
Journal of Information Security, 2019, 10, 45-68

http://www.scirp.org/journal/jis

ISSN Online: 2153-1242

ISSN Print: 2153-1234

DOI: 10.4236/jis.2019.102003 Feb. 28, 2019 45 Journal of Information Security

Security of Password Hashing in Cloud

Parves Kamal

Department of Information Systems Assurance, St. Cloud State University, St. Cloud, MN, USA

Abstract

Though the History of using password in computing can be traced back to as

far as mid of last century little focus has been implied on how to securely

store and retrieve password to authenticate and authorize services to the end

users. In this paper the current security of various password hashing schemes

that are in use today will be investigated through practical proof of con-

cept-GPU based, password hash dump cracking using the power of cloud

computing. We will be providing comparison on different password hashing

cracking time using the cloud GPU power in AWS. The focus of this paper is

to show the possible use of cloud computing in cracking hash dumps and the

way to countermeasures them by using secure hashing algorithm and using

complex passwords.

Keywords

Index Terms-Hash, Collision, GPGPU, CUDA, OpenCL

1. Introduction

The most common means of authentication scheme are password-based authen-

tication system [1]. An employee uses multiple passwords daily for all the appli-

cations and systems that he/she might be working on for the employer. Busi-

nesses spend a tremendous amount of money for not only storing these pass-

words but also for securing the storage of these passwords. Especially when or-

ganization deals with a huge number of customers; it’s very hard for them to

create, maintain and distribute these passwords across the network for authenti-

cation, authorization or accounting purposes. Thus, passwords based authenti-

cation system possesses many security problems into rather relatively secured

existing infrastructures [2]. To overcome the possible security concerns with

storing and distributing the password across the network, the password is often

run against the cryptographic hash function to get the equivalent digest of the

How to cite this paper: Kamal, P. (2019)

Security of Password Hashing in Cloud.

Journal of Information Security, 10, 45-68.

https://doi.org/10.4236/jis.2019.102003

Received: January 23, 2019

Accepted: February 25, 2019

Published: February 28, 2019

Copyright © 2019 by author(s) and

Scientific Research Publishing Inc.

This work is licensed under the Creative

Commons Attribution International

License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2019.102003
http://www.scirp.org
https://doi.org/10.4236/jis.2019.102003
http://creativecommons.org/licenses/by/4.0/

P. Kamal

DOI: 10.4236/jis.2019.102003 46 Journal of Information Security

password which is stored along with the user’s other credentials in the database.

When users try to login with the password, the input is calculated by the same

hash function to compare with the digest of the same password that has been

stored in the databases. One of the properties of the cryptographic hash function

is its irreversible one-way function which means it’s nearly impossible to get

back the password from the digest itself. Then again, many of the commonly

used hashing functions like MD5, SHA-1, etc. have been developed during the

mid-nineties. One of the weaknesses of most widely used hash function MD5 is

that the attacker can create two identical digests for two different inputs which

in cryptography field is called Hash collision [3]. In fact, the possibility of an

adversary of finding the password from the hash dump is proportional to the

amount of the work he/she puts in and the ability to predict the password cha-

racteristics distribution. Moreover, with the advent of the cloud computing and

8 new powerful Graphics Processing Unit (GPU), the attacker is now well

equipped than ever to decipher the passwords from the hash at their will. Since

last decades there has been significant development going on in the field of

Graphics Processing Unit (GPU). The GPU is very suitable for performing pa-

rallel tasks as well as calculating floating point related problems. Modern GPU

based, password cracking is ten times faster than Central Processing Unit (CPU)

based password cracking [4]. In our paper, we will be showing how an attacker

can leverage existing cloud services to crack passwords from sample password

hash dumps using the high-performance-based computing resources. We think

our work is one of the few studies that have been done on the power of GPU

computing using cloud computing services like Amazon web services and the

sheer breadth of test that is performed. Our paper is structure in way that first

few sections we will be providing the reader some background on all the possible

password related attacks possible where in the middle section we set up our test

environment in AWS with sample password hash file of different popular hash

algorithm that are in use today to crack. In the end we compare the results and

we retrieve of the cracking time from our test scenario. We then compare the

test results and suggest the use of password generator script and other possible

means of creating strong passwords for using online services.

2. Nature and Significance of the Problem

Due to the recent hacking and public disclosure of private information (User’s

passwords) from several big profile organizations like LinkedIn, E-harmony and

Yahoo within last 5 years raises the serious questions of not only the security of

the authentication systems in these high profile organizations but also the secu-

rity aspects of their password storing techniques in their databases.

Hence, in this paper the work presented is to show how effective the GPU

based, password cracking technique is against the hashing techniques and pro-

vides insight on why choosing strong, complex passwords along with slow com-

puters hashing function will keep the attackers at bay while leveraging GPU

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 47 Journal of Information Security

processing power of the cloud computing resources. We believe our model can

be applied to any form of online GPU/CPU resources and produce the similar

results for identifying the strength of the password hash of any type. Previous

work has been done usually based on single instances of computing resources,

but we believe our environment provides the more up to date distributed power

of GPU that is available currently in cloud. Here are the few terms that should

help understand some of the acronyms better is shown in Table 1.

3. Related Work

Thompson in his paper has shown how GPU’s can be used for usual computing

task other than graphically intensive work [5] whereas Cook in his paper shown

GPU’s are good for solving cryptography related work too [6]. In the beginning,

it was hard to make any application that could take advantage of GPU’s because

of the lack of API’s and supports. Now with the advent of CUDA, OpenCL plat-

form, APIs for GPU’s become widely available. Using GPU’s performance on

cryptographic computation has been under review by many researchers. Yang

and his colleague have shown how GPU’s can outperform high-performance

CPUs in symmetric cryptographic computations [7]. In Asymmetric encryption

strength has also been reviewed by many researchers suing GPU’s [8] [9] [10].

Hash functions like MD5 and Blowfish have also been tested with GPU processing

power, outperforming the CPU’s significantly [11] [12].

Graphical Processing Unit or GPU is now lots used for general purpose com-

puting or better known as GPGPU than rather using it as to drive graphics.

With the advent of CUDA and OpenCL framework researcher are putting the

hash security to the test by exploiting the power of the GPU to crack them using

parallel processing power. R. Zhang and his colleagues showed the method to

crack MD5 hash using CUDA and reached the speed of 223 Mbps [13]. Another

researcher compared decryption software John, the Ripper against cracking

software based on OpenCL and found 17-times faster speed [14]. In other re-

search, the authors implemented MD5 decryption methods using Tianhe-1A

Table 1. Definition of terms.

Acronym Description

GPU Graphics Processing Unit

CPU Central Processing Unit

MD5 Message Digest Algorithm 5 (1992)

Hash Cryptographic fixed-size value from arbitrary input

Collision Two different input yields to the same output hash value

GPGPU General-Purpose Graphics Processing Unit

GFLOPS (Giga Floating Point Operations Per Second)

OpenCL Open Computing Language

CUDA Compute Unified Device Architecture

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 48 Journal of Information Security

using CUDA to reach calculation speeds up to 18 billion keys per seconds [15].

Oclhashcat happens to be the multiplatform world’s fastest password cracker

which is GPUGPG based open source free hash cracker with speeds of up to

8511 mc/s and 2722 mc/s for MD5 and SHA-1 hash respectively. In one study

researcher, implemented MD5 decryption algorithm using GPU cluster and gain

100 times faster performance in comparison to CPU [16]. Many of the research-

ers used open source cracker like Oclhashcat on GPU platforms like NVidia or

AMD using CUDA or OpenCL. In our paper, we will also exploit GPU power

that is on offered in the cloud to crack sample password hash dump using Ocl-

hashcat.

4. What Is a Hash

The process of taking an arbitrary length input and converting it to a fixed-length

output value by integrating through a cryptographic hash function is called

hashing, and the output value is called the hash value as shown in Figure 1. The

property of cryptographic hash functions is they are a one-way function, and

there is no way of deducing the input value by reverting from the output hash

value [17].

Because of its irreversible features, hashing is very useful for storing the pass-

word in the authentication server. This allows not only protecting customer’s

privacy but also allows the server to authenticate user’s login information with-

out storing the user’s password. Let’s say for example the cryptographic hash

value of the word “parves” using MD5 algorithm is:

MD5 (parves) = cf7cccd2e366698244ac5891da31bb82

4.1. Different Hashing Algorithm

In the following table the function of a different hashing algorithm that is in use

at large is shown (Figure 2).

4.2. Password Hash Cracking Techniques

Password hash cracking is a method of attacking dumped hash to find flaws in

the underlying secured hash characteristics that we discussed in the previous

section to find the message that computer to the same hash value. The attacker,

once they get hold of the hash file by getting the unauthorized access to the net-

work, usually copies the hashed password file and perform one of the following

attacks.

• Exhaustive Attack:

This attack involves trying every possible combination of characters within

character sets. Since it looks for every possible combination, the success rate is

100% of finding the correct combination given the time, and the cost is out of

consideration. Also, the most cryptographic system in use today uses very large

space of time, making the exhaustive search impractical to perform against. The

exhaustive attack is used in two of the following ways [20].

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 49 Journal of Information Security

Figure 1. Hashing (h) Function in operation [18].

Figure 2. Comparison between different hash algorithms [19].

Known-plaintext only attacks: In this attack, only the perpetrator knows the

plaintext and ciphertext both. Then he tries to discover the key that encrypts the

plaintext for example.

Ciphertext-only attacks: The attacker only knows the ciphertext, and he tries

to find the corresponding key or plaintext by going through every combination

of the keys.

Password hashing crack technique is only possible in cipher text the only me-

thod as every hash function is a one-way function. However, with a single digit

increase in password length makes the exhaustive search iteration increase ex-

ponentially, making the exhaustive search attack impractical for the attacker,

especially when long and complex alphabetical characters are chosen [21].

• Dictionary Attack:

A Dictionary attack is a very effective attack if the user uses some hu-

man-memorable password for their login credentials and the attacker tries a list

of common words and expressions used in any language for example in English

to find the password. Users tend to use common or simple passwords [22] across

Algorithm Word

Size

Block Size Output

Size

Rounds Collision F

MD-2 32 128 128 18 YES

MD-4 32 512 128 48 YES

MD-5 32 512 128 64 YES

SHA-0 32 512 160 80 YES

SHA-1 40 512 160 80 YES

SHA-2 56/64 512/1024 224/256

/384/512

64/80 THEORETI

SHA-3 64 1152/1088

832/576

224/256/384/512 24 NO

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 50 Journal of Information Security

many platforms, so that can be easily recalled and if it’s the case then performing

dictionary attacks is highly successful. But some simple modification to those

common words can make a dictionary attack highly unsuccessful too [13].

• Rainbow table Attack:

Rainbow table Attacks involve looking up the precomputed hash tables and

the corresponding key value to find any matching hash. This type of attack,

though, has limited combination to look up for but when working within its

constraints, it takes less time decrypting hashed password than those two other

attacks mentioned earlier [23].

4.3. Characteristics of Strong Passwords

There are many characteristics that make a password easy to crack using exhaus-

tive attacks. Some of the characteristics are:

• Passwords are based on common dictionary words.

• Passwords are easily guessable.

• Passwords are relatively short in length, making it possible to brute force at-

tack easily.

• Passwords have some sorts of the pattern which is easy to deduce. e.g.

abc123, XYZ, 46824682 etc.

• Passwords have been repeating characters like abab11 or xy12x. People Use

the passwords with repeating characters so that they can remember.

To better understand, let’s show it more graphical way. The following pictures

are some of the chosen passwords with a combination of characters, numbers,

and symbols to check the strength of the passwords based on the characteristics

of the characteristics above of strong passwords.

So, as we have seen even if all the passwords above eight characters were long,

using memorable words like a watch or if using characters that come in se-

quences significantly makes the password strength very low while using random

sequences of characters makes passwords relatively stronger. It’s very hard to get

real random numbers, and for humans, we are not well equipped to remember

random numbers. In fact, a human can only remember random numbers up to 7

± 2 characters [25]. Having passwords with a random sequence of numbers with

at least one capital letter, number, a Special character from large key space

makes password very strong as shown in Figure 3.

Figure 3. Example of some of the weak and strong passwords [24].

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 51 Journal of Information Security

One of the methods used to check the strength of the password is based on the

entropy. Entropy depends on the length of the passwords and the key space used.

Entropy can be calculated using the formula, log2(n) [26] where n represents the

number of characters in key space.

4.4. CPU-Based versus GPU-Based Password Cracking

Performance

The CPU has traditionally been used for general purpose computing. Usually,

the CPU has limits on how many processing cores it can accommodate. To

overcome these CPU’s is hyper threading technology to compensate whereas the

GPU has many more cores compared to its similarly priced CPU counterpart.

GPU also works as Single instruction, but Multiple Data computations or

known as (SIMD) whereas CPU’s work as Single Instruction, Single Data com-

putations or known as (SISD). This makes GPU largely suited for password

cracking. Part of the reason behind the GPU’S power over CPU is for the recent

increase in GPU’S power in comparison with the CPU’S one. AS we know from

Moore’s law CPU’S power doubles once in 18 months, whereas GPU’S power is

doubling four times at the same time [27]. The difference between CPU’S and

GPU’S can regard performance based on single precision floating point number

is clearly shown in Figure 4.

4.5. Cloud Computing

Cloud computing is rapidly provisioned on demand configurable resources that

can be shared with minimal management effort or service overhead [22]. There

are two types of cloud—public and private. Public cloud is a cloud service of-

fered by the cloud. A Private cloud is exclusively provisioned for a certain group

of users. Because of the flexibility and the cost effectiveness every company is

Figure 4. Theoretical peak GFLOP/Sec between CPU’S vs. GPU’S [28].

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 52 Journal of Information Security

moving their infrastructure to the cloud now. There are many public cloud

companies like AWS, Rackspace, Google Cloud, Microsoft Azure provide (Figure

5).

Spinning up a virtual machine in the Amazon AWS with Intel Xeon-based G

series computing along with NVidia’s K520 (1536 cores) cost about $0.02 to

$2.87 per hour making it very feasible for someone to run parallel GPU-based,

password cracking on the password hash dump. In my paper I will demonstrate

how effective is GPU based, password cracking using cloud platform.

5. Test Environment

Test Environment was set up to test the following characteristics:

• To identify the characteristics of strong hashing algorithm as well as the

passwords with the data gathered from the proof of concept—password hash

cracking in the cloud.

• To show the performance of the GPU on password hash cracking using cloud

we will implement GPU based, hash cracking on cloud and we will compare

this with CPU based cracking.

• Compare the analyzed data to compare the GPU based, and CPU based,

password cracking performance as well as the effect of using secured pass-

word hashing algorithm on the cracking performance. Also analyze the rea-

son behind the password hash cracking effectiveness based on password

strength.

5.1. Data Collection

The data will be collected once the test is performed and the benchmark report,

as well as the generated passwords, will be the source of the data which will later

be analyzed.

5.2. Tools and Techniques

Multi-GPU based Oclhashcat on Amazon AWS EC2 on CUDA based NVIDIA

Tesla GPU to crack sample password hash of MD5, SHA-256, and Bcrypt.

Figure 5. Cloud computing offered solutions and their comparison [29].

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 53 Journal of Information Security

5.3. Hardware and Software Environment

The following hardware and software will be used in conducting my research.

The setup was done in AWS (Amazon Web Service) cloud. The exact software

and Hardware details are in the table. The test will be conducted in cracking the

password hash on both GPU and CPU instances (Machine). The specifications

for both GPU Machines as shown in Table 2 and CPU machines are given in

Table 3.

5.4. Testing Environment Diagram

The testing Environment of this research is shown (Figure 6).

5.5. Wordlist Selected

For the test, different filters and combination of uppercase letters, lowercase let-

ters, digits, special characters will be used. The test will be done using the hybrid

attack at first before applying brute force attacks where every combination of the

characters will be tried.

5.6. Installing Oclhashcat

First, the installation of the oclhashcat multi-GPU based, hash cracker with the

following steps after ssh into our cloud Linux machine on both CPU and GPU

test machine (Figure 7).

Table 2. GPU test machine.

Software Hardware

Ubuntu 16.04 with NVIDIA GRID and

TESLA GPU Driver
Intel Xeon E5-2670 (Sandy Bridge) Processors

Oclhashcat is a GPGPU-based multi-hash

cracker

P2 instances provide up to 16 NVIDIA K80 GPUs, 64

vCPUs and 732 GiB of host memory, with a

combined 192 GB of GPU memory, 40 thousand

parallel processing cores, 70 teraflops of single

precision floating point performance, and over 23

teraflops of double precision floating point

performance

 vCPU-32 Ram-488 GPU-8 GB SSD-300 GB

Table 3. CPU test machine.

Software Hardware

Ubuntu 16.04—with Updates HVM-1602 Intel Xeon E5-2666 v3 2.9 GHz

Oclhashcat is a CPU-based multi-hash cracker

High-frequency Intel Xeon E5-2666 v3 (Haswell)

processors optimized specifically for EC2

EBS-optimized by default and at no additional cost

Ability to control processor C-state and P-state

configuration on the c4.8xlarge instance type

 VCPU-8 RAM-15 GB SSD-30 GB

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 54 Journal of Information Security

Figure 6. Testing environment.

Figure 7. Installing oclhashcat.

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 55 Journal of Information Security

5.7. Sample Password Hashed Dump File

To conduct the test some common password up to 8 characters in length cha-

racters’ length and will hash it with MD5 and SHA1 as well as more crypto-

graphically strong hashing algorithm bcrypt. The following sample password

hash has been selected.

Sample password list:

Password

HELLOO

MYSECRET

test1234

password!

You9can!

./?’;,<>

Mysecret

The MD5 and SHA1 hash of the generated password from the above is gener-

ated by the following code (Figure 8).

• MD5 Hash:

Password-dc647eb65e6711e155375218212b3964

HELLOO-16454bd041c46012e31778eb94b8111a

MYSECRET-958152288f2d2303ae045cffc43a02cd

test1234-16d7a4fca7442dda3ad93c9a726597e4

password!-49f24c0c152b2375431210f9443d176f

You9can!-b64b0e1165a77bd90a1673469f1af0e1

./?’;,<>-7185ad7f0851780a2db24edc8347b12a

Mysecret-06c219e5bc8378f3a8a3f83b4b7e4649

• SHA256 Hash:

Password-e7cf3ef4f17c3999a94f2c6f612e8a888e5b1026878e4e19398b23bd

38ec221a

HELLOO-2d32d2db26a9a8e8b3a69a5739a17981a5a064a5c3037a8d3891ab

3e41f57246

MYSECRET-3fcdbc4a0ed38df8d4bd234e2c8ad3b2623fa5265f31763d1e91a

848471a8a9b

test1234-937e8d5fbb48bd4949536cd65b8d35c426b80d2f830c5c308e2cdec4

22ae2244

password!-c075349b9b6f6b3e41b34e4e71ac22a685102b0b2246c5f84d67c5

eed3ad39fb

You9can!-4824033be89e919a06ac33255b06761f706edc1ac8fc37b86574892

ab7c3248d

./?’;,<>-

9070906f306d5d34c301b9f4cda9f71c2a19543ccea44b6b08c18b3d76941936

Mysecret-652c7dc687d98c9889304ed2e408c74b611e86a40caa51c4b43f1dd

5913c5cd0

Bcrypt hash of the following password with the following code.

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 56 Journal of Information Security

Figure 8. Python MD5/SHA password hash Generator sample code.

Sample Password:

HELLO

1!Su

Pass

pass

1234

:/?<

Here the bcrypt hash of sample password “Pass” was created with 14 rounds

(214 = 16,384) of generation via gensalt() function. For the sake of our test, we

will be keeping it to minimal, less than 10 (Figure 9).

The Resulting generated Bcrypt hash of the above sample password was:

HELLO-$2y$10$vHvY3cA252u/68KesxmOg.WIjkWOHQcFqXc.KRSV4aL

n/pIC1D5ZC

1!Su-$2y$10$eVaCxfaaMDXKS5LTu1uX2O6k3/lUpGE83luvxfoGdkM6H

AMVWirvW

Pass-$2y$10$K8nQaEFpiZkSdkjKlXfjveu44pTKD/lvpOU2Cu/8INh2vPD

UgS29e

Pass-$2y$10$wacXM0HGg/26pzRGvIEE4OMg4jGIHjhptHKMdowmdr4z

pTyu0triC

1234-$2y$10$FwaS9uiu7mkCIJ.d9fCYI.PsF8qY5I1ZdrbJ0qBBcHdDLhour

s3gxPLq

:/?<-$2y$10$kjGTFQVsc7eislYriw0ibu1GZi1rUod0unnpY0rT9eeSIYGBJR

iui

6. Test Results

We ran the CPU crack and GPU cracking on the sample MD5, SHA-256, and

Bcrypt hash dump. We applied the different filter as follows:

import hashlib

s='password'

sb=s.encode("utf8")

#MD5 generator

print (hashlib.md5(sb).hexdigest())

5f4dcc3b5aa765d61d8327deb882cf99

#SHA256 generator

print (hashlib.sha256(sb).hexdigest())

5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 57 Journal of Information Security

Figure 9. Python Bcrypt password hash Generator sample code.

u = uppercase letters only—total 26 characters

l = lowercase letter only—total 26 characters

ul = uppercase and lowercase—total 52 characters

d = digits only—total 10 digits

s = special characters only—total 33 characters

ls/us = lowercase/uppercase with special characters—total 59 characters

usld = lowercase, uppercase, special character, and digits—total 95 characters

We also conducted an experimental run where we applied fixed characters in

certain positions to observe any improvements in timing. All our CPU/GPU/Ex-

perimental test results are shown in the following tables.

In Figure 10 as the result is as follows:

• Using uppercase only character (u) it takes 2sec for 6-character long pass-

word, HELLO to crack where 8-character long password “MYSECRET” takes

12 mins and it finishes checking all the combination of 8 characters roughly

at the same time too.

• Using lowercase only character (l) it takes 12 min to crack 8-character long

password “mysecret” as well as finishes checking all the combination of 8

characters roughly at the same time too.

• Using a combination of uppercase and lowercase character (ul) it takes 1

hour 12 min to finish cracking 8 char long “Password” as well as finishes

checking all the combination of 8 characters roughly in the same time too.

• Using lowercase and digits (ld) it takes 3 mins to crack 7 char long “tes1234”

password while it takes 2 hours 30 mins to finish checking all the combina-

tion of the 8-char field.

• Using lowercase and a special character (ls) it takes it takes 1hours 13 min to

find the 7-char password “Passwor!” while it will take approximately 5 days

and 1hours to finish checking all the combination.

The way we estimated 8 char long password cracking time with lowercase and

special characters are as follows:

Total characters: lowercase (26) and special characters (33) = 33 + 26 = 59

Total combination possible [59]8 = 1.4683044e+14

import bcrypt

password = b"Pass"

Hash a password for the first time, with

a certain number of rounds

hashed = bcrypt.hashpw(password,

bcrypt.gensalt(14))

print(hashed)

b'$2b$14$4tWHOXsyYtuVD8CbzjMUbeNqfMKGKiECOD

TkQ4Zcf11wJ6nJAD7XW'

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 58 Journal of Information Security

Figure 10. MD5 cracking performance with CPU machine.

MD5 CPU cracking speed = 312 MHS = 312,000,000 H/s

Cracking time in days = 1.4683044e+14/312,000,000 = 470610.376937 s/3600

= 130.725104705 hours/24 = 5 days 1 hours

• Using the special characters only it takes 1 hours 12 min to finish cracking 8

char long password “./?!’;<>” while it takes 1 hours 25 min to finish checking

all the special character combination of the 8char field.

• At last we try all the lowercase, uppercase, special characters and digits (usld)

for all the 8 filed of the password and though we could not find out 8 char

long password “You9can!” we did find to estimate how long it will take to

look up all the (USLD) combination of each 8-char filed with our CPU ma-

chine with the following calculation.

Total characters: lowercase (26) and special characters (33), uppercase (26)

and digits (10) = 33 + 26 + 26 + 10 = 95

Total combination possible [95]8 = 6.6342043e+15

MD5 CPU cracking speed = 312 MHS = 312,000,000 H/s

Cracking time in days = 6.6342043e+15/312,000,000 H/s = 21263475.3618

s/3600 = 5906.52093384 hours/24 = 246 days

In Figure 11 the result is as follows:

• Using uppercase only character (u) it takes 1sec from 6-character long pass-

word, HELLO to crack where 8-character long password “MYSECRET” takes

10 sec and it finishes checking all the combination of 8 characters roughly in

30 secs.

• Using lowercase only character (l) it takes 10 secs to crack 8-character long

password “mysecret” as well as finishes checking all the combination of 8

characters roughly in 30 secs.

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 59 Journal of Information Security

Figure 11. MD5 cracking performance with GPU machine

• Using a combination of uppercase and lowercase character (ul) it takes 12

min to finish cracking 8 char long “Password” as well as finishes checking all

the combination of 8 characters roughly in the same time too.

• Using lowercase and digits (ld) it takes 2 secs to crack 7 char long “tes1234”

password while it takes 2 mins to finish checking all the combination of the

8-character field.

• Using lowercase and a special character (ls) it takes it takes 2 min to find the

7-char password “Passwor!” while it will take approximately 2hours to finish

checking all the combination.

• Using the special characters only it takes 7 sec to finish cracking 8 char long

password “./?!’;<>” while it takes 1 min 28 sec to finish checking all the spe-

cial character combination of the 8char field.

• At last, we try all the lowercase, uppercase, special characters and digits

(usld) for all the 8 field of the password and for the 8-char long password

(./?!’;<>, MYSECRET, You9can!). We could not finish the all the combina-

tion of 8 chars, but we estimated it will take around 4 days to finish checking

all the possible combination of 8-char password using our GPU machine.

The way we estimated the cracking time as follows:

Total characters: lowercase (26) and special characters (33), uppercase (26)

and digits (10) = 33 + 26 + 26 + 10 = 95

Total combination possible [95]8 = 6.6342043e+15

MD5 GPU cracking speed = 21117 MHS = 21,117,000,000 H/s

Cracking time in days = 6.6342043e+15/21,117,000,000 H/s = 314164.14798

s/3600 = 87.2678188833 hours/24 = 4 days

In Figure 12 the result is as follows:

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 60 Journal of Information Security

Figure 12. SHA-256 cracking performance with CPU machine.

• Using uppercase only character (u) it takes 15sec for 6-character long pass-

word HELLO to crack where 8-character long password “MYSECRET” takes

20 mins and it finishes checking all the combination of 8 characters roughly

in 38 mins.

• Using lowercase only character (l) it takes 26 min to crack 8-character long

password “mysecret” as well as finishes checking all the combination of 8

characters roughly in 38 mins.

• Using a combination of uppercase and lowercase character (ul) it takes 3

hours to finish cracking 8 char long “Password” as well as finishes checking

all the combination of 8 characters will take estimated 7 days 20 hours to

finish.

The way we estimated the cracking time as follows:

Total characters: lowercase (26), uppercase (26) = 26 + 26 = 52

Total combination possible [52]8 = 5.3459729e+13

SHA-256 CPU cracking speed, 88,954 KH/s = 88,954,000 h/s

Cracking time in days = 5.3459729e+13/88,954,000 = 600981.726864 s/3600 =

166.939368573 hours/24 = 7 days

• Using lowercase and digits (ld) it takes 15 mins to crack 7 char long “tes1234”

password while it takes 9 hours 25 mins to finish checking all the combina-

tion of the 8-char field.

• Using lowercase and special character (ls) it takes it takes 15 min to find the

7-char password “Passwor!” while it will take 7 hours 50 mins to check 7

chars field.

• Using the special characters only it takes 20 min to finish cracking 8 char

long passwords “./?!’;<>” while it takes 9 hours to finish checking all the spe-

cial character combination of 8 char field.

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 61 Journal of Information Security

• At last we try all the lowercase, uppercase, special characters and digits (usld)

for all the 8 field of the password and though we could not find out 8 char

long password “You9can!” we did find to estimate how long it will take to

look up all the (USLD) combination of each 7 char and 8-char filed with our

CPU machine with following calculation.

Time Estimation for 7-char password

Total characters: lowercase (26) and special characters (33), uppercase (26)

and digits (10) = 33 + 26 + 26 + 10 = 95

Total combination possible [95]7 = 6.983373e+13

SHA-256 CPU cracking speed, 88,954 KH/s = 88,954,000 h/s

Cracking time in days = 6.983373e+13/88,954,000 h/s = 785054.405753 s/3600 =

218.070668265/24 = 9 days

Time Estimation for 8-char password

Total characters: lowercase (26) and special characters (33), uppercase (26)

and digits (10) = 33 + 26 + 26 + 10 = 95

Total combination possible [95]8 = 6.6342043e+15

SHA-256 CPU cracking speed, 88,954 KH/s = 88,954,000 h/s

Cracking time in days = 6.6342043e+15/88,954,000 h/s = 74580168.5466 s/3600

= 20716.7134852 hours/24 = 863 days

In Figure 13 the result is as follows:

• Using uppercase only character (u) to crack 8-character long password

“MYSECRET” takes 1 min and it finishes checking all the combination of 8

characters roughly in 1 min 6 secs.

• Using lowercase only character (l) it takes 1 min to crack 8-character long

password “mysecret” as well as finishes checking all the combination of 8

characters roughly in 1 min 6 secs.

• Using a combination of uppercase and lowercase character (ul) it takes 1 min

to finish cracking 8 char long “Password” as well as finishes checking all the

combination of 8 characters roughly in 2 hours 87 min.

• Using lowercase and digits (ld) it takes 1min to crack 7 char long “tes1234”

password and 1 min 22 sec for 8-char password “mysecret”, while it takes 10

mins to finish checking all the combination of the 8-char field.

• Using lowercase and special character (ls) it takes it takes 8 mins to find the

7-char password “Passwor!” while it will take approximately 8hours to finish

checking all the combination.

• Using the special characters only it takes 2 min to finish cracking 8 char long

password “./?!’;<>” while it takes 5 min to finish checking all the special cha-

racter combination of 8 char field.

• At last we try all the lowercase, uppercase, special characters and digits (usld).

It took around 3 hours to finish checking 7 char length passwords while for

all the 8 field of the password and for the 8-char long password (./?!’;<>,

MYSECRET, You9can!). Though we could not finish 8 char passwords, but

we estimated it will take around 10 days and 10 hours to finish checking all

the combination of the 8 char field. The estimated time is calculated as follows:

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 62 Journal of Information Security

Figure 13. SHA-256 cracking performance with GPU machine.

Time Estimation for 8-char password

Total characters: lowercase (26) and special characters (33), uppercase (26)

and digits (10) = 33 + 26 + 26 + 10 = 95

Total combination possible [95]8 = 6.6342043e+15

SHA-256 GPU cracking speed, 5325 MH/s = 5,325,000,000 h/s

Cracking time in days = 6.6342043e+15/5,325,000,000 h/s = 1245859.96486/3600

= 346.0722 hours/24 = 14 days

In Figure 14 the result is as follows:

• Using uppercase only character (u) it takes 21 min to go through all combi-

nations of 3 char length, whereas it takes 8 hours to finish 4 char long.

• Using uppercase and lowercase (ul) it takes 2 hours 21 min to finish 3 char

length passwords. We could not finish cracking 4 char length passwords

“Pass” as we estimated it will take 3 dys 17 hours to finish checking all the

combination. The estimation is calculated as follows:

Time Estimation for 4-char password

Total characters: lowercase (26), uppercase (26) = 52

Total combination possible [52]4 = 7,311,616

Bcrypt CPU machine cracking speed = 90 h/s

Cracking time in days= 7,311,616/90 = 81240.1777778 s/3600 = 2031.004 hr/24

= 22 hours 50 mins

• Using lowercase only character (l) it takes 3 hours 20 min to crack 4-character

long password “Pass” and to finish all the combination of 4 chars it takes 8

hour where for 3 chars it takes 2 hour.

• Using only digits (d) it takes 9 min to crack 4 char passwords “1234” as well

as roughly going through all the combination of 4-char field.

• Using only special characters(s) it takes 36 mins to finish checking all the

combination of 3 char length password whereas it found 4 char length pass-

words “,/?<(” in 3 hours while taking 4 hours to go through all the combina-

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 63 Journal of Information Security

tion of the 4-char length password.

• At last we try all the lowercase, uppercase, special characters and digits

(usld). It takes 15 hours 4 mins to finish going through all the combination of

the 3-char length. We could not finish checking for our 4-char length pass-

word “1!Su” as we estimated it will take 10 days 10 hours to check all the

possible combinations using following formulas:

Time Estimation for 4-char password

Total characters: lowercase (26), uppercase (26), Special characters (33), digits

(10) = 95

Total combination possible [95]4 = 81,450,625

Bcrypt CPU machine cracking speed = 90 h/s

Cracking time in days = 81,450,625/90 = 905006.944444/3600s = 251.390817901

hr = 10 days

In Figure 15 the result is as follows:

Figure 14. Bcrypt cracking performance with CPU machine.

Figure 15. Bcrypt cracking performance with GPU machine.

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 64 Journal of Information Security

• Using uppercase only character (u) it takes 1hour to go through all combina-

tions of 4 char length, whereas it takes 2 hours to finish 5 char length pass-

words. It found our 5-char length password “HELLO” in 1 hour 20 mins.

• Using uppercase and lowercase (ul) it takes 35 mins to crack 4 char length

password “Pass”. To go through all the combination of 3 char length pass-

words it takes 23 mins while to 4 char length passwords it takes 4 hours 30

mins only.

• Using lowercase only character (l) it takes 1hour to crack 4-character long

password “Pass” and to finish all the combination of 4 chars it takes 1hour 20

mins only.

• Using only digits (d) it takes 6min to crack 4 char passwords “1234”. It fi-

nished checking all the combination of 5 char length passwords in about 10

mins.

• Using only special characters(s) it took 1 hour 20 mins to crack 4 char pass-

words “1!Su” and going through all the combination in roughly about 2

hours.

• At last we try all the lowercase, uppercase, special characters and digits

(usld). It takes 2 hours 40 mins to finish going through all the combination of

the 3-char length. We could not finish checking for our 4-char length pass-

word “1!Su” as we estimated it will take 1-day 19 hours to check all the possi-

ble combinations using following formulas.

Time Estimation for 4-char password

Total characters: lowercase (26), uppercase (26), Special characters (33), digits

(10) = 95

Total combination possible [95]4 = 81,450,625

Bcrypt CPU machine cracking speed = 520 h/s

Cracking time in days = 81,450,625/520 = 156635.817308/3600 s = 43.5099492521

hr =1 day 19 hours

6.1. Experimental Run

• MD5 GPU with 1st character set as uppercase (U) and last character set as

special characters(s) while all other character is combination of lowercase (l),

uppercase (u), special character(s), digits (d) takes only 2 mins to finish

whole 8-character set.

• MD5 GPU with last character fixed as special characters(s) and trying all

other combination (lowercase (l), uppercase (u), special character(s), digits

(d)) in first 7 character takes only 8 hours to finish.

• MD5 GPU trying all first 7 char as lowercase (l) and special character(s)

whole last character fixed as special character(s) makes the cracking time of

8-character set to only 1 min.

• SHA-256 GPU machine cracking 8 characters with combination of lowercase

(l), uppercase (u), special character(s), digits (d) in 2nd to 7th character while

making the 1st character fixed for special characters(s) and 8th character

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 65 Journal of Information Security

fixed for uppercase (u) brings the cracking time to only 6 mins while just

making the 1st character fixed for uppercase(s) letters makes the cracking

time around 10 hours.

6.2. Analyzing Result

• Using CPU instances with the combination of characters like uppercase, lo-

wercase, special characters and digits a password length of 8 using MD5 hash

takes 246 days to decrypt while using GPU it takes only 3 days.

• Similarly, the same password length using more secured SHA-256 hashing

algorithm takes 863 days for our CPU machine to crack where with our GPU

its only 10 days.

• Using more secured and computationally intensive Bcrypt hashing algorithm

a password length of 4 characters only with a combination of characters like

uppercase, lowercase, special characters and digits it takes our CPU instances

84 days to crack whereas with our GPU only 12 days.

• GPU instancing took only 5 min to crack SHA-256 password length of 8 with

special characters only, whereas it took almost 3 hours to crack password

length of 4 with Bcrypt hashing algorithm.

7. Recommendations

• Use password random generator to make a strong Radom password. One

such sample random password generator script is given in Figure 16.

Figure 16. Alphanumeric Password generator script.

https://doi.org/10.4236/jis.2019.102003

P. Kamal

DOI: 10.4236/jis.2019.102003 66 Journal of Information Security

• Never reuse the same password for different accounts.

• As a security administrator or developer tries to use a modern hashing algo-

rithm like Bcrypt which is slow in computing using GPU or CPU.

• Never store password without hashing.

• Always add salt to the hashed password for added security.

• Password length should be at least 10 characters in length and use combina-

tion of characters like uppercase, lowercase, special characters and digits and

never use dictionary words.

• Avoid using words from dictionary which can be easily brute-force by dic-

tionary attack.

8. Future Work

In the future, possible plan to test whether adding salt (random number) with

MD5 and SHA-256 increase the cracking time it takes with GPU or not. Also, in

this paper the effect of fixed certain character types in the password field with

Bcrypt hashing algorithm like SHA-256 and MD5 hash was not tested. So, in the

future endeavor test run with Bcrypt and compare results with SHA-256 and

MD5.

9. Conclusion

In the end the aim of the paper was to compare the effectiveness of a GPU based,

password cracking over the CPU as well the weakness in contemporary pass-

word hashing algorithm used (SHA-256, MD5) in today and why one should use

a modern hashing algorithm like Bcrypt over SHA-256 and MD5 and why

should use more complex passwords. We also came into conclusion that using

salt with a hashed password adds more computational cost to crack even with

highly capable GPU. We also presented a test bed scenario where a normal user

can leverage the power of cloud computing to crack relatively complex password

relatively easily.

Acknowledgements

Special acknowledgement to university of ST. Cloud State University and the

guidance of Dr. Guster, Dr. Jim Chen and Dr. Mahbub from Information As-

surance Department for there through support with this project.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-

per.

References

[1] O’Gorman, L. (2003) Comparing Passwords, Tokens, and Biometrics for User Au-

thentication. Proceedings of the IEEE, 91, 2021-2040.

https://doi.org/10.1109/JPROC.2003.819611

https://doi.org/10.4236/jis.2019.102003
https://doi.org/10.1109/JPROC.2003.819611

P. Kamal

DOI: 10.4236/jis.2019.102003 67 Journal of Information Security

[2] Adams, A., Sasse, M.A. and Lunt, P. (1997) Making Passwords Secure and Usable.

In: Thimbleby, H., et al., Eds., Proceedings of HCI on People and Computers XII,

Springer-Verlag, London, 1-19. https://doi.org/10.1007/978-1-4471-3601-9_1

[3] (2016) MD5 Message Digest Algorithm Hash Collision Weakness. Securityfo-

cus.com. http://www.securityfocus.com/bid/11849/discuss

[4] Qiu, W.D., Gong, Z., Guo, Y.D., Liu, B.Z., Tang, X. and Yuan, Y. (2016) GPU-Based

High-Performance Password Recovery Technique for Hash Functions. Resear-

chGate.

https://www.researchgate.net/publication/292761539_GPU-Based_High_Performan

ce_Password_Recovery_Technique_for_Hash_Functions

[5] Thompson, C.J., Hahn, S. and Oskin, M. (2002) Using Modern Graphics Architec-

tures for General-Purpose Computing: A Framework and Analysis. Proceedings of

the 35th annual ACM/IEEE International Symposium on Microarchitecture, Istan-

bul, 18-22 November 2002, 306-317. https://doi.org/10.1109/MICRO.2002.1176259

[6] Cook, D.L., Ioannidis, J., Keromytis, A.D. and Luck, J. (2005) CryptoGraphics: Se-

cret Key Cryptography Using Graphics Cards. Cryptographers’ Track at the RSA

Conference, 334-350.

[7] Yang, J. and Goodman, J. (2007) Symmetric Key Cryptography on Modern Graph-

ics Hardware. Advances in Cryptology, 249.

[8] Di Biagio, A., Barenghi, A., Agosta, G. and Pelosi, G. (2009) Design of a Parallel

AES for Graphics Hardware Using the CUDA Framework. IEEE International

Symposium on Parallel & Distributed Processing, Rome, 23-29 May 2009, 1-8.

https://doi.org/10.1109/IPDPS.2009.5161242

[9] Manavski, S.A. (2007) CUDA Compatible GPU as an Efficient Hardware Accelera-

tor for AES Cryptography. IEEE International Conference on Signal Processing and

Communications, Dubai, 24-27 November 2007, 65 p.

[10] Harrison, O. and Waldron, J. (2007) AES Encryption Implementation and Analysis

on Commodity Graphics Processing Units. Cryptographic Hardware and Embed-

ded Systems CHES 2007, 209 p. https://doi.org/10.1007/978-3-540-74735-2_15

[11] Bernstein, D., Chen, H.C., Cheng, C.M., Lange, T., Niederhagen, R., Schwabe, P.

and Yang, B.Y. (2010) ECC2K-130 on NVIDIA GPUs. Progress in Cryptolo-

gy-Indocrypt, 328-346.

[12] Hu, G., Ma, J. and Huang, B. (2010) High Throughput Implementation of MD5

Algorithm on GPU. Proceedings of the 4th International Conference on Ubiquitous

Information Technologies & Applications, Fukuoka, 20-22 December 2009, 1-5.

[13] Mukherjee, R., Rehman, M.S., Kothapalli, K., Narayanan, P.J. and Srinathan, K.

(2009) Presenting New Speed Records and Constant Time Encryption on the GPU. 3.

[14] Zhang, R. and Wang, X. (2011) MD5 Crack Method Based on Compute Unified

Device Architecture. Computer Science, 38, 302-305.

[15] Weng, J., Wu, Q. and Yang, C. (2011) OpenCL-Based MD5 Decryption Algorithm.

Computer Engineering, 37, 119-121.

[16] Nguyen, D.H., Nguyen, T.T., Duong, T.N. and Pham, P.H. (2010) Cryptanalysis of

MD5 on GPU Cluster. Proceedings of International Conference on Information

Security and Artificial Intelligence, Vol. 2, Chengdu, 17-19 December 2010, 910-914.

[17] Bauspiess, F. and Damm, F. (1992) Requirements for Cryptographic Hash Func-

tions. Computers, and Security, 11, 427-437.

https://doi.org/10.1016/0167-4048(92)90007-E

[18] Anon (2016) Computing.dcu.ie.

https://doi.org/10.4236/jis.2019.102003
https://doi.org/10.1007/978-1-4471-3601-9_1
http://www.securityfocus.com/bid/11849/discuss
https://www.researchgate.net/publication/292761539_GPU-Based_High_Performance_Password_Recovery_Technique_for_Hash_Functions
https://www.researchgate.net/publication/292761539_GPU-Based_High_Performance_Password_Recovery_Technique_for_Hash_Functions
https://doi.org/10.1109/MICRO.2002.1176259
https://doi.org/10.1109/IPDPS.2009.5161242
https://doi.org/10.1007/978-3-540-74735-2_15
https://doi.org/10.1016/0167-4048(92)90007-E

P. Kamal

DOI: 10.4236/jis.2019.102003 68 Journal of Information Security

http://www.computing.dcu.ie/~hamilton/teaching/CA642/notes/Hash.pdf

[19] Jose, R.T. and Thomas, C.G. (2015) A Comparative Study on Different Hashing

Algorithms. International Journal of Innovative Research in Computer and Com-

munication Engineering, 3, 170-175.

[20] Menezes, A.J., Van Oorschot, P.C. and Vanstone, S.A. (1997) Handbook of Applied

Cryptography. CRC, Boca Raton, 8, 14, 15.

[21] Reid, D. and Knipping, C. (2010) Proof in Mathematics Education: Research,

Learning and Teaching.

[22] Florencio, D. and Herley, C. (2007) A Large-Scale Study of Web Password Habits.

[23] Hellman, M. (1980) A Cryptanalytic Time-Memory Tradeoff. IEEE Transactions on

Information Theory, 26, 401-406. https://doi.org/10.1109/TIT.1980.1056220

[24] Password Strength Checker (2016) Passwordmeter.com.

http://www.passwordmeter.com/

[25] Mariger, H. (2016) Cognitive Disabilities and the Web: Where Accessibility and

Usability Meet. Ncdae.org. http://ncdae.org/resources/articles/cognitive/

[26] Yang, Y., Lindqvist, J. and Oulasvirta, A. (2014) Text Entry Method Affects Pass-

word Security. Computing Research Repository.

http://arxiv.org/abs/1403.1910

[27] Liu, Y. and Wu, E. (2008) Emerging Technology about GP-GPU. Circuits and Sys-

tems Asia Pacific Conference, Macao, 30 November-3 December 2008, 618-622.

[28] Rupp, K. (2016) CPU, GPU and MIC Hardware Characteristics over Time.

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over

-time/

[29] Vecchiola, C., Pandey, S. and Buyya, R. (2009) High-Performance Cloud Compu-

ting: A View of Scientific Applications. 10th International Symposium on Pervasive

Systems, Algorithms, and Networks, Kaohsiung, 14-16 December 2009, 4-16.

https://doi.org/10.4236/jis.2019.102003
http://www.computing.dcu.ie/%7Ehamilton/teaching/CA642/notes/Hash.pdf
https://doi.org/10.1109/TIT.1980.1056220
http://www.passwordmeter.com/
http://ncdae.org/resources/articles/cognitive/
http://arxiv.org/abs/1403.1910
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

	Security of Password Hashing in Cloud
	Abstract
	Keywords
	1. Introduction
	2. Nature and Significance of the Problem
	3. Related Work
	4. What Is a Hash
	4.1. Different Hashing Algorithm
	4.2. Password Hash Cracking Techniques
	4.3. Characteristics of Strong Passwords
	4.4. CPU-Based versus GPU-Based Password Cracking Performance
	4.5. Cloud Computing

	5. Test Environment
	5.1. Data Collection
	5.2. Tools and Techniques
	5.3. Hardware and Software Environment
	5.4. Testing Environment Diagram
	5.5. Wordlist Selected
	5.6. Installing Oclhashcat
	5.7. Sample Password Hashed Dump File

	6. Test Results
	6.1. Experimental Run
	6.2. Analyzing Result

	7. Recommendations
	8. Future Work
	9. Conclusion
	Acknowledgements
	Conflicts of Interest
	References

