therefore ‘outliers.’ The process of outlier detection (also known as 
anomaly detection or data sanitization) aims to identify and eliminate such 
outliers before the training process (Paudice et  al. 2018). The anomaly 
detection process is obviously ineffective if the poisoned samples were 
introduced into the training dataset before the filtering rules were created. 
Further, if the attacker is able to generate data poison samples which are 
very similar to the pristine samples (‘inliers’), then this line of defense 
breaks down. Another variant of the anomaly detection approach is the 
use of micromodels (Cretu et al. 2008). The Micromodel approach was 
first proposed for use in network intrusion detection datasets, wherein 
multiple micromodels were generated by training the classifier on non- 
overlapping slices of the training sets (micromodels of the training set). A 
majority voting scheme was then used on the micromodels to ascertain 
which of the training slices were corrupted by poisoning. The institution 
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behind this approach is that network attacks are generally of a low time 
duration, and can only affect a few training slices.

Another commonly used defense technique is to analyze the effect of a 
new sample on the model’s accuracy before actually including that sample 
in the training set. For a tainted data sample used as a test sample, the 
model’s accuracy would degrade. Reject on Negative Impact (RONI) 
(Nelson et al. 2009), and target-aware RONI (tRONI) (Suciu et al. 2018) 
are defensive methods that use this approach. The RONI defense has been 
demonstrated to be extremely successful against dictionary attacks on 
email spam filters, identifying 100% of malicious emails without flagging 
any benign emails. However, RONI fails to mitigate targeted attacks 
because the poison instances in such cases might not individually cause a 
significant performance drop. Target-aware RONI was then proposed as a 
targeted variant which is capable of identifying instances that distort the 
target classification significantly.

A perturbation approach has also been employed for anomaly detection 
(Gao et al. 2019). STRong Intentional Perturbation (STRIP) intention-
ally perturbs the incoming data samples, for instance by superimposing 
different patterns on sample images, and observes the randomness of the 
predicted classes for the perturbed inputs. It is expected that a benign clas-
sifier would be affected significantly by the perturbations. A low entropy 
in the classes predicted by the model defies the input-dependence prop-
erty of a pristine model and implies the presence of a tainted input.

Another method known as TRIM has been proposed for regression 
learning. It estimates the parameters iteratively, while employing a trimmed 
loss function to remove samples which lead to large residuals. It has been 
demonstrated that TRIM is able to isolate most of the poisoning points 
and learn a robust regression model (Jagielski et al. 2018).

Lastly, even after significant strides in automated anomaly detection, 
the role of human factors in identifying malicious data samples cannot be 
completely eliminated. Human-in-the-loop approach works by focusing 
the attention of human data analysts on outliers which cause an unwar-
ranted boundary shift in a classifier model (Mei and Zhu 2015).

6.4.2  Countering Adversarial Attacks

Defenses against evasion attacks may be put into two broad categories: 
formal methods and empirical approaches. Formal methods are purely 
mathematical in nature, and work by testing the model on all possible 
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adversarial samples which can be generated within the allowable limits of 
perturbation. While this approach leads to virtually impenetrable models, 
the method is not amenable to most present day applications of machine 
learning due to its high requirement of computational resources. For 
instance, applying formal methods to a model working with image inputs 
would mean generating all adversarial images (within a certain noise 
range), feeding them to the model and verifying whether the output is as 
intended. Therefore, this class of countermeasures is still more theoretical 
than practical.

Empirical defenses, on the other hand, rely on experiments to ascertain 
the effectiveness of a defense mechanism. There are several defense strate-
gies which can be employed. Adversarial training refers to retraining of the 
model with adversarial samples included in the training set after including 
their correct labels. It is expected that this will ensure that the model learn 
to ignore the noise and focus on the more evident features in the entire 
training set. A technique called Ensemble Adversarial Training (EAT) has 
been proposed that augments training data with perturbations transferred 
from other models, thereby making the model more robust (Tramèr et al. 
2017). Cascade adversarial training, which transfers the knowledge of the 
end results of adversarial training on one model, to other models has been 
proposed to enhance the robustness of models (Na et al. 2017). A robust 
optimization based approach for identifying universally applicable, reliable 
training methods for neural networks has also been proposed (Madry 
et al. 2017).

Other commonly used technique to defend models against evasion 
attacks is input modification. In this case, an input sample, prior to being 
fed to the model, is passed through a sanitizing system to remove the 
adversarial noise, if any. Examples of such methods include denoising 
approaches like autoencoders and high level representational denoisers, 
JPEG compression, pixel deflection, and general basis function transfor-
mations (Moisejevs 2019). Lastly, there is an interesting NULL class 
approach (Hosseini et al. 2017), in which the classifier is trained to output 
a NULL class for inputs which it considers as adversarial.

6.4.3  Hardening Federated Learning Systems

Since the process of training, aggregation and model updating is spread 
over the client, server, and the network in a federated learning system, all 
the three segments need hardening against potential adversaries. Privacy 
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protection at the client side may be ensured by adding perturbations 
(noise) to the updates (Ma et al. 2019). The more sensitive attributes in 
the update can be obscured by using differential privacy techniques 
(Dwork et al. 2006).

The server side can be made more robust by incorporating Secure 
Multi-Party Computation (SMC) which ensures that individual updates 
are rendered uninspectable at the server (Rosulek 2017). A secure aggre-
gation protocol can be employed that uses cryptographic techniques so a 
coordinating server can only decrypt the average update if a certain num-
ber of users have participated, and no individual update can be inspected 
before averaging. A variety of other specialized approaches have also been 
employed to safeguard user privacy. These include, but are not limited to, 
de-identification schemes like anonymization, and cryptographic tech-
niques like homomorphic encryption. In FL systems incorporating the 
latter, user updates are encrypted before uploading to the server using 
public-private keys (Papernot et al. 2016). Moreover, since the source of 
the updates is not required for the aggregation, the updates can be trans-
ferred without including metadata related to the origin of the informa-
tion. Lastly, to safeguard against data poisoning attacks, anomaly detection 
schemes may be employed on the encrypted updates to identify any outli-
ers, and the nodes which contributed those malicious samples may be 
removed from subsequent rounds of updates. Further, a weight may also 
be assigned to each user update based on its quality, and this process may 
help in identifying clients which are helpful in faster convergence or higher 
performance of the model. Conversely, clients with lower ranked updates 
may be identified as stragglers.

To make the actual communication of updates over a network more 
resilient to eavesdroppers, the client may also consider sending the updates 
over a mixed network like Tor, or via a trusted third party (Ma et al. 2019).

6.5  FuturE dirECtions

The previous sections presented an outline of the concept, applications 
and issues related to the emerging area of Edge AI. It was mentioned that 
although appealing, the incorporation of distributed intelligence in the 
edge devices is not without its share of limitations which need to be 
addressed before Edge AI can be said to be mature. This section presents 
an overview of the future research avenues in the field of Edge AI.
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6.5.1  Open Issues in Federated Learning

As mentioned in the previous section, convergence in FL systems is still 
not theoretically proven. More research efforts are required towards 
improving learning performance, that is bettering learning accuracy with 
lesser communication between the edge devices and the centralized server. 
The present tradeoff between privacy preservation mechanisms and con-
vergence speed needs further investigation to tilt the balance in favor of 
faster training with maximal user privacy. Recognition and prevention of 
data and model poisoning attacks is still an open problem, as is the security 
of the transmitted updates against eavesdroppers. Lastly, the process of 
aggregation may be made robust by incorporating mechanisms like anom-
aly detection to identify outliers (malicious updates). The use of reward 
functions for participating nodes is still in infancy, and needs more study. 
Incorporation of rewards into the FL system would provide incentives to 
devices contributing more to the learning process (either due to their hav-
ing more data, or more computational capability). Lastly, the use of 
Blockchain has also been proposed to facilitate secure transmission of 
updates (Kim et al. 2018). However, blockchain based federated learning 
systems have yet to become mainstream.

6.5.2  Distributed Deep Reinforcement Learning

Reinforcement learning, being the closest ML algorithm to human learn-
ing in the sense that it learns from experience, is another technique which 
can be explored for improving the intelligence in edge devices. Such dis-
tributed Deep Reinforcement Learning (DRL) (also referred to as multi- 
agent DRL) is expected to bring revolutionary improvements in the way 
interconnected edge devices learn and infer. This assumes particular 
importance in Edge AI scenarios where most sensors participate in data 
generation without being able to obtain or assign class labels. Semi- 
Supervised DRL has already been proposed for such cases (Mohammadi 
et al. 2017), and Unsupervised DRL for incorporating learning in Edge 
AI systems with little to no supervision is another open area of research.

6.6  ConClusion

This chapter first presented a discussion on the security threats to conven-
tional edge computing systems. Thereafter, techniques to incorporate intel-
ligence into the edge devices were highlighted. This is pertinent since Edge 
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AI is ultimately expected to allow and encourage collaboration between vari-
ous edge nodes towards a globally intelligent model without explicit human 
support. An overview of the various threats to the rapidly growing field of 
Edge AI was then presented. Security issues in various aspects of Edge AI 
were discussed and some effective countermeasures were highlighted. Lastly, 
avenues for future research in the area were outlined wherein it was dis-
cussed that emerging technologies like Blockchain and Deep Reinforcement 
Learning could be leveraged to improve existing Edge AI systems.
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