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The ‘‘Ping-Pong’’ (PP) protocol is a two-way quantum key protocol based on entanglement. In this protocol,
Bob prepares one maximally entangled pair of qubits, and sends one qubit to Alice. Then, Alice performs
some necessary operations on this qubit and sends it back to Bob. Although this protocol was proposed in
2002, its security in the noisy and lossy channel has not been proven. In this report, we add a simple and
experimentally feasible modification to the original PP protocol, and prove the security of this modified PP
protocol against collective attacks when the noisy and lossy channel is taken into account. Simulation results
show that our protocol is practical.

Q
uantum key distribution (QKD)1,2 allows two remote parties (Alice and Bob) to establish unconditional
secure-key bits. Research of QKD mainly concerns one-way protocols. BB841 protocol is the most
commonly used one-way QKD protocol. One-way QKD protocols need the information carriers to

be transferred from Alice to Bob via the quantum channel to generate the secure-key bits. For example, in BB84,

Alice randomly prepares her qubits into one of the quantum states j0æ, j1æ, zj i~ 0j iz 1j ið Þ
. ffiffiffi

2
p

, and

{j i~ 0j i{ 1j ið Þ
. ffiffiffi

2
p

, and sends them to Bob via an untrusted quantum channel. Then Bob performs some

measurements on the incoming qubits and key bits are generated.
In the past decade, some two-way QKD protocols have been proposed3–7 and experimentally realized8–12. In

these protocols, Bob prepares some quantum states and sends them to Alice, Alice performs encoding operations
on the received states and sends them back in the same quantum channel, then Bob makes some measurements
and gets the key bits. Typical examples of these protocols are ‘‘Ping-Pong’’ (PP)3 protocol, LM056 protocol and
N097 protocol. The first one uses entanglement while the last two protocols not. These protocols are all deter-
ministic, which means Bob can obtain Alice’s key bits directly, without a basis reconciliation step.

The major difficulty of the security proof for the two-way QKD protocols is that the eavesdropper, Eve, may
attack the travel qubit on both the forward (Bob-Alice) channel and the backward (Alice-Bob) channel. This makes
the security analysis quite complicated. Fortunately, for the LM05 protocol, its security has been proven in different
ways13–15 recently, and N09 protocol is also proven to be secure in Refs. 16, 17. A super dense coding (SDC)
protocol similar to PP protocol is also proved secure15. However, these proofs are all based on the assumption that
there are no losses in the channel and detectors. In fact, the security of PP protocol has been challenged by channel
loss18–21. Hence, the security of PP protocol when loss is considered remains an open question until now.

In this paper, we propose a modified Ping-Pong protocol and prove its security against collective attacks in
noisy and lossy channel. To the best of our knowledge, this is the first security proof of PP protocol considering the
loss in channel.

Original ping-pong protocol
It’s beneficial to give a brief description of the PP protocol. Consider that Bob prepares two-qubits maximally
entangled state Wzj i~ 1

� ffiffiffi
2
p� �

00j iz 11j ið Þ, where j0æ and j1æ are the eigenstates of Pauli matrix sz. He sends one
of the qubits (travel qubit) to Alice via an untrusted channel and retains the other (home qubit) in her quantum
memory. Then, Alice randomly chooses message mode or control mode to proceed. In message mode, Alice
performs an unitary operation I to the incoming qubit to encode classical bit 0, or sz to encode bit 1. After her
encoding operation, Alice sends this qubit back to Bob. When Bob receives the travel qubit, he performs a Bell
measurement on both qubits to decode Alice’s bit. In control mode, Alice measures the travel qubit in the basis Bz
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5 {j0æ, j1æ} and announces her measurement outcome through an
authenticated channel. On receiving Alice’s measurement result, Bob
also measures his home qubit with Bz and compare his own mea-
surement result with Alice’s. If Alice’s and Bob’s measurement
results coincide, the PP protocol continues; otherwise, they may
terminate the protocol. Hence the control mode is used to guarantee
the security, while the message mode is for key distribution.

In next section, the modified PP protocol will be given.

Modified ping-pong protocol
In the modified PP protocol, we also use the maximal EPR pair Wzj i
~ 1

� ffiffiffi
2
p� �

00j iz 11j ið Þ. This protocol process contains four steps:

1. Bob prepares N pairs of entangled states Wzj i~ 1
� ffiffiffi

2
p� �

00j iz 11j ið Þ. He sends half of states (travel qubits) to Alice
through a noisy and lossy quantum channel(forward channel),
and keeps the other half (home qubits) in his quantum
memory.

2. Alice randomly switches to message mode or control mode
with probability c and 1 2 c respectively. In message mode,
Alice performs one of the four unitary operations I0, I1, Y0 and
Y1 to the incoming states, i.e.,

I0 vj i, 0j i, 1j if g~ vj i, 0j i, 1j if g, I1 vj i, 0j i, 1j if g~ vj i,{ 0j i,{ 1j if g,

Y0 vj i, 0j i, 1j if g~ vj i, 0j i,{ 1j if g, Y1 vj i, 0j i, 1j if g~ vj i,{ 0j i, 1j if g:

where jvæ means the vacuum state. Due to the existence of
vacuum state, I0 and I1 are no longer identical. So is Y0 and
Y1. The probabilities of each operation are all 1/4. For opera-
tions I0 and I1, Alice records her classical information as bit 0.
For Y0 and Y1, Alice records bit 1. Then Alice sends the encoded
states back to Bob through the backward channel. In control
mode, Alice measures the incoming signals with projectors {jvæ
Ævj, j0æ Æ0j, j1æ Æ1j}. Then Alice records her measurement results.

3. Bob also randomly switches to message mode or control mode
with probability c and 1 2 c respectively. In message mode, Bob
performs a Bell-states measurement on his home qubit and his
received travel qubit to decode Alice’s information (i.e., when
Alice encodes bit 0, Bob may obtain the Bell state
Wzj i~ 1

� ffiffiffi
2
p� �

00j iz 11j ið Þ; when Alice encodes bit 1, Bob
may obtain W{j i~ 1

� ffiffiffi
2
p� �

00j i{ 11j ið Þ). In control mode,
Bob measures his reserved qubits with projectors {jvæ Ævj, j0æ
Æ0j, j1æ Æ1j} and records the measurement results.

4. Alice and Bob publicly announces which trials are in message
mode, which are in control mode and their measurements
results in control mode. Then Alice and Bob can share the
probabilities p00, p01, p0v, p10, p11, and p1v (i.e. p0v is the prob-
ability Alice receives a vacuum state when the travel qubit is j0æ,
and other probabilities have the similar meanings). These prob-
abilities will be used to bound the eavesdropper Eve’s informa-
tion on key bits. By sacrificing certain bits for error testing, Alice
and Bob can also estimate the error rate e for their key bits. Alice
and Bob then do classical postprocessing error correction (EC)
and privacy amplification (PA) to generate secure-key bits.

The protocol flow is illustrated in Fig. 1.

Security proof of modified ping-pong protocol
Eve’s Attack in the Bob-Alice channel. Eve’s most general collective
attack in the Bob-Alice channel can be written in the form

UAE 0j iA Ej i~ ffiffiffiffiffiffi
p0v
p

vj iA E0vj iz ffiffiffiffiffiffi
p00
p

0j iA E00j iz ffiffiffiffiffiffi
p01
p

1j iA E01j i

UAE 1j iA Ej i~ ffiffiffiffiffiffi
p1v
p

vj iA E1vj iz ffiffiffiffiffiffi
p10
p

0j iA E10j iz ffiffiffiffiffiffi
p11
p

1j iA E11j i
ð1Þ

where p0v is the probability Alice receives a vacuum state when the
travel qubit is j0æ, so is p00, p01, p1v, p10 and p11. Normalized
vectorsjEivæ and jEijæ are possible quantum states of Eve’s ancilla.

So the joint density matrix of the travel qubit and Eve’s ancilla
becomes

rAE
Bob{Alice~UAEtrBP Wz

AB

�� �
Ej i

� 	
Uz

AE

~UAE
1
2

0j iA 0h j6 Ej i Eh jz 1
2

1j iA 1h j6 Ej i Eh j

 �

Uz
AE

~
1
2

P
ffiffiffiffiffiffi
p0v
p

vj iA E0vj iz ffiffiffiffiffiffi
p00
p

0j iA E00j iz ffiffiffiffiffiffi
p01
p

1j iA E01j i
� 	

z
1
2

P
ffiffiffiffiffiffi
p1v
p

vj iA E1vj iz ffiffiffiffiffiffi
p10
p

0j iA E10j iz ffiffiffiffiffiffi
p11
p

1j iA E11j i
� 	

,

ð2Þ

in which,P{jxæ} 5 jxæ Æxj.
After receiving the forward qubits, in encoding mode, Alice will

encode her key bits onto the forward qubit by the operations I0, I1, Y0

and Y1 with the same probability 1/4. The operations I0 and I1 result
in the same encoding key bit 0, Y0 and Y1 result in bit 1. The prob-
abilities that Alice encodes key bit 0 or 1 are still both 1/2.

Let us at first consider the case where Bob’s travel qubit collapses
into j0æ (i.e., this case corresponds to the third row of the Eq. (2).).
After Alice encoding bit 0, the joint state of Alice and Eve becomes

rAE0
Bob{Alice~

1
2

P
ffiffiffiffiffiffi
p0v
p

vj iA E0vj iz ffiffiffiffiffiffi
p00
p

0j iA E00j iz ffiffiffiffiffiffi
p01
p

1j iA E01j i
� 	

z
1
2

P
ffiffiffiffiffiffi
p0v
p

vj iA E0vj i{ ffiffiffiffiffiffi
p00
p

0j iA E00j i{ ffiffiffiffiffiffi
p01
p

1j iA E01j i
� 	

~p0vP vj iA E0vj i
� 	

zP
ffiffiffiffiffiffi
p00
p

0j iA E00j iz ffiffiffiffiffiffi
p01
p

1j iA E01j i
� 	

:

ð3Þ

For the case Alice encodes bit 1, the state is

rAE1
Bob{Alice~p0vP vj iA E0vj i

� 	
zP

ffiffiffiffiffiffi
p00
p

0j iA E00j i{ ffiffiffiffiffiffi
p01
p

1j iA E01j i
� 	

: ð4Þ

As described in our modified protocol, Eve cannot obtain any
information from the vacuum state. So we can exclude the vacuum
state from the joint state and renormalize effective encoding density
matrices. Define gR 5 p00 1 p01, p’00~p00=g? and p’01~p01=g?
(i.e., gR can be understood as the efficiency for the forward channel,
and is estimated directly in experiment.), then the effective encoding
matrices in the orthogonal basis {j0æAjE00æ, j1æAjE01æ} are given by

rAE0~
p’00

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p’00p’01

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p’00p’01

p
p’01

 !
,rAE1~

p’00 {
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p’00p’01

p
{

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p’00p’01

p
p’01

 !
, ð5Þ

rAE~
1
2

rAE0z
1
2

rAE1~
p’00 0

0 p’01

 !
: ð6Þ

Since the density matrix we get is already diagonal, our following
calculations can be very simple. With system AE, Eve’s Von-
Neumann entropies on Alice’s key bit A9, is given by:

S A’jAEð Þ~S rA’AE
� �

{S rAE
� �

~S
1
2

0j iA’ 0h j6rAE0z
1
2

1j iA’ 1h j6rAE1


 �
{S rAE
� �

~H
1
2


 �
z

1
2

S 0j iA’ 0h j6rAE0
� �

z
1
2

S 1j iA’ 1h j6rAE1
� �

{S rAE
� �

~1{H p’01

� �
,

ð7Þ

where H is the Shannon’s binary entropy function.

Eve’s Attack in the Alice-Bob channel. Quantum systems AE on the
backward channel can be divided into two events: Bob receives the
travel qubit and not. We label these two parts as rAE

received and
rAE

unreceived . As showed in the prior section, the ratio of the two parts
are gr and 1 2 gr respectively (i.e., gr is the efficiency of backward
channel, and can be estimated by Alice and Bob in experiment.). Our
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goal is to get the lower bound of H(AjE)received, which means the
conditional entropy of Alice on Eve in the case Bob receives the
backward qubits. From definition, we have

S A’jAEð Þreceived~S rA’AE
received

� �
{S rAE

received

� �
, ð8Þ

S A’jAEð Þunreceived~S rA’AE
unreceived

� �
{S rAE

unreceived

� �
: ð9Þ

According to the joint entropy theorem, and noticing that the
events Bob receives a returning qubit or not are orthogonal, we
obtain

S rA’AE
� �

~H g/ð Þzg/S rA’AE
received

� �
z 1{g/ð ÞS rA’AE

unreceived

� �
ð10Þ

S rAE
� �

~H g/ð Þzg/S rAE
received

� �
z 1{g/ð ÞS rAE

unreceived

� �
: ð11Þ

By (10)–(11),

S A’jAEð Þ~g/S A’jAEð Þreceivedz 1{g/ð ÞS A’jAEð Þunreceived ð12Þ

To obtain the lower bound of S(A9jAE)received, it is reasonable to
assume that Eve has maximal entropy of Alice’s key bit A9 in the
case Bob doesn’t receive the backward qubit. And recall Eq. (7), we
get

S A’jAEð Þreceived§
g/{H p’01

� �
g/

~1{
H p’01

� �
g/

: ð13Þ

Combined with the case that Bob’s travel qubit collapsed into j1æ,
Eve’s total entropy on Alice is given by:

S A’jAEð Þreceived§1{
H p’01

� �
zH p’10

� �
2g/

: ð14Þ

Secure key rate. We assume that the raw key bits are unbiased
distributed, which means the error rate Alice encodes 0 or 1 are
equal. The error bit e is defined as the probability Alice encodes 0
but the BSM gets jW2æ or Alice encodes 1 but the BSM gets jW1æ. By
the authenticated communications, Alice and Bob can estimate the
error rate e of their raw key bits. Then they will perform error
correction and privacy amplification to generate the secure-key
bits. The secure-key rate is given by22:

R§S A’jAEð Þreceived{S A’jBð Þ§1{
H p’01

� �
zH p’10

� �
2g/

{H eð Þ, ð15Þ

where, S(A9jB) is the conditional entropy for Bob’s key bits to Alice’s
key bits and equals H(e) under the unbiased distribution assumption.

We can find the the secure-key rate for this modified PP protocol is
very simple. Eve’s information on key bits can be just bounded by the
error rates for forward channel p’01, p’10 and the efficiency of back-
ward channel gr. The physics behind our proof is that our operation
I0, I1, Y0, and Y1 will introduce a phase randomization to Eve’s
accessed system AE. This phase randomization will lead to the deco-
herence of system AE and limit the information that can be gained by
Eve.

Simulation
To estimate the performance of our protocol, numerical simulation is
given. In this simulation, we use the polarization state of photon
transmitted in optical fiber to realize the coding system. On Bob’s
side, the home qubit is assumed to transmit in a round channel whose
the efficiency is the same as the Bob-Alice-Bob channel for simpli-
city. We use off-the-shelf experimental parameters to establish the
simulation, e.g., optical fiber is of an attenuation of 0.20 dB/km,
detection efficiency is gd 5 10% and its dark count rate is pd 5

1025. Besides, we consider a misalignment of detector as de 5 1%,
gR and gr in the key rate generation formula just equal the trans-
mission efficiency of the corresponding optical fiber g. All the polar-
ization error corresponding to p’01 comes from dark count of single

photon detector, so p’01~
ggddez 1{ggdð Þpd

ggdz2 1{ggdð Þpd
. For the error rate

between Alice and Bob, it only comes from dark count as

e~
1{g2ð Þg2gdpd

g4g2
dz2 1{g2ð Þg2gdpd

. The overall secure-key generation rate

is thus R~g4 1{
H p’01

� �
zH p’10

� �
2g

{H eð Þ

 �

per trial. The simu-

lation is shown in Fig. 2. This result show that the modified PP
protocol can distribute secure-key bits for distant peers around
50 km.

Discussion and conclusion
Two-way deterministic QKD protocols, including PP protocol, do
not require basis choices. Thus every encoded bit is used for final key
generation. Besides, it has been proved some two-way deterministic

Figure 1 | Coding system of modified PP protocol. There are two modes: message mode(solid line) and control mode(dash line) in the operations of

Alice and Bob. In message mode, if Alice wants to encode bit 0, she will randomly perform I0 or I1. If Alice wants to encode bit 1, she will randomly perform

Y0 or Y1. The operations are defined as I0{ | væ, | 0æ, | 1æ} 5 { | væ, | 0æ, | 1æ}, I1{ | væ, | 0æ, | 1æ} 5 { | væ, 2 | 0æ, 2 | 1æ}, Y0{ | væ, | 0æ, | 1æ} 5 { | væ, | 0æ, 2 | 1æ}, Y1{ | væ, | 0æ,
| 1æ} 5 { | væ, 2 | 0æ, | 1æ}. BSM is for Bell-states measurement, and Z represents the measurement defined by projectors { | væÆv | , | 0æÆ0 | , | 1æÆ1 | }.
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QKD protocols are secure against detector-side-channel attacks on
the backward channel23. These advantages make such type protocols
potentially useful.

The security of PP protocol when channel loss and noise are pre-
sented has been an open problem for a long time. To overcome this
problem, we add a simple and experimentally feasible modification
to the original PP protocol. Quite interestingly, our modification
only leads to a trivial overall to the system of Alice and Bob, but
can introduce a phase randomization for Eve’s system. With the
effects of this phase randomization, we prove the security of this
modified PP protocol when the noisy and lossy channel is taken into
account. Simulation results show that our protocol is practical. And
we also hope that our modification on PP protocol can shed lights on
other two-way QKD protocols.
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Figure 2 | Simulation: Secure-key rate Lg(R) vs channel distance L (km)
from Bob to Alice. We set gd 5 0.1, d 5 1025 per pulse. The detector error

rate is 1%.
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