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Abstract—Security of quantization index modulation (QIM) wa-
termarking methods is usually sought through a pseudorandom
dither signal which randomizes the codebook. This dither plays
the role of the secret key (i.e., a parameter only shared by the wa-
termarking embedder and decoder), which prevents unauthorized
embedding and/or decoding. However, if the same dither signal is
reused, the observation of several watermarked signals can pro-
vide sufficient information for an attacker to estimate the dither
signal. This paper focuses on the cases when the embedded mes-
sages are either known or constant. In the first part of this paper,
a theoretical security analysis of QIM data hiding measures the in-
formation leakage about the secret dither as the mutual informa-
tion between the dither and the watermarked signals. In the second
part, we show how set-membership estimation techniques success-
fully provide accurate estimates of the dither from observed wa-
termarked signals. The conclusion of this twofold study is that cur-
rent QIM watermarking schemes have a relative low security level
against this scenario because a small number of observed water-
marked signals yields a sufficiently accurate estimate of the secret
dither. The analysis presented in this paper also serves as the basis
for more involved scenarios.

Index Terms—Equivocation, lattice data hiding, mutual infor-
mation, quantization index modulation, set-membership estima-
tion, watermarking security.

I. INTRODUCTION

R
ECENTLY, the basis of cryptanalysis has been cast to data
hiding to establish the concept of watermarking security

[1]–[3]. It assumes that all details of the watermarking technique
are publicly known except the so-called secret key parameter
of the embedding and decoding processes, according to Kerck-
hoffs’ principle [4]. Hence, security only relies on whether (or
more realistically, for how long) the secret key will remain se-
cret. This framework for security assessment of watermarking
schemes is twofold. We assume that a collection of content has
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been watermarked with the same secret key, and the attacker has
access to these watermarked signals. A first theoretical part mea-
sures the amount of information about the secret key which leaks
from the watermarked content, using the mutual information
and conditional entropy as measures, following the informa-
tion-theoretic approach for cryptosystems proposed by Shannon
in [5]—this approach is based on computing the entropy of the
key conditioned on the encrypted messages observed by the at-
tacker; when the conditional entropy is null, it means that the
attacker has gathered enough observations so as to disclose the
secret key. Bear in mind that the original Shannon’s work dealt
with discrete random variables, whereas our discussion deals
with continuous random variables. This is why we need to resort
to differential entropies; nevertheless, the main concepts remain
the same—whereas discrete entropy is related to the number of
possible values of a random variable and their probabilities (and
it is always a non-negative quantity), differential entropy ac-
counts for the log-volume of the typical set [6, Sec. 9.2] and as
such, still provides a useful measure of uncertainty, regardless
of whether it takes negative values; in particular, complete dis-
closure of the secret key will be possible when its conditional
entropy becomes . The information-theoretic analysis al-
lows us to establish lower bounds on the variance of the key
estimation error as a function of the number of available ob-
servations. The second part of this paper is of practical nature
and shows workable algorithms which take as input a collec-
tion of watermarked signals and output an estimate of the secret
key. This confirms that the attack is manageable within bounded
complexity.

This framework (theoretical and practical parts) has already
been successfully applied to substitutive [2, Sec. III] and ad-
ditive spread-spectrum watermarking schemes [2, Sec. IV] [3].
Watermarking security under this viewpoint is also briefly ad-
dressed in [7, Sec. 10]. Other notable works dealing with the se-
curity of spread-spectrum schemes concentrate on the practical
part [8], [9]. As for quantization-based data hiding, preliminary
studies of the theoretical part have shown the existence of infor-
mation leakages [10], while on the practical part, we are aware
of two works: first, the work by Eggers et al. [11], although their
motivation was not the security analysis but the robustness im-
provement of the scalar costa scheme (SCS) against scaling and
the addition of white Gaussian noise attack (SAWGN), and the
work by Bas and Hurri [12], which is more related to our ap-
proach, but focuses on the so-called spread transform methods
[13] without distortion compensation.

The reader must note that the scope of this article is restricted
because we mainly focus on the known message attack (KMA)
[2, Sec. II-B]—we assume that the attacker is able to gather a
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collection of signals , watermarked with

the same key, while knowing the hidden message for each, de-

noted by . The pairs will be referred to as observa-

tions. This paper is only a first step to a global security analysis

of quantization-based watermarking; in fact, as we will discuss

in Section VII, both the developed theory and algorithms for

the KMA scenario constitute the core of those corresponding

to more complex scenarios. In any case, the considered setup is

still very important as shown in the following motivations.

1) The copy protection application faces extreme security

threats [14]. The secret key is not only unique but the hidden

messages are also known by any user. Consider a digital

rights management (DRM) system using watermarking.

The secret key is embedded in a chip set included in every

compliant device. Content makers also share the secret key

to watermark their products. Compliant devices spot these

as protected contents whose use is restricted according to

the DRM license. Some DRM systems hide the status (i.e.,

the usage restriction) such as “Copy Never,” “Copy Once,”
and “Copy No More” [14] in the contents. The number

of status choices is extremely small compared to the size

of the content. This is a typical example of zero-rate wa-

termarking, where the embedding proceeds by blocks (of

video or of sound). The Copy Protection Technical Working

Group has, for instance, required the embedding of 8 bits

within 10 seconds of video [15]. Moreover, any user knows

the embedded message as the status of a piece of content

is public (for instance, the compliant device may warn the

user that the copy of a particular content is forbidden due

to its restrictive status). Hence, KMA is a main threat in

copy protection applications.

2) Video and audio watermarking, in general, might be also

put at risk by KMA. The reason is that one usually does

not watermark a video, but instead watermarks consecu-

tive blocks of video. This division in blocks maintains a

low complexity of the embedding and decoding whereas it

eases temporal resynchronization. In the case of zero-rate

watermarking (the message space is bounded and small),

a common approach is to embed the message repeatedly

in consecutive blocks. The division into blocks is usually

publicly known (although other strategies are possible), so

the attacker is able to gather a number of different blocks

hiding the same message. This is not exactly a KMA but

a constant message attack (CMA) because the value of

the message might not be known. However, we will show

that this only brings slight changes in both the theoretical

and the practical parts. This matter concerns applications

such as copyright enforcement, copy protection, and fin-

gerprinting (traitor tracing). Note that in this last scenario

the major source of concern has been collusion attacks (i.e.,

an arrangement of several traitors), but the CMA could

constitute a worse attack for audio or video fingerprinting

because there the same message is repeatedly embedded in

a block-by-block basis. The success of the CMA depends

on the number of blocks in a movie or song.

3) Another motivation is that most QIM schemes are known

to be weak against amplitude scaling attacks. Eggers et al.

suggest in [11] and [16, Sec. VI] to embed a reference mes-

sage (also known as pilot sequence) prior to the message

being embedded. Knowing this pilot sequence, the decoder

is able to estimate the amplitude scaling and later to retrieve

the hidden message. Once again, this implies that all of the

watermarked signals contain the same pilot sequence. If the

CMA is successful, the attacker may remove the pilot se-

quence and then apply a slight scaling to the amplitude of

the host signal. The decoder will not be able to retrieve the

reference message nor the scaling factor. However, bear in

mind that in case the attacker does not know the exact lo-

cation of the pilot signal, the CMA attack can be used only

as part of a more global attack.

4) Another important case is the application of QIM schemes

for authentication. There exist many different ways of de-

signing a watermarking-based authentication scheme; for

instance, Eggers et al. proposed a highly original scheme

[17] taking benefit that a side-informed embedder gives

a watermark signal heavily dependent on the host signal.

Thus, it is useless to estimate the watermark signal of a

signed content, and then copy and paste it into another con-

tent in order to forge a signature. This elegantly gets rid

of the copy-and-paste attack. In their scheme, Eggers et

al. suggest applying SCS to image authentication by wa-

termarking blocks of the image with a reference message.

The verification process considers the image as authentic

when the decoded message matches this reference mes-

sage. Once again, this implies that all of the signed images

contain the same reference message and the CMA attack is

applicable.

We assume the watermark embedder works as follows. A

first step extracts some coefficients, for example, discrete co-

sine transform (DCT), discrete wavelet transform (DWT), fast

Fourier transform (FFT) from the original piece of content.

These coefficients are ordered in a length- column vector,

and the latter is partitioned in blocks of length , denoted by

. The embedder hides a message in

each , yielding a watermarked vector . Thus, the data hiding

rate is bits per coefficient. The specific im-

plementation of QIM considered in this paper is by means of

nested lattices [7], which encompasses most of the proposed

QIM formulations so far, and it will be referred to as lattice data

hiding. According to the discussion above, we assume that both

the selection of the extracted coefficients and the partitioning

in length- blocks is public; hence, the security of the scheme

relies only in the randomization of the lattice via a dithering

process, where the dither signal plays the role of secret key.1

Actually, the secret dither signal, which we denote by , may be

any deterministic function of a certain cryptographic key (i.e.,

, where is a pseudorandom generator). Although,

under the assumptions of Kerckhoffs’ principle, such a func-

tion should be publicly known, disclosure of the secret dither

does not necessarily imply disclosure of the cryptographic key

, since should have been properly designed so as to be

(ideally) noninvertible. The attacker restricted to a signal pro-

cessing approach, as the one we are presenting here, can, at

most, aspire to disclose the sequence of dither samples provided

1The extension to more general scenarios using secret coefficient permuta-
tions, for instance, will be addressed in Section VII.
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Fig. 1. Block diagram of lattice-based DC–DM with pseudorandom dithering. Parameter� is the secret key.

by the available observations. Inference of the secret key based

on the estimate of belongs to the domain of cryptanalysis and,

as such, falls out of the scope of the present paper. Neverthe-

less, the mere disclosure of the plain secret dither in a lattice

data hiding scheme allows many harmful attacks, as we shall

discuss in Section V-A.

The theoretical security of lattice data hiding schemes is

studied in Sections II and III. Sections IV and V present practical

estimators and experimental results, respectively, obtained in

the lattice data hiding scenario. In Section VI, the theoretical

security of quantization-based data hiding methods is linked

to the corresponding to Costa’s setup [18], and in Section VII,

the extension of the framework proposed in this paper to more

general scenarios is discussed. Finally, in Section VIII, the main

conclusions are summarized and some remarks are given. Unless

otherwise stated, our results will be restricted to a distortion

compensation parameter which represents the most

important case for lattice data hiding for the following reasons.

• In high watermark-to-noise-ratio (WNR) applications,2

which is the scenario of main interest for lattice data

hiding, the optimal value of is considerably larger than

0.5 (see [16], for instance).

• In low WNR applications, the optimal values of are

smaller than 0.5, leading to decoding errors even in the

absence of noise. Indeed, it has been shown that for low

WNRs, it is better to apply lattice data hiding in conjunc-

tion with spread transform [13], whose main benefit is

to increase the effective WNR. This, in turn, leads to an

increase of the optimal , in most practical instances to

values . A similar conclusion is arrived at when lat-

tice data hiding is combined with channel coding (e.g., rep-

etition coding or Construction A [19]).

The main notational conventions followed throughout the text

are the following: random variables and their occurrences are

denoted by capital and lowercase letters, respectively; boldface

letters denote column vectors, whereas scalar variables are rep-

resented in nonboldface characters. Calligraphic letters are re-

served for sets. All logarithms are to the base , so all of the mu-

tual informations and differential entropies are expressed in nats.

II. THEORETICAL SECURITY OF LATTICE-BASED DATA HIDING

Before proceeding with the theoretical analysis, we will

briefly explain the basics of embedding in lattice data hiding; for

more details and other aspects, such as decoding, the interested

reader is referred to [7] and the references therein. Consider an

-dimensional lattice and the set

2WNR log (D =� ), whereD and � are the embedding distortion
and noise power per dimension, respectively. Throughout this paper, the terms
high and low WNR are loosely applied to WNR > 0 dB and WNR � 0 dB,
respectively.

of possible messages. For each message , let us de-

fine the associated coset of as , where

is the minimum-norm coset representative corresponding to

message . The codebook is defined by the union of all

cosets . Given a certain host signal and a

to-be-transmitted message , each watermarked signal

is generated as

(1)

where is the distortion compensation parameter, and

is an Euclidean quantizer whose centroids are defined by the

coset

(2)

where denotes the Euclidean norm. This data hiding scheme

is commonly known as distortion compensated–dither modula-

tion (DC–DM) [13]. For adding security to the scheme, several

authors [13], [16] proposed to introduce an additional term

named secret dither vector, which is known only by the em-

bedder and decoder, yielding a randomized embedding function

(3)

where is the th randomized coset, and

the second term of (3) is the so-called self-noise term. Notice

that the watermark, defined as , is -periodic both in

and since it yields the same value for hosts and dither vec-

tors of the form and , respectively.

The complete data hiding scheme is summarized in the block

diagram of Fig. 1. The aim of the secret dither is just to apply

a secret shift to the embedding lattice, and it does not change

any of its fundamental properties concerning information trans-

mission.3 These days, most of the lattice DC–DM schemes base

their security on this strategy.

As is usual in the analysis of quantization-based methods for

data hiding [13], [16], a low embedding distortion regime is

assumed, such that the variance of the host is much larger than

the volume of the Voronoi region of . The Voronoi region of a

lattice is denoted by and is defined as [19]

(4)

In practice, this assumption (which we will refer to in the se-

quel as the flat-host assumption) implies that the pdf of the host

and that of the self-noise are approximately uniform inside each

quantization cell and over , respectively.

3Strictly speaking, this is true only if the flat-host assumption (to be defined
later) holds, as noted in [20].
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The flat-host assumption permits us to simplify the theoretical

analysis, restricting our attention to the modulo-reduced random

variable .4 Hence, the pdf of

conditioned on the embedded message and the secret dither is

otherwise
(5)

In our model, as is customary in theoretical analysis of water-

marking methods, the host samples are considered independent

and identically distributed (iid). Under these premises, a theo-

retical security analysis will be developed for the two scenarios

(KMA and CMA) introduced in Section I. Obviously, the se-

curity level of the system depends on the statistical distribution

of the secret dither, or better to say, of its modulo- reduced

version, . Due to the -periodicity inherent in the watermark

generation [see (3)], we have that

; hence

(6)

where is the pdf of . This means that

the pdf of the watermarked signal depends in last instance of the

pdf of and, hence, the secrecy of the codebook only depends

on the statistics of .5 Therefore, the support of is bounded

by hereinafter. We must note that is usually assumed to

be uniformly distributed over in most lattice data hiding

schemes [13], [16], but this choice was not strictly motivated by

security reasons, so it makes sense to wonder about its optimal

distribution from this latter point of view.

A. Known Message Attack

When a sequence of watermarked signals

and their associated messages are observed,

the information leakage about can be calculated by means

of the mutual information between the observations and the se-

cret dither

(7)

where we have made use of the mutual independence between

and the embedded messages, also assumed to be mutually inde-

pendent. Here, is the differential entropy [6] of the random

variable , and the second term of (7) is the residual entropy

or equivocation of the dither after observations, following

Shannon’s nomenclature [5]. The equivocation measures the re-

maining ignorance about the secret dither, so the appropriate

distribution for should be chosen in order to maximize this

value. To this end, let us consider the conditional pdf of the

4It is worth noting that this modulo operation is virtually information lossless
([20], Section IV) in low embedding distortion regimes, as is our case. This

implies that the analysis is accurate in the sense that I( ~Y;T) � I(Y;T).

5However, attacks at a cryptographic level would be indeed interested in
knowing the exact value of t.

dither. The statistical properties of the watermarked signals give

rise to the notion of the feasible region of the dither, formally de-

fined as the support of its conditional pdf after observations.

The next property will be widely used throughout the text.

Property 1: Boundedness of the feasible region. The feasible

region is bounded by , where

(8)

Proof: Application of Bayes’ rule yields

(9)

where . Notice that

each random variable is a function of the triple ,

and the host samples in our model are mutually independent.

This means that the observations are conditionally inde-

pendent given the dither; hence, (9) can be rewritten as

(10)

(11)

where (11) follows from the flat-host assumption. By recalling

(5), it is clear that each term in the numerator of (11) is nonzero

iff , or equivalently, iff ,

with given by (8). Hence, it is clear that the feasible region

of is contained in , independent of the distribution

of .

Property 1 allows us to state the following lemma.

Lemma 1: Maximization of the residual entropy. The residual

entropy is maximized for , yielding a conditional

pdf uniformly distributed in , that is

otherwise
(12)

Proof: By the definition of residual entropy, we have

(13)

where the expectation is taken over the joint pdf

. Since the feasible region of the

dither is bounded by , its entropy will be maximized when

the dither is uniformly distributed in , that is

(14)
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Since the denominator of (11) does not depend on , then the

choice suffices for achieving such distribution

and, hence, equality in (14).

The optimal distribution resulting from Lemma 1 also brings

additional desirable properties: it provides statistical indepen-

dence between the self-noise and the host signal [21], and most

important, it does not prevent achieving capacity in the Gaussian

channel in theasymptotic setup [22].Hence, thechoice

of is good from the robustness and security points

of view, and this will be the chosen distribution in the remainder

of this paper unless otherwise stated. Hence, by combining

Property 1 and Lemma 1, the residual entropy results in

(15)

where the expectation has taken over the joint pdf of the obser-

vations. In case of one observation , we have

(16)

and the information leakage is given by

(17)

for all , independent of the specific lattice chosen for

embedding. This result clearly shows a tradeoff between secu-

rity and achievable rate: theoretical analyses [16], [22] show

that, in AWGN channels, the value of must approach 1 for

maximizing the achievable rate in the high-WNR region; how-

ever, bear in mind that for , one observation suffices to get

an accurate estimate of the centroids in and, consequently,

of the secret dither due to the structure imposed on the code-

book. This is reflected in the residual entropy of the dither (16),

for which .

For , one must consider two different cases: 1) for

, the mutual information is maximum for , as

we have just discussed, so more observations will not provide

additional information about (i.e., it becomes deterministic

for ) and 2) for , the mutual information does not

increase linearly due to the dependence between observations.

Its general behavior is stated in the following Lemma.

Lemma 2: If , the mutual information about the secret

dither is an increasing, concave function of the number of ob-

servations .

Proof: To see that the mutual information is always in-

creasing, consider the function

(18)

which is nothing but the average information about that is

gained with the th observation. Such a function is easily

seen to be always non-negative

(19)

where (19) follows from the fact that conditioning reduces en-

tropy [6]. In this case, strict inequality holds in (19), due to (12)

and (13) (i.e., the mean volume of is always reduced with

each new observation, with the obvious exception of determin-

istic ). Thus, the mutual information is always increasing.

In order to prove the concavity of the mutual information, we

make use of the following claim [23].

Claim: Discrete concavity. A discrete function , with

, is (strictly) concave if and only if is (decreasing)

nonincreasing, with .

Thus, the mutual information will be (strictly) concave iff

is (decreasing) nonincreasing. By the definition of mu-

tual information, we have

(20)

Making use of the chain rule for entropies ([6, Sec. 9.6] in (20),

we can write

(21)

taking into account again that conditioning reduces entropy.

This concludes the proof of the lemma.

B. Constant Message Attack

The easiest way of addressing this scenario is to regard it as

a collection of several KMA problems. When the message em-

bedded is unknown but unchanged for the whole sequence of

observations, the conditional pdf of the dither after observa-

tions can be expressed as

(22)

where CM stands for constant message, and denotes the

size of the alphabet. This means that the feasible region

for the dither in the CMA case is simply the union of the feasible

regions of KMA problems. Formally

(23)

with defined in Property 1. Using the Borel–Cantelli

Lemma, and under the assumptions stated in this paper, it can

be shown that converges to zero almost surely when

; thus, the different regions that constitute will

be disjointed for sufficiently large ; in such case, the residual

entropy is again maximized if is chosen, but it is

not necessarily the optimal distribution for all . Due to (22),

the residual entropy can be upperbounded as

(24)
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resulting in a lower bound to the information leakage. The

equality in (24) is achieved when the regions are

disjointed, which means that as increases, the bound will

be asymptotically tight. However, if the value of is above a

certain threshold (which depends on the lattice partition), such

regions are always disjoint, and the bound is reached for all

; this is the case, for instance, when ,

for self-similar partitions [7], [22].

III. LATTICE COMPARISON

This section tries to shed some light on two fundamental

questions: 1) given , what is the best lattice (if any) in terms of

security; and 2) does an increase of improve the security level.

The discussion will be focused on the KMA problem, although

it can be extended to the CMA scenario by taking into account

the remarks made in Section II-B. Before proceeding with the

analysis, we need to introduce the following definition:

Definition 1: A set is said to be modulo- convex if

there exists such that is convex. The notion

of modulo- convexity is key to our analysis, due to the next

property.

Property 2: For , the feasible region is always a

modulo- convex set.

Proof: Let us define

(25)

and . By recalling the gen-

eration of the watermarked signal (3), it is clear that

. If , then .

Hence, , and obviously . Since

are convex sets, their intersection is also a

convex set. Taking into account that , the

property follows.

The use of may lead to nonconvex feasible regions,

as illustrated in Fig. 2(b), where the feasible region for the dither

is composed of three different modulo- sets. However, as can

be seen in the Proof of Property 2, under the assumption of

, it is possible to find a shifted version of the problem

such that the feasible region is always modulo- convex, ac-

cording to Definition 1. This property permits us to drop out the

modulo operation from the expressions of the feasible regions.

Bear in mind that the entropy is invariant to translations, so this

simplification does not change the results. In order to provide

a fair comparison between different lattices, they are scaled so

as to present the same embedding distortion, which due to the

flat-host assumption is given by

(26)

where is the quantization error, and

is the second-order moment per dimension of . For com-

puting the residual entropy, the expectation in (15) must be taken

over , but the conditional pdf of

, given by (12), does not depend on the specific sequence of

messages embedded, as long as the latter is known; this implies

that, for the expectations, the message sequence can be assumed

to be deterministic. Since it is not always possible to obtain

Fig. 2. Illustration of a nonconnected feasible region for two observations using
small �. In (a), the solid lines are the Voronoi regions of �, and the feasible re-
gions for the centroids defined by each observation are the shaded ones and
(b) depicts the modulo-� reduction of the intersection between the shaded re-
gions in (a), showing three resulting modulo-� convex regions (illustrated with
different shadings).

closed-form expressions for the information leakage (even for

low-dimensional lattices), we must resort, in general, to Monte

Carlo integration and bounding techniques.

A. Exact Computation for the Cubic Lattice

For the scaled cubic lattice6

it is possible to obtain a closed-form expression for the residual

entropy. From (15), the residual entropy is given by the expecta-

tion of the log-volume of the feasible region for the dither. Since

the latter for the cubic lattice is always a hyper-rectangle, using

Property 2, we can write

(27)

where is the random variable that measures the length of

the feasible interval in the th dimension, and the last equality

follows because the quantization step is the same for all dimen-

sions. The random variable is given by

(28)

with , a random variable uniformly distributed in

. Hence, the problem

is reduced to a scalar subproblem consisting in computing

(i.e., the residual entropy in one dimension). This

result is used in Appendix A, under the assumption of ,

to show that the residual entropy per dimension is given by

(29)

where is the th harmonic number, is

the embedding distortion according to (26), and we have taken

into account that for the cubic lattice .

6We consider the same quantization step in each dimension, although the re-
sults can be straightforwardly extended to a general case.
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B. Monte Carlo Integration

When the analytical evaluation of (15) becomes intractable,

we resort to Monte Carlo integration. The fact that the feasible

region is reduced with each new observation makes necessary

an additional task of computing a tight region of integration so

as to preserve the accuracy of the Monte Carlo method (as will

be seen in Step 3) of the algorithm outlined below). In order

to give a comparison between different standard lattices, we

consider the root lattices and their duals (the best known lat-

tice quantizers for ), namely (hexagonal lattice),

. For their definition and prop-

erties, see [19] and [24]. All of these lattices are scaled so as

to present the same embedding distortion per dimension as the

cubic lattice with , that is, .

The procedure followed for the Monte Carlo simulations is

briefly outlined here.

Step 1) We assume without loss of generality that .

Hence, a sequence of observed vectors uni-

formly distributed in , with such

that is generated.

Step 2) is outerbounded by a hypercube whose edge

length is twice the covering radius [19] of . This

gives an outer bound to (8), which is used to

compute an outer approximation of the feasible

region.

Step 3) The feasible region resulting from the previous step

(which is a hyperrectangle) is shrunk along each di-

mension so as to tightly bound the true feasible re-

gion . This is accomplished by means of a bi-

section algorithm which looks for the tightest limits

of the outerbounding hyperrectangle in each dimen-

sion. The need for this step is justified by the fact

that, for large , the ratio be-

comes too large, affecting the accuracy of Monte

Carlo integration.

Step 4) A large number of points uniformly distributed in

the hyperrectangle of the previous step is gener-

ated. For each point, it is checked whether it belongs

to ; if so, the considered point belongs to

. Finally, the log volume of is computed by

Monte Carlo integration, and the residual entropy is

obtained by averaging the log volume over a large

number of realizations. In Steps 3) and 4), fast quan-

tizing algorithms [25] are used.

The results of Monte Carlo integration indicate that the lat-

tice that maximizes the residual entropy for each is that

with the best mean-squared quantization properties. This can be

formally expressed as

subject to constant (30)

where is the set of root lattices of dimensionality , and

is the normalized second-order

moment of . Notice that maximizes for given

and and, consequently, has the highest a priori entropy

in , due to the uniformity of . For illustration purposes, Fig. 3

gives a comparison between the residual entropy per dimension

using the cubic lattice and that using some of the root lattices.

Fig. 3. Residual entropies per dimension for different lattices. All plots for the
root lattices (but for the cubic one, which is theoretical) were obtained through
Monte Carlo integration. The asymptotic limit corresponds to (35). The embed-
ding distortion in all cases is D = � =12, with � = 0:5.

Althoughwedonotclaimthat theaboveresultholds for thewhole

set of lattices with arbitrary , at least it suggests that the security

level of a lattice data hiding scheme be improved by increasing

and choosing the lattice with the lowest . This leads

us to conjecture that a hypothetical spherically shaped Voronoi

region will provide an upper bound to the residual entropy, since

the sphere is the region of with the smallest normalized

second-order moment. This is indeed so for the set of lattices

considered in our experiments: as an example, the result obtained

with the 8-D sphere (also obtained through Monte Carlo) is

plotted in Fig. 3. Unfortunately, the space cannot be tessellated

with spherical regions (except for ), so it is not possible

to construct spherical lattice quantizers; nevertheless, as it

was shown in [26], as increases, there exist lattices whose

normalized second-order moment tend to that of a sphere.7 The

security of lattice DC–DM using this type of lattice is studied

in the next section.

C. Bounds and Asymptotics on the Equivocation for “Good”

Lattices

Throughout this section, we will make use of two assump-

tions: 1) ; 2) we are using , the optimal (in a mean-

squared error sense) lattice quantizer in -dimensions. As dis-

cussed in the Proof of Property 2, Assumption 1 makes the

modulo operation transparent for the computation of the en-

tropy, since this is invariant to translations. Making use of the

chain rule for mutual informations [6], we can write

(31)

7Moreover, this is a necessary condition for the lattices to achieve the channel
capacity in the lattice DC–DM scheme [22].
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where is the dither conditioned on the

first observation (as it follows from Property 1 and Lemma 1).

Thus, each new observation conditioned on and can be

written as8

(32)

where is the self-noise term,

with the same statistical distribution as and, hence, with the

second moment per dimension . From (31), it

can be seen that the following equality holds:

for

(33)

so we can use the second term of (31) for obtaining a lower

bound on the equivocation per dimension, as shown in

Appendix B

(34)

This lower bound is loose for small , but the next result shows

that it is asymptotically tight for .

Theorem 1: In the limit when , using the optimum

lattice quantizer , the equivocation per dimension in lattice

DC–DM is given by

for (35)

where is the embedding distortion per dimension (26).

Proof: See Appendix C.

Notice that when , (34) coincides with (35), because

. The first term in (35) accounts for the rela-

tion between the embedding distortion and the a priori entropy

of the secret dither. The second term tells us how the equivo-

cation decreases with , and the third term shows the depen-

dence with the distortion compensation parameter , which ba-

sically introduces a constant shift in the equivocation curve (re-

call that for , the residual entropy is for ).

The asymptotic value of the equivocation is plotted in Fig. 3

8As discussed before, the residual entropy in the KMA scenario does not de-
pend on the specific message sequence as long as this is known, so we consider
d = 0 8i = 1; . . . ; N ; without loss of generality for the remainder of this
section and in the corresponding appendices.

Fig. 4. Comparison, in terms of equivocation per dimension, between lattice
DC–DM and additive spread spectrum. � = 0:7 for DC–DM.

for reference, showing the gap with the root lattices studied be-

fore. The above theorem is the formal statement of a more intu-

itive result: the Voronoi region of tends to a sphere and, in

turn, the uniform distribution in tends asymptotically to

a Gaussian distribution (in the normalized entropy sense) [26];

hence, roughly speaking, each modulo- -reduced observation

(32) becomes closer to a Gaussian distribution with variance

, whose mean is given by the secret dither (also with

the same statistical distribution). This interpretation brings more

insight in the comparison of the theoretical security between

lattice DC–DM and additive spread-spectrum methods. For the

latter, the embedding function is given by ,

where and are the host and the spreading vector, respec-

tively, with the latter playing the role of the secret key. Notice

that the resemblance between this embedding function and (32)

implies similar security properties for both methods. Consid-

ering that and , it was

shown in [3] that

(36)

where now . It can be readily seen that the decrease

in the equivocation for additive spread spectrum is determined

by the ratio , which is usually very small due to im-

perceptibility constraints. Instead, for lattice DC–DM after the

modulo- reduction, the power of both the watermark and the

host interference are the same (i.e., ); this ex-

plains the term in (35) and the rapid decrease of

the equivocation, compared to that of (36).

Fig. 4 shows a comparison between lattice DC–DM and ad-

ditive spread spectrum for different values of embedding distor-

tion, parameterized by the document to watermark ratio, defined

as .
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D. Bounds on the Estimation Error

Let us define the estimation error as , where is the

dither estimate. If the covariance matrix of the estimation error

is given by , then it is immediate to upperbound its entropy

by

(37)

Furthermore, note that

(38)

since is a function of the observations. Thus

(39)

where the second inequality follows from the fact that

([6] Theorem 16.8.4). Let us

define the variance per dimension of the estimation error as

. Then, from (39), we have the following

lower bound on :

(40)

which is nothing but the entropy power of given obser-

vations [6]. It can be observed that, for achieving an error-free

estimate, the equivocation must necessarily approach . Sub-

stituting (35) into (40), we arrive at the following bound for

and the optimal lattice quantizer:

(41)

The above bound is attained by using the simple averaging es-

timator, but taking into account that the observations must be

properly shifted in order to avoid problems with the modulo-

reduction; thus, if we define

(42)

then the optimal dither estimator for , is given by

(43)

The achievability of (41) follows from the fact that, for , the

self-noise and the secret dither follow asymptotically a Gaussian

distribution as . Thus, this result about the estimation

error can be compared to the estimation error for the cubic lat-

tice. Since we are interested in obtaining the behavior for large

, we make use of the approximation

, which is asymptotically tight for large , with

the harmonic number and the Euler–Mascheroni

constant, defined as . In this case

we have, using (29)

(44)

Thus, the variance per dimension approximately decreases with

the inverse of the squared number of observations. This bound

can even be compared to the exact error variance of the optimal

dither estimator in order to check the tightness of the bound.

For the cubic lattice, dither estimation may be carried out in-

dependently for each component without loss of optimality. It

is a well-known result that the optimal dither estimator in a

mean-squared error sense is given by the mean value of the

dither conditioned on the observations: in our case, the th

component of the dither is uniformly distributed in an interval

; hence, the optimal estimate is , and

the variance per dimension of the estimation error is

(45)

where is the width of the feasible interval, and

the expectation is taken over the joint pdf of the observations.

Actually, this expectation may be computed by replacing

by in (64) of Appendix A, resulting in

(46)

which for large is dominated by the term , differing from

the right-hand side of (44) only in a constant multiplying factor.

Note that due to the approximation of used in (44), the

latter is a lower bound only for ; nevertheless, making

use of the exact expression for , the right-hand side of (44)

can be shown to be always lower than (46).

IV. PRACTICAL ALGORITHMS FOR SECRET DITHER ESTIMATION

The theoretical analysis carried out in the previous sections,

besides quantifying the information leakage about the secret

dither, gives important hints about how to perform dither esti-

mation. Indeed, the information-theoretic formulation given in

Section II is closely related to the theory of set-membership es-

timation (SME) (also known as set-theoretic estimation) [27],

[28], which is widely known in the field of automatic control

and in certain signal processing areas, such as image recovery.9

In the set-membership formulation of a problem with solution

space , the th observation is associated with a subset

that contains all estimates which are consistent with that obser-

vation; formally, can be expressed as

(47)

9Interestingly, the set-membership framework has been previously applied to
watermark embedding in speech signals [29].
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where is a certain indicator function that depends on the

problem formulation, and is the number of available obser-

vations. The subset of estimates which are consistent with all

of the available information is the so-called feasible solution set

and is given by ; finally, a set-membership esti-

mate consists in choosing any point .

In the dither estimation problem, the solution space of interest

is . We will deal for now only with the KMA scenario, de-

ferring until Section IV-C the (minor) modifications needed to

cope with the CMA case. Thus, the indicator function is given

by

otherwise
(48)

so and , where and were defined in

Property 1. Moreover, if , which is the worst case

for the attacker, the set-membership estimator becomes the max-

imum likelihood dither estimator. Although intuitively simple,

such an estimator may not be practical, since exact computation

of the solution sets may be computationally prohibitive, because

of the increasing number of vertices in for . Never-

theless, the attacker may not be interested in obtaining the exact

, but instead be satisfied with an accurate approximation of

the feasible solution set. Algorithms that are suitable for per-

forming such approximation are discussed in this section. Albeit

other algorithms with better performance could be devised, our

main purpose is to show that the theoretical information leakage

may be exploited in practice with manageable complexity.

According to Property 2, the assumption allows us

to consider the feasible region as a modulo convex set. Fur-

thermore, if we shift all observations by , then the

modulo operation is transparent, so the feasible regions for each

observation (8) can be now simplified to10

(49)

with defined in (42), rendering the problem convex, since the

feasible solution sets (which are, in fact, polytopes) result from

the intersection of convex sets. Some guidelines about how to

modify the algorithms in order to work with will be

given in Section VIII.

The Voronoi region of any lattice can be described in a variety

of ways; for our purposes, the most appropriate description is by

means of the bounding hyperplanes corresponding to its facets.

In the following we assume that, for a Voronoi cell with

facets, we know: 1) a vector which is outward-pointing

normal to the th facet; 2) a point on the th facet. Taking

into account each of the modified observations , we have

(50)

A. Inner Polytope Algorithm

The set of modified observations together with (50) de-

fine an ensemble of linear inequalities which, in turn, describe

10Obviously, the offset�~y �d must be removed from the final estimate.

a polytope in -dimensional space. Hence, the feasible solution

set can be expressed as

(51)

We are interested in computing an approximation of the fea-

sible region. For such an approximation to be valid, it must out-

erbound (as tightly as possible), since we do not want to

discard any point in a priori, and it is also desirable that

the approximate region be easy to describe. Then, a reasonable

choice is to search for the ellipsoid of minimum volume that

contains (formally known as the Löwner–John ellipsoid

of [30]). Unfortunately, the problem of finding the ellip-

soid of interest is ill-posed (indeed, it has been shown to be an

NP-complete problem) [31], but on the other hand, the problem

of finding the maximum volume ellipsoid contained in the poly-

tope defined by a set of linear inequalities is well posed. More-

over, if we scale such an ellipsoid by a factor of around its

center ( is the dimensionality of the lattice), then the resulting

ellipsoid is guaranteed to bound [30]. An ellipsoid

in Euclidean space is defined by its center and a symmetric

positive definite matrix such that

(52)

The computation of and for the maximum volume ellip-

soid contained in can be written as a convex minimization

problem with second-order cone constraints [30]

(53)

This problem can be recast as a semidefinite problem [32] where

a linear function is minimized subject to linear matrix inequality

(LMI) constraints; this kind of optimization problems can be ef-

ficiently solved by means of interior-point methods [31]. As will

be checked in Section V, this approach yields tight approxima-

tions to , but it presents an obvious drawback: the potential

complexity of the minimization problem arising from the huge

number of constraints imposed by large and . The scheme

presented in the next section reduces the complexity by means

of an iterative approach.

B. Optimal Volume Ellipsoid (OVE) [33]

This is a classical SME algorithm that was originally devised

for estimation in noisy AR models

where are the past observations,

is the vector of parameters to be estimated,
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and is the noise term, whose absolute value is assumed to

be bounded by . For the th observation, the feasible solution

set is given by all points in that are consistent with the

observation, that is

(54)

Equation (54) defines a region of delimited by two parallel

hyperplanes

which encloses the true parameter vector . The series of solu-

tion sets is then constructed iteratively as

. In order to avoid the costly computation of the exact

, the solution sets are approximately described by means

of bounding ellipsoids.

This algorithm can be straightforwardly applied to our

problem by slightly modifying the description of the feasible

region given in (50): in our case, we need to parameterize

as the intersection of a finite number of parallel hyperplanes.

Assuming that the Voronoi cell of the considered lattice is com-

posed of pairwise parallel facets [Fig. 5(a)],11 the feasible

solution set for the th observation can be specified by a matrix

and a vector such that ,

where

(55)

is the th column of , and is the th element

of . Hence, the series of solution sets is given by

(56)

The computation of the th solution set amounts to ob-

taining an ellipsoid . Such an

ellipsoid is iteratively computed in the following manner.

Step 1) First, make

Step 2) Compute

.

Step 3) Finally, make .

This way, in Step 2), we are intersecting iteratively one ellipsoid

with one set , as is depicted in Fig. 5(b). Clearly, we are

interested in finding the ellipsoid with minimum volume that

contains such an intersection, that is

subject to

(57)

11Should this not be true, the problem can still be recast in a similar manner
by adding some additional hyperplanes.

Fig. 5. (a) Voronoi region of the hexagonal lattice delimited by three pairs of
parallel hyperplanes. (b) Intersection between an ellipsoid and a pair of hyper-
planes.

which is precisely the minimization problem addressed in the

OVE algorithm [33], whose analytic solution reads as

(58)

where and are variables that depend on the observation

, the current ellipsoid and (details about

their calculation can be found in [33]), and finally is the th

column of matrix .

The algorithm just described is obviously optimal in one di-

mension, since the ellipsoids are simply real intervals. Another

interesting feature of this approach, and common to many other

iterative SME algorithms is that further refinements on the solu-

tion set are possible by recirculating the observed data, that is,

by feeding to the system the same set of observations repeatedly

(as if they were in a circular buffer, for instance). This is pos-

sible because the resulting bounding ellipsoid in the th iteration

depends on both the th bounding ellipsoid and the th ob-

servation. This important feature provides performance similar

to that of the above inner polytope algorithm, as will be checked

in Section V.

C. Dither Estimation in the CMA Scenario

The CMA scenario implies minor changes to the estimation

algorithms proposed above for the KMA case. Actually, estima-

tion in the CMA case can be performed as follows.

1) Assume that the sequence of observations is watermarked

with message .

2) Perform estimation as in the KMA case.

3) Once has been obtained, compute the approximate

feasible region as in (23).

4) Provided that , two possible cases may arise

after performing Step 3:

• The resulting feasible regions overlap; then,

according to (22), the probability of finding the dither in

their intersection is higher than in the remaining regions.

• The regions do not overlap; then, the dither is equally

likely in any of the feasible regions.
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Fig. 6. Performance comparison (in terms of residual entropy) for the hexagonal lattice (a) and Gosset lattice E (b), for KMA and � = 0:5.

V. EXPERIMENTAL RESULTS

This section provides a comparison of the practical perfor-

mance for the different estimators proposed in Section IV, con-

sidering only the KMA scenario. The optimization problems

involving LMIs were solved using the optimization packages

YALMIP [34] and SeDuMi [35] for Matlab, and the set of obser-

vations was generated according to the distribution given in

(5). As for the theoretical part, we will consider here some of the

so-called root lattices and their duals, introduced in Section III.

The Voronoi regions of these lattices are described in [24], from

which we derived all of the parameters needed for implementing

our attack. We provide two different measures of performance

of the proposed estimators:

1) the first one is based on the volume of the estimated feasible

regions. The volume of the th ellipsoid reads as

(59)

where stands for the volume of the -dimensional

sphere of unit radius. When , all points

in the interior of the estimated feasible region have

the same probability of being the true dither vector ,

so it is immediate to compute the residual entropy of the

dither as . The average value of this empir-

ical residual entropy is computed over a large number of

realizations. The performance of each method is quantified

by the gap between this measure and the theoretical result

of Section III.

2) The second measure of performance is the squared esti-

mation error per dimension (i.e., ), where

has been taken as the center of the resulting ellipsoid. Note

that, as long as this center is close to the center of masses of

, the resulting estimator will be close to the minimum

mean-squared error estimator (i.e., the conditional mean

estimator). Again, the plots represent this squared error av-

eraged over a large number of observations.

In the experiments, the embedding distortion was fixed to

, with . Fig. 6 shows the performance

(in residual entropy terms) of the different estimators when the

embedding lattices are the hexagonal and [19]. Although the

inner polytope algorithm provides the best performance, it can

be observed that the property of recirculation allows to com-

pensate for the loss of optimality of the OVE algorithm. The

performance gain is remarkable for the first recirculations, but

marginal above a certain number, as can be seen in Fig. 6(b).

Also, notice that the number of recirculations must be increased

with in order to match the performance of the inner polytope

algorithm. Finally, the plots in Fig. 7 show the empirical mean

squared error per dimension obtained with each method. The

lower bound given by (40) is plotted for comparison, showing

the good performance of both methods. Interestingly, the OVE

algorithm seems to perform better than the inner polytope in

terms of mean squared error. The performance of the averaging

estimator is also plotted for reference; such an estimator is op-

timal for and , as discussed in Section III-D, but for

small , it is clearly far from being so.

A. Possible Attacks Based on Dither Estimates

Once the attacker has estimated the dither signal (using the

methods proposed here, for instance), he or she can exploit this

knowledge in order to devise powerful attacks against the data

hiding scheme which would not be possible for a blind attacker.

The following are some examples.

1) Complete watermark removal: under the KMA assump-

tions (i.e., knowledge of the message embedded) the em-

bedding process of lattice DC–DM is fully invertible when

the dither is known, as long as the distortion compensation

parameter used is smaller than 1 [16, Sec. VII]. This im-

plies that the attacker is able to recover the original host

signal, provided that and the watermarked signal

does not suffer any noninvertible transformation a poste-

riori, such as clipping or rounding. In the CMA case, there

is not a unique possible original host, but the uncertainty is

reduced to a finite set of vectors (as many as ).
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Fig. 7. Mean squared error per dimension of the dither estimate, for the hexagonal lattice (a) and Gosset lattice E (b), for KMA and � = 0:5.

2) Unauthorized embedding of messages: in copy protection

scenarios, the attacker may remove the watermark inserted

in a certain protected content and embed later a different

message: for instance, he or she may change the status of

a video from “Copy Never” to “Copy Once.”
3) Generation of forgeries: in the authentication scenarios

proposed by Eggers et al. [17] that are mainly threatened

by the CMA attack, as it was discussed in the introduction,

the attacker can watermark contents that will be taken as

authentic. Notice that for generating a forgery, there is no

need to know the exact correspondence between messages

and coset representatives.

4) And, finally, unauthorized decoding of messages em-

bedded in other pieces of content watermarked with the

same key. Take into account that reliable decoding is

possible only if the dither estimate was obtained in the

KMA scenario; in the CMA case, the ambiguity on the

embedded message will allow, at most, to check whether

different watermarked contents convey the same message

or not.

Obviously, the goodness of the host reconstruction in the first

attack will depend on the accuracy of the dither estimate at hand.

For the other attacks, this accuracy will affect their probability

of success in the sense that poor estimates may lead to the wrong

decoding/detection region.

B. Complexity Issues

One can find in the literature of set-membership estimation

approaches that offer better performance than the ellipsoidal ap-

proximations by computing the exact solution sets [28], [36].

Nevertheless, they may be very computationally demanding in

large-scale problems. Instead, the algorithms considered in this

paper have proved to be efficient in giving approximate solu-

tions for several hundreds of observations. For the optimization

problem in (53), it has been shown that the number of itera-

tions needed to solve the problem (by means of interior-point

methods) does not grow faster than a polynomial of the problem

size [32].12 Most of the computational cost of each iteration

lies in the least-squares problem (of the same size as the orig-

inal problem) that must be solved, whose number of iterations

is again polynomial with the problem size. However, in prac-

tice, it is possible to exploit the problem structure (sparsity,

for instance) so as to reduce complexity: in our case, for ex-

ample, there is a potentially large number of redundant con-

straints that can be removed for alleviating the computational

burden. For high-dimensional lattices, it is also possible to sim-

plify the problem description (albeit resulting in looser esti-

mates) by approximating the considered Voronoi region by an-

other simpler polytope that bounds .

For the OVE algorithm, the number of arithmetic operations

(scalar sums and products) carried out in each iteration is .

Also, in the OVE algorithm, we perform exactly

iterations, where is the number of observations, is the

number of facets of the Voronoi cell (equivalently, the number of

linear inequalities specifying the problem), and is the number

of recirculations of the data. The term will largely depend

on the considered lattice, in general, and will be determined

by the required accuracy, giving a degree of freedom to the at-

tacker. Finally, it is interesting to note that OVE-like algorithms

automatically get rid of redundant constraints, using only those

pairs of hyperplanes that produce an update on the solution set.

VI. COMPARISON: LATTICE DC–DM VERSUS COSTA

For the lattice DC–DM scheme we have analyzed in

Section II, the entropy of the codebook is rather limited due to

the codeboook structure and the chosen form of randomization,

negatively affecting security. Lattice DC–DM schemes are

deeply connected with the theoretical construction developed

by Costa [18]. However, the codebook in the latter is totally

different since it is random by definition. The main purpose of

the brief comparison given in the following is to quantify how

12The size of an optimization problem is commonly understood as the dimen-
sionality of a vector whose components are the coefficients of the analytical ex-
pressions for the constraints and the objective variables.
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Fig. 8. Comparison of the security provided by Costa’s scheme and lattice DC–DM, in terms of mutual information (a), and residual entropy (b) per dimension.
DWR 10 log (�), and WNR log (�).

much can be gained in terms of security by using a codebook

with these characteristics. The theoretical security analysis for

Costa’s scheme will not be included in this paper due to the

lack of space, but it can be found in [10].

In Costa’s scheme, for the KMA case and , it can be

shown that (recall that )

(60)

where and stand for host and watermark power, respec-

tively, and denotes the differential entropy of the code-

book, given by . Equa-

tion (60) depends on the ratio which quantifies

the embedding distortion, whereas depends both on and

, where is the channel noise. Interestingly, if

we make (which corresponds to a low embedding

distortion regime), the information leakage for Costa tends to

, exactly as for DC–DM (17). Actually, the infor-

mation leakage in lattice DC–DM also depends on and, in fact,

it is possible to compute this dependency by means of numerical

integration. In Fig. 8(a), the information leakage for Costa and

scalar DC–DM (i.e., SCS) is shown. The striking similarity in

the behavior of both schemes is remarkable. Furthermore, it can

be seen that the asymptotic analysis is in good agreement with

the numerical results for the range of embedding distortions of

practical interest.

Nevertheless, when the comparison between Costa and lattice

DC–DM is made in terms of residual entropy, the similarities

disappear [Fig. 8(b)] whereas for lattice DC–DM, the entropy

of the codebook is bounded by , the residual en-

tropy in Costa’s scheme is unbounded when . The last

fact is a consequence of the codebook construction in Costa,

where all codewords are mutually independent and its number

increases with . This constitutes the main advantage, in terms

of security, of the random codebook scheme over the lattice

scheme that relies solely on dithering. For lattice DC–DM, the

number of codewords follows a similar dependence with , but

every codeword just depends on , the corresponding coset rep-

resentative, and the secret dither.

On the other hand, for the CMA case and assuming that the

watermarker is transmitting information at the maximum reli-

able rate allowed by the channel, we have (for )

(61)

This result is clearly related to that given in (24) for DC–DM.

Here, we can see that the uncertainty about the codebook in-

creases exactly in the same quantity as the reliable transmission

rate.

VII. APPLICATION TO OTHER SCENARIOS

In this section, we discuss the application of the proposed ap-

proaches to other related but more involved scenarios. This also

shows the importance of the KMA scenario and of the estima-

tors developed for such a case.

1) : Our analysis was restricted to the case .

In the theoretical part, all of the given information leak-

ages constitute upper bounds for . For this case,

the theoretical analysis gets more intricate, since the fea-

sible region may be composed of multiple modulo-

convex sets (Fig. 2). Difficulty of the estimation is also

greatly increased, since it would be necessary to apply sev-

eral KMA/CMA estimators in parallel, one for each pos-

sible convex set. With large enough, all convex feasible

regions are likely to vanish except one (in the KMA case),

but the increase in the number of convex sets during the first

observations may be fairly large, especially when .
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In such a case, other set-membership approaches suited to

nonconvex solution sets may perform better [28].

2) Spread transform dither modulation (STDM) [13]:

DC–DM schemes may be applied in conjunction with

spread transform in low-rate data-hiding applications.

In that kind of scheme, lattice quantization takes place

in a secret projected domain, parameterized by a certain

projection matrix, and secret dithering can still be used

in the projected domain for improving the security of the

scheme. Ignorance of the projection matrix invalidates

direct application of the estimation algorithms proposed

here; however, recent works [2], [12] have shown that

independent component analysis (ICA) may be used for

estimating the projection matrix. Thus, if ICA is suc-

cessful, dither estimators may be applied in a second step.

3) Total ignorance of the embedded messages: consider a gen-

eral scenario where the only information at hand for the at-

tacker is the set of watermarked signals; this is the so-called

watermark only attack (WOA), following the nomencla-

ture introduced in [2]. A theoretical analysis similar to that

of the KMA may be used to show that in this framework, it

is possible to achieve (at least theoretically) perfect secrecy

in some cases [10], [37], for instance, when is used

in a binary transmission scheme. In the practical side, it is

still possible to carry out dither estimation as long as the

perfect secrecy condition is not fulfilled; however, KMA

estimators cannot be directly applied: one needs to hypoth-

esize first a message sequence and then apply the KMA

estimator. However, the problem can be tackled without

the need of a brute-force approach if the posterior proba-

bility of the message sequences is considered. The max-

imum likelihood estimate of the message sequence is

(62)

and the posterior probability can be factored as

(63)

where the conditional pdf of the secret dither is given by

(11). When the pdf of the secret dither is uniform, com-

putation of each term in (63) is straightforward, since it is

proportional to the volume of . Based on this

factorization, dither estimation in the WOA scenario may

be thought of as a tree search where a KMA estimator is

applied to each branch, and each branch corresponds to

a hypothesized message sequence whose probability can

be computed through (63). During the tree search, those

branches with low probability may be discarded for simpli-

fying the estimation. Moreover, if the value of is above a

certain threshold (which depends on and the specific

lattice partition), the complexity of the tree search can be

dramatically reduced because all branches with non-null

probability can be written in terms of a unique branch.

As an interesting byproduct of this approach, an estimate

of the embedded message sequence can be also obtained.

Nevertheless, notice that these are only the main guidelines

of the procedure that should be applied to the WOA sce-

nario; a more rigorous and complete analysis will be pub-

lished elsewhere.

4) Permutations: the security of a lattice DC–DM scheme

may be improved by applying secret permutations to the

host vectors. This introduces an additional degree of un-

certainty that invalidates the direct application of the esti-

mators proposed in this paper. However, if the same per-

mutation is used in multiple watermarked blocks, it is still

possible to exploit the information leakage, as shown in

the next example: assume that the host is partitioned in

-length vectors , and these vectors are ar-

ranged in a matrix . Given a secret permutation

matrix , the columns of the new matrix are

watermarked using the standard lattice DC–DM scheme,

yielding a watermarked matrix . Later on, the inverse

permutation is applied to , obtaining , and its rows

are the observations that are made available to the attacker.

Depending on the symmetry properties of the embedding

lattice, two possible cases arise:

1) The lattice is symmetric to permutations of its com-

ponents. This happens, for instance, to the cubic and

checkerboard (also known as quincunx) lattices in two

dimensions [7], [19]. If this is the case, then the at-

tacker can run the dither estimation algorithm disre-

garding the actual permutation, obtaining an estimate

of the permuted dither. It is easy to see that this per-

muted estimate allows the same attacks as those dis-

cussed in Section V-A, as long as the permutation and

the secret dither are the same in the attacked contents.

2) The lattice is not symmetric to permutations. The

main consequence is that the feasible regions for the

dither are different under each permutation, and this

can be exploited to detect inconsistent arrangements

in the components of the observations (i.e., those

arrangements that produce an empty feasible region

cannot be correct). Some experiments performed with

the OVE algorithm and the hexagonal lattice have

shown that, using ten recirculations, an average of 32

observations is needed to successfully detect inconsis-

tent arrangements of the components. Using the inner

polytope algorithm, it is also possible to check incon-

sistencies: one just needs to run the feasibility test

to check whether all constraints in the optimization

problem can be simultaneously satisfied or not. If not,

the considered arrangement is inconsistent.

VIII. CONCLUSION

The main conclusion of this work is that lattice DC–DM

schemes for data hiding relying only on secret dithering are

vulnerable to security attacks both in the KMA and CMA

scenarios, of practical interest as discussed in the Introduction.

For the scenarios considered in this paper, it was shown in

Section III that the security level (in terms of residual entropy)
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can be enlarged by increasing the dimensionality and choosing

the appropriate lattice quantizer, although the gain for small is

rather limited; also, asymptotic values are given for the equiv-

ocation and the variance of the estimation error, explaining the

fundamental gap between the security of DC–DM schemes

and spread-spectrum methods. Section V shows the strong

link between the information-theoretic and set-membership

estimation frameworks, applying the latter for the first time to

attacks in the data hiding scenario. Additionally, the results

in that section confirm that (suboptimal) attacks to security

can be made with manageable complexity, yielding accurate

dither estimates. This highlights the need for key management

solutions, such as those proposed in [38] through temporal

redundancy control, in order to reduce the number of observa-

tions conveying information about the same dither sample.

The comparison given in Section VI shows that the security

weaknesses of lattice DC–DM are not inherent to quantization-

based schemes, but they are due to the fact that the randomness

of the codeboook relies only on secret dithering. A possible

improvement using permutations was briefly considered in

Section VII, but dither estimation attacks still seem to be

possible, at least with low-dimensional lattices. A new strategy,

recently proposed in [39], is the application of secret rotations

to the embedding lattice. This approach, in conjunction with

permutations, still keeps the structure of the codebook (which

is desirable from an implementation point of view) while

increasing its a priori entropy. Obviously, the counterpart is the

increase needed in the length of the key, but it still constitutes a

promising strategy that deserves rigorous analysis in the future.

APPENDIX A

RESIDUAL ENTROPIES IN ONE DIMENSION

Here, we compute the mean value of (28). It can be seen that

. Hence,

, where is the random variable defined as

where , so the pdf of is .

This allows us to rewrite the problem as

(64)

First, let us see how the pdf of can be computed. For having

, it should be and ;

this is so when , and , for

, but taking into account that there are

infinite values of that yield . Hence, the pdf of reads

as

(65)

where the factor comes from the number of dif-

ferent orderings of the minimum and the maximum in vector

; since all observations are iid, we can simply mul-

tiply the integral by this factor. When , the com-

putation of (65) in this case is straightforward and yields

(66)

for . By inserting (66) into (64) and applying

integration by parts recursively, the residual entropy results fi-

nally in

(67)

where is the th harmonic number.

APPENDIX B

LOWER BOUND ON THE EQUIVOCATION

By the definition of mutual information, we have

(68)

The first term of (68) can be bounded from the above as [6]

(69)

where is the th component of , and denotes the th

component of . Since the host signals and the secret dither

are mutually independent, it follows that and are in-

dependent. Hence, we can write

(70)

where , and

. Furthermore, it follows from Assumption 2

that the self-noise is white [26] with variance per dimension

. Hence, by considering that are mutually

independent for all , we have

...
...

. . .
... (71)

for . This allows us to bound (69) as [6, Theorem

9.6.5]

(72)
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The equivocation or residual entropy is

(73)

hence, using (68) and (72), (73) can be lower bounded as

(74)

Taking into account that

, and rearranging terms, we finally arrive at the

following lower bound to the equivocation per dimension:

(75)

and after substituting

, we obtain (34).

APPENDIX C

PROOF OF THEOREM 1

In order to arrive at (35), we start from the expression

(76)

which can be straightforwardly obtained by following the rea-

soning in Appendix II. First, we note that for the sequence of

optimum lattice quantizers , we have [26]

(77)

On the other hand, we want to prove that the following relation

holds:

(78)

with independent and uniformly distributed in

, being the Voronoi cell of with

second moment per dimension . Notice that we have

rearranged the observation indices from 1 to , for the

sake of clarity. We will prove this result by making use of two

lemmas.

Lemma 3: Let be two independent random variables

uniformly distributed in . We have that

(79)

Proof: The entropy power inequality [6] states that

(80)

Furthermore, we know that [26]

(81)

so we can write

(82)

with . Thus, from (80), we

have that

(83)

and we know from (72) that

(84)

for all . Hence, by combining (83) and (84), the lemma

follows.

Lemma 4: For uniformly distributed in ,

the following result holds:

(85)

Proof: We will prove the result by induction. Since it was

proven for in Lemma 3, we will show now that it is true

for , assuming that it holds for . Making use of

the entropy power inequality and the convexity of

in [40], we can write

(86)

By using the chain rule for entropies, it can be shown that the

following equivocation can be written as:

(87)
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and making use of the inductive hypothesis we have that

(88)

Thus, if we take limits in (86), we arrive at the following bound:

(89)

Note that from the bounding given in (72) and the inductive

hypothesis, it follows that:

(90)

Hence, by combining (89) and (90), the lemma follows.

Now, using the chain rule for differential entropies, we can

write

(91)

and taking the limit when , by virtue of Lemma 4, we ar-

rive at the result given in (78). Finally, by combining (76)–(78),

we can conclude that

which is the desired result. If we identify now

, then Theorem 1 follows.
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