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Abstract

Liskov proposed several weakened versions of the random oracle model, called weakened ran-

dom oracle models (WROMs), to capture the vulnerability of ideal compression functions, which are

expected to have the standard security of hash functions, i.e., collision resistance, second-preimage

resistance, and one-wayness properties. The WROMs offer additional oracles to break such proper-

ties of the random oracle. In this paper, we investigate whether public-key encryption schemes in

the random oracle model essentially require the standard security of hash functions by the WROMs.

In particular, we deal with four WROMs associated with the standard security of hash functions;

the standard, collision tractable, second-preimage tractable, first-preimage tractable ones (ROM,

CT-ROM, SPT-ROM, and FPT-ROM, respectively), done by Numayama et al. for digital signature

schemes in the WROMs. We obtain the following results: (1) The OAEP is secure in all the four

models. (2) The encryption schemes obtained by the Fujisaki-Okamoto conversion (FO) are secure

in the SPT-ROM. However, some encryption schemes with FO are insecure in the FPT-ROM. (3)

We consider two artificial variants wFO and dFO of FO for separation of the WROMs in the con-

text of encryption schemes. The encryption schemes with wFO (dFO, respectively) are secure in

the CT-ROM (ROM, respectively). However, some encryption schemes obtained by wFO (dFO,

respectively) are insecure in the SPT-ROM (CT-ROM, respectively). These results imply that stan-

dard encryption schemes such as the OAEP and FO-based one do not always require the standard

security of hash functions. Moreover, in order to make our security proofs complete, we construct

an efficient sampling algorithm for the binomial distribution with exponentially large parameters,

which was left open in Numayama et al.’s paper.
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1 Introduction

Background: In order to design new cryptographic schemes, we often follow the random oracle

methodology [BR93]. First, we analyze the security of cryptographic schemes, by idealizing hash func-

tions as truly random functions called the random oracle. When it comes to implementations of these

schemes, we replace the random oracles by cryptographic hash functions such as MD5 [Riv92] and

SHA-1 [Nat02]. This replacement is called an instantiation of the random oracle.

The random oracle methodology causes a trade-off between efficiency and provable security. The

schemes proven secure in the random oracle model (ROM) are in general more efficient than those

proven secure in the standard model. However, the security proofs in the ROM do not directly guarantee

the security in the standard model, i.e., an instantiation of the random oracle might make the cryp-

tographic schemes insecure. Even worse, several recent works [CGH04, GK03, BBP04] showed that

some schemes secure in the ROM have no secure instantiation.

There are several properties of the ROM to prove the security of cryptographic properties. In partic-

ular, the ROM is expected to satisfy the one-wayness, second-preimage resistance, and collision resist-

ance properties. We call these properties as the standard security of hash functions. These properties

are indeed critical in many schemes for their security proofs. For example, the security of the Full-

Domain-Hash (FDH) signature schemes (e.g., [BR96]), which are secure in the ROM, relies on the

collision-resistance property of the ROM. That is, if we can obtain two distinct messages m,m′ such that

H(m) = H(m′) and the signature σ = Sig(H(m)), then we can obtain a valid forgery (m′, σ), where H is

a hash function and Sig is a signing algorithm. Leurent and Nguyen also presented the attacks extracting

the secret keys on several hash-then-sign type signature schemes and identity-based encryption schemes

if the underlying hash functions are not collision resistant [LN09].

Recent progress on the attacks against cryptographic hash functions such as MD5 and SHA-1 raises

the question on the assumption that hash functions are collision resistant and one-way (e.g.,[WY05,

WYY05, AS09]). Therefore, it is significant to investigate whether the collision resistance property (as

well as the one-wayness and second-preimage resistance properties, which are weaker notions than the

collision resistance one) of the ROM is essential to prove the security of the schemes or not. More gener-

ally, it is worth classifying the schemes by the first-preimage, second-preimage, and collision resistance

properties of the ROM that their security essentially requires.

Weak versions of random oracle models: Several works recently highlighted some specific proper-

ties of the ROM for secure cryptographic constructions in the ROM.

Nielsen proposed the non-programmable random oracle model where the random oracle is not pro-

grammable [Nie02]. In this model, one cannot set the values that the random oracle answers to some

convenient values. It was showed in [Nie02] that a non-interactive non-committing encryption scheme

exists in the ROM (assuming that trapdoor permutations exists), but not in the non-programmable ran-

dom oracle model.

Unruh proposed a ROM with oracle-dependent auxiliary inputs [Unr07]. In this setting, adversaries

obtain an auxiliary input that contains information with respect to the random oracle (e.g. collisions). He

showed that the RSA-OAEP encryption scheme [BR95] is secure in the ROM even under the presence

of oracle-dependent auxiliary inputs.

Liskov proposed several weakened versions of the random oracle model, called weakened random

oracle models (WROMs), which offer additional oracles to break some properties of the random ora-

cle [Lis07]. These model captures the situation that adversaries are given an attack algorithm for break-

ing some specific property of the functions. For example, the first-preimage tractable random oracle

model offers the random oracle and the first-preimage oracle associated with the random oracle, which

returns a first-preimage of the random oracle to adversaries. This first-preimage oracle then corresponds

to the attack to the first preimage property of a hash function. We can replace the additional oracle to
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others such as the second-preimage and collision ones that correspond to the attack to the properties.

Thus, the WROMs can capture vulnerability of hash functions even if the parties are allowed to utilize

ideal ones as in the ROM. By using WROMs, Liskov constructed hash functions based on weak ideal

compression functions and proved it is indifferentiable from the random oracle.

Several results already analyzed the security in the WROMs. Hoch and Shamir applied Liskov’s

idea to prove the indifferentiability of another hash construction [HS08]. Pasini and Vaudenay also ap-

plied Liskov’s idea to the security analysis of digital signature schemes [PV07]. They considered the

security of hash-then-sign type signature schemes in the first-preimage tractable random oracle model.

Numayama, Isshiki, and Tanaka formalized the WROMs, which allows us to formally analyze the secu-

rity of the schemes [NIT08]. By using these models, they classified several digital signature schemes by

the properties of the ROM. Fischlin and Lehmann also proposed a weakened random oracle model in a

similar way to Liskov’s one in the context of secure combiners [FL07].

Our contributions: In this paper, we investigate whether public-key encryption schemes constructed

in the ROM essentially require the standard security of hash functions by further extending the direc-

tion originated from Liskov. In particular, we consider their security in the standard, collision tracta-

ble, second-preimage tractable, and first-preimage tractable random oracle models (ROM, CT-ROM,

SPT-ROM, and FPT-ROM, respectively for short). Note that they are ordered according to their

strengths, i.e., the security of encryption schemes in the FPT-ROM implies that in the SPT-ROM and

such implications hold between each adjacent two models.

We demonstrate that the security notions in the four WROMs can be strictly separated in the context

of encryption schemes. For the separation, we focus on the security of the encryption schemes obtained

by the Fujisaki-Okamoto conversion (FO) [FO99], its two artificial variants (dFO and wFO), and the

OAEP [BR95]. Precisely, we prove the following four statements:

1. OAEP is IND-CCA2 secure in the FPT-ROM.

2. FO is IND-CCA2 secure in the SPT-ROM, but not IND-CPA secure in the FPT-ROM.

3. wFO is IND-CCA2 secure in the CT-ROM, but not IND-CCA2 secure in the SPT-ROM.

4. dFO is IND-CCA2 secure in the ROM, but not IND-CCA2 secure in the CT-ROM.

We summarize the security of four schemes in Table 1.

scheme/model ROM CT-ROM SPT-ROM FPT-ROM

OAEP secure

FO secure insecure

wFO secure insecure

dFO secure insecure

Table 1: Security of four schemes.

This separation suggests that some public-key encryption schemes essentially require the standard

security of hash functions. These notions were also separated in the context of digital signature schemes

in [NIT08]. We stress that the role of the collision and second-preimage oracles in encryption schemes

is not as clear as that in digital signature schemes. For example, it is easy to see that the collision

oracle, breaking the collision resistance property of the random oracle, directly makes a simple scheme

vulnerable, but not so easy for the case of encryption schemes. Actually, we need to develop new proof

techniques for the (in)security of encryption schemes under additional oracles.
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It also suggests that standard encryption schemes such as the OAEP and FO-based ones do not

always require the standard security of hash functions for the random oracle. We believe that our results

do not only give an example of the first application of the WROMs to encryption schemes, but they

are also of independent interest. As far as we know, our results give the first evidence that the OAEP

encryption scheme can be used in a practical application even without the first-preimage resistance

property, i.e., the one-wayness property. In other words, the OAEP remains secure even if we remove

the first-preimage resistance property. This can also be said on FO-based encryption schemes on the

second-preimage resistance property.

On the security of the OAEP, Kiltz and Pietrzak recently showed that there is no construction for

padding-based encryption schemes including the OAEP that has a black-box reduction from ideal trap-

door permutations to its IND-CCA2 security in [KP09]. However, they wrote in the paper that the

security proof in the ROM can be still a valid argument in practice. We believe so is our security proof

in the WROMs.

For the security proof, we explicitly show how to sample approximately in polynomial time from

binomial distributions with exponentially large parameters, that is, a polynomial-time sampling algo-

rithm whose output distribution is statistically close to the binomial distribution. For this algorithm, we

arrange and combine sampling algorithms that run over real numbers proposed in the field of statistics

[Dev86, AD74, AD80, Rel72], and give a precise analysis for discretization.

It should be noted that on the security proofs of the digital signature schemes in the WROMs [NIT08],

Numayama et al. assumed such an efficient sampling algorithm and thus gave no explicit construction.

They left the construction of the sampling algorithm as an open problem. By the sampling algorithm we

explicitly show, it is no longer necessary to assume the sampling algorithm in their security proofs of the

digital signature schemes [NIT08] as well as those of the public-key encryption scheme in this paper.

The sampling algorithm shown in this paper is adapted for cryptographic use since the statistical

closeness to the original distribution is measured by the total variation distance, which is standard in

cryptography but not usually required in statistics. The sampling algorithm is useful for other crypto-

graphic tasks as in Numayama et al.’s and this paper.

Comparisons with other models: As mentioned above, a few models that weaken the power of the

random oracle were already proposed such as the non-programmable model [Nie02] and the oracle-

dependent auxiliary input model [Unr07].

The non-programmable model is not simply comparable with WROMs since the programmability

does not imply the collision resistance and vice versa. The target of the oracle-dependent auxiliary input

model partially overlaps that of the WROMs.

For a simple comparison, we now focus on the security of the OAEP in both models. Unruh showed

a similar result as ours for the OAEP encryption scheme [Unr07]. He proposed a random oracle model

where oracle-dependent auxiliary inputs are allowed. In his setting, the adversary of some cryptographic

protocol obtains an auxiliary input that contains the information (e.g., collisions) on the random oracle.

He showed that the OAEP encryption scheme [BR95] is still secure in the random oracle model even in

his model. This result indicates an important fact that the security of the OAEP encryption scheme does

not depend on the collision resistance property since the oracle-dependent auxiliary input can contain a

sufficiently long list of collisions.

Our results also present the security of the OAEP in a weak version of the random oracle. However,

there are at least two differences between Unruh’s result and ours. First, the random oracle model with

the oracle-dependent auxiliary input does not completely capture the adaptive security of hash functions,

and this model still has the second-preimage resistance and the first-preimage resistance properties.

Hence, only by his result, we cannot say whether these two properties are necessary or not in order

to prove the security of the OAEP encryption scheme. In contrast to Unruh’s result, our result clearly
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shows that the two adaptive securities of hash functions such as the first-preimage resistance and the

second-preimage resistance are not necessary to prove the security of the OAEP encryption scheme.

Second, Unruh constructed the reduction algorithm which breaks the partial-domain one-wayness

of the underlying trapdoor permutation using the adversary which breaks the IND-CCA2 security of

the OAEP encryption scheme. The running time of the reduction algorithm is not bounded by any

polynomial. Therefore, he use the security amplification technique for the partial-domain one-wayness.

By using this technique, he can avoid employing a stronger assumption that even quasi-polynomial time

adversary cannot break the partial-domain one-wayness, and can prove the security under the standard

partial-domain one-wayness against polynomial-time adversary.

In contrast to Unruh’s result, we construct the polynomial-time reduction algorithm using the ad-

versary, and hence we do not require the security amplification technique for the partial-domain one-

wayness, which can be considered as a simplification of Unruh’s proof.

Organization: In Section 2, we describe the details of the WROMs and their properties. We also

discuss the simulation methods that are applicable to these models. In Section 3, after reviewing the

encryption schemes we consider, we show their (in)security in the WROMs. Appendices contain several

technical details. Appendix A reviews the simulation methods of WROMs by Numayama et al. Appen-

dices ?? and B proves the technical lemmas, Lemmas 2.3 and 2.4, respectively. Proofs of the security

of dFO, wFO, FO, and OAEP are in Appendices C, D, E, and F, respectively. In Appendix G, we give

an overview of the approximation sampling algorithms. Appendix H reviews the standard notions and

the arithmetic operations and Appendix I reviews the definitions of the standard distributions. In Ap-

pendix J, we show several inequalities for the distributions. In Appendix K, we rigously analyze the

approximation sampling algorithms for several distributions.

Notation: Before starting technical parts of this paper, we introduce our notation used in the rest of

the paper. For a table T = {(x, y)}, we define T(y) = {(x′, y′) ∈ T | y′ = y}. For a distribution D, x ← D

denotes that x is sampled according to D. The function D(x) stands for the probability function of the

distribution D.

Let s ← S denote that s is sampled from the uniform distribution over a finite set S . #S denotes

the number of elements in S . For a probabilistic Turing machine A and its input x, let A(x) denote the

output distribution ofA on input x.

We usually denote by k a security parameter of a cryptographic scheme in this paper. We also

denote by k′ length of plaintexts unless it is specified. k′ is implicitly assumed to be polynomially

related to the security parameter k, that is, k′ = kΘ(1). We say a function f (k) is negligible in k if

f (k) = 2−ω(log k). For two distributions D1 and D2 over a finte set S , whose density functions are

denoted by fD1
and fD2

, we denote the statistical distance (the total variation distance) between them

by ∆(D1,D2), defined by 1
2

∑
s∈S

∣∣∣ fD1
(s) − fD2

(s)
∣∣∣. We say two distributions D1 and D2 are statistically

close if ∆(D1,D2) = 2−ω(log k).

2 The Weakened Random Oracle Models

In this section, we first review the definitions of the WROMs. Next, we present an important property

called weak uniformity of the WROMs, which is useful for security proofs of encryption schemes. We

also discuss the simulation methods of [NIT08] used for the security proofs in the WROMs.
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2.1 Definitions of the Weakened Random Oracle Models

To give formal definitions of the WROMs, we define some notation. Let X and Y be finite sets. Let H

be a hash function chosen randomly from all of the functions from X to Y . We denote by TH the table

{(x,H(x)) | x ∈ X}. We identify the hash function H with the table TH .

We next define the random oracle and the additional oracles associated with H : X → Y as follows.

(For more details, see [NIT08].)

Random oracle ROH: Given x, return y such that (x, y) ∈ TH .

Collision oracle COH: On the query, first pick one entry (x, y) ∈ TH uniformly at random. If there is no

other entry (x′, y) ∈ TH , then answer ⊥. Otherwise, pick one entry (x′, y) ∈ TH satisfying x , x′

uniformly at random and answer (x, x′).

Second-preimage oracle SPOH: Given (x, y), if (x, y) < TH answer ⊥. If there is no other entry

(x′, y) ∈ TH , then answer ⊥. Otherwise, pick one entry (x′, y) ∈ TH satisfying x , x′ uniformly at

random and answer x′.

First-preimage oracle FPOH: Given y, if there is any entry (x, y) ∈ TH then return such an x uniformly

at random. Otherwise return ⊥.

Remark 2.1. We usually identify the random oracle and the underlying hash function. However, in

this paper as in [NIT08], we explicitly distinguish them by regarding the random oracle as an interface

to the underlying hash function. This setting helps us to make the WROMs with an additional oracle

well-defined.

The formal definitions of the WROMs are given as follows. The WROMs consist of three compo-

nents, a hash function h chosen randomly from all of the functions from X to Y , the random oracle, and

the additional oracle associated with h. The models are called the CT-ROM, SPT-ROM, and FPT-ROM,

if the additional oracle is the collision, second-preimage, and first-preimage oracle, respectively.

Remark 2.2. The collision oracle may output ⊥ even if there exists a collision (x, x′) in the table. This

stems from the simulation method of Numayama et al. [NIT08], and causes no serious problems. Note

that the collision oracle outputs ⊥ with probability (1 − 1/#Y)#X−1. In the case where #X ≥ #Y, we

can find a collision with polynomially many queries since (1 − 1/#Y)#X−1 ≤ exp(−(#X − 1)/#Y). In

the case where #Y = kO(1) · #X, we can again find a collision with polynomially many queries since

(1− 1/#Y)#X−1 ≤ 1− 1/kO(1). Finally, in the case where #Y = kω(1) · #X, the following lemma shows that

there are no collisions with overwhelming probability.

Lemma 2.3. Let H : X → Y be the hash function, and ny the number of preimages of y under the

function H, that is, ny = #TH(y). Let BAD denote the event that there is some y such that ny > L. Then

for all sufficiently large Y, we have PrH[BAD] < 1
(#Y)2 , where L = 5 ln #Y

ln ln #Y
#X
#Y

if #X ≥ #Y, or L = 5 ln #Y
ln ln #Y

otherwise.

The proof is obtained by the standard argument on the balls and bins game by regarding X and Y as

sets of balls and bins, respectively. For the details on the game, see a standard textbook (e.g., [MR95]).

2.2 Difference from the Random Oracle Model

We observe an important difference between the ROM and WROMs by considering the ROM and

FPT-ROM. In the both models, the function H, i.e., the table TH is uniformly distributed.

In the ROM, if one queries some x that has never been queried to the random oracle, the value of

H(x) is uniformly distributed regardless of the past queries. That is, the knowledge of the past queries
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does not affect the entries not queried in the table. This property of the ROM is called uniformity. In

contrast to the situation in the ROM, when it comes to the FPT-ROM, this property is not attained.

Recall that the first-preimage oracle uniformly returns one of the preimages, say x, of queried value y. If

the first-preimage oracle leaks a number of preimages of y, the value of H(x) is not uniformly distributed

for an x not queried yet.

In order to observe this situation, let us consider the following extreme case. Let y∗ = H(x∗) for some

x∗ ∈ X and suppose that y∗ has the unique preimage x∗. Then the first-preimage oracle always returns

the same x∗ on the input y∗, which convinces us that the number of the preimages of y∗ is exactly 1. This

implies that the other x , x∗ does not take a value y∗ under H. Therefore, the random oracle no longer

has the uniformity in the FPT-ROM. This is a critical difference between the ROM and FPT-ROM since

we often make use of the uniformity in the security proofs of the public-key encryption schemes.

We prove the following lemma to overcome this barrier in the WROMs, which states that the

WROMs still has weak uniformity instead of the uniformity. The weak uniformity is still useful for

the security proofs of the public-key encryption schemes in the WROMs. See Appendix B for the proof.

Lemma 2.4 (Weak Uniformity). In the WROMs, the output distribution of the random oracle is sta-

tistically close to the uniform distribution. More formally, it is stated as follows. Let H : X → Y be

the hash function in the WROMs. Let A be a probabilistic oracle Turing machine that makes at most

q queries to the random oracle ROH and the additional oracle OH , where OH represents one of the

additional oracles COH , SPOH , and FPOH . VA,H(x) denotes the random variable that represents the

hash value ROH(x), where x← AROH ,OH

and the correspondence (x,H(x)) ∈ TH is not answered by the

two oracles.

Then, for anyA, the following holds:

∆(VA,H(x),UY ) ≤



1
#Y

(
5q + 1 +

4q2

#Y
+ 20q ln #Y

ln ln #Y

)
if #X ≥ #Y,

1
#X

(
5q + 1 +

4q2

#X
+ 20q ln #Y

ln ln #Y

)
if #X < #Y.

Here, the probability is taken over random choices of the hash function H and the random coin ofA.

2.3 Simulation Methods

In almost all the security proofs in the ROM, the reduction algorithms simulate the random oracles.

When it comes to the security proofs in the WROMs, the reduction algorithms have to simulate both the

random and the additional oracle, which makes differences of the simulation methods in the WROMs

from those in the ROM.

Numayama et al.’s methods: Numayama et al. proposed the simulation methods for WROMs, but

they required an unproven assumption. Let Bn(N, p) denote the binomial distribution with parameters

N and p whose probability function is fBn(x | N, p) =
(

N
x

)
px(1 − p)N−x for x = 0, . . . ,N, where the

parameters N and p take values approximately #X and 1/#Y for a hash function H : X → Y , say, (N, p) =

(2128, 2−128). Their simulation methods required the efficient sampler for Bn(N, p) with exponentially

large N and small p, and they assumed its existence.

Assumption 2.5. There is a probabilistic Turing machine BN such that the output distribution BN(N, p)

on inputs N and p is equal to the binomial distribution Bn(N, p) and it runs in polynomial time in log N

and log p−1, where N is a positive integer and 0 ≤ p ≤ 1 is a rational number.

Under this assumption, they constructed the simulation algorithms, RO, CO, SPO, and FPO, for the

security proofs in the WROMs as given in the following proposition. See Appendix A for the details of

the algorithms.
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Proposition 2.6 (Simulation Method [NIT08]). We can perfectly simulate the random oracle, the col-

lision oracle, second-preimage oracle, and first-preimage oracle in the WROMs under Assumption 2.5.

That is, the output distributions of the random oracle, collision oracle, second-preimage oracle, and

first-preimage oracle in the WROMs are identical to the output distributions of the algorithms RO, CO,

SPO, and FPO, under Assumption 2.5.

Removing the assumption: For the security proof in the WROMs of digital signature schemes in

[NIT08] and encryption schemes in this paper, it is sufficient to utilize a weaker sampling algorithm

that generates a distribution not equal but statistically close to the binomial distribution Bn(N, p). Then,

their security proofs can work by just adding negligibly small errors induced by the statistical distance

in their analyses.

There are quite many papers (e.g., [Rel72]) on the efficient sampling methods from the binomial

distribution in the field of statistics. However, their basic computation model is totally different from the

model in the cryptography. As far as the authors’ knowledge, all these results are based on the compu-

tation model that directly manipulates real numbers without errors. If we translate them to those in the

bit computation model used in the cryptography, we have to bound the statistical distance between the

real distribution and the output distribution generated by the sampling algorithms in the bit computation

model rather than the real-number one. Numayama et al. mentioned that they could neither find precise

analyses of the statistical distance, nor construct the sampling algorithms by themselves in [NIT08].

Therefore, they had to put the above assumption.

In fact, there is an efficient sampling algorithm appropriate for our purpose in the real-number com-

putation model [Rel72]. We modify the algorithm and rigorously analyze the error bound in the bit

computation model. We can finally obtain the following theorem on the sampling algorithm.

Theorem 2.7. For ϵ, there is a probabilistic Turing machine BN such that, for the output distribution

BN(N, p) on inputs N, p, the statistical distance between BN(N, p) and Bn(N, p) is at most ϵ and it runs

in polynomial time in log N, log p−1 and log ϵ−1, where N is a positive integer and 0 ≤ p ≤ 1, 0 < ϵ ≤ 1

are rational numbers.

Note that the algorithm can control the error parameter ϵ. This property is useful in cryptographic

applications for the security proofs even if the other parameters N and p are not sufficiently large. We

put the details of the algorithm and its analysis in Appendices.

As a result, we can remove the above assumption and obtain the following theorem.

Theorem 2.8 (Simulation Method without Assumption 2.5). We can statistically simulate the random

oracle, collision oracle, second-preimage oracle, and first-preimage oracle in the WROMs. That is, the

output distributions of the oracles in the WROMs are statistically close to the output distributions of the

algorithms RO, CO, SPO, and FPO, respectively.

3 The Encryption Schemes and Their Security in the Weakened Random

Oracle Models

In this section, we examine the security in the WROMs of the public-key encryption schemes. We

particularly discuss separations for notions of ROM, CT-ROM, SPT-ROM, and FPT-ROM by showing

(in)security of public-key encryption schemes obtained by the Fujisaki-Okamoto conversion (FO) and

its two variants (dFO and wFO), and OAEP.

Public-key encryption schemes: We first give notation and notions for public-key encryption schemes

briefly. For details, see standard textbooks, e.g., [KL07].

9



A public-key encryption scheme PKE = (Gen,Enc,Dec) over a plaintext spaceM and a random

coin space R is defined by the following three algorithms. Let k denote the security parameter.

Key Generation: On input 1k, the key generation algorithm Gen(1k) produces a public/secret key pair

(pk, sk).

Encryption: Given a public key pk, a plaintext m ∈ M, and a random string r ∈ R, the encryption

algorithm Encpk(m; r) outputs a ciphertext c corresponding to the plaintext m.

Decryption: Given a secret key sk and ciphertext c, the decryption algorithm Decsk(c) outputs the

plaintext m ∈ M or the special symbol ⊥ <M corresponding to the ciphertext c.

We require the perfect completeness, that is, for every (pk, sk) generated by Gen(1k), every plaintext

m ∈ M, and every random string r ∈ R, it should be satisfied that Decsk(Encpk(m; r)) = m.

We only consider three standard security notions for public-key encryption schemes, the one-wayness

against chosen-plaintext attack (OW-CPA), the indistinguishability against chosen-plaintext attack (IND-CPA),

and the indistinguishability against adaptive chosen-ciphertext attack (IND-CCA2).

For γ = γ(k), we say PKE is γ-uniform if for any key pair (pk, sk) generated by Gen(1k), any

m ∈ M, and c ∈ {0, 1}∗, we have Prr←R[c = Encpk(m; r)] ≤ γ. There exists a OW-CPA public-key

encryption scheme with γ-uniformity (e.g., the ElGamal encryption scheme).

Brief review for FO: Fujisaki and Okamoto proposed a conversion, called the Fujisaki-Okamoto (FO)

conversion, to obtain highly secure public-key encryption schemes in the ROM [FO99]. Since the

standard one-time pad satisfies the requirement of the FO conversion, we fix the one-time pad as the

symmetric-key encryption scheme used in the FO conversion for simplicity.

Let PKE be a OW-CPA secure and γ-uniform public-key encryption scheme over a plaintext space

M and a randomness space R. Then the FO conversion converts PKE to an IND-CCA2 secure one

PKE′ = FO(PKE) over a plaintext space M′ = {0, 1}k′ and a randomness space R′ = M, where

k′ denotes the length of plaintexts, which is polynomially related to the security parameter k. The

encryption procedure of PKE′ is given as follows: For a plaintext m ∈ M′ = {0, 1}k′ and a random

string r ∈ R′ =M, the ciphertext is

(c1, c2) = (Encpk(r; H(m, r)),G(r) ⊕ m),

where H : {0, 1}k′ ×M → R and G : M → {0, 1}k′ are hash functions modeled as the random oracles.

The decryption procedure is given as follows: For a given ciphertext (c1, c2), decrypt c1 by sk and

obtain r. Then, extract m by c2 ⊕ G(r) and verify c1 = Encpk(r; H(m, r)). If not output ⊥. Roughly

speaking, H(m, r) ensures that if a ciphertext (c1, c2) is valid then the encryptor producing (c1, c2) knows

corresponding m and r.

3.1 The First Variant dFO

We introduce the first artificial variant dFO and show that dFO is secure in the ROM, but not secure in

general in the CT-ROM.

The variant dFO converts a public-key encryption scheme PKE (with the one-time pad) to another

public-key encryption schemePKE′ = dFO(PKE) similarly to FO. The encryption procedure ofPKE′
is defined as follows. For a plaintext m ∈ M′ = {0, 1}k′ and a random string r ∈ R′ =M, the ciphertext

of PKE′ is

(c1, c2) = (Encpk(r; H(F(m), r)),G(r) ⊕ m),

where F : {0, 1}k′ → P, G : M → {0, 1}k′ , and H : P × M → R, for an appropriate set P, are hash

functions modeled as the random oracle. Formal description is in Table 1.
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Key Generation Encryption Decryption

Input: 1k

1: (pk, sk)← Gen(1k)

Output: (pk, sk)

Input: m ∈ {0, 1}k′

1: r ←M
2: g← G(r)

3: h← H(F(m), r)

4: c1 ← Encpk(r; h)

5: c2 ← m ⊕ g

Output: (c1, c2)

Input: (c1, c2)

1: r ← Decsk(c)

2: g← G(r)

3: m← c2 ⊕ g

4: h← H(F(m), r)

5: If c1 = Encpk(r; h) set o← m

6: Otherwise set o← ⊥
Output: o

Figure 1: PKE′ obtained by the dFO conversion.

The idea to weaken the conversion is summarized as follows: Recall that H(m, r) in the FO con-

version can be considered as encryptor’s signature (or a proof of knowledge) on m and r. To make it

vulnerable by a collision, we introduce a new random oracle F and replace H(m, r) with H(F(m), r).

The replacement does not harm the security in the random oracle model, while it can be exploited by the

presence of the collision oracle COF .

Formally, we have following theorems on the (in)security. The proof of Theorem 3.1 is in Ap-

pendix C.

Theorem 3.1. Assume that PKE is a OW-CPA secure and γ-uniform public-key encryption scheme for

some negligible γ. Then, PKE′ = dFO(PKE) is IND-CCA2 secure in the ROM if #P = 2ω(log k).

Theorem 3.2. Let PKE be a public-key encryption scheme. If #P ≤ 2k′ then PKE′ = dFO(PKE) is

not IND-CCA2 secure in the CT-ROM.

Proof. We construct the adversary A = (A1,A2) that breaks the IND-CCA2 security of PKE′, which

exploits the collision oracle COF of F.

The adversary A1, on input pk, first queries to COF . If the answer is ⊥, then the adversary flips a

random fair coin b′, outputs b′, and halts. Otherwise, it obtains a collision (m1,m2) of F and outputs it as

a challenge. The adversaryA2 receives the target ciphertext (c∗
1
, c∗

2
) = (Encpk(r; H(F(mb), r)),G(r)⊕mb)

for some r ∈ R′. It queries (c′
1
, c′

2
) = (c∗

1
, c∗

2
⊕ m0 ⊕ m1) to the decryption oracle and obtains m1−b, since

c′1 = Encpk(r; H(F(m0), r)) = Encpk(r; H(F(m1), r)),

c′2 = G(r) ⊕ mb ⊕ m0 ⊕ m1 = G(r) ⊕ m1−b.

Hence, the adversary can answer b′ = b correctly.

Finally, we upper-bound the probability that the collision oracle outputs ⊥, which stems from the

definition of the collision oracle. The probability is bounded by (1− 1/#P)2k′−1 ≤ exp(−(2k′ − 1)/#P) ≤
1/
√

e. This completes the proof. �

3.2 The Second Variant wFO

We next introduce the second artificial variant wFO and show that the obtained scheme by wFO is secure

in the CT-ROM, however not generally secure in the SPT-ROM.

The encryption procedure of PKE′ = wFO(PKE) is given as follows. For a plaintext m ∈ M′ =
{0, 1}k′ and random strings (r, s) ∈ R′ =M×S, the ciphertext of PKE′ is

(c1, c2, c3) = (Encpk(r; H(F(m, s), r)),G(r) ⊕ m, s),

11



Key Generation Encryption Decryption

Input: 1k

1: (pk, sk)← Gen(1k)

Output: (pk, sk)

Input: m ∈ {0, 1}k′

1: r ←M
2: g← G(r)

3: s← S
4: h← H(F(m, s), r)

5: c1 ← Encpk(r; h)

6: c2 ← m ⊕ g

7: c3 ← s

Output: (c1, c2, c3)

Input: (c1, c2, c3)

1: r ← Decsk(c)

2: g← G(r)

3: m← c2 ⊕ g

4: h← H(F(m, c3), r)

5: If c1 = Encpk(r; h) set o← m

6: Otherwise set o← ⊥
Output: o

Figure 2: PKE′ obtained by the wFO conversion.

where F : {0, 1}k′ × S → P, G :M→ {0, 1}k′ , and H : P ×M → R are hash functions modeled as the

random oracles. The formal definition is in Table 2.

Notice that (H(F(m, s), r), s) is a proof of knowledge on (m, r, s) which resists a collision on F

however is vulnerable by a second-preimage attack against F as in Numayama et al. [NIT08].

We can show that the obtained scheme is IND-CCA2 secure in the CT-ROM by using Lemma 2.4.

See Appendix D for the proof.

Theorem 3.3. Suppose that PKE is a OW-CPA secure and γ-uniform public-key encryption scheme for

some negligible γ. Then, PKE′ = wFO(PKE) is IND-CCA2 secure in the CT-ROM if #P−1 and #S−1

are negligible in k.

However, its security is broken under the presence of the second-preimage oracle for F.

Theorem 3.4. Let PKE be a public-key encryption. If #P ≤ 2k′ · #S, then the scheme PKE′ =
wFO(PKE) is not IND-CCA2 secure in the SPT-ROM.

Proof. We construct the adversaryA = (A1,A2) that exploits the second-preimage oracle SPOF asso-

ciated to F. The adversary A1 chooses random distinct plaintexts m0 and m1 and queries them to the

challenger. The challenger responses

(c∗1, c
∗
2, c
∗
3) = (Encpk(r; H(F(mb, s), r)),G(r) ⊕ mb, s).

Receiving (c∗
1
, c∗

2
, c∗

3
), the adversary A2 queries (m0, s) to the second-preimage oracle SPOF . If it re-

ceives ⊥ from the second-preimage oracle, then it flips a random fair coin b′, outputs b′, and halts.

Otherwise, it obtains (m′, s′) , (m0, s) such that F(m0, s) = F(m′, s′). So, the adversary queries

(c′1, c
′
2, c
′
3) = (c∗1, c

∗
2 ⊕ m0 ⊕ m′, s′)

to the decryption oracle. Notice that, if (c∗
1
, c∗

2
, c∗

3
) is the valid ciphertext of m0, then we have

c′1 = Encpk(r; H(F(m0, s), r)) = Encpk(r; H(F(m′, s′), r)),

c′2 = G(r) ⊕ m0 ⊕ m0 ⊕ m′ = G(r) ⊕ m′,

c′3 = s′,

and (c′
1
, c′

2
, c′

3
) is a valid ciphertext for m′. On the other hand, if the ciphertext is the encryption of m1,

we have

(c′1, c
′
2, c
′
3) = (Encpk(r; H(F(m1, s), r)),G(r) ⊕ m1 ⊕ m0 ⊕ m′, s′).
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Thus, if f = F(m1, s) is equal to F(m1 ⊕ m0 ⊕ m′, s′) the decryption oracle returns m1 ⊕ m0 ⊕ m′(, m′).
Otherwise, the decryption oracle returns ⊥.

Thus, if the answer is m′, then the adversary concludes that (c∗
1
, c∗

2
, c∗

3
) is the ciphertext of m0, that

is, it outputs b′ = 0. Otherwise, the adversary concludes that it is the ciphertext of m1, that is, it outputs

b′ = 1. Therefore, A can output the correct answer unless A receives ⊥ from the second-preimage

oracle.

We finally bound the probability that the oracle outputs ⊥. It is bounded by (1 − 1/#P)2k′ ·#S−1 ≤
exp(−(2k′ · #S − 1)/#P) ≤ 1/

√
e as required. This completes the proof. �

3.3 The Original Fujisaki-Okamoto Conversion

We next show that the obtained scheme by the conversion FO with the one-time pad is secure in the

SPT-ROM, but not secure in the FPT-ROM in some parameter setting.

Let G : M → {0, 1}k′ and H : {0, 1}k′ ×M → R be hash functions modeled as the random oracles.

Recall the encryption procedure of PKE′ = FO(PKE). For a plaintext m ∈ M′ = {0, 1}k′ and a random

string r ∈ R′ =M, the ciphertext is (Encpk(r; H(m, r)),G(r) ⊕ m). The scheme is in Figure 3.

Key Generation Encryption Decryption

Input: 1k

1: (pk, sk)← Gen(1k)

Output: (pk, sk)

Input: m ∈ {0, 1}k′

1: r ←M
2: g← G(r)

3: h← H(m, r)

4: c1 ← Encpk(r; h)

5: c2 ← m ⊕ g

Output: (c1, c2)

Input: (c1, c2)

1: r ← Decsk(c)

2: g← G(r)

3: m← c2 ⊕ g

4: h← H(m, r)

5: If c1 = Encpk(r; h) set o← m

6: Otherwise set o← ⊥
Output: o

Figure 3: PKE′ obtained by the FO conversion.

Modifying the existing proofs, we can show the scheme is secure in the SPT-ROM using Lemma 2.4.

The proof appears in Appendix E.

Theorem 3.5. Suppose that PKE is OW-CPA secure and γ-uniform for some negligible γ. Then,

PKE′ = FO(PKE) is IND-CCA2 secure in the SPT-ROM.

However, the presence of the first-preimage oracle for G violates the IND-CPA security of PKE′ in

some parameter settings. Note that if m is 0k′ , the second component of the ciphertext is G(r), which is

vulnerable the first-preimage oracle of G.

Theorem 3.6. Let C = #M/2k′ . Assume that C = kO(1). Then, PKE′ = FO(PKE) is not IND-CPA

secure in the FPT-ROM.

Proof. We prove the theorem by constructing the adversary A = (A1,A2) which exploits the first-

preimage oracle of G, FPOG. The adversary A1, on input pk, queries m0 = 0k′ and m1 = 1k′ to the

challenger. The adversary A2, on input the target ciphertext (c∗
1
, c∗

2
), queries c∗

2
to the first-preimage

oracle of G. If it obtains r̃, it checks that c1 = Encpk(r̃; H(0k′ , r̃)). If the check passes, the adversary

outputs b′ = 0. Otherwise, it flips a random fair coin b′, outputs b′, and halts.

It is obvious that if b = 0 and r̃ = r, the adversary answers correctly, that is, it outputs b′ = b.

If b = 1, the preimage of the query G(r) ⊕ 1k′ never equals to r since G(r) , G(r) ⊕ 1k′ . Hence, the

adversary’s check fails if b = 1.
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We estimate the probability that the adversary wins. By Lemma 2.3, with probability at least 1−2−2k′ ,

there is no preimage of size larger than L, where if C ≥ 1 then L = 5Ck′ ln 2/(ln k′+ ln ln 2) ≤ 4Ck′/ ln k′

and otherwise L = 5k′ ln 2/(ln k′ + ln ln 2) ≤ 4k′/ ln k′ for all sufficiently large k′.
Let Good denote the event that r ← FPOG(G(r)). We then have Pr[Good] ≥ (1 − 2−2k′)/L. Hence,

we obtain that

Pr[b′ = b] = Pr[b′ = 0 | b = 0 ∧ Good] Pr[b = 0 ∧Good]

+ Pr[b′ = 0 | b = 0 ∧ ¬Good] Pr[b = 0 ∧ ¬Good]

+ Pr[b′ = 1 | b = 1] Pr[b = 1]

= 1 · 1

2
· Pr[Good] +

1

2
· 1

2
· (1 − Pr[Good]) +

1

2
· 1

2

=
1

2
+

1

4
Pr[Good] ≥ 1

2
+

1 − 2−2k′

4L
.

and 4L is a polynomial in the security parameter k. This completes the proof. �

As shown above, the FO conversion is not secure in the FPT-ROM, but there is a way to modify it

so as to maintain the security in the FPT-ROM. Naito, Wang, and Ohta proposed the conversion method

that converts a cryptosystem secure in the ROM to that secure even in the FPT-ROM [NWO09]. In the

case of the FO conversion, the public key is (pk, c), where c← {0, 1}k, and the ciphertext is

(c1, c2) = (Encpk(r; H(c,m, r)),G(c, r) ⊕ m),

where the domains of H and G are modified. Intuitively, this change makes the first-preimage oracles,

FPOH and FPOG, useless.

3.4 OAEP

We finally focus on the OAEP and present its IND-CCA2 security in the FPT-ROM. For the security

parameter k, let k0 and k1 be functions in k, where k0 < k − k0. Let F be a family of partial-domain

one-way trapdoor permutations of a domain {0, 1}k−k0 × {0, 1}k0 . (See [FOPS04] for the definition of

the partial-domain one-wayness.) Furthermore, let G and H be hash functions such that G : {0, 1}k0 →
{0, 1}k−k0 and H : {0, 1}k−k0 → {0, 1}k0 . Then, the OAEP encryption scheme based on F is described in

Fig. 4. We obtain the following theorem that states the security of the OAEP encryption scheme in the

Key Generation Encryption Decryption

Input: 1k

1: ( fpk, gsk)← F

Output: ( fpk, gsk)

Input: m ∈ {0, 1}k−k0−k1 , fpk

1: r ← {0, 1}k0

2: s← (m ∥ 0k1) ⊕G(r)

3: t ← H(s) ⊕ r

4: c← fpk(s ∥ t)

Output: c

Input: c, gsk

1: s ∥ t ← gsk(c)

2: r ← t ⊕ H(s)

3: M ← s ⊕G(r)

5: If M = m ∥ 0k1 set o← m

6: Otherwise set o← ⊥
Output: o

Figure 4: OAEP

FPT-ROM.

Theorem 3.7. Let F be a family of partial-domain one-way trapdoor permutations. Then, the OAEP

encryption scheme based on F is IND-CCA2 secure in the FPT-ROM.

See Appendix F for the proof.
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4 Future Work

It should be noted that our WROMs are based on a simplified variant, which Numayama et al. [NIT08]

and Pasini and Vaudenay [PV07] also adopted, of the original WROMs of Liskov [Lis07].

The original WROMs consists of the ideal compression function h : {0, 1}k+k′ → {0, 1}k of fixed

input length and the first-preimage oracle. Then, he discussed the security of the flexible input-length

hash functions Hh : {0, 1}∗ → {0, 1}k employing h as the component in the context of indifferentiabil-

ity [MRH04]. A random oracle H is often instantiated by employing a compression h. (See, e.g., the

survey in [LN09, Section 2].) Therefore, his work reflects the attacks against the compression function

of MD5 and SHA-1 rather than the construction H.

On the contrary, we (and similarly [NIT08, PV07]) discussed the monolithic random oracle H and

the additional oracles associated with H. Hence, our model has a gap from such a realistic instantiation

of the random oracle in some sense. We leave filling this gap as future work.

Except for the FO conversion, there are several conversion methods in the ROM, such as RE-

ACT [OP01] and GEM [CHJ+02]. It would also be interesting as future work to examine the security of

these conversion methods in the WROMs.
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A Simulation Algorithms of Numayama et al.

In this section, we review the details of the algorithms RO, CO, SPO, and FPO which simulate the

random oracle, the collision oracle, the second-preimage oracle, and the first-preimage oracle in the

WROMs, respectively.

In each of WROMs, two tables T and L are shared by the simulation algorithm RO for the random

oracle and the simulation algorithm for the additional oracle, e.g., CO in the CT-ROM. In the start of

the simulations, both tables are empty. In the simulations, T will contain the pair of values (x, y) such

that x = h(y) and L will contain the pair of values (y, n) such that n = #{x ∈ X | x = h(y)}. For the table

T = {(x, y)}, we define T(y) = {(x′, y′) ∈ T | y′ = y}.
First, we review how the algorithm RO runs on input x̂ in detail. If the hash value of x̂ is already

determined, then the algorithm RO returns it. Otherwise, there are two situations depending on whether

the algorithm RO returns old y which is already appeared in the table T or the algorithm RO returns new

y which is not yet appeared in the table T. There are (#X − #T) elements whose hash values are not yet

determined, and among them there are
∑

(ỹ,ñ)∈L(ñ−#T(ỹ)) elements whose hash values are expected to be

old y. Therefore, the algorithm RO returns old y or new y with this ratio. In case of old y, the algorithm

RO picks old y according to the number of the preimages of each old y. In case of new y, the algorithm

RO picks new y uniformly at random, and defines the number of preimages of y. The whole algorithm

is presented in Algorithm 2.

Algorithm RO(x̂)

1. If (x̂, y) ∈ T for some y, then output y.

2. Let p be the following probability,

p =

∑
(ỹ,ñ)∈L(ñ − #T(ỹ))

#X − #T
.

3. With probability p, output old y as Steps (a)-(b).

(a) pick y← D according to the following distribution.

fD(y) =
n − #T∑

(ỹ,ñ)∈L(ñ − #T(ỹ))
for (y, n) ∈ L.

(b) insert (x̂, y) in T and output y.

4. With probability 1 − p output new y as Steps (a)-(d).

(a) pick y← Y \∪(ỹ,ñ)∈L{ỹ} uniformly at random.

(b) n′ ← Bn(#X − ∑
(ỹ,ñ)∈L ñ − 1, 1

#Y−#L
). (Bn(N, p) denotes the binomial distribution with pa-

rameters N and p.)

(c) n← n′ + 1.

(d) insert (y, n) in L, insert (x̂, y) in T, and output y.

Algorithm 2: Simulation method of the random oracle.

Next, we review how the algorithm CO runs in detail. First, it picks x ← X as the original oracle

does. If the hash value of x is not determined, it obtains the hash value y by the algorithm RO. If n = 1,

which implies that there is only one preimage of y, then the algorithm CO returns ⊥. Otherwise, there
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are two situations depending on whether the algorithm CO returns new x which is not yet appeared in

the table T or the algorithm CO returns old x which is already appeared in the table T. There are n

elements whose hash values are expected to be y, and among them there are #T(y) elements which are

already appeared in the table T. Therefore, the algorithm CO returns old x or new x with this ratio. In

case of old x, the algorithm CO picks old x according to both the current table T and the number of the

preimages of each old y defined in the table L. In case of new x, the algorithm CO picks new x uniformly

at random. The whole algorithm is presented in Algorithm 3.

Algorithm CO()

1. Pick x← X.

2. Invoke algorithm RO() and obtains y← RO(x).

3. Look up (n, y) ∈ L.

4. If n = 1, output ⊥.

5. If n , 1, then compute the threshold q =
#T(y)−1

n−1
.

6. With probability q output x with an old element.

(a) pick one entry uniformly from T such that (x̃, y) ∈ T, and output (x, x̃).

7. Otherwise output x with a new element.

(a) pick uniformly x′ ← X such that (x′, ỹ) < T for any ỹ.

(b) insert (x′, y) in T, and output (x, x′).

Algorithm 3: Simulation method of the collision oracle.

We next review how the algorithm SPO runs on input (x̂, ŷ) in detail. Since (x̂, ŷ) must be in T, the

algorithm can obtain (ŷ, n) from L. If n = 1, which implies that there is only one preimage of ŷ, then

the algorithm SPO returns ⊥. Otherwise, it returns x as the algorithm CO does. The whole algorithm is

presented in Algorithm 4.

Algorithm SPO(x̂, ŷ)

1. If (x̂, ŷ) < T, output ⊥.

2. If n = 1 for (ŷ, n) ∈ L, output ⊥.

3. If n , 1 for (ŷ, n) ∈ L, then compute the probability q =
#T(ŷ)−1

n−1
.

4. With probability q output old x.

(a) pick one entry (x̃, ŷ) ∈ T such that x̃ , x̂ uniformly at random, and output x̃.

5. Otherwise output new x.

(a) pick x← X such that (x, ỹ) < T for any ỹ uniformly at random.

(b) insert (x, ŷ) in T, and output x.

Algorithm 4: Simulation method of the second-preimage oracle.
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Finally, we review how the algorithm FPO runs on input ŷ in detail. If ŷ is not yet determined

(i.e., the number n of preimages of ŷ is not determined either), then the algorithm FPO first defines the

number n of preimages of ŷ. If n = 0, which implies that there is no preimage of ŷ, then the algorithm

FPO returns ⊥. Otherwise, the algorithm FPO returns x as the algorithm CO does. Note that the ratio

in this case is not equal to that in the algorithms CO and SPO. The whole algorithm is presented in

Algorithm 5.

Algorithm FPO(ŷ)

1. If (ŷ, n) < L for any n, then pick n← Bn(#X −∑
(ỹ,ñ)∈L ñ, 1

#Y−#L
), and insert (ŷ, n) ∈ L, then output

⊥.

2. If n , 0 for (ŷ, n) ∈ L, then compute the probability q =
#T(ŷ)

n
.

3. With probability q output old x.

(a) pick one entry uniformly from T such that (x̃, ŷ) ∈ T, and output x̃.

4. Otherwise output new x.

(a) pick uniformly x← X such that (x, ỹ) < T.

(b) insert (x, ŷ) in T, and output x.

Algorithm 5: Simulation method of the first-preimage oracle.

B Proof of Lemma 2.4

We now start the proof of our main lemma.

Proof. In order to bound the statistical distance, we consider the algorithm RO instead of considering

the random oracle ROH . It makes no difference because the distribution of the outputs of the algorithm

RO is identical to the distribution of the outputs of the random oracle ROH by Proposition 2.6.

We denote by “old y” the value y which already appeared in the interaction with the two oracles, i.e.,

the correspondence (x, y) is already determined. We denote by “new y” the value y which did not yet

appear. Furthermore, we use the same notation BAD as in Lemma 2.3. That is, BAD denotes the event

that there is some y such that the number of preimages of y, ny, is larger than L.

Now, we evaluate the probability Pr[VA,H(x) = y] according to the algorithm RO.

Case 1: new y:

Pr[VA,H(x) = new y] =
#X −∑

n

#X − #T
· 1

#Y − #L
.

Let ny be the number of preimages of y under the function h. Then conditioned on ny ≤ L for all y (i.e.,
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the event BAD does not occur), this probability is bounded by

plow =
#X − qL

#X
· 1

#Y

≤ Pr[VA,H(x) = new y |¬BAD]

≤ #X

#X − q
· 1

#Y − q

≤ 1

#Y
· 1

1 − q

#X

· 1

1 − q

#Y

≤ 1

#Y

(
1 +

2q

#X

) (
1 +

2q

#Y

)

= pup.

Then, for new y we have

∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣

≤
∣∣∣ Pr[VA,H(x) = y |¬BAD] − Pr[UY = y |¬BAD]

∣∣∣ + Pr[BAD]

≤
∣∣∣ Pr[VA,H(x) = y |¬BAD] − 1

#Y

∣∣∣ + Pr[BAD]

≤ pup − plow + Pr[BAD]

≤ 1

#Y

((
1 +

2q

#X

) (
1 +

2q

#Y

)
−

(
1 − qL

#X

))
+ Pr[BAD]

=
1

#Y

(
q(L + 2)

#X
+

2q

#Y
+

4q2

#X#Y

)
+ Pr[BAD].

Case 2: old y:

Pr[VA,H(x) = old y] =
n − #T(y)

#X − #T
.

Then conditioned on ny ≤ L for all y (i.e., the event BAD does not occur), this probability is bounded by,

Pr[VA,H(x) = old y |¬BAD] ≤ L

#X − q
.

Then, for old y we have

∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣

≤
∣∣∣ Pr[VA,H(x) = y |¬BAD] − Pr[UY = y |¬BAD]

∣∣∣ + Pr[BAD]

≤
∣∣∣∣∣Pr[VA,H(x) = y |¬BAD] − 1

#Y

∣∣∣∣∣ + Pr[BAD]

≤ Pr[VA,H(x) = y |¬BAD] +
1

#Y
+ Pr[BAD]

≤ L

#X − q
+

1

#Y
+ Pr[BAD].

Now we can bound the statistical distance between the distribution on HA,h(x) and the uniform
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distribution on Y as follows:
∑

y

∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣

=
∑

new y

∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣ +

∑

old y

∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣

≤
(
q(L + 2)

#X
+

2q

#Y
+

4q2

#X#Y

)
+

qL

#X − q
+

q

#Y
+ #Y · Pr[BAD]

≤ 2q

#X
+

3q

#Y
+

4q2

#X#Y
+

2qL

#X − q
+ #Y · Pr[BAD].

Finally by applying the lemma above, if #X ≥ #Y then we have
∑

y

∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣

≤ 2q

#X
+

3q

#Y
+

4q2

#X#Y
+

2q

#X − q
· 5 ln #Y

ln ln #Y
· #X

#Y
+

1

#Y

≤ 1

#Y

(
5q + 1 +

4q2

#Y
+ 4q · 5 ln #Y

ln ln #Y

)
.

Otherwise we have
∑

y

∣∣∣ Pr[VA,H(x) = y] − Pr[UY = y]
∣∣∣

≤ 2q

#X
+

3q

#Y
+

4q2

#X#Y
+

2q

#X − q
· 5 ln #Y

ln ln #Y
+

1

#Y

≤ 1

#X

(
5q + 1 +

4q2

#X
+ 4q · 5 ln #Y

ln ln #Y

)
.

Therefore we have

∆(VA,H(x),UY ) ≤



1
#Y

(
5q + 1 +

4q2

#Y
+ 20q ln #Y

ln ln #Y

)
, if #X ≥ #Y ,

1
#X

(
5q + 1 +

4q2

#X
+ 20q ln #Y

ln ln #Y

)
, if #X < #Y .

�

C Proof of the Security of dFO, Theorem 3.1

We prove Theorem 3.1 in the game style. We define a sequence of games and bound the advantage of

the adversary in the IND-CCA2 game by showing each of the subsequent pairs of games is statistically

close, and by relating the last game to the OW-CPA property of the underlying encryption scheme.

In order to prove the IND-CCA2 security, it is necessary to simulate the decryption oracle without

knowing the secret key sk. This is done by using the following plaintext extractor PE as in the original

proof [FO99].

The plaintext extractor PE: The plaintext extractor shares the three tables TF , TG, and TH that are

involved in the simulation algorithms ROF , ROG, and ROH , respectively. Given a decryption query

c = (c1, c2), PE inspects each entry (µ, fµ) ∈ TF , (γ, gγ) ∈ TG, and ( f , γ, h f ,γ) ∈ TH . For each (γ, gγ) ∈
TG, it obtains µ ← c2 ⊕ gγ. It next picks (µ, f ) ∈ TF and picks ( f , γ, h) ∈ TH . It checks whether

c1 = Encpk(γ, h). If they hold, PE outputs µ as the decryption of c and stops. Otherwise, the extractor

returns ⊥.
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Sequence of games: We start with the original attack game with respect to IND-CCA2 in the ROM,

and modify it step by step in order to obtain a game directly related to the adversary which breaks the

OW-CPA property of PKE = (Gen,Enc,Dec).

• Game0: The original attack game with respect to IND-CCA2 in the ROM. A pair of keys (pk, sk)

is generated by using the key generation algorithm of Gen. The adversary A is given the public

key pk and has access to the decryption oracle D, the random oracles ROF , ROG, and ROH . At

some point in the game the adversary A is expected to output a pair of messages (m0,m1). Next

a challenge ciphertext is produced by flipping a coin b and producing a ciphertext c∗ of mb. This

ciphertext c∗ is constructed as follows:

r∗ ←M, g∗ ← ROG(r∗), c∗2 ← g∗ ⊕ mb,

f ∗ ← ROF(mb), h∗ ← ROH( f ∗, r∗), c∗1 ← Encpk(r∗; h∗).

Then the ciphertext (c∗
1
, c∗

2
) is given toA. Finally, the adversaryA outputs a bit b′.

• Game0.5: We replace the random oracles ROF , ROG, and ROH with the algorithms ROF , ROG,

and ROH respectively. These algorithms are obtained by the standard “on-the-fly” method.

Furthermore we replace the decryption oracle D with the algorithm D which simply runs the

decryption algorithm using secret key sk.

• Game1: We change the time for generating r∗. The challenger first chooses r+ uniformly at

random and obtains g+ ← ROG(r+).

• Game2: We modify the above game, by hooking queries to the algorithms ROG and ROH . If the

query to the algorithm contains r+, the challenger stops. Otherwise, the query is passed to the

algorithms.

• Game3: We make the decryption algorithm D reject an undetermined r. That is, the algorithm D

outputs ⊥ if (r, ∗) < TG for r ← Decsk(c1) in step 2. In the after games, the algorithm D does not

query to ROG.

• Game4: We modify the generation of g+. The challenger uses g+ ← {0, 1}k′ instead of g+ ←
ROG(r+).

• Game5: We modify the generation of h+. The challenger chooses h+ ← R instead of h+ ←
ROH(ROF(mb), r+). Hence, c∗ = (c∗

1
, c∗

2
) is (Encpk(r+; h+), g+ ⊕ mb).

• Game6: We make the decryption algorithm D reject an undetermined m. That is, D outputs ⊥ if

(m, ∗) < TF in step 4. Additionally, we make D reject an undetermined ( f , r). I.e., D outputs ⊥
if ( f , r, ∗) < TH in step 5. Notice that the algorithm D does not query to ROF , ROG, and ROH

anymore.

• Game7: Finally, we replace the decryption algorithm D with the plaintext extractor PE.

Sequence of lemmas: In the proofs of the following lemmas, we repeatedly use Lemma C.1 below in

order to bound the distance of each of the subsequent pairs of games.

Lemma C.1. Let E1, E2, F1, and F2 be events defined on a probability space. If the followings hold:

|Pr[E1 ∧ ¬F1] − Pr[E2 ∧ ¬F2]| ≤ δ and Pr[F1] = Pr[F2] = ϵ,

then we have

|Pr[E1] − Pr[E2]| ≤ δ + ϵ.
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Proof.

|Pr[E1] − Pr[E2]| = |Pr[E1 ∧ ¬F1] + Pr[E1 ∧ F1] − Pr[E2 ∧ ¬F2] − Pr[E2 ∧ F2]|
≤ |Pr[E1 ∧ ¬F1] − Pr[E2 ∧ ¬F2]| + |Pr[E1 ∧ F1] − Pr[E2 ∧ F2]|

≤ δ +
∣∣∣∣ Pr[E1|F1] · Pr[F1] − Pr[E2|F2] · Pr[F2]

∣∣∣∣

= δ +

∣∣∣∣ Pr[E1|F1] − Pr[E2|F2]
∣∣∣∣ · ϵ

≤ δ + ϵ.

�

Let qF , qG, and qH denote the number of queries made by the adversary to the random oracles for

F, G, and H, respectively. qD denotes the number of queries made by the adversary to the decryption

oracle. We denote by S 0 the event b′ = b in the Game0 and use a similar notation S i in any subsequent

game. We denote by Adv
IND
CCA2 the advantage of the adversary in the IND-CCA2 game in the ROM.

Then by definition, we have Adv
IND
CCA2 = |2 Pr[S 0] − 1|. We can bound this probability by the following

lemmas.

In the following, we denote by AskG and AskH the event that the adversary queries r∗ to the random

oracle for G and the event that the adversary queries (g, r∗) to the random oracle for H for some g,

respectively. Let AskR = AskG ∨ AskH.

Note that

Adv
IND
CCA2 ≤ | Pr[S 0] − Pr[¬S 0]| ≤ Pr[AskR0] + |Pr[S 0 ∧ ¬AskR0] − Pr[¬S 0 ∧ ¬AskR0]|.

Lemma C.2. Game0 and Game0.5 are identical and we have

Pr[S 0] = Pr[S 0.5].

Proof. The algorithms ROF , ROG, and ROH can simulate the random oracles for the hash functions F,

G, and H, respectively. Therefore, Game0 and Game0.5 are identical,

�

Lemma C.3. Game0.5 and Game1 are identical.

Proof. There is no change except the timing for the generation of r∗. It is obvious that the change does

not affect the games. Therefore Game0.5 and Game1 are identical.

�

Lemma C.4. Game1 and Game2 are identical if the event AskR does not occur. Hence, we have that

Adv
IND
CCA2 ≤ Pr[AskR2] + |Pr[S 2 ∧ ¬AskR2] − Pr[¬S 2 ∧ ¬AskR2]|.

Proof. If the one of two events occurs, the challenger in Game2 stops, but continues the game in Game1.

On the other hand, if the two events does not occur, the two games are identical. Therefore, we have that

Pr[AskR2] = Pr[AskR1], Pr[S 2 ∧ ¬AskR2] = Pr[S 1 ∧ ¬AskR1],Pr[¬S 2 ∧ ¬AskR2] = Pr[¬S 1 ∧ ¬AskR1].

The inequation thus follows from the above equations.

�
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Lemma C.5. Game2 and Game3 are identical if the event FailG3 does not occur, where FailG denotes

the event that the adversary asks a valid ciphertext c but r is not contained in TG in some decryption

query in Game3. Then, we have

|Pr[AskR3] − Pr[AskR2]| ≤ Pr[FailG3],

|Pr[S 3 ∧ ¬AskR3] − Pr[S 2 ∧ ¬AskR2]| ≤ Pr[FailG3],

|Pr[¬S 3 ∧ ¬AskR3] − Pr[¬S 2 ∧ ¬AskR2]| ≤ Pr[FailG3].

In particular, we have that

Adv
IND
CCA2 ≤ Pr[AskR3] + |Pr[S 3 ∧ ¬AskR3] − Pr[¬S 3 ∧ ¬AskR3]| + 3 Pr[FailG3].

Additionally,

Pr[FailG3] ≤ qD ·
(

qF

2k′
+

qH

#P + 2γ
)
.

Proof. The first part is trivial, since the decryption algorithms are equal if FailG does not occur.

Let Failk denote the event that FailG3 firstly occurs at the k-th query to the decryption oracle. Obvi-

ously, Pr[FailG3] =
∑qD

k=1
Pr[Failk].

Suppose that the k-th query to the decryption oracle is c = (c1, c2) and the event Failk occurs. This

means that c1 = Encpk(r; h′) for some h′, where (r, ∗) < TG, and D2 obtains g ← ROG(r), m ← c2 ⊕ g,

f ← ROF(m) and h← ROH( f , r) such that c1 = Encpk(r; h).

We split the event into the following four cases:

1. (m, f ) ∈ TF and ( f , r, h) ∈ TH .

2. (m, ∗) < TF but ( f ′, r, h) ∈ TH for some f ′.

3. (m, f ) ∈ TF but ( f , r, ∗) < TH .

4. (m, ∗) < TF and (∗, r, ∗) < TH .

In the case 1, for any (m, f ) ∈ TF , there is the corresponding triplet ( f , r, h) ∈ TH such that c1 =

Encpk(r; h) in the worst case. Hence, the probability that g ← ROG(r) satisfies m′ = c2 ⊕ g for any

(m′, ∗) ∈ TF is at least that that Failk occurs in this case. The probability is simply upper bounded by

qF/2
k′ .

In the case 2, we assume that every triplet in TH is corresponding to c1 in the worst case, that is every

triplet is in the form ( f ′, r, h′) such that c1 = Encpk(r; h′). But, since the value f is not determined, the

probability that f ← ROF(m) equals to the one of the elements in triplets, is at most qH/#P.

In the case 3, we have simply the upper bound γ because h is not determined.

In the case 4, since h is not determined yet, we have the upper bound γ.

By summing up, we have

Pr[Failk] ≤ qF

2k′
+

qH

#P + 2γ,

Pr[Failk] ≤ qD ·
(

qF

2k′
+

qH

#P + 2γ
)
.

�

Lemma C.6. Game3 and Game4 are identical if the event AskG does not occur. In particular, we have

that

Adv
IND
CCA2 ≤ Pr[AskR4] + |Pr[S 4 ∧ ¬AskR4] − Pr[¬S 4 ∧ ¬AskR4]| + 3 Pr[FailG3].
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Proof. Obviously, if the event AskG does not occur, these two games are identical.

�

Lemma C.7. Game4 and Game5 are identical if the event AskR does not occur. Thus, we obtain that

Adv
IND
CCA2 ≤ Pr[AskR5] + |Pr[S 5 ∧ ¬AskR5] − Pr[¬S 5 ∧ ¬AskR5]| + 3 Pr[FailG3].

Proof. Obviously, if the event AskR does not occur, these two games are identical.

�

Lemma C.8. In Game5, we have

|Pr[S 5 ∧ ¬AskR5] − Pr[¬S 5 ∧ ¬AskR5]| = 0.

Proof. Since AskR5 does not occur, the adversary A cannot know g+, which is uniformly distributed

over {0, 1}k′ , and we conclude the proof.

�

Lemma C.9. Game5 and Game6 are identical if FailD does not occur, where FailD denotes the event

that D6 fails in some decryption query to the decryption oracle but D5 succeeds, where Di denotes the

decryption algorithm in Gamei. We have that

Pr[AskR5] ≤ Pr[AskR6] + Pr[FailD].

Proof. Obviously, if the event FailD does not occur, these two games are identical. Thus, we have that

|Pr[AskR5] − Pr[AskR6]| ≤ Pr[FailD]

and the inequality in the statement.

�

Lemma C.10. In Game6, we have

Pr[FailD] = qD

(
qH

#P + 2γ
)
.

Proof. Let D5 and D6 be the decryption algorithms in Game5 and Game6, respectively. Let Failk denote

D6 firstly fails in the k-th query to the decryption oracle but D5 succeeds. So, we have Pr[FailD] =∑qD

k=1
Pr[Failk].

Suppose that the k-th ciphertext c = (c1, c2) as the decryption query.

Since D5 succeeds, we have that c1 = Encpk(r; h) for some r ∈ M and h ∈ R, and (r, g) ∈ TG.

Additionally, since g is now fixed, m = c2 ⊕ g is also fixed. Moreover, we can fix f ← ROF(m). Finally,

we have that, for h̃← ROH( f , r), c1 = Encpk(r; h̃), since the final check of D5 is passed.

On the other hand, D6 fails if f and h̃ are not determined.

We split Failk into the following three cases:

1. (m, ∗) < TF and ( f , r, h̃) ∈ TH for some f ,

2. (m, f ) ∈ TF for some f but ( f , r, ∗) < TH .

3. (m, ∗) < TF and (∗, r, ∗) < TH .
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In the case 1, D5 succeeds if ( f ′, r, h̃) ∈ TH where f ′ ← ROF(m). We can upper bound this

probability by qH/#P since f ′ is chosen uniformly at random from P.

In the case 2, D5 succeeds if c1 = Encpk(r; h′) where h′ ← ROH( f , r). This probability is at most γ

because h′ is chosen uniformly at random from R.

In the case 3, D5 succeeds if c1 = Encpk(r; h′) where h′ ← ROH( f ′, r) and f ′ ← ROF(m). Since h′

is not determined, this probability is at most γ.

Summing up them, we have

Pr[Failk] ≤ qH

#P + 2γ

and conclude the proof.

�

Lemma C.11. Game6 and Game7 are identical. We have Pr[AskR6] = Pr[AskR7].

Proof. Recall that the decryption algorithm D6 in Game6 does not query to any random oracle. Hence,

we safely replace D6 with PE.

�

Lemma C.12. In Game7, we have

Pr[AskR7] ≤ (qG + qH) · Adv
OW
CPA.

Proof. We construct an adversary B against the OW-CPA security of the underlying scheme PKE from

the adversaryA in Game7. The description of the new adversary B is as follows:

• B first chooses g+ ← {0, 1}k′ . Receiving (pk, c∗
1
= Encpk(r+; h+)) from its challenger, where

r+ ←M and h+ ← R, B feeds pk toA. On decryption queries, B runs the plaintext extractor PE.

• Receiving m0 and m1 from A, B generates the target ciphertext. First it queries m0 and m1 to

ROF to determine the hash values f0 and f1 of m0 and m1, respectively. Then, it flips a fair coin

b← {0, 1} and computes c∗
2
← g+ ⊕ mb. Then, it feeds (c∗

1
, c∗

2
) toA.

• Finally,A outputs b′. Then, B randomly chooses r from TG and TH and outputs r.

Notice that B simulates Game7 perfectly and if AskR7 occurs the one of two tables contains r+. We

have

Pr[AskR7] ≤ (qG + qH)Adv
OW
CPA.

�

D Proof of the Security of wFO, Theorem 3.3

As in the previou section, we prove Theorem 3.3 in the game style. Again, in order to prove the

IND-CCA2 security, it is necessary to simulate the decryption oracle without knowing the secret key

sk. This is done by using the following plaintext extractor PE as in the original proof [FO99].

The plaintext extractor PE: The plaintext extractor shares the three tables TF , TG, and TH that are

involved in the simulation algorithms for F, G, and H, respectively. Given a decryption query c =

(c1, c2, c3), PE inspects each entry (µ, σ, fµ,σ) ∈ TF , (γ, gγ) ∈ TG, and ( f , γ, h f ,γ) ∈ TH . For each

(γ, gγ) ∈ TG, it obtains µ ← c2 ⊕ gγ. It next picks (µ, c3, f ) ∈ TF and picks ( f , γ, h) ∈ TH . It checks

wheter c1 = Encpk(γ, h). If they hold, PE outputs µ as the decryption of c and stops. Otherwise, the

extractor returns ⊥.
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Sequence of games: We start with the original attack game with respect to IND-CCA2 in the CT-ROM,

and modify it step by step in order to obtain a game directly related to the adversary which breaks the

OW-CPA property of PKE = (Gen,Enc,Dec).

• Game0: The original attack game with respect to IND-CCA2 in the CT-ROM. A pair of keys

(pk, sk) is generated by using the key generation algorithm of the wFO encryption scheme. The

adversary A is given the public key pk and has access to the decryption oracle D, the random

oracles ROF , ROG, and ROH , and the collision oracles COF , COG, and COH . At some point in

the game the adversary A is expected to output a pair of messages (m0,m1). Next a challenge

ciphertext is produced by flipping a coin b and producing a ciphertext c∗ of mb. This ciphertext c∗

is constructed as follows:

r∗ ←M, g∗ ← ROG(r∗), c∗2 ← g∗ ⊕ mb,

s∗ ← S, f ∗ ← ROF(mb, s
∗), h∗ ← ROH( f ∗, r∗), c∗1 ← Encpk(r∗; h∗).

Then the ciphertext (c∗
1
, c∗

2
, c∗

3
= s∗) is given toA. Finally, the adversaryA outputs a bit b′.

• Game0.5: We replace the oracles ROF , ROG, ROH , COF , COG, and COH with the algorithms

ROF , ROG, ROH , COF , COG, and COH respectively. These algorithms are obtained by simply

modifying the algorithms RO and CO in Appendix A for F, G, and H.

Furthermore we replace the decryption oracle D with the algorithm D which simply runs the

decryption algorithm using the secret key sk.

• Game1: We change the time for generating r∗. The challenger first chooses r+ uniformly at

random and obtains g+ ← ROG(r+).

• Game2: We modify the above game, by hooking queries to the algorithms ROG and ROH . If the

query to the algorithm contains r+, the challenger stops. Otherwise, the query is passed to the

algorithms. Additionally, the challenger hooks answers from the algorithms COG and COH . If

the answer contains r+, the challenger stops. Otherwise, the query is passed to the algorithms.

• Game3: We make the decryption algorithm D reject an undetermined r. That is, the algorithm D

outputs ⊥ if (r, ∗) < TG for r ← Decsk(c1). In the after games, the algorithm D does not query to

ROG.

• Game4: We modify the generation of g+. The challenger uses g+ ← {0, 1}k′ instead of g+ ←
ROG(r+).

• Game5: We modify the generation of h+. The challenger chooses h+ ← R instead of h+ ←
ROH(ROF(mb, s

∗), r+). Hence, c∗ = (c∗
1
, c∗

2
, c∗

3
) is (Encpk(r+; h+), g+ ⊕ mb, s

∗), where s∗ ← S.

• Game6: We make the decryption algorithm D reject an undetermined m. That is, D outputs ⊥ if

(m, c3, ∗) < TF in step 4. Additionally, we make D reject an undetermind ( f , r). I.e., D outputs ⊥
if ( f , r, ∗) < TH in step 5. In the after games, the algorithm D does not query to ROF and ROH .

• Game7: Finally, we replace the decryption algorithm D with the plaintext extractor PE.

Sequence of lemmas: Let qF , qG, and qH denote the number of queries made by the adversary to

the oracles corresponding to F, G, and H, respectively. qD denotes the number of queries made by

the adversary to the decryption oracle. In the following, we denote by AskG+ and AskH+ the event

that the adversary queries r∗ to the random oracle for G and the event that the adversary query ( f , r∗)
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to the random oracle for H for some f , respectively. We denote by AskG− and AskH− the event that

the adversary obtains r∗ from the collision oracle for G and the event that the adversary obtains ( f , r∗)
from the collision oracle for H for some f , respectively. Let AskG = AskG+ ∨ AskG−, AskH =

AskH+ ∨ AskH−, and AskR = AskG ∨ AskH.

Note that we have that

Adv
IND
CCA2 ≤ | Pr[S 0] − Pr[¬S 0]| ≤ Pr[AskR0] + |Pr[S 0 ∧ ¬AskR0] − Pr[¬S 0 ∧ ¬AskR0]|.

Lemma D.1. Game0 and Game0.5 are statistically close 1 and we have

Pr[S 0] = Pr[S 0.5].

Proof. The algorithms ROF , ROG, and ROH can simulate the random oracles for the hash functions F,

G, and H. The algorithms COF , COG, and COH also can simulate the collision oracles for the hash

funciotns F, G, and H, respectively. Therefore, Game0 and Game0.5 are identical,

�

Lemma D.2. Game0.5 and Game1 are identical.

Proof. There is no change except the timing for the generatin of r∗. It is obvious that the change does

not affect the games. Therefore Game0.5 and Game1 are identical.

�

Lemma D.3. Game1 and Game2 are identical if the event AskR does not occur. Hence, we have that

Adv
IND
CCA2 ≤ Pr[AskR2] + |Pr[S 2 ∧ ¬AskR2] − Pr[¬S 2 ∧ ¬AskR2]|.

Proof. If the one of two events occur, the challenger in Game2 stops, but continues the game in Game1.

On the other hand, if the two events does not occur, the two games are identical. Therefore, we have that

Pr[AskR2] = Pr[AskR1], Pr[S 2 ∧ ¬AskR2] = Pr[S 1 ∧ ¬AskR1],Pr[¬S 2 ∧ ¬AskR2] = Pr[¬S 1 ∧ ¬AskR1].

The inequation thus follows from the above equations.

�

Lemma D.4. Game2 and Game3 are identical if the event FailG3 does not occur, where FailG denotes

the event that the adversary asks a valid ciphertext c but r is not contained in TG in some decryption

query in Game3. Then, we have

|Pr[AskR3] − Pr[AskR2]| ≤ Pr[FailG3],

|Pr[S 3 ∧ ¬AskR3] − Pr[S 2 ∧ ¬AskR2]| ≤ Pr[FailG3],

|Pr[¬S 3 ∧ ¬AskR3] − Pr[¬S 2 ∧ ¬AskR2]| ≤ Pr[FailG3].

Additionally,

Pr[FailG3] ≤ qD ·
(

qF

2k′
+

qH

#P + 2γ + neglF + neglG + 2neglH

)
,

1 Although Theorem 2.8 states that there is a statistical distance, we ignore the above statistical distance, in order to simplify

the analysis.
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where

neglF ≤



1
#P

(
5qF + 1 +

4q2
F

#P + 20qF
ln #P

ln ln #P

)
if 2k′ · #S ≥ #P,

1
2k′ ·#S

(
5qF + 1 +

4q2
F

2k′ ·#S + 20qF
ln #P

ln ln #P

)
if 2k′ · #S < #P,

neglG ≤



1
2k′

(
5qG + 1 +

4q2
G

2k′ + 20qG
ln 2k′

ln ln 2k′

)
if #M ≥ 2k′ ,

1
#M

(
5qG + 1 +

4q2
G

#M + 20qG
ln 2k′

ln ln 2k′

)
if #M < 2k′ ,

neglH ≤



1
#R

(
5qH + 1 +

4q2
H

#R + 20qH
ln #R

ln ln #R

)
if #M · #P ≥ #R,

1
#M·#P

(
5qH + 1 +

4q2
H

#M·#P + 20qH
ln #R

ln ln #R

)
if #M · #P < #R.

Proof. The first part is trivial, since the decryption algorithms are equal if FailG does not occur. To show

the second part, we follow the arguments in [GMMV05] with little corrections.

Let Failk denote the event that FailG3 firstly occurs at the k-th query to the decyrption oracle. Obvi-

ously, Pr[FailG3] =
∑qD

k=1
Pr[Failk].

Suppose that the k-th query to the decryption oracle is c = (c1, c2, c3) and the event Failk occurs. This

means that c1 = Encpk(r; h′) for some h′, where (r, ∗) < TG, and D2 obtains g ← ROG(r), m ← c2 ⊕ g,

f ← ROF(m, c3) and h← ROH( f , r) such that c1 = Encpk(r; h).

We split the event into the following four cases:

1. (m, f ) ∈ TF and ( f , r, h) ∈ TH .

2. (m, ∗) < TF but ( f ′, r, h) ∈ TH for some f ′.

3. (m, f ) ∈ TF but ( f , r, ∗) < TH .

4. (m, ∗) < TF and (∗, r, ∗) < TH .

In the case 1, for any (m, f ) ∈ TF , there is the corresponding triplet ( f , r, h) ∈ TH such that c1 =

Encpk(r; h) in the worst case. Hence, the probabity g← ROG(r) satisfies m′ = c2 ⊕ g for some (m′, ∗) ∈
TF is at least that Failk occurs in this case. The probaiblity is simply upper bounded by qF/2

k′ + neglG
by the help of Lemma 2.4.

In the case 2, we assume that every triplet in TH is corresponding to c1 in the worst case, that is every

triplet is in the form ( f ′, r, h′) such that c1 = Encpk(r; h′). But, since the value f is not determined, the

probability that f obtained by ROF(m, c3) is one of the elements in triplets, is at most qH/#P + neglF .

In the case 3, we have simply the upper bound γ + neglH because h is not determined.

In the case 4, since h is not determined yet, we have the upper bound γ + neglH .

By summing up, we have

Pr[Failk] ≤ qF

2k′
+

qH

#P + 2γ + neglF + neglG + 2neglH ,

Pr[FailG] ≤ qD ·
(

qF

2k′
+

qH

#P + 2γ + neglF + neglG + 2neglH

)
.

�

Lemma D.5. Game3 and Game4 are almost identical if the event AskG does not occur. In particular,

we have that

Adv
IND
CCA2 ≤ Pr[AskR4] + |Pr[S 4 ∧ ¬AskR4] − Pr[¬S 4 ∧ ¬AskR4]| + 3 Pr[FailG3] + 3neglG.
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Proof. If the event AskG does not occur, in Game3, g+ ← ROG(r+) is almost uniformly at random from

our weak uniformity lemma (Lemma 2.4). In Game4, g+ ← {0, 1}k′ is uniformly at random. Hence, two

games differ only within neglG.

�

Lemma D.6. Game4 and Game5 are almost identical if the event AskH does not occur. In particular,

we have that

Adv
IND
CCA2 ≤ Pr[AskR5] + |Pr[S 5 ∧ ¬AskR5] − Pr[¬S 5 ∧ ¬AskR5]| + 3 Pr[FailG3] + 3neglG + 3neglH .

Proof. If the event AskH does not occur, in Game4, h+ ← ROH(ROF(mb, s
∗), r+) is almost uniformly

at random from our weak uniformity lemma (Lemma 2.4). In Game5, h+ ← R is uniformly at random.

Hence, two games differ only within neglH .

�

Lemma D.7. In Game5, we have

|Pr[S 5 ∧ ¬AskR5] − Pr[¬S 5 ∧ ¬AskR5]| ≤ 0.

Proof. Since g+ is uniformly distributed over {0, 1}k′ and the adversary cannot know g+, the lemma

follows. �

Lemma D.8. Game5 and Game6 are identical if FailD does not occur, where FailD denotes the event

that D6 fails in some decryption query to the decryption oracle but D5 suceeds, where Di denotes the

decryption algorithm in Gamei. We have that

Pr[AskR5] ≤ Pr[AskR6] + Pr[FailD].

Proof. It follows the argument in the proof of Theorem 3.1.

�

Lemma D.9. In Game6, we have

Pr[FailD] ≤ qD ·
(

qH

#P + 2γ + neglF + 2neglH

)
.

Proof. Let Failk denote the D6 firstly fails in the k-th query to the decryption oracle but D5 succeeds. So,

we have Pr[FailD] =
∑qD

k=1
Pr[Failk].

Suppose that the k-th decryption query is the ciphertext c = (c1, c2, c3). Since D5 suceeds, we have

that c1 = Encpk(r; h) for some r ∈ M and h ∈ R, and (r, g) ∈ TG. Additionally, since g is now fixed,

m = c2⊕g is also fixed. Moreover, we can fix f ← ROF(m, c3). Finally, we have that, for h̃← ROH( f , r),

c1 = Encpk(r; h̃), since the final check of D5 is passed.

On the other hand, D6 fails if f and h̃ are not determined.

We split Failk into the following three cases:

1. (m, c3, ∗) < TF and ( f , r, h̃) ∈ TH for some f ,

2. (m, c3, f ) ∈ TF for some f but ( f , r, ∗) < TH .

3. (m, c3, ∗) < TF and (∗, r, ∗) < TH .
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In the case 1, D5 succeeds if ( f ′, r, h̃) ∈ TH where f ′ ← ROF(m, c3). We can upper bound this

probability by qH/#P + neglF since f ′ is distributed according to almost uniform distribution over P.

In the case 2, D5 succeeds if c1 = Encpk(r; h′) where h′ ← ROH( f , r). This probability is at most

γ + neglH because h′ is distributed according to almost uniform distribution over R.

By the similar way to the above, D5 succeeds in if c1 = Encpk(r; h′) where h′ ← ROH( f ′, r) and

f ′ ← ROF(m, c3).

Summing up them, we have

Pr[Failk] ≤ qH

#P + 2γ + neglF + 2neglH ,

Pr[FailD] ≤ qD ·
(

qH

#P + 2γ + neglF + 2neglH

)
.

�

Lemma D.10. Game6 and Game7 are identical. We have Pr[AskR6] = Pr[AskR7].

Proof. Recall that the decryption algorithm D6 in Game6 does not query to any random oracle. Hence,

we can safely replace D6 with PE.

�

Lemma D.11. In Game7, we have

Pr[AskR7] ≤ (qG + qH) · Adv
OW
CPA.

Proof. We construct an adversary B against the OW-CPA security of the underlying scheme PKE from

the adversaryA in Game7. The description of the new adversary B is as follows:

• B first chooses g+ ← {0, 1}k′ . Receiving (pk, c∗
1
= Encpk(r+; h+)) from its challenger, where

r+ ←M and h+ ← R, B feeds pk toA. On decryption queries, B runs the plaintext extractor PE.

• Receiving m0 and m1 from A, B generates the target ciphertext. It chooses s+ ← S and queries

(m0, s
+) and (m1, s

+) to ROF . Then, it flips a fair coin b ← {0, 1} and computes c∗
2
← g+ ⊕ mb.

Then, it feeds (c∗
1
, c∗

2
, s+) toA.

• Finally,A outputs b′. Then, B randomly chooses r from TG and TH and outputs r.

Notice that B simulates Game7 perfectly. Since AskR7 occurs, the one of two tables contains r+.

We have

Pr[AskR7] ≤ (qG + qH)Adv
OW
CPA.

�

E Proof of the Security of FO, Theorem 3.5

We prove Theorem 3.5 in the game style. In order to prove the IND-CCA2 security, it is necessary to

simulate the decryption oracle without knowing the secret key sk. This is done by using the following

plaintext extractor PE in the original proof [FO99].

The plaintext extractor PE: The plaintext extractor shares the two tables TG and TH that are involved

in the simulation algorithms ROG and SPOG, and the simulation algorithms ROH and SPOH , respec-

tively. Given a decryption query c = (c1, c2), PE inspects each entry (γ, gγ) ∈ TG and (µ, γ, hµ,γ) ∈ TH .

For each (γ, gγ) ∈ TG, it obtains µ ← c2 ⊕ gγ. It next picks (µ, γ, h) ∈ TH . It checks wheter

c1 = Encpk(γ; h). If they hold, PE outputs µ as the decryption of c and stops. Otherwise, PE returns ⊥.

30



Sequence of games: We start with the original attack game with respect to IND-CCA2 in the SPT-ROM,

and modify it step by step in order to obtain a game directly related to the adversary which breaks the

OW-CPA property of PKE = (Gen,Enc,Dec).

• Game0: The original attack game with respect to IND-CCA2 in the SPT-ROM. A pair of keys

(pk, sk) is generated by using the key generation algorithm Gen. The adversary A is given the

public key pk and has access to the decryption oracle D, the random oracles ROG and ROH , and

the second-preimage oracles SPOG and SPOH . At some point in the game the adversary A is

expected to output a pair of messages (m0,m1). Next a challenge ciphertext is produced by flipping

a coin b and producing a ciphertext c∗ of mb. This ciphertext c∗ is constructed as follows:

r∗ ←M, g∗ ← ROG(r∗), c∗2 ← g∗ ⊕ mb,

h∗ ← ROH(mb, r
∗), c∗1 ← Encpk(r∗; h∗).

Then the ciphertext (c∗
1
, c∗

2
) is given toA. Finally, the adversaryA outputs a bit b′.

• Game0.5: We replace the oracles ROG, ROH , SPOG, and SPOH with the algorithms ROG, ROH ,

SPOG, and SPOH respectively. These algorithms are obtained by simply modifying the algo-

rithms RO and SPO in Appendix A for G and H.

Furthermore we replace the decryption oracle D with the algorithm D which simply runs the

decryption algorithm using the secret key sk.

• Game1: We change the time for generating r∗. The challenger first chooses r+ uniformly at

random and obtains g+ ← ROG(r+).

• Game2: We modify the above game, by hooking queries to the algorithms ROG and ROH . If the

query to the algorithm contains r+, the challenger stops. Otherwise, the query is passed to the

algorithms. Additionally, the challenger hooks answers from the algorithms SPOG and SPOH . If

the answer contains r+, the challenger stops. Otherwise, the query is passed to the algorithms.

• Game3: We make the decryption algorithm D reject an undetermined r. That is, the algorithm D

outputs ⊥ if (r, ∗) < TG for r ← Decsk(c1). In the after games, the algorithm D does not query to

ROG.

• Game4: We modify the generation of g+. The challenger uses g+ ← {0, 1}k′ instead of g+ ←
ROG(r+).

• Game5: We modify the generation of h+. The challenger chooses h+ ← R instead of h+ ←
ROH(mb, r

+). Hence, c∗ = (c∗
1
, c∗

2
) is (Encpk(r+; h+), g+ ⊕ mb).

• Game6: We make D reject an undetermind (m, r). I.e., D outputs ⊥ if (m, r, ∗) < TH in step 4. In

the after games, the algorithm D does not query to and ROH .

• Game7: Finally, we replace the decryption algorithm D with the plaintext extractor PE.

Sequence of lemmas: Let qG and qH denote the number of queries made by the adversary to the

oracles corresponding to G and H, respectively. qD denotes the number of queries made by the adversary

to the decryption oracle. In the following, we denote by AskG+ and AskH+ the event that the adversary

queries r∗ to the random oracle for G and the event that the adversary query (m, r∗) to the random oracle

for H for some m, respectively. We denote by AskG− and AskH− the event that the adversary obtains

r∗ from the collision oracle for G and the event that the adversary obtains (m, r∗) from the collision
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oracle for H for some m, respectively. Let AskG = AskG+ ∨ AskG−, AskH = AskH+ ∨ AskH−, and

AskR = AskG ∨ AskH.

Note that we have that

Adv
IND
CCA2 ≤ | Pr[S 0] − Pr[¬S 0]| ≤ Pr[AskR0] + |Pr[S 0 ∧ ¬AskR0] − Pr[¬S 0 ∧ ¬AskR0]|.

Lemma E.1. Game0 and Game0.5 are statistically close 2 and we have

Pr[S 0] = Pr[S 0.5].

Proof. The algorithms ROG and ROH can simulate the random oracles for the hash functions G and H.

The algorithms SPOG and SPOH also can simulate the collision oracles for the hash funciotns G and

H, respectively. Therefore, Game0 and Game0.5 are identical,

�

Lemma E.2. Game0.5 and Game1 are identical.

Proof. There is no change except the timing for the generatin of r∗. It is obvious that the change does

not affect the games. Therefore Game0.5 and Game1 are identical.

�

Lemma E.3. Game1 and Game2 are identical if the event AskR does not occur. Hence, we have that

Adv
IND
CCA2 ≤ Pr[AskR2] + |Pr[S 2 ∧ ¬AskR2] − Pr[¬S 2 ∧ ¬AskR2]|.

Proof. If the one of two events occur, the challenger in Game2 stops, but continues the game in Game1.

On the other hand, if the two events does not occur, the two games are identical. Therefore, we have that

Pr[AskR2] = Pr[AskR1], Pr[S 2 ∧ ¬AskR2] = Pr[S 1 ∧ ¬AskR1],Pr[¬S 2 ∧ ¬AskR2] = Pr[¬S 1 ∧ ¬AskR1].

The inequation thus follows from the above equations.

�

Lemma E.4. Game2 and Game3 are identical if the event FailG3 does not occur, where FailG denotes

the event that the adversary asks a valid ciphertext c but r is not contained in TG in some decryption

query in Game3. Then, we have

|Pr[AskR3] − Pr[AskR2]| ≤ Pr[FailG3],

|Pr[S 3 ∧ ¬AskR3] − Pr[S 2 ∧ ¬AskR2]| ≤ Pr[FailG3],

|Pr[¬S 3 ∧ ¬AskR3] − Pr[¬S 2 ∧ ¬AskR2]| ≤ Pr[FailG3].

Additionally,

Pr[FailG3] ≤ qD ·
(
qH

2k′
+ γ + neglG + neglH

)
,

where

neglG ≤



1
2k′

(
5qG + 1 +

4q2
G

2k′ + 20qG
ln 2k′

ln ln 2k′

)
if #M ≥ 2k′ ,

1
#M

(
5qG + 1 +

4q2
G

#M + 20qG
ln 2k′

ln ln 2k′

)
if #M < 2k′ ,

neglH ≤



1
#R

(
5qH + 1 +

4q2
H

#R + 20qH
ln #R

ln ln #R

)
if 2k′ · #M ≥ #R,

1
2k′ ·#M

(
5qH + 1 +

4q2
H

2k′ ·#M + 20qH
ln #R

ln ln #R

)
if 2k′ · #M < #R.

2 Although Theorem 2.8 states that there is a statistical distance, we ignore the above statistical distance, in order to simplify

the analysis.
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Proof. The first part is trivial, since the decryption algorithms are equal if FailG does not occur. To show

the second part, we follow the arguments in [GMMV05] with little corrections.

Let Failk denote the event that FailG3 firstly occurs at the k-th query to the decyrption oracle. Obvi-

ously, Pr[FailG3] =
∑qD

k=1
Pr[Failk].

Suppose that the k-th query to the decryption oracle is c = (c1, c2) and the event Failk occurs. This

means that c1 = Encpk(r; h′) for some h′, where (r, ∗) < TG, and D2 obtains g ← ROG(r), m ← c2 ⊕ g,

and h← ROH(m, r) such that c1 = Encpk(r; h).

We split the event into the following two cases:

1. (m, r, h) ∈ TH .

2. (m, r, ∗) < TH .

In the case 1, for any (m, r, h) ∈ TH such that c1 = Encpk(r; h) in the worst case. Hence, the probabity

that g← ROG(r) satisfies m = c2 ⊕ g for (m, r, h) ∈ TH is at least that that Failk occurs in this case. This

probaiblity is simply upper bounded by qH/2
k′ + neglG.

In the case 2, we have the upper bound γ + neglH because h is not determined.

By summing up, we have

Pr[Failk] ≤ qH

2k′
+ γ + neglG + neglH ,

Pr[FailG3] ≤ qD ·
(
qH

2k′
+ γ + neglG + neglH

)
.

�

Lemma E.5. Game3 and Game4 are almost identical if the event AskG does not occur. In particular,

we have that

Adv
IND
CCA2 ≤ Pr[AskR4] + |Pr[S 4 ∧ ¬AskR4] − Pr[¬S 4 ∧ ¬AskR4]| + 3 Pr[FailG3] + 3neglG.

Proof. If the event AskG does not occur, in Game3, g+ ← ROG(r+) is almost uniformly at random from

our weak uniformity lemma (Lemma 2.4). In Game4, g+ ← {0, 1}k′ is uniformly at random. Hence, two

games differ only within neglG.

�

Lemma E.6. Game4 and Game5 are almost identical if the event AskH does not occur. In particular,

we have that

Adv
IND
CCA2 ≤ Pr[AskR5] + |Pr[S 5 ∧ ¬AskR5] − Pr[¬S 5 ∧ ¬AskR5]| + 3 Pr[FailG3] + 3neglG + 3neglH .

Proof. If the event AskH does not occur, in Game4, h+ ← ROH(mb, r
+) is almost uniformly at random

from our weak uniformity lemma (Lemma 2.4). In Game5, h+ ← R is uniformly at random. Hence,

two games differ only within neglH .

�

Lemma E.7. In Game5, we have

|Pr[S 5 ∧ ¬AskR5] − Pr[¬S 5 ∧ ¬AskR5]| = 0.

Proof. If AskR5 does not occur, the adversary cannot know g+. Hence, mb ⊕ g+ is uniformly distributed

and the lemma follows.

�
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Lemma E.8. Game5 and Game6 are identical if FailD does not occur, where FailD denotes the event

that D6 fails in some decryption query to the decryption oracle but D5 suceeds, where Di denotes the

decryption algorithm in Gamei. We have that

Pr[AskR5] ≤ Pr[AskR6] + Pr[FailD].

Proof. It follows the argument in the proof of Theorem 3.1.

�

Lemma E.9. In Game6, we have

Pr[FailD] ≤ qD · (γ + neglH).

Proof. Let Failk denote the D6 firstly fails in the k-th query to the decryption oracle but D5 succeeds.

So, we have Pr[FailD] =
∑qD

k=1
Pr[Failk]. Suppose that the k-th ciphertext c = (c1, c2) as the decryption

query.

Since D5 suceeds, we have that c1 = Encpk(r; h) for some r ∈ M and h ∈ R, and (r, g) ∈ TG.

Additionally, since g is now fixed, m = c2 ⊕ g is also fixed. Hence, we have that, for h̃ ← ROH(m, r),

c1 = Encpk(r; h̃), since the final check of D5 is passed. On the other hand, D6 fails if h̃ is not determined,

that is, (m, r, ∗) < TH .

We can upper bound the probability that h′ ← ROH(m, r) and c1 = Encpk(r; h′) by γ + neglH sicne

h′ is distributed according to almost uniform distribution over R.

Summing up them, we have

Pr[Failk] ≤ γ + neglH ,

Pr[FailD] ≤ qD · (γ + neglH).

�

Lemma E.10. Game6 and Game7 are identical. We have Pr[AskR6] = Pr[AskR7].

Proof. Recall that the decryption algorithm D6 in Game6 does not query to any random oracle. Hence,

we safely replase D6 with PE.

�

Lemma E.11. In Game7, we have

Pr[AskR7] ≤ (qG + qH) · Adv
OW
CPA.

Proof. We construct an adversary B against the OW-CPA security of the underlying scheme PKE from

the adversaryA in Game7. The description of the new adversary B is as follows:

• B first chooses g+ ← {0, 1}k′ . Receiving (pk, c∗
1
= Encpk(r+; h+)) from its challenger, where

r+ ←M and h+ ← R, B feeds pk toA. On decryption queries, B runs the plaintext extractor PE.

• Receiving m0 and m1 fromA, B generates the target ciphertext. It flips a fair coin b← {0, 1} and

computes c∗
2
← g+ ⊕ mb. Then, it feeds (c∗

1
, c∗

2
) toA.

• Finally,A outputs b′. Then, B randomly chooses r from TG and TH and outputs r.

Notice that B simulates Game7 perfectly and if AskR7 occurs the one of two tables contains r+. We

have

Pr[AskR7] ≤ (qG + qH)Adv
OW
CPA.

�
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F Proof of the Security of OAEP, Theorem 3.7

Now we prove Theorem 3.7 after the original proof of the OAEP encryption scheme in the ROM [FOPS04].

In order to prove the IND-CCA2 security, it is necessary to simulate the decryption oracle without know-

ing the secret key sk. This is done by using the following plaintext extractor PE as in [FOPS04].

The plaintext extractor PE: The plaintext extractor shares the two tables TG and TH that are com-

monly used in the simulation algorithm ROG,FPOG and ROH ,FPOH , respectively. Given a decryption

query y = f (s, t), PE inspects each entry (γ, gγ) ∈ TG and (δ, hδ) ∈ TH . For each combination of

elements, it defines the following values:

σ = δ, θ = γ ⊕ hδ, µ = gγ ⊕ δ,

and checks whether y = f (σ, θ) and µ has the form m ∥ 0k1 . If both of these hold, PE outputs m as the

decryption of y and stops. If no such pair is found, the extractor returns ⊥.

Sequence of games: We start with the original attack game with respect to IND-CCA2 in the FPT-ROM,

and modify it step by step in order to obtain a game directly related to the adversary which breaks the

partial-domain one-wayness property of the underlying trapdoor permutation.

• Game0: The original attack game with respect to IND-CCA2 in the FPT-ROM. A pair of keys

(pk, sk) is generated by using the key generation algorithm of the OAEP encryption scheme. Let

f = fpk denote the trapdoor permutation and let g = gsk denote its inverse. The adversary A is

given the public key pk and has access to the decryption oracle D, the random oracles ROG and

ROH , and the first-preimage oracles FPOG and FPOH . At some point in the game the adversary

is expected to output a pair of messages (m0,m1). Next a challenge ciphertext is produced by

flipping a coin b and producing a ciphertext y∗ of mb. This ciphertext y∗ is constructed as follows:

r∗ ← {0, 1}k0 , s∗ ← (mb ∥ 0k1) ⊕ ROG(r∗), t∗ ← r∗ ⊕ ROH(s∗),

x∗ ← (s∗, t∗), y∗ ← f (x∗).

Then the ciphertext y∗ is given toA. Finally, the adversaryA outputs a bit b′.

• Game0.5: We replace the random oracles ROG and ROH , and the first-preimage oracles FPOG

and FPOH with the algorithms ROG,ROH , and FPOG,FPOH , respectively 3. These algorithms

are obtained by simply modifying the algorithms RO and FPO in Appendix A for G and H.

Furthermore we replace the decryption oracle D with the algorithm D which simply runs the

decryption algorithm using secret key sk

• Game1: We modify the above game, by moving the generation of the seed r∗ and the image

ROG(r∗) to the beginning of the game. That is, we randomly pick ahead of time some r+ ←
{0, 1}k0 , and use r+ and ROG(r+) instead of r∗ and ROG(r∗), respectively. The game obeys the

following rule:

– Rule: r∗ = r+ and s∗ = (mb||0k1) ⊕ ROG(r+). The other variables are generated as described

above, i.e., t∗ = r+ ⊕ ROH(s∗), x∗ = s∗ ∥ t∗, and y∗ = f (x∗).

3In the proof [FOPS04] in the ROM, they implicitly make the replacement of the random oracles with the algorithms

Std.RO.
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• Game2: We modify the above game, by replacing the image ROG(r+) by randomly chosen g+ in

the construction of s∗. (The challenger does not set the pair (r+, g+) in the table of G.) That is,

we randomly pick ahead of time some g+ ← {0, 1}k−k0 and use g+ instead of ROG(r+). The game

obeys the following rule:

– Rule: r∗ = r+ and s∗ = (mb||0k1) ⊕ g+. The other variables are generated as described above,

i.e., t∗ = r+ ⊕ ROH(s∗), x∗ = s∗ ∥ t∗, and y∗ = f (x∗).

• Game3: We now move the generation of s∗ and ROH(s∗) to the beginning of the game and make

it independent of anything else. That is, we randomly pick a head of time some s+ ← {0, 1}k−k0 ,

and use s+ and ROH(s+) instead of s∗ and ROH(s∗), respectively. The game obeys the following

rule:

– Rule: g+ = (mb ∥ 0k1) ⊕ s+ and t∗ = r+ ⊕ ROH(s+).

• Game4: We modify the above game, by replacing the image ROH(s+) by randomly chosen h+.

(Again, the challenger does not set the pair (s+, h+) in the table of H.) That is, we randomly pick

a head of time some h+ ← {0, 1}k0 , and use h+ instead of ROH(s+). The game obeys the following

the rule:

– Rule: g+ = (mb ∥ 0k1) ⊕ s+ and t∗ = r+ ⊕ h+.

• Game5: Again we change the generation of the challenge ciphertext. We now pick t+ ← {0, 1}k0

and replace t∗ by t+. Then the ciphertext y∗ = f (s+, t+) is a uniformly chosen image of f .

• Game6: We now change the decryption algorithm D. We make the decryption algorithm D reject

all ciphertexts y = f (s, t) such that the hash value of the corresponding r = t ⊕ ROH(s) has not

been determined yet, i.e., r has not been previously queried to ROG or r has not been replied by

FPOG.

Note that from now on the decryption algorithm D does not make a new query to ROG any more,

because the necessary query has been made already.

• Game7: We further change the decryption algorithm D. We make the decryption algorithm D

additionally reject all ciphertexts y = f (s, t) such that the hash value of s has not been determined

yet, i.e., s has not been previously queried to ROH or s has not been replied by FPOH .

Note that from now on the decryption algorithm D does not make a new query to ROH any more,

because the necessary query has been made already.

• Game8: Now the decryption algorithm D only decrypts ciphertext y such that corresponding r and

s have been already determined, respectively, and hence we can replace the decryption algorithm

D by the plaintext extractor PE which perfectly simulates the decryption algorithm D without

knowing the secret key sk.

Sequence of lemmas: Let qG and qH denote the number of queries made by the adversary to both

the random oracle and the first-preimage oracle for G and H, respectively. Let qD denote the number

of queries made by the adversary to the decryption oracle. We denote by S 0 the event b′ = b in the

Game0 and use a similar notation S i in any subsequent game. Furthermore, we denote by Adv
IND
CCA2

the advantage of the adversary in the IND-CCA2 game in the FPT-ROM. Then by definition, we have

Adv
IND
CCA2 = 2

∣∣∣Pr[S 0] − 1
2

∣∣∣. We can bound this probability by the following lemmas.
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Lemma F.1. Game0 and Game0.5 are statistically to close 4, we have

Pr[S 0] = Pr[S 0.5].

Proof. By Theorem 2.8, the algorithms ROG and FPOG and ROH and FPOH can simulate the random

oracles and the first-preimage oracle for the hash functions G and H. Therefore, Game0 and Game0.5

are statistically close, and we have

Pr[S 0] = Pr[S 0.5].

�

Lemma F.2. Game0.5 and Game1 are identical, and we have

Pr[S 0.5] = Pr[S 1].

Proof. The seed r∗ is independent of anything else that is appear before generating the challenge cipher-

text. Therefore moving the generation of the seed r∗ to the beginning of the game does not change the

game. Therefore Game0.5 and Game1 are identical, and we have

Pr[S 0.5] = Pr[S 1].

�

Lemma F.3. Game1 and Game2 are statistically close if the hash value of r+ is not determined and if

g⋄ = (m1−b ∥ 0k1) ⊕ s∗ is not queried to FPOG, and we have

|Pr[S 1] − Pr[S 2]| ≤ Pr[AskG2] + neglG,

neglG =
1

2k0

5qG + 1 +
4q2

G

2k0
+ 80qG

k − k0

log(k − k0)

 ,

where qG = qD + qG, AskG2 is the event that the hash value of r+ is determined in Game2 or the value

g⋄ is queried to FPOG. Furthermore, in Game2 we have

Pr[S 2] =
1

2
.

Proof. Notice that in Game1, the adversary could win if it queries g⋄ to FPOG. Since k − k0 > k0 if it

obtains ⊥ with high probability, it could determine that m1−b is not implanted in y∗. In Game2 the adver-

sary cannot win the game, since g+ contains no information corresponding to mb and m1−b. Conditioned

on the event that g⋄ is not queried to FPOG, by Lemma 2.4, Game1 and Game2 are statistically close,

if the hash value of r+ is not determined, i.e., r+ is not queried to ROG and r+ is not replied from FPOG.

More precisely, let AskG+2 denote the event that r+ is queried to ROG in the Game2 by the adversaryA
or the decryption algorithm D, and let AskG−2 denote the event that ROG(r+) or g+ is queried from FPOG

by the adversary A and the reply is r+. Additionally, let AskG⋄2 denote the event that g⋄ is queried to

FPOG in the Game2 by the adversaryA. Furthermore, we denote AskG2 = AskG+2 ∨ AskG−2 ∨ AskG⋄2.

We use similar notations AskG−i , AskG+i , AskG⋄i , and AskGi for any subsequent game. Then, from the

fact that k0 < k − k0, we have

|Pr[S 1|¬AskG1] − Pr[S 2|¬AskG2]| ≤ neglG,

4 Although Theorem 2.8 states that there is a statistical distance, we ignore the above statistical distance, in order to simplify

the analysis.
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where

neglG =
1

2k0

5qG + 1 +
4q2

G

2k0
+ 80qG

k − k0

log(k − k0)

 ,

and hence

|Pr[S 1] − Pr[S 2]| ≤ Pr[AskG2] + neglG.

Furthermore, in Game2 g+ is just used in x∗ but does not appear anywhere else in the computation.

Thus, the distribution on the challenge ciphertext y∗ does not depend on b, and hence Pr[S 2] = 1
2
.

�

Lemma F.4. Game2 and Game3 are identical, and we have

Pr[AskG2] = Pr[AskG3].

Proof. Whereas in Game2 g+ is randomly chosen and s∗ is defined as s∗ = (mb ∥ 0k1) ⊕ g+, in Game3

s+ is randomly chosen, and g+ and s∗ are defined as g+ = (mb ∥ 0k1) ⊕ s+ and s∗ = s+. Therefore the

distributions of the variables are identical in both games, and hence Game2 and Game3 are identical.

Then we have

Pr[AskG2] = Pr[AskG3].

�

Lemma F.5. Game3 and Game4 are statistically close if the hash value of s+ is not determined, and

we have

|Pr[AskG3] − Pr[AskG4]| ≤ Pr[AskH4] + neglH ,

neglH =
1

2k0

5qH + 1 +
4q2

H

2k0
+ 80qH

k0

log k0

 ,

where qH = qD + qH and AskH4 is the event that the hash value of s+ is determined in Game4. Further-

more, in Game4 we have

Pr[AskG4] ≤ qG + qD

2k0−3
+ Pr[AskG⋄4]

Proof. By Lemma 2.4, Game3 and Game4 are statistically close, if the hash value of s+ is not deter-

mined, i.e., s+ is not queried to ROH and s+ is not replied from FPOH . More precisely, let AskH+4 denote

the event that s+ is queried to ROH in the Game4 by the adversaryA or the decryption algorithm D, and

let AskH−4 denote the event that ROH(s+) or h+ is queried from FPOH by the adversaryA and the reply

is s+. Furthermore, we denote AskH4 = AskH+4 ∨ AskH−4 . We use an similar notation AskH−i ,AskH+i ,

and AskHi for any subsequent game. Then, from the fact that k0 < k − k0, we have

|Pr[AskG3|¬AskH3] − Pr[AskG4|¬AskH4]| ≤ neglH ,

where

neglH =
1

2k0

5qH + 1 +
4q2

H

2k0
+ 80qH

k0

log k0

 ,
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and hence

|Pr[AskG3] − Pr[AskG4]| ≤ Pr[AskH4] + neglH .

Furthermore, we have

Pr[AskG4] ≤ Pr[AskG+4 ] + Pr[AskG−4 ] + Pr[AskG⋄4]

≤ Pr[AskG+4 |¬AskG−4 ] + 2 Pr[AskG−4 ] + Pr[AskG⋄4].

Since h+ is uniformly distributed and never revealed, r+ = t∗ ⊕ h+ is uniformly distributed and indepen-

dent of the adversary’s view. Therefore we have

Pr[AskG+4 |¬AskG−4 ] ≤ qG + qD

2k0
.

Moreover, since r+ is uniformly distributed and independent of g+, we have

Pr[AskG−4 ] ≤ qG + qD

2k0−1
.

Therefore we can conclude

Pr[AskG4] ≤ qG + qD

2k0−3
+ Pr[AskG⋄4].

�

Lemma F.6. Game4 and Game5 are identical, and we have

Pr[AskH4] = Pr[AskH5] and Pr[AskG⋄4] = Pr[AskG⋄5].

Proof. Since h+ and r+ are uniformly distributed and never revealed, replacing t∗ = h+ ⊕ r+ by t+ does

not change the game, and hence we have

Pr[AskH4] = Pr[AskH5] and Pr[AskG⋄4] = Pr[AskG⋄5].

�

Lemma F.7. Game5 and Game6 are statistically close, and we have

|Pr[AskH5] − Pr[AskH6]| ≤ qD

(
1

2k1
+ negl′G

)
,

∣∣∣Pr[AskG⋄5] − Pr[AskG⋄6]
∣∣∣ ≤ qD

(
1

2k1
+ negl′G

)
,

negl′G =
1

2k0

5qG + 1 +
4q2

G

2k0
+ 80qG

k − k0

log(k − k0)

 .

Proof. Game5 and Game6 only differ if y is a valid ciphertext, and the hash value of the corresponding

r is not determined. More precisely, let ValidG6 denote the event that at the decryption query in Game6,

y is a valid ciphertext (i.e., s ⊕ ROG(r) has the form m ∥ 0k1), and r is not queried to ROG and r is not

replied from FPOG. There being at most qD decryption queries, we have

|Pr[AskH5] − Pr[AskH6]| ≤ qD Pr[ValidG6].

In order to bound this probability, we consider another game Game6.5 where we change the decryp-

tion algorithm D in Game6. In Game6.5 we replace the image ROG(r) by randomly chosen g← {0, 1}k1 .
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By Lemma 2.4, Game6 and Game6.5 are statistically close, if the hash value of r is not determined,

i.e., r is not queried to ROG and r is not replied from FPOG. More precisely, let askG+6.5 denote the

event that r is queried to ROG in the Game6.5 by the adversary A, and let askG−6.5 denote the event

that ROG(r) or g is queried from FPOG by the adversary A and the reply is r. Furthermore, we denote

askG6.5 = askG+6.5 ∨ askG−6.5. Here we note that

Pr[ValidG6] = Pr[¬askG6] Pr[ValidG6|¬askG6],

Pr[ValidG6.5] = Pr[¬askG6.5] Pr[ValidG6.5|¬askG6.5],

Pr[askG6] = Pr[askG6.5],

and we have

|Pr[ValidG6] − Pr[ValidG6.5]|
= Pr[¬askG6.5] |Pr[ValidG6|¬askG6] − Pr[ValidG6.5|¬askG6.5]|
≤ |Pr[ValidG6|¬askG6] − Pr[ValidG6.5|¬askG6.5]| .

Then by Lemma 2.4, we have

|Pr[ValidG6] − Pr[ValidG6.5]| ≤ negl′G,

where

negl′G =
1

2k0

5qG + 1 +
4q2

G

2k0
+ 80qG

k − k0

log(k − k0)

 .

Furthermore, since g is uniformly distributed and never revealed, it only occurs with probability 2−k1

that s ⊕ g has the form m ∥ 0k1 . Then we have

Pr[ValidG6.5] ≤ 1

2k1
.

Therefore we can conclude

|Pr[AskH5] − Pr[AskH6]| ≤ qD

(
1

2k1
+ negl′G

)
.

By using the same argument as in the above, we have also

∣∣∣Pr[AskG⋄5] − Pr[AskG⋄6]
∣∣∣ ≤ qD

(
1

2k1
+ negl′G

)
.

�

Lemma F.8. Game6 and Game7 are statistically close, and we have

|Pr[AskH6] − Pr[AskH7]| ≤ qD

(
qG

2k0
+ negl′H

)
,

∣∣∣Pr[AskG⋄6] − Pr[AskG⋄7]
∣∣∣ ≤ qD

(
qG

2k0
+ negl′H

)
,

negl′H =
1

2k0

5qH + 1 +
4q2

H

2k0
+ 80qH

k0

log k0

 .
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Proof. Game6 and Game7 only differ if y is a valid ciphertext, and the hash value of the corresponding r

is determined, while the hash value of the corresponding s is not determined. More precisely, let ValidH7

denote the event that at the decryption query in Game7, y is a valid ciphertext (i.e., s ⊕ ROG(r) has the

form m ∥ 0k1), and r is queried to ROG or r is replied from FPOG, while s is not queried to ROH and s

is not replied from FPOH . There being at most qD decryption queries, we have

|Pr[AskH6] − Pr[AskH7]| ≤ qD Pr[ValidH7].

In order to bound this probability, we consider another game Game7.5 where we change the decryp-

tion algorithm D in Game7. In Game7.5 we replace the image ROH(s) by randomly chosen s← {0, 1}k1 .

By Lemma 2.4, Game7 and Game7.5 are statistically close, if the hash value of s is not determined,

i.e., s is not queried to ROH and s is not replied from FPOH . More precisely, let askH+7.5 denote the

event that s is queried to ROH in the Game7.5 by the adversary A, and let askH−7.5 denote the event

that ROH(s) or h is queried from FPOH by the adversary A and the reply is s. Furthermore, we denote

askH7.5 = askH+7.5 ∨ askH−7.5. Here we note that

Pr[ValidH7] = Pr[¬askH7] Pr[ValidH7|¬askH7],

Pr[ValidH7.5] = Pr[¬askH7.5] Pr[ValidH7.5|¬askH7.5],

Pr[askH7] = Pr[askH7.5],

and we have

|Pr[ValidH7] − Pr[ValidH7.5]|
= Pr[askH7.5] |Pr[ValidH7|¬askH7] − Pr[ValidH7.5|¬askH7.5]|
≤ |Pr[ValidH7|¬askH7] − Pr[ValidH7.5|¬askH7.5]| .

Then by Lemma 2.4, we have

|Pr[ValidH7] − Pr[ValidH7.5]| ≤ negl′H ,

where

negl′H =
1

2k0

5qH + 1 +
4q2

H

2k0
+ 80qH

k0

log k0

 .

Furthermore, since h is uniformly distributed and so is r = h ⊕ t. Therefore the probability that r has

been queried to ROG is at most qG · 2−k0 . Then we have

Pr[ValidH7.5] ≤ qG

2k0
.

Therefore we can conclude

|Pr[AskH6] − Pr[AskH7]| ≤ qD

(
qG

2k0
+ negl′H

)
.

By the similar argument to the above, we have also

∣∣∣Pr[AskG⋄6] − Pr[AskG⋄7]
∣∣∣ ≤ qD

(
qG

2k0
+ negl′H

)
.

�
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Lemma F.9. Game7 and Game8 are identical, and we have

Pr[AskH7] = Pr[AskH8] and Pr[AskG⋄7] = Pr[AskG⋄8].

Furthermore, in Game8 we have

Pr[AskH8], Pr[AskG⋄8] ≤ Pr[AskH8 ∨ AskG⋄8] ≤ (qH + 2qG)Adv
PD-OW,

where Adv
PD-OW is the success probability of the partial-domain one-wayness of the underlying trap-

door permutation f .

Proof. In Game7 and Game8, the decryption algorithm D only decrypts ciphertext y such that corre-

sponding r and s have been already determined, respectively, and hence we can replace the decryption

algorithm D by the plaintext extractor which perfectly simulates the decryption algorithm D. Therefore

Game7 and Game8 are identical, and we have

Pr[AskH7] = Pr[AskH8].

Furthermore, in Game8 we do not use the secret key sk any more. By using the adversary A in

Game8, we can output an s such that (s, t) = g(y∗) with probability at least Pr[AskH8 ∨ AskG⋄8]/(qH +

2qG). This is done by making a list which contains the queries to ROH , and (m0∥0k1)⊕g and (m1∥0k1)⊕g,

where g denotes each hash value in TG, and choose one element in list at random. This probability is

bounded by the partial-domain one-wayness of the underlying trapdoor permutation f , and hence we

have

Pr[AskH8 ∨ AskG⋄8] ≤ (qH + 2qG)Adv
PD-OW.

�

42



Summarizing the above bounds we can conclude the theorem.

1

2
Adv

IND
CCA2 =

∣∣∣∣∣Pr[S 0] − 1

2

∣∣∣∣∣ ≤ Pr[AskG2] + neglG,

neglG =
1

2k0

5qG + 1 +
4q2

G

2k0
+ 80qG

k − k0

log(k − k0)

 ,

Pr[AskG2] ≤ Pr[AskG4] + Pr[AskH4] + neglH

≤ qD + qG

2k0−3
+ Pr[AskG⋄4] + Pr[AskH4] + neglH ,

neglH =
1

2k0

5qH + 1 +
4q2

H

2k0
+ 80qH

k0

log k0

 ,

Pr[AskH4] ≤ Pr[AskH6] + qD(
1

2k1
+ negl′G),

Pr[AskG⋄4] ≤ Pr[AskG⋄6] + qD(
1

2k1
+ negl′G),

negl′G =
1

2k0

5qG + 1 +
4q2

G

2k0
+ 80qG

k − k0

log(k − k0)

 ,

Pr[AskH6] ≤ Pr[AskH7] + qD(
qG

2k0
+ negl′H)

≤ (qH + 2qG)Adv
PD-OW + qD(

qG

2k0
+ negl′H),

Pr[AskG⋄6] ≤ Pr[AskG⋄7] + qD(
qG

2k0
+ negl′H)

≤ (qH + 2qG)Adv
PD-OW + qD(

qG

2k0
+ negl′H),

negl′H =
1

2k0

5qH + 1 +
4q2

H

2k0
+ 80qH

k0

log k0

 .

G Overview of Approximation Sampling Algorithms

Sampling from the binomial distribution: Let us denote the binomial distribution with parameters

N and p by Bn(N, p).

The simplest method for sampling from Bn(N, p) can be constructed by simulating a toss of a biased

coin that faces up the head with probability p as follows: (1) pick a sample u from [0, 1) uniformly at

random and (2) if u ≤ p output H, otherwise output T. Then, we toss the biased coin N times by this

method, and output the number of H, which distributed according to the target distribution. However, it

requires N tosses.

Relles proposed a smart idea to sample from Bn(N, p) only with O(log N) samples [Rel72] from

some other distribution. Instead of tossing N biased coins, we sample a median s of N uniform variables

over [0, 1). The outcome s ≤ p implies that at least N/2 coins face up the heads and the outcome s > p

implies that at least N/2 coins face up the tails. Thus, the outcomes of N/2 tosses can be determined

by one median of N uniform variables over [0, 1). Recursively performing this procedure, sampling

medians in O(log N) times decides the number of the coins facing up the heads.

Let us assume that N = 2K − 1. It is well-known that the beta distribution with the parameter K,

denoted by Be(K,K), coincides with the distribution of the median of N uniform variables over [0, 1).

Therefore, if we have a sampling algorithm for the beta distribution, we can sample from the binomial

distribution efficiently.
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Sampling from the beta distribution: The sampling from the beta distribution is a relatively easy

task. Assume that random variables X and Y are distributed according to the gamma distributions with

the parameters a and b, denoted by Ga(a) and Ga(b), respectively. Then, the ratio X/(X+Y) has the beta

distribution Be(a, b). Hence, if we have a sampling algorithm for the gamma distribution, it is sufficient

to sample from the beta distribution.

Sampling from the gamma distribution: Ahrens and Dieter proposed a sampling algorithm for

the gamma distribution using the Cauchy distribution in [AD74]. The algorithm is designed with the

acceptance–rejection principle, which appeared in the paper by von Neumann [vN51].

As an example of the acceptance–rejection method, we see the algorithm of Ahrens and Dieter [AD74].

Let us assume that we have a sampling algorithm for the Cauchy distribution with some parameters

conditioned on that the output of the sampling algorithm is positive. Let f (x; a) and g(x; a) denote

the probability density functions of the gamma distribution with the parameter a and the conditional

Cauchy distributions, respectively. Let us further suppose that there exists a good function C(a) such

that f (x; a) < C(a) · g(x; a) for any x > 0 and a > 1. The main algorithm is summarized as follows:

1. Sample x from the conditional Cauchy distribution.

2. Sample u from the uniform distribution over [0, 1).

3. If u < f (x; a)/(C(a)g(x; a)) output x. Otherwise output ⊥.

It is easy to verify that the gamma distribution coincides with the output distribution conditioned on that

the above algorithm does not output ⊥. (For the details, see Appendix K.1.) Ahrens and Dieter studied

the above algorithm and explicitly showed C(a) such that for any a > 1 and x > 0, f (x; a) < C(a)g(x; a).

Sampling from the Cauchy distribution: Let us denote the Cauchy distribution with the parameters

(m, s) by Ca(m, s). We note that if X has the distribution Ca(0, 1) then sX+m has the distrbution Ca(m, s).

Therefore, we only consider Ca(0, 1).

We note the fact that if (X,Y) is uniformly distributed in the 2-dimensional unit disc, the distribution

of the ratio X/Y coincides with Ca(0, 1). In order to sample a point from the uniform distribution over

the disc, we use a simple rejection method: (1) sample x and y from the uniform distribution over [−1, 1)

and (2) if x2 + y2 ≤ 1 output (x, y), otherwise output ⊥.

Discretizing the distributions and the computations: All of the above algorithms are analyzed in

an idealized computation model, which allows us to store and manipulate directly the real numbers.

Turning to a standard computation model with bounded precisions, we must discretize the distributions

and the parameters appeared in the algorithms appropriciately. In this process, we have to esitimate

precisely the statistical distances from the target distribution in addition to the compuational costs and

spaces. In order to estimate the statistical distance, we carefully define the sequence of the algorithms

whose outputs are close to the target distributions, as frequently done in security proofs in cryptography.

Our main theorem is stated as follows.

Theorem G.1 (Informal). There is a sampling algorithm such that for any positive integer N, any

0 ≤ p ≤ 1 represented by ℓ bits, and any positive real ϵ, the following properties are satisfied:

• the distribution of the output of the algorithm is ϵ-close to the binomial distribution Bn(N, p) and

• the running time of the algorithm is a polynomial in log N, ℓ, and log (1/ϵ).

We again stress that the statistical distance can be controlled by the distance parameter ϵ indepen-

dently of the other parameters N and p, which is significant for cryptographic applications.
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Note on the Poisson distribution: By a similar technique, we can construct an efficient algorithm of

sampling the Poisson distribution. In the case of the Poisson distribution, we make use of the sampling

algorithms for the binomial and the gamma distributions.

H Preliminaries for Approximation Sampling Algorithms

Let X and Y be two random variables over a set S . Let DX and DY be the distributions of X and Y ,

respectively. We often abuse the notation of DX , which will stand for the probability density function or

probability function. The statistical distance of DX and DY , denoted by ∆(DX ,DY ), is defined to be

∆(DX ,DY ) =
1

2

∫

w∈S
|DX(w) − DY (w)| dw.

We say DX is ϵ-close to DY if ∆(DX ,DY ) ≤ ϵ.
If D is a distribution, x ← D denotes that x is sampled according to D. Let S be a finite set. Let

s← S denote that s is sampled from the uniform distribution on S .

For any real number x and any small positive real number 0 < ϵ < 1, let Rϵ(x) be the truncating

function with precision ϵ. That is, Rϵ(·) truncates an input to ⌈− log ϵ⌉ binary places. We note that, if

x < 2k, the integral part of Rϵ(x) is of k-bit length and the decimal part of it is of ⌈− log ϵ⌉ bits. We also

note that |Rϵ(x) − x| < ϵ. In particular if ϵ = 2−k, Rϵ(x) = 2−k⌊2k x⌋. For any real numbers a and ã and

any small positive real 0 < ϵ < 1, we say that ã is an approximation of a with precision ϵ if |a − ã| < ϵ.
Assume that X is a random variable over R and has a distribution DX . D̃X with precision ϵ denotes

the distribution of Rϵ(X).

X ∼ DX stands for that X is a random variable according to the distribution DX .

In the following we recall the basic facts for the computations of numbers and define the notation

for the costs of calculations. We denote by TU the computational cost to toss a fair coin.

H.1 Calculations

Arithmetic operations: We first review the precision of arithmetic operations, addition, multiplica-

tion, and division.

Theorem H.1. For any real numbers a and b, let ã and b̃ be the approximations for a and b with

precisions ϵ, respectively. We assume that 2−l1 < a, ã, b, b̃ < 2l2 . Thus, ã and b̃ are represented by

l2 + log(1/ϵ) bit. Then we can bound the precisions of four arithmetic operations with ã and b̃:

• For addition and subtraction, ã+ b̃ and ã− b̃ are approximations of a+ b and a− b with precision

2ϵ, respectively,

• for multiplication, ã̃b is an approximation of ab with precistion 2l2+1ϵ, and

• for division, ã/̃b is an approximation of a/b with precision 22l1+l2+1ϵ.

The running times of all operations are at most O((l1 + l2 + log (1/ϵ))3), that is, poly(l1, l2, log (1/ϵ)).

We denote by TA(n), TM(n),TD(n) the computation costs of addition, multiplication, and division

with n-bit numbers, respectively.

Square root: Let x be a positive square root of a real number a, i.e., x2 = a. We assume that 0 ≤ a < 2l

has an n-bit representation. Then we can compute an approximation x̃ of x with precision ϵ = 2−lROOT by

using a binary search with O(l + lROOT) comparisons. We will denote by TS(n, ϵ) the computation cost

of taking square root of an n-bit number with precision ϵ.
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Logarithm: Let x be the logarithm of a real number a to the base e, i.e., ln a = x. Furthermore, we

assume that 2−l < a < 2l has a n-bit representation. By using the Taylor series of the logarihtm, we can

compute an approximation x̃ of x with precision ϵLOG which depends l and n.

We denote by TL(n, ϵ) the computation cost of taking the logarithm of an n-bit number with precision

ϵ to the base e. We note the following theorem used in the analyses.

Lemma H.2. For any positive real number a, let ã be the approximation for a with precision ϵ, and let

x and x̃ be x = ln a and x̃ = ln ã, respectively. Furthermore we assume a, ã > 2−l. Then, we have the

bound that |x̃ − x| < 2lϵ.

I Definitions of the Distributions

In this section we review the definitions of the uniform, Cauchy, gamma, beta, binomial, and Poisson

distributions.

The uniform distribution: For any real numbers a and b (a < b), let Un(a, b) be the uniform distri-

bution over the interval [a, b). The probability density function of the uniform distribution Un(a, b) is

defined as follows:

fUn(x | a, b) =


1

b−a
(a ≤ x < b)

0 (x < a or b ≤ x)
.

The Cauchy distribution: The Cauchy distribution Ca(x0, γ) is a continuous probability distribution.

It has a location parameter x0, specifying the location of the peak of the distribution, and a scale param-

eter γ.

The probability density function of the Cauchy distribution is defined as follows:

fCa(x | x0, γ) =
1

π

(
γ

(x − x0)2 + γ2

)
, (−∞ < x < ∞).

A Cauchy distribution with x0 = 0 and γ = 1 is called the standard Cauchy distribution.

The gamma distribution: The gamma distribution Ga(α, β) is a continuous probability distribution.

It has a shape parameter α and a scale parameter β.

The probability density function of the gamma distribution can be expressed in terms of the gamma

function as follows:

fGa(x | α, β) = 1

Γ(α) · βα xα−1e−x/β, (0 < x < ∞).

where

Γ(α) =

∫ ∞

0

xα−1e−xdx, (α > 0).

A gamma distribution with β = 1 is known as the standard gamma distribution. In this paper we

simply denote standard gamma distribution with a shape parameter a > 0 by Ga(a).
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The beta distribution: The beta distribution Be(α, β) is a continuous probability distribution defined

on the interval [0, 1]. It has two positive shape parameters, denoted by α and β.

The probability density function of the beta distribution is defined as follows:

fBe(x | α, β) = B(α, β)−1xα−1(1 − x)β−1, (0 < x < 1).

The beta function B(α, β) is defined as follows:

B(α, β) =

∫ 1

0

xα−1(1 − x)β−1dx, (α, β > 0).

The binomial distribution: The binomial distribution Bn(N, p) is the discrete probability distribution

of the number of successes in a sequence of N independent 0/1 experiments, each of which yields success

with probability p. Such a success/failure experiment is also called a Bernoulli experiment.

The probability function of the binomial distribution is defined as follows:

fBn(x | N, p) =

(
N

x

)
px(1 − p)N−x, (x = 0, 1, 2, · · · ,N).

The Poisson distribution: The Poisson distribution Po(λ) is a discrete probability distribution that

expresses the probability of a number of events occurring in a fixed period of time if these events occur

with a known average rate and independently of the time since the last event.

The probability function of the Poisson distribution is defined as follows:

fPo(x | λ) = λ
x

x!
e−λ, (x = 0, 1, 2, · · · ).

J Inequalities for the Distributions

J.1 Inequalities for the Cauchy Distribution

Recall that the probability density function is

fCa(x | x0, γ) =
1

π
· γ

(x − x0)2 + γ2
, (−∞ < x < ∞).

We often use the integration
∫

dx
x2+b2 =

arctan(x/b)
b

+C for any b , 0, where C denotes an integral constant.

Lemma J.1.

Pr
X∼Ca(0,1)

[
0 ≤ X ≤ 2−l1

]
≤ 2−l1 .

Proof. It follows from the fact that fCa(x | 0, 1) = 1
π

1
1+x2 < 1 for any x. �

Lemma J.2.

Pr
X∼Ca(a−1,

√
2a−1)

[X < 0] ≤ 1

2
.
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Proof. We perform integration.

Pr
X∼Ca(a−1,

√
2a−1)

[X < 0] =

∫ 0

−∞
fCa(x, a − 1,

√
2a − 1)dx

=
1

π

[
arctan

(
x − (a − 1)
√

2a − 1

)]0

−∞

=
1

π

(
arctan

(
− a − 1
√

2a − 1

)
+
π

2

)

≤ 1

π
(0 + π/2) =

1

2
.

�

Lemma J.3. For any 0 < ϵ < π/6,

Pr
X∼Ca(0,1)

[
X ≥ 2π3

9ϵ4

]
≤ ϵ.

Proof. Let us consider the following probability:

Pr
X∼Ca(0,1)

[X ≥ K] =

∫ ∞

K

fCa(x | 0, 1)dx =
1

π

(
π

2
− arctan K

)
.

Thus, we show that π
2
− arctan K < ϵ for any 0 < ϵ < π/6 and K > 2π3/(9ϵ4); that is K > tan(π/2 − ϵ).

Consider a tangent line of a function y = tan x at a point (θ, tan θ). The line is represented by

y = tan θ +
1

cos2 θ
(x − θ).

Recall that the function tan x is convex for x ∈ (0, π/2) and 1/ cos2 θ > 1. Thus, we have that

tan θ < θ/ cos2 θ for any 0 < θ < π/2. Replacing θ by π/2 − ϵ, we have

tan(π/2 − ϵ) < 1

cos2(π/2 − ϵ)
(π/2 − ϵ) < π

2 sin2 ϵ
.

We now prove that 1/ sin2 ϵ < 4π2/(9ϵ4), that is, sin ϵ−3ϵ2/(2π) > 0 for 0 < ϵ < π/6. The derivative

of sin ϵ − 3ϵ2/(2π) is cos ϵ − 3ϵ/π. Hence, for 0 < ϵ < π/6, the derivative is not negative. Replacing ϵ

with 0, we have 0. Thus, we have proved the inequality. This completes the proof. �

Lemma J.4. For any real values s > 1, b, and δ > 0,

∆(Ca(b, s),Ca(b, s + δ)) ≤ 2δ.

Proof. Without loss of generality, we can set b = 0. For a real value x, we define

gs(x) = fCa(x | 0, s) − fCa(x | 0, s + δ).

Calculating the function, we have

gs(x) =
δ

π

s(s + δ) − x2

(x2 + s2)(x2 + (s + δ)2)
.

This function changes the sign at x = ±
√

s(s + δ). To simplify integration, we first consider the follow-

ing integration: ∫ ∞

0

|gs(x)| dx =

∫ √
s(s+δ)

0

gs(x)dx −
∫ ∞

√
s(s+δ)

gs(x)dx.
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The integration is equal to

h(s, δ) =
2

π

arctan



√
s + δ

s

 − arctan

(√
s

s + δ

) .

Thus, the statistical distance is

∆(Ca(0, s),Ca(0, s + δ)) =
1

2
· 2h(s, δ) = h(s, δ).

Applying the mean-value theorem, we have

h(s, δ) =
2

π
(
√

(s + δ)/s −
√

s/(s + δ)) · (1/(1 + c2))

for some c ∈ (
√

s/(s + δ),
√

(s + δ)/s), where we use the fact that (arctan x)′ = 1/(1 + x2). Since 2/π

and 1/(1 + c2) are less than 1, we have h(s, δ) ≤
√

(s + δ)/s −
√

s/(s + δ). Now, we prove that the RHS

is at most 2δ. We divide the RHS into two parts:
√

(s + δ)/s −
√

s/(s + δ) = (
√

(s + δ)/s − 1) + (1 −
√

s/(s + δ)).

The first part is at most δ. To prove this, we consider
√

(s + δ)/s − 1 ≤ δ. Transforming this inequality,

we have δ(δ + 2 − 1/s) ≥ 0. The transformed inequality holds if δ ≥ 0 and s ≥ 1.

The second part is also at most δ. In order to show this, we check that 1 −
√

s/(s + δ) ≤ δ. Trans-

forming this, we have s ≥ (1 − δ)2/(2 − δ). Thus, it holds for 0 < δ < 1 and s ≥ 1. This completes the

proof. �

J.2 Inequalities for the Gamma Distribution

Before stating the lemmas, we first recall that the definitions of incomplete gamma functions. (See

Abramowitz and Stegun [AS72, 6.5.1].) We first review the lower and upper incomplete gamma func-

tions: For any a > 0 and K > 0,

γ(K; a) =

∫ K

0

e−tta−1dt,

Γ(K; a) =

∫ ∞

K

e−tta−1dt.

We next recall the regularized lower incomplete gamma function

P(K; a) =
1

Γ(a)

∫ K

0

e−tta−1dt, (K > 0, a > 0).

The recurrence formula of this function is in [AS72, 6.5.21]:

P(K; a + 1) = P(K; a) − Kae−K

Γ(a + 1)
,

P(K; 1) = 1 − e−K .

We next define the regularized upper incomplete gamma function

Q(K; a) =
1

Γ(a)

∫ ∞

K

e−tta−1dt, (K > 0, a > 0).

By the recurrence formula of P(K; a), we have that

Q(K; a + 1) = Q(K; a) +
Kae−K

Γ(a + 1)
,

Q(K; 1) = e−K .
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Lemma J.5. For any positive integer a and any positive real t,

Pr
X∼Ga(a)

[
X ≤ 2−t

]
≤ 2−a(t+1).

Proof. We perform an integration.

Pr
X∼Ga(a)

[
X ≤ 2−t

]
=

∫ 2−t

0

fGa(x | a, 1)dx

=

∫ 2−t

0

1

Γ(a)
xa−1e−xdx

≤
∫ 2−t

0

1

Γ(a)
xa−1dx

=
1

Γ(a)
· 1

a
· (2−t)a

=
2−at

a!

≤ 2−a(t+1).

�

Lemma J.6. For any positive integer a > 1 and any real K > a, we have that

Pr
X∼Ga(a)

[X ≥ K] ≤ 2−K+1+(a−1) log K .

Proof. We have that

Pr
X∼Ga(a)

[X ≥ K] = Q(K; a)

=
Ka−1e−K

(a − 1)!
+ Q(K; a − 1),

=
Ka−1e−K

(a − 1)!
+

Ka−2e−K

(a − 2)!
+ Q(K; a − 2),

= . . .

=

a−1∑

i=0

Kie−K

i!
.

Since K > a > 1, we have that

a−1∑

i=0

Kie−K

i!
≤ Ka−1e−K

a−1∑

i=0

1

i!

≤ Ka−1e−K
∞∑

i=0

1

i!

≤ Ka−1e−K+1,

where we use
∑∞

i=0 1/i! = e. Hence, we have that

Pr
X∼Ga(a)

[X ≥ K] ≤ Ka−1e−K+1 ≤ 2−(K−1)+(a−1) log K .

�
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J.3 Inequality for the Beta Distribution

Lemma J.7. For any integer a > 0 and any reals 0 ≤ p ≤ 1 and ϵ > 0, we have

Pr
X∼Be(a,a)

[
p ≤ X ≤ p + ϵ

] ≤ 4a(2a − 1)3ϵ.

Proof. Let us recall that the incomplete beta function B(t;α, β) and the regularized beta function I(t;α, β),

which are defined as follows:

B(t;α, β) =

∫ 1

t

xα−1(1 − x)β−1dx, 0 < t < 1,

I(t;α, β) =
B(t;α, β)

B(α, β)
, 0 < t < 1.

If α and β are integers, we have that

I(t;α, β) =

α+β−1∑

i=α

(
α + β − 1

i

)
ti(1 − t)α+β−1−i.

(See Abramowitz and Stegun [AS72].)

Let us estimate the target probability. We define A = 2a − 1 for the clarity.

Pr
X∼Be(a,a)

[
p ≤ X ≤ p + ϵ

]
= I(p + ϵ; a, a) − I(p; a, a)

=

A∑

i=a

(
A

i

) (
(p + ϵ)i(1 − (p + ϵ))A−i − pi(1 − p)A−i

)

≤
A∑

i=a

(
A

i

) ∣∣∣(p + ϵ)i(1 − (p + ϵ))A−i − pi(1 − p)A−i
∣∣∣

≤
A∑

i=0

(
A

i

) ∣∣∣(p + ϵ)i(1 − (p + ϵ))A−i − pi(1 − p)A−i
∣∣∣

= 2∆(Bn(A, p + ϵ),Bn(A, p))

≤ 2A3(A + 1)ϵ,

where in the last inequality, we use Lemma J.9 in Appendix J.4. �

J.4 Inequalities for the Binomial Distribution

Lemma J.8. Let p be a non-negative real value. Let N be a positive integer such that N p ≤ ϵ. Then,

Pr
X∼Bn(N,p)

[X , 0] ≤ 2ϵ.

Proof. Simply, we have that

Pr
X

[X = 0] = (1 − p)N ≥ 1 − 2N p.

Hence, we obtain that

Pr
X

[X , 0] ≤ 2N p ≤ 2ϵ.

�

51



Lemma J.9. Let 0 ≤ p ≤ 1 be a real value. Let pϵ = p+ δ, where |δ| < ϵ. The statistical distance of two

binomial distributions Bn(N, pϵ) and Bn(N, p) is bounded by N3(N + 1)ϵ/2. That is

∆ (Bn(N, pϵ),Bn(N, p)) <
1

2
N3(N + 1)ϵ.

Proof. Let δ be the error i.e., pϵ = p + δ where |δ| < ϵ. For 0 ≤ x ≤ n, we define

dN,p(x) = | fBn(x | N, p + δ) − fBn(x | N, p)| .

In order to prove the theorem, we have to show

N∑

x=0

dN,p(x) < N3(N + 1)ϵ.

Therefore it is sufficient if dN,p(x) < N3ϵ for all x.

Case x = 0: We define

g(p) = fBn(0 | N, p) = (1 − p)N .

The derivative of g(p) is g′(p) = −N(1 − p)N−1 and |g′(p)| ≤ N. According to the mean value theorem,

there is ξ between p and p + δ such that g(p + δ) − g(p) = δ · g′(ξ). We have

dN,p(0) = |g(p + δ) − g(p)| ≤
∣∣∣δ · g′(ξ)

∣∣∣ ≤ Nϵ.

Case x = N: In the similar way as above, we have

dN,p(n) ≤ Nϵ.

Case x , 0,N: For the fixed value x, we define

g(p) = fBn(x | N, p) =

(
N

x

)
px(1 − p)N−x.

Then the derivative of g(p) is

g′(p) =

(
N

x

)
px−1(1 − p)N−x−1(x − N p)

=
N

x

(
N − 1

x − 1

)
px−1(1 − p)N−x−1(x − N p)

= N

(
N − 1

x − 1

)
px−1(1 − p)N−x−1

(
1 − N p

x

)
.

According to the mean value theorem, there is ξ between p and p + δ such that

g(p + δ) − g(p) = δ · g′(ξ).

We have

dN,p(x) = |g(p + δ) − g(p)| ≤
∣∣∣δ · g′(ξ)

∣∣∣ ≤ Nϵ

(
N − 1

x − 1

)
ξx−1(1 − ξ)N−x−1

∣∣∣∣∣1 −
Nξ

x

∣∣∣∣∣ .
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We notice that

max

∣∣∣∣∣1 −
Nξ

x

∣∣∣∣∣ =


1 − Nξ

N−1
< 1 − ξ (case 1)

−(1 − Nξ) < Nξ (case 2)
.

If case 1 occurs,

dN,p(x) ≤ Nϵ

(
N − 1

x − 1

)
ξx−1(1 − ξ)N−x ≤

N−1∑

x=1

Nϵ

(
N − 1

x − 1

)
ξx−1(1 − ξ)N−x = Nϵ.

If case 2 occurs,

dN,p(x) ≤ N2ϵ

(
N − 1

x − 1

)
ξx(1 − ξ)N−x−1

= N2ϵ
x

N − x

(
N − 1

x

)
ξx(1 − ξ)N−x−1

≤ N3ϵ

(
N − 1

x

)
ξx(1 − ξ)N−x−1

≤
N−1∑

x=0

N3ϵ

(
N − 1

x

)
ξx(1 − ξ)N−x−1

= N3ϵ.

In both cases, we have

dN,p(x) ≤ N3ϵ

as required. �

K Approximation Sampling Algorithms

In this section we show the algorithms that the distributions of the outputs of these algorithms are statis-

tically close to the discretized versions of the Cauchy, gamma, and beta distributions and the binomial

distribution, respectively.

We first recall the well-known acceptance–rejection method. Next, we review the existing algorithms

and analyze them.

Preliminaries: For ϵ = 2−i where i is some positive integer, let Rϵ(x) denote 2−i · ⌊2ix⌋. For a contin-

uous distribution D, the discretized distribution D̃ with precision ϵ means Rϵ(D).

K.1 The Acceptance–Rejection Method

We recall the acceptance–rejection method, the one of the basic methodologies for sampling from non-

uniform distributions. This technique is formalized by von Neumann [vN51].

Suppose that we want to sample values according to a distribution D f over S which is defined by a

probability density function f (x). Assume that we can sample values according to another distribution

Dg over S which is defined by a probability density function g(x). If, for any x ∈ S , we have f (x) < cg(x)

for some c > 1, we can use the acceptance–rejection method in order to sample from D f . The algorithm

is as follows:
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1. Sample x← Dg and u← Un(0, 1).

2. If u < f (x)/cg(x), output x. Otherwise output ⊥.

In order to simplify the notation, we define h(x) = f (x)/(cg(x)) in this subsection. Let Dh denote

the distribution of the output of the above algorithm using h(x). Dh(x) denotes the probability density

function of the distribution Dh.

For a random variable U ∼ U(0, 1) and x ∈ S ,

Pr

[
U ≤ f (x)

cg(x)

]
= Pr

[
U ≤ f (X)

cg(X)
| X = x

]
=

f (x)

cg(x)
= h(x).

Thus,

Dh(x) =


f (x)

cg(x)
· g(x) =

f (x)
c

(x ∈ S )

1 − 1/c (x = ⊥)
.

Therefore, D f coincides with the distribution of the output conditioned on that the output is not ⊥.

The following lemmas are used in later.

Lemma K.1. Consider the following algorithm:

1. Initialize i← 0.

2. Sample x← Dg and u← Un(0, 1).

3. If u < f (x)/(cg(x)), output x. If i ≥ r output ⊥. Otherwise go to Step 2.

Let D denote the output distribution of the above algorithm. Then,

∆(D,D f ) =

(
1 − 1

c

)r

.

Lemma K.2. Let h̃(x) be a function such that for any x ∈ S ,
∣∣∣h(x) − h̃(x)

∣∣∣ < ϵ. Then, we have

∆(Dh,Dh̃) ≤ ϵ.

Lemma K.3. Let DUn denote the distribution of the output of the algorithm using u ← Un(0, 1). Let

DŨn denote the distribution of the output of the algorithm using u← {0, 1}l. Then,

∆(DUn,DŨn) ≤ 2−l.

Proof of Lemma K.1. Since D f coincides with the conditional distribution given that the output is not

⊥, we have that

D(x) =


(1 − (1 − 1/c)r) f (x) (x ∈ S )

(1 − 1/c)r (x = ⊥)
.

To ease of notation, let δ denote (1 − 1/c)r. We obtain that

∆(D,D f ) =
1

2

∫

x∈S∪{⊥}
|D(x) − f (x)| dx

=
1

2

(
D(⊥) +

∫

x∈S
|D(x) − f (x)| dx

)

=
1

2

(
δ +

∫

x∈S
(1 − δ) f (x)dx

)

=
1

2
· 2δ = δ,

which completes the proof. �
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Proof of Lemma K.2. Let us consider the distribution Dh̃. If we use h̃ in the criterion, we have that for a

random variable U ∼ U(0, 1) and x ∈ S

Pr[U ≤ h̃(x)] = Pr[U ≤ h̃(X) | X = x] = h̃(x).

So,

∣∣∣∣Dh̃(⊥) − Dh(⊥)
∣∣∣∣ =

∣∣∣∣∣∣

(
1 −

∫

x∈S
h̃(x)g(x)dx

)
−

(
1 −

∫

x∈S
h(x)g(x)dx

)∣∣∣∣∣∣

=

∣∣∣∣∣
∫

x∈S
(h̃(x) − h(x))g(x)dx

∣∣∣∣∣

≤
∫

x∈S

∣∣∣h̃(x) − h(x)
∣∣∣ g(x)dx

≤
∫

x∈S
ϵ · g(x)dx

= ϵ.

Suppose that Dh̃(⊥) = Dh(⊥)+δ = 1−1/c+δ. We note that |δ| ≤ ϵ. The probability density function

of Dh̃ is

Dh̃(x) =


h̃(x) · g(x) (x ∈ S )

1 − 1/c + δ (x = ⊥)
.

We obtain the inequality as follows:

∆(Dh̃,Dh) =
1

2

∫

x∈S

∣∣∣∣Dh̃(x) − Dh(x)
∣∣∣∣ dx +

1

2

∣∣∣∣Dh̃(⊥) − Dh(⊥)
∣∣∣∣

≤ 1

2

∫

x∈S

∣∣∣h̃(x) − h(x)
∣∣∣ g(x)dx +

ϵ

2

≤ ϵ
2
+
ϵ

2
≤ ϵ.

�

Proof of Lemma K.3. Let us define

h̃(x) = Pr
u←{0,1}l

[u ≤ h(x)] .

The probability density function DŨn(x) for x ∈ S is DŨn(x) = h̃(x)g(x). Notice that for any x ∈ S ,
∣∣∣∣∣∣ Pr
u←Un(0,1)

[u ≤ h(x)] − Pr
u←{0,1}l

[u ≤ h(x)]

∣∣∣∣∣∣ ≤ 2−l.

The remaining part of the proof is the same as the proof of Lemma K.2. �

K.2 Sampling from the Cauchy Distribution based on the Uniform Distribution

We adopt the algorithm CU in [Dev86, Chapter 9.5.3] with a little modification in order to discretize

outputs. Let us introduce two parameters, the threshold parameter rCU ∈ N and the precision parameter

ϵCU = 2−a for some positive integer a. See Figure 5 for the description of the algorithm CU.

Theorem K.4. The distribution of the output of the algorithm CU is 2−rCU-close to C̃a(0, 1) with preci-

sion ϵCU. That is,

∆(CU, C̃a(0, 1)) ≤ 2−rCU .
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Algorithm CU

1. Initialize i← 0.

2. Take samples u ← Un(−1, 1) and v ←
Un(0, 1).

3. Set x← u/v.

4. If u2 + v2 ≤ 1 then output RϵCU
(x). If i ≥

rCU then output ⊥. Otherwise i ← i + 1

and go to Step 2.

Figure 5: Algorithm CU

Algorithm DiscCU

1. Initialize i← 0.

2. Take samples u ← {0, 1}lu+1 and v ←
{0, 1}lu .

(a) Consider as u ∈ [−1, 1) and v ∈
[0, 1).

(b) If |u| < 2−tu or v < 2−tu ,

i. if i ≥ rCU then output ⊥.

ii. Otherwise increase i ← i + 1

and go to Step 2.

3. Set x← u/v.

(a) If |x| < 2−tlow or |x| > 2thigh ,

i. if i ≥ rCU then output ⊥.

ii. Otherwise increase i ← i + 1

and go to Step 2.

4. If u2 + v2 ≤ 1 then output RϵCU
(x). If i ≥

rCU then output ⊥. Otherwise increase

i← i + 1 and go to Step 2.

Figure 6: Algorithm DiscCU

Proof. Conditioned on that CU does not output ⊥, the conditional distribution of the output is exactly

C̃a(0, 1) [Dev86]. Since the area of the half of the unit disk is π/2, in each iteration, the probability that

the output is ⊥ is 1 − π/4 ≤ 1/2. By Lemma K.1, the statistical distance is at most 2−rCU . �

We adapt the algorithm CU to discrete samplings. We call our algorithm DiscCU. In the algorithm

(Figure 6), we use a lot of (flexible) parameters. The properties of the algorithm (e.g., precision) depend

on the flexible parameters.

Theorem K.5. The sample from the algorithm has following properties:

• The output length is log(HCU) + log(1/ϵCU) bits,

• the running time of the algorithm is at most TCU,

• the absolute value of output is at most HCU and at least LCU, and

• the output distribution is ∆CU-close to C̃a(0, 1) with precision ϵCU,

where the parameters are as follows:

ϵCU > 2−lu+(2tu+1),

TCU ≤ rCU · O ((2lu + 1)TU + TD(lu) + TM(lu) + TA(2lu)) ,

HCU = 2thigh ,

LCU = 2−tlow ,

∆CU ≤ 2−rCU + rCU(2−tu+1 + 2−tlow+1 + 2−thigh/4+1 + 8π2−lu).

Proof.

On ϵCU: We first estimate the precision of the output. At Step 1, we sample u and v in lu + 1 and lu
bits, respectively, which means that each u and v has precision 2−lu . Since we guarantee 2−tu ≤ |u| , v, by

Theorem 1, x has precision at least 2−lu+(2tu+1). In the following, we set ϵCU > 2−lu+2tu+1.
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On HCU and LCU: At Step 3-(a), we reject too large or small x. It is obvious that 2−tlow ≤ |x| ≤ 2thigh .

Thus, HCU = 2thigh and LCU = 2−tlow .

On ∆CU: In order to estimate the statistical distance, we consider the sequence of the algorithms.

CU0(): This is the algorithm CU() with no repeat.

CU1(): We add the discarding procedure to Step 3. The algorithm discards x if |x| < 2−tlow or |x| > 2thigh .

CU2(): Let us define δ = 2−lu . We replace the criterion u2 + v2 ≤ 1 with Rδ(u)2 + Rδ(v)2 ≤ 1.

CU3(): We replace the output procedure x← RϵCU
(u/v) with x← RϵCU

(Rδ(u)/Rδ(v)).

CU4(): We discard bad u and v. In Step 2, if |u| < 2−tu or v < 2−tu then discard them.

CU5(): We revive go to in Steps 2, 3, and 4. This is the algorithm DiscCU().

We first estimate ∆(CU0,CU1), the effect of the discarding procedure in Step 3. The two lemmas

in Appendix J.1 (Lemma J.1 and Lemma J.3) show that x falls into [2−tlow , 2thigh] with high probability.

By setting 2thigh = 2π3/(9ϵ4) in Lemma J.3, we have that the probability that x > 2thigh is less than

ϵ ≤ 2−thigh/4. Thus, this discarding causes the statistical distance from the target distribution at most

2−tlow+1 + 2−thigh/4+1.

Next, we estimate ∆(CU1,CU2). Note that, for small positive δ, π(1 + 2δ)2 − π ≤ 8πδ. Thus, the

change of the criterion induces the statistical distance at most 8π2−lu .

We next estimate ∆(CU2,CU3). Since we set ϵCU > 2−lu+(2tu+1), this causes no error, that is,

∆(CU2,CU3) = 0.

We also estimate ∆(CU3,CU4). If |u| , v < 2−tu , the algorithm CU4 outputs ⊥. So, the statistical

distance is at most 2−tu+1.

Summing up the above discussions, the statistical distance ∆(CU0,CU4) is at most 2−tu+1+2−tlow+1+

2−thigh/4+1 + 8π2−lu .

Additionally, at Step 4, a rejection occurs with probability (2 − π/2)/2 ≤ 1/2. Thus, repeating the

algorithm rCU times, the probability that the algorithm outputs ⊥ is at most 2−rCU .

Compiling the above arguments, ∆CU is at most 2−rCU+rCU(2−tu+1+2−tlow+1+2−thigh/4+1+8π2−lu). �

K.3 Sampling from the Gamma Distribution based on the Cauchy and the Uniform Dis-

tribution

We adopt the algorithm in [AD74] with slight modification. We define the functions f , g, and C which

appear in the criteria:

f (x, a) = fGa(x | a, 1) =
e−xxa−1

Γ(a)
,

g(x, a) = fCa(x | a − 1,
√

2a − 1) =
1

π
·

√
2a − 1

(x − (a − 1))2 + (2a − 1)
,

C(a) =
πe−(a−1)(a − 1)a−1

√
2a − 1

Γ(a)
.

Ahrens and Dieter showed that f (x, a) < C(a)g(x, a) for any x > 0 and that
√
π < C(a) < π for any

a > 1. The algorithm GC in Figure 7 is a modified version of [AD74]. (In [AD74], they inlined a

subroutine sampling from the Cauchy distribution. In the algorithm, we call the subroutine explicitely.)

In order to simplify arguments, we only consider the case that the parameter a > 1 is an integer.
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Algorithm GC(a): a is an integer and larger than 1

1. Set b← a− 1, A← a+ b, and s← A1/2.

2. Initialize i← 0.

3. Initialize j← 0.

4. Generate x← Ca(b, s).

(a) If x < 0,

i. if j ≥ rGC then output ⊥.

ii. Otherwise increase j ← j + 1

and go to Step 4.

5. Generate u← Un(0, 1).

6. If u ≤ f (x, a)/(C(a)g(x, a)) output

RϵGC
(x). If i ≥ rGC then output ⊥ Oth-

erwise increase i ← i + 1 and go to Step

3.

Figure 7: Algorithm GC

Algorithm DiscGC(a)

1. Set b← a−1, A← a+b, and s← A1/2.

2. Initialize i← 0.

3. Initialize j← 0.

4. Generate t ← DiscCU. Compute x ←
st + b.

(a) If x < 2−tx ,

i. if j ≥ rGC then output ⊥.

ii. Otherwise increase j ← j + 1

and go to Step 4.

5. Generate u← {0, 1}lGC . (Consider u as a

real value in [0, 1).)

(a) If u < 2−tGC ,

i. if i ≥ rGC then output ⊥.

ii. Otherwise increase i ← i + 1

and go to Step 3.

6. If ln u ≤ b(ln x − ln b) − (x − b) + ln(A +

(x − b)2) − ln A output x. If i ≥ rGC then

output ⊥. Otherwise increment i← i+1

and go to Step 3.

Figure 8: Algorithm DiscGC

Theorem K.6 ([AD74, p.229]). The output distribution of GC(a) is (7/10)rGC-close to G̃a(a) with pre-

cision ϵGC.

We modify the algorithm GC to treat the precision and analyze the statistical distance. We call it

DiscGC (see Figure 8). Again, we assume that an input a is an integer.

Theorem K.7. The sample from the algorithm has following properties: If a ≤ 2n then

• the output has precision ϵGC,

• the running time of the algorithm is at most TGC,

• the output is at most HGC and at least LGC, and

• the output distribution is ∆GC-close to G̃a(a) with precision ϵGC,

where the parameters are as follows:

ϵGC > 2n+1LCU,

TGC ≤ TS(n + 1; ϵROOT) + rGC · O(TL(z; ϵLOG) + TA(z) + rGC(TCU + TM(z) + TA(z) + lGC · TU))

HGC = 2n(HCU + 1),

LGC = 2−tx ,

∆GC ≤ 2−rGC/2

+ rGC(2−tGC + 2−tx+1 + 2−lGC + ϵSQRT + (2k+tx + 1)ϵGC + (2k + 2tGC + 3)ϵLOG + 2n+1ϵCU + ∆CU),

where z = O(n + lGC + log(HCU) + log(1/ϵCU) + log(1/ϵROOT) + log(1/ϵLOG)).

Proof.
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On ϵGC: Recall that s =
√

2a − 1 is less than a ≤ 2n and so is b = a − 1. Additionally, b is an integer.

Thus, the precision of x = st + b is at most 2n+1LCU.

On HGC and LGC: Since the output of DiscCU(0, 1) is in [−HCU,HCU], x is in [−HCU·2n, (HCU+1)·2n].

Thus, we have that HGC = (HCU + 1) · 2n. We cut off x at Step 3-(a). So, we have that LGC = 2−tx .

On ∆GC: We start with GC and add procedures to GC sequentially.

GC0(a): This is the algorithm GC(a) with no repeat.

GC1(a): We add the discarding procedure to Step 5. The algorithm discards u if u < 2−tGC .

GC2(a): In Step 4, we replace the criterion x < 0 with x < 2−tx .

GC3(a): We modify the sampling method of u. We replace u← U(0, 1) with u← {0, 1}lGC in Step 5.

GC4(a): We replace the criterion u ≤ f (x, a)/(C(a)g(x, a)) in Step 6 with ln u ≤ ln( f (x, a))− ln(C(a))−
ln(g(x, a)).

GC5(a): Let s′ denote the computed value of A1/2 with precision ϵSQRT. Let δ ∈ [−ϵSQRT, ϵSQRT] be a

real value such that δ = A1/2 − s′. We replace the sampling x← Ca(b, s) with x← (Ca)(b, s + δ).

GC6(a): We again modify the sampling method. The sample x is sampled as follows: t ← Ca(0, 1) and

x← s′t + b.

GC6(a): We next modify the sampling method of t and computations in the criterion at Step 6. We

replace t ← Ca(0, 1) with t ← C̃a(0, 1) with precision ϵCU.

GC7(a): We replace C̃a(0, 1) with the algorithm DisCU.

GC8(a): We revive go to in Steps 4, 5, and 6. This is the algorithm DiscGC(a).

We first estimate ∆(GC0(a),GC1(a)). Clearly, the change induces the distance 2−tGC .

Next, we estimate ∆(GC1(a),GC2(a)). Notice that

Pr
X∼Ca(a−1,

√
2a−1)

[0 ≤ X ≤ 2−tx] =

∫ 2−tx

0

g(x, a)dx ≤
∫ 2−tx

0

dx ≤ 2−tx .

So, the distance is at most 2−tx .

We next upper bound ∆(GC2(a),GC3(a)). We have changed u ← U(0, 1) at Step 5 with u ←
{0, 1}lGC . The effect is at most 2−lGC by Lemma K.3.

The distance ∆(GC3(a),GC4(a)) is 0. This is because

f (x, a)

C(a)g(x, a)
=

e−xxb(A + (x − b)2)

e−bbbA
,

ln( f (x, a)) − ln(C(a)) − ln(g(x, a)) = b(ln(x) − ln(b)) − (x − b) + ln(A + (x − b)2) − ln(A).

We next estimate∆(GC4(a),GC5(a)). We have replaced x← Ca(b, s) with x← Ca(b, s′) = Ca(b, s+

δ), since the square root is not computed precisely. The distance between Ca(b, s) and Ca(b, s + δ) is at

most 2δ from Lemma J.4 in Appendix J.1. Since δ is at most ϵSQRT, so is the distance. This shows that

∆(GC4(a),GC5(a)) ≤ 2ϵSQRT.

Clearly the distance ∆(GC5(a),GC6(a)) is 0, since s′t + b is distributed according to Ca(b, s′).
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We next estimate ∆(GC6(a),GC7(a)). Replacing t ← Ca(0, 1) with t ← C̃a(0, 1) with precision ϵCU

effects the value of x. This causes the precision of computation ln( f (x, a)) − ln(C(a)) − ln(g(x, a)). To

determine their effect to the distance, we compute the precision of them. ln x has precision ϵLOG+2txϵGC,

since x > 2−tx . Also, ln b has precision ϵLOG. x − b = s′t has precision 2n+1ϵCU. ln (A + (x − b)2) has

precision ϵLOG + ϵGC, since A + (x − b)2 > 1. ln A has precision ϵLOG. Thus, b(ln x − ln b) − (x − b) +

ln(A + (x − b)2) − ln A has precision 2k(ϵLOG + 2txϵGC) + ϵGC + ϵLOG + ϵLOG + ϵLOG + 2n+1ϵCU, that is,

ϵGC(2k+tx + 1) + ϵLOG(2k + 3) + 2n+1ϵCU. We also replace ln(u) with the approximation of the logarithm.

This causes the error at most 2lGCϵLOG.

Finally, we estimate ∆(GC6(a),GC7(a)). The distance at most ∆CU, since we only replace the sam-

pling algorithms.

Compiling the above arguments, ∆(GC(a),GC8(a)) is upper bounded by

2−tGC + 2−tx+1 + 2−lGC + ϵSQRT + ϵGC(2k+tx + 1) + ϵLOG(2k + 3) + 2n+1ϵCU + ϵLOG2tGC + ∆CU.

Thus, the statistical distance ∆GC = ∆(G̃a(a),DiscGC(a)) is upper bounded by

(7/10)rGC+rCU(2−tGC+2−tx+1+2−lGC+ϵSQRT+ϵGC(2k+tx+1)+ϵLOG(2k+3)+2n+1ϵCU+ϵLOG2tGC+∆CU)

= 2−rGC/2 + rCU(2−tGC + 2−tx+1 + 2−lGC + ϵSQRT + ϵGC(2k+tx + 1)+ ϵLOG(2k + 2tGC + 3)+ 2n+1ϵCU +∆CU).

�

K.4 Sampling from the Beta Distribution based on the Gamma Distribution

According to the fact that if X ∼ Ga(a) and Y ∼ Ga(b) then X/(X + Y) ∼ Be(a, b), we can sample from

any beta distribution by using random variables sampled from two gamma distributions. Obviously, the

algorithm BG in Figure 9 samples from B̃e(a, b) with precision ϵBG.

Replacing the sampling algorithm and adding the criterion, we obtain the algorithm DiscBG(a, b) in

Figure 10.

Algorithm BG(a, b)

1. Take samples x ← Ga(a) and y ←
Ga(b).

2. Output RϵBG
(x/(x + y)).

Figure 9: Algorithm BG

Algorithm DiscBG(a, b)

1. Take samples x ← DiscGC(a) and y ←
DiscGC(b).

2. If 2−tlow < x, y < 2thigh then output

RϵBG
(x/(x + y)). Otherwise output ⊥.

Figure 10: Algorithm DiscBG

Theorem K.8. The sample from the algorithm DiscBG(a, b) has the following properties:

• The output has precision ϵBG,

• the running time of the algorithm is at most TBG,

• the output is at most HBG and at least LBG, and

• the output distribution of DiscBG(a, b) is ∆BG-close to B̃e(a, b) with precision ϵBG,

where the parameters are as follows:

ϵBG = 2thigh+2tlow+2ϵGC,

TBG ≤ O(TGC + TA(z) + TD(z))

HBG = 1,

LBG = 2−(thigh+tlow+1),

∆BG ≤ 2∆GC + 2−a(tlow+1) + 2−b(tlow+1) + 2−2
thigh+(a−1)thigh + 2−2

thigh+(b−1)thigh ,
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where z = O(log(HGC) + log(1/ϵGC)).

Proof.

On ϵBG: It is easy to verify that the precision of x/(x + y) is bounded by 2thigh+2tlow+1ϵGC.

On HBG and LBG: We have

2−(thigh+tlow+1) <
1

1 + 2thigh+tlow
<

1

1 + y/x
=

x

x + y
<

1

1 + 2−(thigh+tlow)
< 1 − 2−(thigh+tlow+1).

On ∆BG: We denote by DiscBG∗(a, b) the algorithm DiscBG(a, b) using Ga(·) instead of DiscGC(·).

∆
(
B̃e(a, b),DiscBG(a, b)

)
≤ ∆

(
B̃e(a, b),BG(a, b)

)
+ ∆

(
BG(a, b),DiscBG∗(a, b)

)

+ ∆
(
DiscBG∗(a, b),DiscBG(a, b)

)

≤ 0 + Pr
x∼Ga(a)

[
x < 2−tlow or x > 2thigh

]

+ Pr
x∼Ga(b)

[
x < 2−tlow or x > 2thigh

]
+ 2∆GC

≤ 2∆GC + 2−a(tlow+1) + 2−b(tlow+1) + 2−2
thigh+(a−1)thigh + 2−2

thigh+(b−1)thigh ,

where in the last inequality we use Lemma J.5 and Lemma J.6 in Appendix J.2. �

K.5 Sampling from the Binomial Distribution based on the Bernoulli Experiments

Based on the fact that the binomial distribution describes the number of successes in N independent

Bernoulli experiments, we have the following algorithms BU(N, p) and DiscBU(N, p̃) in Figures 11

and 12, respectively, where p̃ denotes an approximation of p with precision ϵp,BU.

Algorithm BU(N, p)

1. Initialize i← 0 and c← 0.

2. Generate u ← Un(0, 1). If u ≤ p score a

success: c← c + 1.

3. Increase i ← i + 1. If i < n go to Step 2,

otherwise output c.

Figure 11: Algorithm BU

Algorithm DiscBU(N, p̃)

1. Initialize i← 0 and c← 0.

2. Generate u ← {0, 1}lBU . (Consider u as

a real value in [0, 1).) If u ≤ p̃ score a

success: c← c + 1.

3. Increase i← i+ 1. If i < N go to Step 2,

otherwise output c.

Figure 12: Algorithm DiscBU

Theorem K.9. For the inputs N and p̃, the sampling algorithm DiscBU(N, p̃) has following properties:

If the inputs satisfy

• N: a positive integer between 0 ≤ N ≤ n,

• p̃: a positive real between 0 ≤ p̃ ≤ 1 which is an approximation of 0 ≤ p ≤ 1 with precision ϵp,BU,

then

• the output distribution of DiscBU(N, p̃) is ∆BU-close to Bn(N, p) and
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• the running time is at most TBU,

where the parameters are as follows:

∆BU ≤ N(ϵp,BU + 2−lBU),

TBU ≤ N · O(TA(log N) + lBUTU).

Proof. By using the triangle inequality, we have that

∆BU = ∆ (Bn(N, p),DiscBU(N, p̃))

≤ ∆ (Bn(N, p),BU(N, p)) + ∆ (BU(N, p),BU(N, p̃)) + ∆ (BU(N, p̃),DiscBU(N, p̃))

≤ 0 + N · ϵp,BU + N · 2−lBU

≤ N(ϵp,BU + 2−lBU).

�

K.6 Sampling from the Binomial Distribution based on the Beta Distribution

The algorithm BU is simple, but has a drawback that the running time grows exponentially in input size

of N. In order to overcome this drawback, the following lemma in [Rel72] is useful.

Lemma K.10 ([Rel72]). The following procedure samples correctly from a binomial distribution Bn(n, p).

1. Select any two positive integers a and b such that a + b − 1 = n.

2. Take a sample s from the beta distribution Be(a, b).

3. If s ≤ p take a sample x from the binomial distribution Bn(b − 1, (p − s)/(1 − s)) and

output x← a + x.

4. If s > p take a sample x from the binomial distribution Bn(a − 1, p/s) and output x.

The slightly modified algorithm BB in Figure 13 appeared in [Rel72]. As the consequence of the

lemma, the algorithm correctly samples according to Bn(n, p). We note the running time of this algo-

rithm grows linearly in log n.

We next modify the algorithm BB by replacing subroutines. The obtained algorithm DiscBB is in

Figure 14, where p̃ is an approximation of p with precision ϵp,BB and δ is the cut-off parameter such that

Nδ and N4ϵp,BBδ
−n is negligible in n. Note that we add Steps 1-(a) and 1-(b) to DiscBB by the technical

reason.

Theorem K.11. For the inputs N and p̃, the sampling algorithm DiscBB(N, p̃) has following properties:

If the inputs satisfy

• N: a positive integer between 0 ≤ N ≤ 2n.

• p̃: a positive real between δ < p̃ < 1 − δ which is an approximation p with precision ϵp,BB, 5

then

• the output distribution is ∆BB-close to Bn(N, p)

• and the running time is at most TBB,

5By modifying the algorithm using Chebyshev’s inequality or Lemma J.8 we can treat in the case 0 ≤ p ≤ 1. This is done

by Steps 1-(a) and 1-(b).
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Algorithm BB(N, p)

1. If N ≤ 2 generate x← Bn(n, p) and out-

put x.

2. If N is even then generate y ← Bn(1, p)

and x← Bn(N − 1, p), and output x + y.

3. If N is odd then set a ← (N + 1)/2 and

generate s← Be(a, a).

4. If s ≤ p then x← Bn(a−1, (p−s)/(1−s))

and output x+ a. Otherwise x← Bn(a−
1, p/s) and output x.

Figure 13: Algorithm BB

Algorithm DiscBB(N, p̃)

1. If N ≤ 2 generate x ← DiscBU(N, p̃)

and output x.

(a) If p̃ ≤ δ then output 0.

(b) If p̃ ≥ 1 − δ then output N.

2. If N is even then generate y ←
DiscBU(1, p̃) and x← DiscBB(N−1, p̃),

and output x + y.

3. If N is odd then set a ← (N + 1)/2 and

generate s← DiscBG(a, a).

4. If s ≤ p̃ then x ← DiscBB(a − 1, (p̃ −
s)/(1 − s)) and output x + a. Otherwise

x← DiscBB(a − 1, p̃/s) and output x.

Figure 14: Algorithm DiscBB

where the parameters are as follows:

∆BB ≤ δ−n24n+1ϵp,BB + n24nϵBG + 2n · 2−lBU + n∆BG,

TBB ≤ n · O(TA(z) + TD(z) + TBG + TBU)),

where z = O(n + log(1/ϵp,BB)).

Proof of Theorem K.11. On ∆BB: Before giving the proof, we introduce the notation for clarity.

We first define d(ϵ,N) in order to treat the effect of recursive sampling:

d(ϵ,N) = max
p

max
p̃:|p−p̃|<ϵ

∆(Bn(N, p),DiscBB(N, p̃)).

In order to estimate d(ϵ,N) above, we define the algorithms BBi. We upper bound each ∆(BBi,BBi+1)

and then upper bound ∆(Bn(N, p),DiscBB(N, p̃)) by the triangle inequality. We define the algorithms

BBi as follows:

BB0(N, p): This is the algorithm BB(N, p) which correctly samples from Bn(N, p).

BB1(N, p̃): We replace the input p with p̃ in BB0.

BB2(N, p̃): We use B̃e with precision ϵBG instead of Be in BB1.

BB3(N, p̃): We replace B̃e with DiscBG in the algorithm BB2.

BB4(N, p̃): We use DiscBU instead of Bn at Steps 1 and 2 in the algorithm BB3.

BB5(N, p̃): We finally replace Bn with DiscBB at Step 4 in the algorithm BB4. The obtained algorithm

coincides with DiscBB.

From the above definitions,

∆(Bn(N, p),DiscBB(N, p̃)) ≤ ∆(Bn(N, p),Bn(N, p̃)) + ∆(Bn(N, p̃),DiscBB(N, p̃))

≤ ∆(Bn(N, p),Bn(N, p̃)) +

4∑

i=1

∆(BBi(N, p̃),BBi+1(N, p̃)).
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By using Lemma J.9, we have that

∆(Bn(N, p),Bn(N, p̃)) ≤ N4ϵ.

We next consider ∆(BB1(N, p̃),BB2(N, p̃)). The change of s at Step 4 effects the distance at most

2a(a − 1)3ϵBG ≤ N4ϵBG by Lemma J.7 in Appendix J.3.

It is obvious that ∆(BB2(N, p̃),BB3(N, p̃)) ≤ ∆BG. Is is also obvious that ∆(BB3(N, p̃),BB4(N, p̃)) ≤
2(ϵ + 2−lBU). We next consider ∆(BB4(N, p̃),BB5(N, p̃)). Since we change the choosing method for x at

Steps 3 and 4, we have that

∆(BB3(N, p̃),BB4(N, p̃)) ≤ max {∆ (Bn (a − 1, p1) ,DiscBB (a − 1, p̃1)) ,∆ (Bn (a − 1, p2) DiscBB (a − 1, p̃2))} ,

where p1 = (p̃ − s)/(1 − s), p2 = p̃/s, and each p̃i is an approximation of pi, respectively. By simple

calculation, we have that

|p1 − p̃1| =
∣∣∣∣∣
p − s

1 − s
− p̃ − s

1 − s

∣∣∣∣∣ =
∣∣∣∣∣
p − p̃

1 − s

∣∣∣∣∣ ≤
ϵ

1 − s
≤ ϵ

1 − p̃
≤ ϵ
δ
,

|p2 − p̃2| =
∣∣∣∣∣
p

s
− p̃

s

∣∣∣∣∣ =
∣∣∣∣∣
p − p̃

s

∣∣∣∣∣ ≤
ϵ

s
≤ ϵ

p̃
≤ ϵ
δ
.

Thus, we have that

∆(BB3(N, p̃),BB4(N, p̃)) ≤ d(ϵ/δ, a − 1) ≤ d(ϵ/δ,N/2).

Summarizing the above calculation, we have that

∆(Bn(N, p),DiscBB(N, p̃)) ≤ ∆(Bn(N, p),Bn(N, p̃)) +

3∑

i=1

∆(BBi(N, p̃),BBi+1(N, p̃))

≤ N4 · ϵ + N4 · ϵBG + ∆BG + 2(ϵ + 2−lBU) + d(ϵ/δ,N/2).

Thus, we have that

d(N, ϵp,BB) ≤ N4 · ϵp,BB + N4 · ϵBG + 2(ϵp,BB + 2−lBU) + ∆BG + d(ϵp,BB/δ,N/2)

≤ N4(ϵp,BB + ϵp,BB/δ) + 2N4 · ϵBG

+ 2(ϵp,BB + ϵp,BB/δ + 2 · 2−lBU) + ∆BG + d(ϵp,BB/δ
2,N/4)

≤ N4ϵp,BB(1 + 1/δ + · · · + 1/δn) + nN4 · ϵBG

+ 2(ϵp,BB(1 + 1/δ + · · · + 1/δn) + n · 2−lBU) + n∆BG + d(ϵp,BB/δ
n, 1)

≤ N4ϵp,BBδ
−n + nN4ϵBG + 2ϵp,BBδ

−n + 2n · 2−lBU + n∆BG) + δ−nϵp,BB

= δ−n(N4 + 2)ϵp,BB + nN4ϵBG + 2n · 2−lBU + n∆BG.

where in the last inequality we use
∑n

i=0 1/δi = (1/δn+1 − 1)/(1/δ − 1) = δ−n(1 − δn+1)(1 − δ) ≤ δ−n. �
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