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Measurements on entangled quantum systems necessarily yield outcomes that are intrinsically unpredictable if
they violate a Bell inequality. This property can be used to generate certified randomness in a device-independent
way, i.e., without making detailed assumptions about the internal working of the quantum devices used to generate
the random numbers. Furthermore these numbers are also private; i.e., they appear random not only to the user
but also to any adversary that might possess a perfect description of the devices. Since this process requires a
small initial random seed to sample the behavior of the quantum devices and to extract uniform randomness from
the raw outputs of the devices, one usually speaks of device-independent randomness expansion. The purpose
of this paper is twofold. First, we point out that in most real, practical situations, where the concept of device
independence is used as a protection against unintentional flaws or failures of the quantum apparatuses, it is
sufficient to show that the generated string is random with respect to an adversary that holds only classical side
information; i.e., proving randomness against quantum side information is not necessary. Furthermore, the initial
random seed does not need to be private with respect to the adversary, provided that it is generated in a way
that is independent from the measured systems. The devices, however, will generate cryptographically secure
randomness that cannot be predicted by the adversary, and thus one can, given access to free public randomness,
talk about private randomness generation. The theoretical tools to quantify the generated randomness according
to these criteria were already introduced in S. Pironio et al. [Nature (London) 464, 1021 (2010)], but the final
results were improperly formulated. The second aim of this paper is to correct this inaccurate formulation and
therefore lay out a precise theoretical framework for practical device-independent randomness generation.
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I. INTRODUCTION

Random numbers are essential for many applications, such
as computer simulations, statistical sampling, gambling, or
video games. They are particularly important for classical and
quantum cryptography, where the use of a flawed random
number generator (RNG) can completely compromise the
security. Many solutions have thus been proposed for the
generation of random numbers (for recent work on random
number generation see, e.g., [1–7]), but none is entirely
satisfactory. It is not easy to construct hardware that generates
genuine random numbers and to prove that a chosen design
is secure [8]. Furthermore, the proper functioning of carefully
investigated prototypes in the laboratory does not guarantee
the functioning of a concrete RNG, which may be subject to a
series of problems, including weak tolerance of components,
aging effects, external attacks, or complete failure of the
random source. RNG should thus be constantly monitored
for proper operation, but failure modes in these devices are
complicated to detect. Generic statistical tests performed on
the output sequence cannot, in general, distinguish between
a true random source and a pseudorandom generator. More
elaborate techniques for estimating the entropy exist, but
their estimates cannot be fully relied upon as they require
the assumption of a certain stochastic model for the random
source, which may be very difficult to confirm.

Device-independent randomness generation aims to ad-
dress these problems by exploiting the intrinsic unpredictabil-
ity associated with the violation of Bell inequalities [9–11].
More precisely, consider a quantum system composed of two
separated parts A and B which, upon receiving respective
inputs V a and V b, return respective outputs Xa and Xb.
If after n successive uses of the devices the observed data

violate a Bell inequality, it is then possible to certify that the
output string (Xa

1 ,Xb
1), . . . ,(Xa

n,X
b
n) contains a certain amount

of min-entropy, even when conditioned on the value of the
inputs (V a

1 ,V b
1 ), . . . ,(V a

n ,V b
n ), and a randomness extractor can

therefore be applied to the outputs to obtain almost-uniform
random bits. Furthermore, this conclusion can be reached
independently of any detailed assumptions about the inner
workings of the devices and is thus immune to most of the
problems mentioned above.

That the violation of Bell inequalities is an indicator
of quantum randomness was probably recognized early on
by many physicists but was made explicit only recently in
[10–12]. Not surprisingly, it was suggested shortly thereafter
that Bell-inequality-violating systems could be exploited for
randomness generation, and a scheme based on Greenberger-
Horne-Zeilinger (GHZ) states was proposed in Ref. [13] (see
also [14]). The possibility of device-independent randomness
generation, however, was established only in Ref. [15], where
a method to bound the min-entropy of the devices’ output
as a function of the observed Bell violation was introduced.
Furthermore, a proof-of-principle experimental demonstration
was realized using two trapped ions.

The concept of device independence (DI) is not restricted to
randomness generation but includes adversarial applications,
such as quantum key distribution (QKD) [11,16–19] and
coin tossing [20], and nonadversarial ones, such as state
estimation [21], entanglement witnesses [22], and self-testing
of quantum computers [23]. In adversarial applications of
device independence it is often remarked that since the
correctness of the protocol can be verified without making
assumptions about the inner workings of the devices, these
could even have been prepared by the adversary itself. This has
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at least two implications in regard to the theoretical analysis of
device-independent randomness generation (and also various
implications for its experimental implementation, some of
which will be briefly discussed later).

First, if the adversary is allowed to prepare the quantum
devices, nothing prevents him from entangling them with a
quantum state that he keeps for himself in a quantum memory.
It is then a priori possible that if he sees part of the devices’
output at some later stage, he could measure his quantum state
in a way that would give him useful information about the
remainder of the output string. One thus needs to show that
the output produced by the device also appears random with
respect to the quantum side information held by the adversary.
The methods introduced in Ref. [15], however, have been
shown so far to estimate randomness only against classical
side information, i.e., against adversaries who do not share
entanglement with the quantum devices.

Second, if the adversary happens to have some prior
knowledge of the inputs used to sample the devices, he could
exploit it to program the devices in a way that would mimic
the violation of a Bell inequality while at the same time giving
him substantial information about the generated outputs. A
random, private seed is thus necessary to select the inputs
and start off the protocol. In addition, one also need some
initial randomness to extract uniform random bits from the
devices’ outputs. One thus often speaks of device-independent
randomness expansion (DIRE). A scheme achieving quadratic
expansion was presented in Ref. [15], where it was also
suggested that more than one pair of devices be used to obtain
greater (e.g., exponential) expansion.

In this paper, we do not investigate this extremal adversarial
scenario where the quantum devices have been acquired from
a malicious provider. We are instead interested in the more
real-life and practical situation where the manufacturer of the
device is assumed to be honest but where the concept of device
independence is used to provide an accurate estimation of
the amount of randomness generated independently of noise,
limited control of the apparatuses, or unintentional flaws of
the devices. We point out in Sec. II that in this context it
is sufficient to prove security against classical information.
Furthermore, the initial seed used to sample the devices and
perform the randomness extraction does not necessarily need
to be private with respect to the adversary (it simply needs
to be chosen in a way that is independent from the state
of the devices). The output of the protocol, however, will
represent a private random string. In this case one can thus talk
about private randomness generation, given access to public
randomness. (In the following, we will keep using the single
term “device-independent randomness expansion” to refer to
the two situations where the initial randomness is considered
to be private or is viewed as a free, public resource.)

In Sec. III, we then analyze the security of DIRE from
this perspective. In particular, Sec. III B contains a detailed
presentation of the model that we consider and the assumptions
on which it is based. Our main results are presented in
Sec. III C, where we show how to estimate the randomness
produced in a Bell experiment if those assumptions are
satisfied. Our analysis relies essentially on the tools introduced
in Ref. [15], but importantly, it fixes an issue that led to an
improper formulation of the final results of Refs. [15,24]. A

very similar analysis has been presented in an independent
work Ref. [25]. We briefly discuss how these results directly
imply the security of various DIRE schemes in Sec. III D.

Finally, we point out that a randomness-expansion scheme
with superpolynomial expansion that was proven to be secure
against quantum side information was recently introduced
in Ref. [26]. This protocol, however, requires an almost-
perfect violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality, while our results and those of Ref. [25] are generic
and hold for arbitrary Bell inequalities and any amount of
violation [27].

II. HONEST VS DISHONEST DEVICE SUPPLIERS
AND DIRE

The security of device-independent cryptographic protocols
is based on a rather limited sets of assumptions, e.g., that the
devices obey quantum theory, that separated devices can be
prevented from communicating with one another, that the users
of the device have access to a private source of randomness,
and so on. Provided that these basic assumptions are satisfied,
the security follows independently of implementation details,
such as the precise quantum states and measurement operators
used or the dimension of the Hilbert space in which they are
defined. It is often stressed that security could thus in particular
be guaranteed if the devices had been provided or sabotaged by
the adversary. This possibility is fascinating from a conceptual
point of view and deserves to be investigated for its own sake.
However, it has probably little (if no) practical relevance.

One reason is that while it is, in principle, possible
to enforce the assumptions required for the security of a
DI cryptography scheme based on malicious devices, in
practice this may involve incredible technological and physical
resources. For instance, how can we practically guarantee that
the devices do not covertly leak out sensitive information
to the adversary [15]? How can we guarantee that they do
not contain sneaky transmitters? In principle communications
through electromagnetic waves can be screened, but what
about communications based on neutrinos or gravitational
waves? When a “door” is opened to let a particle enter a
device, how can we efficiently prevent other particles from
coming out of the device?

More generally, any practical cryptographic implementa-
tion, classical, quantum, or device independent, will include
and make use of classical computing and communicating
devices to process, store, and transmit data. These classical
devices, which are probably easier to corrupt than their
quantum counterparts, cannot be guaranteed secure if they
have been acquired from dishonest providers. One should
therefore either acquire these classical devices from trusted
suppliers or inspect them for malicious behavior. But then
why apply a different standard to the quantum devices?

The real problem, to which the concept of device in-
dependence offers a potential solution, is that even if the
quantum devices have been obtained from honest suppliers or
thoroughly inspected, many things can still unintentionally go
wrong. Indeed, in standard (i.e., device-dependent) quantum
cryptography, conclusions about the randomness or the secrecy
of the outputs crucially depends on the physical properties
of the generation process, for example, on the fact that the
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outputs were produced by measuring the polarization of a
single photon along well-defined directions. But then how
can one assess the level of security provided by a real-life
implementation of a standard quantum cryptography protocol,
which will inevitably differ in undetermined ways from the
idealized, theoretical description [28]? Consider for instance
that the reported attacks [29–31] on commercial QKD systems
did not exploit any intentional, malicious flaws in the devices.

This problem is particularly acute in the case of (classical
or quantum) RNG devices, as it is very difficult even for
honest parties to construct reliable RNGs and monitor them
for proper operation. The generation of randomness in a
device-independent way solves many of the shortcomings
of usual RNGs listed earlier since it makes possible an
accurate estimation of the amount of randomness generated
independently of noise, imperfections, lack of knowledge, or
limited control of the apparatuses.

The use of device independence, even in a trusted provider
situation, has the advantage over a full device-dependent
approach in that it requires only the verification of a limited
number of precisely defined assumptions, on which the
manufacturer of the device can focus. Furthermore, these
assumptions can be much more easily enforced or verified
with respect to the situation where the devices come from
a dishonest provider, as one does not need to fight against
devices that have been maliciously programmed [15,32]. For
instance, in the experiment reported in Ref. [15] no particular
measures have been taken to screen off one device from the
other. However, the experiments involve two atoms that are
confined in two independent vacuum chambers separated by
about 1 m. At this distance, direct interaction between the
atoms is negligible, and classical microwave and optical fields
used to perform measurements on one atom have no influence
on the other atom. Based on this superficial description of
the setup, one can safely assume that the two quantum
systems are independent and that no imperfections, failures,
or implementation weaknesses would lead to direct interaction
between the devices (although imperfections could lead to
other potential problems that can be ruled out by the DI
approach) and thus that the general formalism used to derive
a bound on the randomness applies.

In the case of DIRE, assuming that the devices originate
from a honest provider has not only experimental implications
but also theoretical ones. The first one is that, while the adver-
sary may possess an arbitrarily accurate classical description
of the internal working of the devices at any given moment of
time, it is highly unlikely that he could possess any quantum
system that is entangled with those inside the devices if he
did not manufacture or tamper with them. This means that
proving that the outputs are random with respect to classical
side information is sufficient.

The second implication is that the adversary cannot pro-
gram the devices to exploit any prior knowledge about the
initial randomness used to choose the inputs. The inputs
must still be selected in a way that is independent of the
internal functioning of the devices, but this condition can be
satisfied without having recourse to cryptographically secure
random number generators. For instance, in the experiment
reported in Ref. [15], the measurement settings were chosen
by combining, through a XOR function, several public random

number generators that use randomness derived from radioac-
tive decay [33], atmospheric noise [34], and remote computer
and network activity [35]. While a dishonest manufacturer
aware of this procedure could have exploited it in the design
of the setup, it is highly unlikely that the state of the ions
in the experiment of Ref. [15] was in any way correlated to
the choice of measurement bases. If this condition is satisfied,
it is justified to conclude that the outputs of the devices do
represent new, private random bits.

Note that the two above implications are specific to DIRE
and would not hold for most DI cryptographic protocols. This
is because DIRE is a single-user protocol completely carried
out in a single secure laboratory and which therefore does not
allow for the possibility of interactive attacks by the adversary.
In contrast, DIQKD, for instance, usually involves sending
quantum information between Alice’s and Bob’s devices. This
quantum information can be intercepted by the adversary and
entangled with his own quantum system. Furthermore any
knowledge of the random numbers used in the protocol could
be exploited by the adversary to improve the efficiency of
this interaction. Even if the devices are completely trusted, it
is therefore still the case that the security of QKD must be
based on a proof that holds against quantum side information
and that the random numbers used in the protocol must be
cryptographically secure. In the following section we analyze
DIRE from the perspective discussed above and show in
particular how to prove the security of a DIRE protocol against
classical side information.

III. DIRE AGAINST CLASSICAL SIDE INFORMATION

We start by recalling some definitions and results that will
be used in the following. We refer to Refs. [15,36,37] for more
details.

A. Preliminaries

Random variables. Let R be a random variable over the
finite set R and Pr[R = r] = PR(r) be the probability that
it takes the value r . (In the following, we use uppercase
letters to denote random variables and lowercase letters to
denote specific values taken by these variables). The closeness
between two distributions PR and Qr can be quantified through
the trace distance

d(PR,Qr ) = 1
2

∑

r

|PR(r) − QR(r)| . (1)

For simplicity, we will write P (r) for the probabilities PR(r)
when there is no risk of confusion. Let E be a random variable
representing some classical side information about the variable
R, and let the correlations between R and E be described by
a joint distribution Pr[R = r,E = e] = PRE(re). We say that
R is δ random with respect to E if it is δ close to a uniform
distribution uncorrelated to E, that is, if

d(PRE,UR × QE) = 1
2

∑

r,e

|PRE(re) − UR(r) × QE(e)| ! δ

(2)

for some distribution QE , where UR(r) = 1/|R| is the uniform
probability distribution on R.
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Min-entropy. The randomness of R with respect to E can
be quantified through the conditional min-entropy

Hmin(R|E)P = − log2

∑

e∈E
PE(e) max

r∈R
PR|E(r|e) . (3)

The conditional min-entropy (3) is sometimes called the
average conditional min-entropy to distinguish it from the
worst-case conditional min-entropy defined by

H̃min(R|E)P = − log2 max
r,e

PR|E(r|e) . (4)

The worst-case min-entropy is a lower bound on the average
min-entropy: Hmin(R|E)P " H̃min(R|E)P . Note that when
there is no side information E, both entropies reduce to
the usual definition Hmin(R)P = − log2 maxr∈R PR(r) for the
classical min-entropy of a distribution PR .

Randomness extractors. Given an n-bit string R with a
certain conditional min-entropy k, one can extract from it,
using a randomness extractor and a small uniform seed S, a
new m-bit random string that is almost uniformly random.
More formally, a function Ext : {0,1}n × {0,1}d → {0,1}m
is a (m,k,δ)-strong extractor with uniform seed if for all
distributions PRE with Hmin(R|E)P " k, and for a uniform
seed S ∈ {0,1}d , we have [38]

d(PExt(R,S)SE,Um × PS × PE) ! δ , (5)

where Um is the uniform distribution on {0,1}m. There exist
different constructions for randomness extractors, character-
ized by different relations between the parameters n,m,d,k,δ.
In particular, for any k and δ, there exist extractors with
output length m = k − 4 log 1/δ − O(1) and seed length d =
O( log2(n/δ) log m) [37].

Randomness and Bell experiments. In Ref. [15], it was
shown that there exists a fundamental, quantitative relation
between the violation of Bell inequalities and the randomness
produced in Bell experiments. We consider here for simplicity
Bell experiments performed on two distinct systems A and
B, although our results generalize to more parties. We denote
V = (V a,V b) as the measurement choices for systems A and
B and assume that they each take values in a finite set V . We
denote the measurement outputs X = (Xa,Xb) and assume
that they each take values in the finite setX . To any given input
V a = va , we can associate a set of measurement operators
{MA(xa|va)}xa∈X such that

∑
xa M

†
A(xa|va)MA(xa|va) = IA,

where IA is the identity operator on the Hilbert space HA

of system A. Similarly, a set of measurement operators
MB(xb|vb) can be associated with any given input V b = vb.
The probability of obtaining the pair of outputs x = (xa,xb)
given the pair of inputs v = (va,vb) when measuring a joint
state ρAB ∈ HA ⊗ HB can then be written

P (x|v) = tr[MA(xa|va) ⊗ MB(xb|vb) ρAB M
†
A(xa|va)

⊗M
†
B(xb|vb)]. (6)

A Bell expression I is defined by a series of coefficients
cvx , which associate a conditional probability distribution
P = {P (x|v)} with the Bell expectation

I [P ] =
∑

vx

cvxP (x|v) . (7)

We denote by Iq the maximal quantum Bell expectation,
i.e., Iq = maxP I [P ], where the maximum is taken over all
distributions of the form (6).

In Ref. [15] (see also [39]), it is shown that there
exists a fundamental relation between the randomness of the
distribution P and the Bell expectation I [P ]. More precisely, it
is shown how, using the semidefinite programming hierarchy
introduced in Refs. [40,41], one can compute for each v a
bound of the form

max
x

P (x|v) ! g(I [P ]) , (8)

which is valid for any state ρAB and measurement operators
MA(xa|va) and MB (xb|vb) such that (6) holds. Here g is a func-
tion that is concave (if not, we take its concave hull) and mono-
tonically decreasing, taking values between 1 and 1/|X |2. In
particular, it is thus also logarithmically concave. The above
bound can be rewritten as Hmin(X|V = v)P " f (I [P ]), where
Hmin(X|V = v)P = − log2 maxx P (x|v) is the min-entropy of
X for a given v and f (I [P ]) = − log2 g(I [P ]). From now
on we refer to g (or f = − log2 g) as a randomness bound
associated with I .

B. Modeling the devices and basic assumptions

We consider a single pair of Bell-violating devices A and
B (although the results below can be directly generalized
to a multipartite setting), in which the user Alice can re-
spectively introduce inputs V = (V a,V b) (the “measurement
settings”) and obtains output X = (Xa,Xb) (the “measurement
outcomes”). The quantum apparatuses are used n times in
succession for varying choices of the inputs. In full generality,
the behavior of the devices can be characterized by (1) an
initial state ρAB ∈ HA ⊗ HB , (2) a set MAB = {MAB(x|v)} of
measurement operators on HA ⊗ HB , which have the product
form

MAB(x|v) = MA(xa|va) ⊗ MB(xb|vb) (9)

and which define the measurements applied on the state
of the devices for given input v = (va,vb), and (3) a joint
unitary operation U ∈ HA ⊗ HB , which is applied on the
postmeasurement state of the devices after each measurement
and which represents the possibility for the devices to com-
municate between successive measurements (e.g., to establish
new entanglement).

Note that to simplify the notation, we did not explicitly
introduce a dependence of MAB(x|v) or U on the measurement
round i or on the inputs and outputs obtained in previous steps;
i.e., MAB(x|v) and U are identical at each use of the devices.
The above formulation is nevertheless completely general and
can account for the possibility that the behavior of the devices
varies from one round to another and makes use of an internal
memory. Indeed, the measurement operators MAB(x|v) and
the operation U can encode the value of the inputs v and
the output x obtained in a given run in the postmeasurement
state of the devices and “read” back this information in the
next step to perform an operation conditional on the previous
history. The only restrictive hypothesis that we make is that the
measurement operators have the product form (9). Physically,
this means that systems A and B do not communicate with
each other during the measurement itself.
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We assume that the behavior of the devices, characterized
by the initial state ρAB , the set of measurement operators
MAB , and the joint operation U , is perfectly known to the
adversary. Note that the behavior of the devices might depend
on some external random parameters known or controlled by
the adversary. For instance, the quality of the components
used to produce the devices might vary in a way known to
the adversary, or he might control some parameters (such as
temperature or changes in the voltage of the power supply)
that can influence the output of the devices. This can be taken
into account by assuming that the devices and the adversary’s
information are in a joint state

ρABE =
∑

e

P (e)ρe
AB ⊗ |e〉〈e| , (10)

where ρAB =
∑

e P (e)ρe
AB and e represents the knowledge

that the adversary has on the state of the devices. In the fol-
lowing we refer to (ρABE,MAB,UAB) as the device behavior.
Our assumption of classical side information lies in the fact that
the devices and the adversary are only classically correlated.
In general, i.e., in the case of quantum side information, the
state ρABE could be completely arbitrary.

As we said, the devices will be used n times in succes-
sion. Let V = (V1, . . . ,Vn) = (V a

1 ,V b
1 . . . ,V a

n ,V b
n ) denote the

sequence of inputs employed in n such successive uses, and let
P (v) denote the probability of a particular sequence V = v. We
assume that the choice of inputs is independent of the device
behavior, i.e., that the inputs V, the pair of devices AB, and
the adversary’s information E can initially be characterized by
the cqc state

ρV ⊗ ρABE =
∑

v,e

P (v)P (e)|v〉〈v| ⊗ ρe
AB ⊗ |e〉〈e| . (11)

After n uses of the devices, one obtains a sequence X =
(Xa

1 ,Xb
1, . . . ,X

a
n,X

b
n) of output pairs. The resulting situation

and the correlations between the inputs V, outputs X, and the
adversary’s information E can then be characterized by the
joint distribution

P (vxe) = P (v)P (e)P (x|v,e) , (12)

where

P (x|v,e) = tr

{
n∏

i=1

[
UAB MA

(
xa

i

∣∣va
i

)
⊗ MB

(
xb

i

∣∣vb
i

)]
ρe

AB

×
n∏

i=1

[
M

†
A

(
xa

i

∣∣va
i

)
⊗ M

†
B

(
xb

i

∣∣vb
i

)
U

†
AB

]
}

(13)

represents the response of the devices to given inputs v for a
given value of the adversary’s information e.

In the following, we show how the level of Bell violation
which is observed after n repetitions of the experiment implies
a bound on the min-entropy of the output string X conditioned
on the input string V and the adversary’s information E. This
bound depends only on the product assumption (9) character-
izing the two devices, on the independence assumption (11)
between the choice of inputs and the state of the devices,
and implicitly on the condition (10) that the adversary’s side
information is classical. Apart from these three assumptions,

our results do not depend on any specific details of the device
behavior (ρABE,MAB,UAB).

C. Bounding the min-entropy

Suppose that the sequence of inputs V =
(V a

1 ,V b
1 , . . . ,V a

n ,V b
n ) is generated by choosing each

pair of inputs (V a
i ,V b

i ) independently with probability
Pr[V a

i = v,V b
i = w] = pvw, with q = minv,w pvw > 0. Let I

be a Bell expression I adapted to the input and output alphabet
of the quantum devices. We then introduce the following Bell
estimator:

Ī = 1
n

n∑

i=1

Ii , (14)

where

Ii =
∑

xyvw

cxyvw

χ
(
Xa

i = x,Xb
i = y,V a

i = v,V b
i = w

)

pvw

. (15)

Here, χ (e) is the indicator function for event e; that is, χ (e) = 1
if event e is observed, and χ (e) = 0 otherwise. The series of
coefficients cxyvw in Eq. (15) define the Bell expression I . We
assume that they satisfy c = maxx,y,v,w cxyvw < ∞.

Let {Jm : 0 ! m ! mmax} be a series of Bell violation
thresholds, with J0 corresponding to the local bound of the
Bell expression and Jmax = Iq corresponding to the maximum
violation allowed by quantum theory. We are going to put a
bound on the min-entropy of the string X conditioned on the
fact that the observed Bell average value Ī is found within
some interval [42] Jm ! Ī < Jm+1. We denote P (m) as the
probability that the experiment returns a Bell average value
in the interval Jm ! Ī < Jm+1 and Hmin(X|VE,m)P as the
min-entropy of X conditioned on V and E given that a specific
value of m has been obtained. The case m = 0 corresponds to
the situation where no substantial Bell violations are observed
and no randomness is produced.

Theorem 1. Suppose that the sequence of inputs V =
(V a

1 ,V b
1 , . . . ,V a

n ,V b
n ) is generated by choosing each pair

of inputs (V a
i ,V b

i ) independently with probability Pr[V a
i =

v,V b
i = w] = pvw, with q = minv,w pvw > 0. Let ε,ε′ > 0

be two arbitrary parameters. Then, for any device behav-
ior (ρABE,MAB,U ), the resulting distribution P = {P (vxe)}
characterizing n successive uses of the devices is ε close
to a distribution Q such that (1) either Q(m) ! ε′ (2)
or Hmin(X|VE,m)Q " nf (Jm − µ) − log2

1
ε′ , where f is a

randomness bound associated with the Bell expression I and

µ =
(

c

q
+ Iq

) √
2
n

ln
1
ε

. (16)

This result tells us that the classical distribution P charac-
terizing the outputs X of the devices and their correlations
with the inputs V and the adversary’s information E is
essentially indistinguishable from a distribution Q such that if
the observed violation lies within the interval Jm ! Ī < Jm+1
with non-negligible probability, then we have the guarantee
that the outputs contain a certain amount of entropy, roughly
given by nf (Jm) up to epsilonic corrections (note the term
− log2 1/ε′ in the bound on the min-entropy Hmin(X|VE,m)Q
was missing in Ref. [15]). Note that the fact that the trace
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distance cannot increase under classical processing operations
guarantees that any claim about the string X (or any subsequent
use thereof) which is based on the properties of the distribution
Q will also hold for the distribution P up to a correction ε (see
Sec. III D for more details).

Proof of Theorem 1. In the following, we write vi =
(va

1 ,vb
1 , . . . ,v

a
i ,v

b
i ) for the collection of input pairs up to round

i and similarly for xi . We denote E(Ii |xi−1,vi−1,e) as the
expectation of the random variable Ii defined in Eq. (15)
conditioned on (xi−1,vi−1,e), where the expectation is taken
with respect to the probability distribution P . The following
lemma puts a bound on the probabilities P (x|v,e).

Lemma 1. Let Gµ = {(x,v,e) | 1
n

∑n
i=1 E(Ii |xi−1,vi−1,e) "

Ī (x,v) − µ}, where µ ∈ R is some real parameter. Then for
any (x,v,e) ∈ Gµ,

P (x|v,e) ! gn(Ī (x,v) − µ) . (17)

Proof. Using successively Bayes’s rule and (13), we can
write

P (x|v,e) =
n∏

i=1

P (xi |vi,xi−1,v,e)

=
n∏

i=1

P (xi |vi,xi−1,vi−1,e) . (18)

The second equality simply expresses the fact that the outputs
at round i are determined only by the inputs at round i and
by the past inputs and outputs but not by future inputs. Note
furthermore that we can write

P (xi |vi,xi−1,vi−1,e)

= P
(
xa

i ,xb
i

∣∣va
i ,v

b
i ,xi−1,vi−1,e

)

= tr
[
MA

(
xa

i

∣∣vb
i

)
⊗ MB

(
xb

i

∣∣vb
i

)
ρ

e,xi−1,vi−1
AB M

†
A

(
xa

i

∣∣vb
i

)

⊗M
†
B

(
xb

i

∣∣vb
i

)]
, (19)

where ρ
e,xi−1,vi−1
AB denotes the state of the devices

conditioned on previous inputs and outputs. Apply-
ing the randomness bound (8) to the probability dis-
tribution Pxi−1,vi−1,e = {P (xi |vi,xi−1,vi−1,e)} implies that
P (xi |vi,xi−1,vi−1,e) ! g(I [Pxi−1,vi−1,e]). Using the fact that
P (va

i = v,vb
i = w|xi−1,vi−1,e) = pvw, which follows from

(11), and the fact that each pair of inputs (V a
i ,V b

i )
is generated independently with probability Pr[V a

i =
v,V b

i = w] = pvw, it is easily verified that I [Pxi−1,vi−1,e] =∑
xyvw cxyvwP (xy|vw,xi−1,vi−1,e) = E(Ii |xi−1,vi−1,e). We

therefore have

P (x|v,e) !
n∏

i=1

g(E(Ii |xi−1,vi−1,e))

! gn

(
1
n

n∑

i=1

E(Ii |xi−1,vi−1,e)

)

, (20)

where we used the fact that g is logarithmically concave in the
second inequality. Using the definition of Gµ and the fact that
g is monotonically decreasing, we get (17). #

Lemma 2. For any ε > 0, let

µ =
(

c

q
+ Iq

)√
2
n

ln
1
ε

. (21)

Then

Pr[Gµ] =
∑

(x,v,e)∈Gµ

P (x,v,e) " 1 − ε . (22)

Proof. Consider the list of random variables Z0, . . . ,Zn,
where Z0 = 0 and

Zk =
k∑

i=1

[Ik − E(Ik|Wk−1)] (23)

for k " 1, where Wk−1 = (Xk−1,Vk−1,E) and W0 = E. Since
|Ik| ! c/q, with c < ∞ and q > 0, we have that |Zk| !
2kc/q < ∞ is bounded for all k. Moreover, the differ-
ences |Zk+1 − Zk| are bounded by |Zk+1 − Zk| = |Ik+1 −
E(Ik+1|Wk)| ! |Ik+1| + |E(Ik+1|Wk)| ! c/q + Iq , where we
used (11) and the fact that each pair of inputs (V a

i ,V b
i ) is

generated independently with probability Pr[V a
i = v,V b

i =
w] = pvw. Finally, it is easily verified that E(Zk+1|Wk) =
Zk for all 0 ! k ! n − 1. The variables Z0, . . . ,Zn thus
form a martingale with respect to (the filtration induced by)
W0, . . . ,Wn−1. We can therefore apply the Azuma-Hoeffding
inequality [43], which yields

Pr [Zn − Z0 " nµ] = Pr

[
1
n

n∑

i=1

E(Ii |Wi−1) ! Ī − µ

]

! exp
( −nµ2

2(c/q + Iq)2

)
= ε, (24)

which gives the desired claim given the definition of Gµ. #
So far, we have (implicitly) considered the random variable

sequence X as taking a value in the output space X n = X ×
· · · × X . We now formally extend its range and view it as
an element of X n∪ ⊥ with P (x|ve) = 0 if x =⊥. We can
interpret ⊥ as an “abort output” produced by the devices,
implying that no violation has been obtained (i.e., m = 0 if
x =⊥).

Lemma 3. There exists a probability distribution Q =
{Q(x,v,e)} that is ε close to P satisfying

Q(x|v,e) ! gn(Ī (x,v) − µ) (25)

for all (x,v,e) such that x ,=⊥, with µ given by Eq. (21).
Proof. Define Q as Q(x,v,e) = P (v)P (e)Q(x|v,e), where

Q(x|v,e) = P (x|v,e) if (x,v,e) ∈ Gµ, Q(x|v,e) = 0 if x ,=⊥
and (x,v,e) /∈ Gµ, and Q(⊥ |v,e) = 1 −

∑
x,=Gµ

P (x|v,e).
By Lemma 1, the distribution Q satisfies (25) for
all (x,v,e) such that x ,=⊥. Application of Lemma 2
gives d(P,Q) = 1

2

∑
x,v,e |P (x,v,e) − Q(x,v,e)| = 1

2

∑
v,e

P (v,e)
∑

x |P (x|v,e) − Q(x|v,e)| = 1
2 [

∑
x,v,e/∈Gµ

P (x,v,e) +
1 −

∑
x,v,e∈Gµ

P (x,v,e)] ! ε. #
Let Q(m) be the probability (according to the distribution

Q) that Jm ! Ī < Jm+1. Let Q(x,v,e|m) denote the distri-
bution of X,V,E conditioned on a particular value of m,
and let

Hmin(X|VE,m)Q = − log2

∑

v,e

Q(v,e|m) max
x

Q(x|v,e,m)

(26)
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be the min-entropy of the raw string X conditioned on
(V,E) for a given m. Let Km = {x | x ,=⊥ and Jm ! Ī (x,v) <
Jm+1}. By Lemma 3 and the fact that the g is monotonically
decreasing, we have

max
x

Q(x|v,e,m) = 1
Q(m|v,e)

max
x∈Km

Q(x|v,e) (27)

! gn(Jm − µ)
Q(m|v,e)

. (28)

Inserting this back in Eq. (26) gives

Hmin(X|VE,m)Q " − log2

∑

v,e

Q(v,e|m)
Q(m|v,e)

gn(Jm − µ) (29)

= − log2

∑

v,e

Q(v,e)
Q(m)

gn(Jm − µ) (30)

= nf (Jm − µ) − log2
1

Q(m)
, (31)

where we recall that f = − log2 g. This immediately implies
Theorem 1.

D. Application to DIRE protocols

Theorem 1 can directly be applied to prove the security of
various DIRE protocols. Formally, a randomness expansion
protocol is a protocol that, starting from a d-bit uniform
random seed S, generates an m-bit string R that is close
to uniformly random and not correlated with any potential
adversary. The length m of the output string is variable and is
determined during the run of the protocol. The protocol may
also abort, in which case we set m = 0 and R = ∅. We can
assume that m is made public at the end of the protocol.

The protocol will involve the use of Bell-violating devices
and some classical processing on the outputs of the devices.
For example, a straightforward protocol directly based on the
simple Bell experiment described so far is described below. But
one could also consider more complicated protocols involving
multiple pairs of Bell-violating devices, where this simple
primitive is repeated or concatenated.

(1) Input generation. Alice generates a sequence of input
pairs V = (V a

1 ,V b
1 , . . . ,V a

n ,V b
n ) according to the (nonuniform)

distribution specified in the statement of Theorem 1. This can
be achieved starting from a uniform random seed Sinp with a
small error εinp and small entropy loss (see [44,45] and the
Appendix).

(2) Use of the devices. She introduces inputs V a
i and V b

i

in the two devices and obtains outputs Xa
i and Xb

i . This step
is repeated n times, resulting in the sequence of output pairs
X = (Xa

1 ,Xb
1, . . . ,X

a
n,X

b
n).

(3) Estimation of the Bell expression. Alice computes the
average Bell expression (14) and determines the value of m
such that Jm ! Ī < Jm+1. If m = 0, she aborts.

(4) Randomness extraction. Using a random seed Sext, Alice
applies a (m,km,εext)-randomness extractor to the raw string
X with km = nf (Jm − µ) − log2 mmax − log2

1
ε′ and obtains

a string R = Ext(X,Sext), which represents the output of the
protocol. We can assume that m, V, and Sext are made public.

In the above description, we have, of course, implicitly
assumed that the thresholds Jm, the parameter ε (which

determines µ), ε′, and εext are chosen in such a way that they
define a proper (m,km,εext)-randomness extractor for all values
of m = 1, . . . ,mmax.

Let F = (V,Sext,E) denote the final side information of the
adversary. Following the definition of security in the context of
quantum key distribution outlined in Refs. [46,47], we say that
a protocol such as the one just presented is secure if, for any
device behavior and any m, the output R is uniformly random
and independent of F . This means that the distribution P

perf
RFM

characterizing the output R, the side information F , and the
final length M of a perfectly secure protocol has the form

P
perf
RFM (rf m) = PM (m) × PRF |M (rf |m),

(32)
PRF |M (rf |m) = Um(r) × Pf |M (f |m),

where Um is the uniform distribution on {0,1}m. A real DIRE
protocol is said to be εsec secure if it is εsec indistinguishable
from a secure protocol; that is, if for any device behavior, the
joint distribution PRFM satisfies

d
(
PRFM,P

perfect
RFM

)
! εsec (33)

for some distribution P
perfect
RFM of the form (32). In particular,

a DIRE protocol is εsec secure if, for any device behavior, it
outputs m-bit strings that are δm random with respect to E with

mmax∑

m=1

PM (m) δm ! εsec , (34)

where mmax denotes the maximal output length.
To show that the protocol defined above is secure according

to this definition, suppose that at the end of step 2, after n
uses of the devices, the correlations between outputs X, inputs
V, and the adversary’s prior information E are characterized
by the probability distribution QXVE defined in the statement
of Theorem 1. Then it is easy to show that the distribution
QRFM = QG(X,V,Sext)FM characterizing the final output of the
protocol (where G is the classical processing describing
the steps performed after n uses of the devices) is (ε′ + εext)
close to a perfectly secure distribution Q̃RFM . Indeed, let M<

be the values of m such that Q(m) ! ε′/mmax and M> be those
for which Q(m) " ε′/mmax. For all m ∈ M>, the min-entropy
Hmin(X|VE,m)Q can thus be bounded by

Hmin(X|VE,m)Q " nf (Jm − µ) − log2 mmax − log2
1
ε′ .

(35)

Applying a (m,km,εext)-randomness extractor to the string X
with km given by the right-hand side of Eq. (35) therefore yields
a string that is δm close to a random string, with δm ! εext for
m ∈ M> and δm ! 1 for m ∈ M<. On average, we thus have

∑

m

Q(m)δm !
∑

m∈M<

Q(m) +
∑

m∈M>

Q(m)εext

!
∑

m∈M<

ε′

mmax
+

∑

m∈M>

Q(m)εext ! ε′ + εext.

(36)

Since the actual distribution PXVE characterizing the output of
the device is ε close to QXVE , it directly follows that it provides
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an (ε + ε′ + εext)-secure realization of the protocol. Indeed,
by the triangle inequality and the fact that classical processing
can only reduce the trace distance, we find d(PRFM,Q̃RFM ) !
d(PRFM,QRFM ) + d(QRFM,Q̃RFM ) ! ε + ε′ + εext. By the
same argument, the protocol is (εinp + ε + ε′ + εext) secure
when errors inherent to the input generation are taken into
account (see the Appendix for an analysis of the errors
introduced at this stage). More generally, the security (in
the context of classical side information) of more com-
plex protocols, where outputs of one pair of devices are
used as inputs for another pair of devices, can directly be
proven from Theorem 1 and by keeping track of the error
propagation.

E. Efficiency

While the protocol presented above produces new random-
ness, it also uses a source of initial randomness S = (Sinp,Sext)
to generate the inputs V and perform the final randomness
extraction. As a straightforward generalization of condition
(11), the security of the protocol requires this initial seed to be
uniform and independent of the initial state of the devices, i.e.,

ρSABE = ωS ⊗ ρABE, (37)

where ωS denotes the uniform distribution on S.
This condition is obviously satisfied if S represents the

output of a genuine, cryptographically secure random number
generator. Of course, a device-independent randomness expan-
sion protocol is useful only if it produces more randomness
at its output than is consumed at its input. It is shown in
Ref. [15] how the protocol that we have presented above
can achieve quadratic expansion with appropriately chosen
probabilities pvw characterizing the input distribution. It can
also be used as a primitive in more elaborate protocols where
the output of one pair of devices are repeatedly used as input
for another pair of devices. Such protocols can then be shown
to achieve exponential expansion (note that the application of
our results, valid against classical side information, to such
concatenated protocols requires that different pairs of devices
be unentangled not only from the adversary to start with
but also between themselves. This assumption is again very
reasonable in a trusted-provider situation).

Note, however, that to generate private randomness, a
device-independent protocol does not necessarily need to
consume any cryptographically secure randomness to start
with. Indeed, since we assumed in the security analysis that
S was made public, the seed S does not need to be random
with respect to the adversary, provided that condition (37)
is satisfied, i.e., provided that the adversary cannot exploit
any prior knowledge about S to influence the behavior of the
devices. If this is the case, which may be reasonable to assume
in a trusted-provider situation [48], the output of the protocol
will nevertheless represent randomness that is private with
respect to the adversary.
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APPENDIX A: SAMPLING A NONUNIFORM
DISTRIBUTION

Here we prove that one can use a uniform distribution to
efficiently sample with exponentially small error nonuniform
independent and identically distributed (i.i.d.) random vari-
ables; see also [44,45].

Theorem 2. Consider the finite alphabet K = a1, . . . ,a|K|.
Let Q be a probability distribution on K with mina Q(a) =
n−γ . Let an = a1,a2, . . . ,an ∈ Kn be drawn i.i.d. according to
Q. We denote Qn as the corresponding probability distribution
on Kn. Suppose that x ∈ {0,1}m is drawn from the uniform
distribution ω on m bits. Then, for any 0 ! γ < 1/3, one can
construct a function f : {0,1}m → Kn such that the induced
probability distribution on Kn given by P (an) = ω(f −1(an))
is ε close to Qn, i.e., d(P,Qn) = 1

2

∑
an |P (an) − P ′(an)| !

ε, with m " nH (Q) + o(nH (Q)) and ε ! 3 exp[−2n1−3γ ],
where H (Q) = −

∑
a Q(a) ln Q(a) is the Shannon entropy

of Q.
Proof. The proof follows from Lemmas 4, 5, and 6 below.

Lemma 4 shows that there is a probable subset of Kn which
occurs with high probability, and Lemma 5 computes the size
of this probable subset. In Lemmas 4 and 5, we take parameter
α = n1/2−γ . With this choice, from Lemma 4, the error one
makes is !2 exp[−2n1−3γ ], and from Lemma 5 the size of
the probable subset is !2nH (Q)+O(n1−γ ). Finally, Lemma 6
tells us how one can sample efficiently from a distribution
of known size. We take the error parameter in Lemma 6 to be
exp[−2n1−3γ ] (i.e., the same as in Lemma 4). The additional
size penalty is negligible compared to the one coming from
Lemma 5. This proves the result. #

Counting typical sequences. Consider the alphabet K =
a1, . . . ,a|K|. If an = a1,a2, . . . ,an ∈ Kn is a word of length n,
we denote by N (a|x) a number of occurrences of a ∈ K in
word an (this is known as the type of the sequence). Let Q
be a probability distribution on K . Let an = a1,a2, . . . ,an ∈
Kn be drawn i.i.d. according to Q. We denote Qn as the
corresponding probability distribution on Kn.

For any α > 0, define the set

T n
Qα = {x ∈ Kn : ∀a ∈ K |N (a|x) − nQ(a)|

! α
√

n
√

Q(a)}.

Lemma 4. Qn(T n
Qα) " 1 − 2|K| exp[−2α2 mina Q(a)].

Proof. T n
Qα is the intersection of |K| events, namely, that

for each a ∈ K the mean of the i.i.d. Bernoulli variables yi ,
defined by yi = 1 iff ai = a and yi = 0 iff ai ,= a, deviates
from its expected value Q(a) by at most α

√
n
√

Q(a). By
the Hoeffding bound, each of these events has a probability
"1 − 2 exp[−2α2Q(a)]. Hence the intersection of the events
has a probability "1 − 2|K| exp[−2α2 mina Q(a)]. #
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Lemma 5. |T n
Qα| ! 2nH (Q)+2 log2 e

e
|K|α

√
n.

Proof. Consider x ∈ T n
Qα . Then Q(x) =

∏
a∈K Q(a)N(a|x).

Hence

|− log2 Q(x) − nH (Q)|

=
∣∣∣∣∣
∑

a∈K

−N (a|x) log2 Q(a) − nH (Q)

∣∣∣∣∣

!
∑

a∈K

− log2 Q(a) |N (a|x) − nQ(a)|

!
∑

a∈K

− log2 Q(a) α
√

Q(a)
√

n

= 2α
√

n
∑

a∈K

− log2

√
Q(a)

√
Q(a)

! 2α
√

n
log2 e

e
|K|.

Therefore Q(x) " 2−nH (Q)−2 log2 e

e
|K|α

√
n, and 1 "∑

x∈T n
Qα

Q(x) " |T n
Qα|2−nH (Q)−2 log2 e

e
|K|α

√
n, which proves

the result. #

Sampling from arbitrary distributions. Suppose that x ∈
{0,1}m is drawn from the uniform distribution ω. Consider
the probability distribution P (z) on z ∈ {0,1}k . We want to
use x to sample with high precision from P (z). That is,
we define a function f : {0,1}m → {0,1}k : x → f (x) such
that the induced probability distribution P ′(z) = ω(f −1(x)) is
close to P (z), as measured by the trace distance d(P,P ′) =
1
2

∑
z |P (z) − P ′(z)|. We have the following lemma.

Lemma 6. For any ε > 0, if m " k + log2
1
ε
, we can

construct a function f such that d(P,P ′) ! ε.
Proof. We view any x ∈ {0,1}m as a number in [0,1] written

in binary: x =
∑m

i=1 xi2−i .
We define P ′(z) ∈ {0,1}m as the largest binary number

smaller than P (z). Therefore 0 ! P (z) − P ′(z) ! 2−m. We
have 1 −

∑
z P ′(z) =

∑
z P (z) − P ′(z) ! 2−(m−k). To have a

normalized distribution we define an additional outcome ⊥
with P ′(⊥) = 1 −

∑
z P ′(z). Using x ∈ {0,1}m drawn from

the uniform distribution ω, we can therefore sample from P ′(z)
thus defined by d(P,P ′) = 1

2

∑
z |P (z) − P ′(z)| + 1

2P ′(⊥) !
2−(n−k). [The function f can be explicitly defined through
f −1(z) = {x :

∑z
z′=0 P ′(z′) ! x ! ∑z+2−k

z′=0 P ′(z′)}]. #
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(Springer, New York, 2009), p. 25.
[9] J. S. Bell, Speakable and Unspeakable in Quantum Mechan-

ics: Collected Papers on Quantum Philosophy (Cambridge
University Press, Cambridge, 2004).

[10] A. Valentini, Phys. Lett. A 297, 273 (2002).
[11] J. Barrett, L. Hardy, and A. Kent, Phys. Rev. Lett. 95, 010503

(2005).
[12] Ll. Masanes, A. Acin, and N. Gisin, Phys. Rev. A 73, 012112

(2006).
[13] R. Colbeck, Ph.D. dissertation, University of Cambridge, 2007.
[14] R. Colbeck and A. Kent, J. Phys. A 44, 095305 (2011).
[15] S. Pironio et al., Nature (London) 464, 1021 (2010).
[16] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[17] D. Mayers and A. Yao, Quantum Inf. Comput. 4, 273 (2004).
[18] A. Acı́n, N. Gisin, and L. Masanes, Phys. Rev. Lett. 97, 120405

(2006).
[19] A. Acı́n, N. Brunner, N. Gisin, S. Massar, S. Pironio, and

V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).
[20] J. Silman, A. Chailloux, N. Aharon, I. Kerenidis, S. Pironio, and

S. Massar, Phys. Rev. Lett. 106, 220501 (2011).

[21] C. E. Bardyn, T. C. H. Liew, S. Massar, M. McKague, and
V. Scarani, Phys. Rev. A 80, 062327 (2009).

[22] J.-D. Bancal, N. Gisin, Y.-C. Liang, and S. Pironio, Phys. Rev.
Lett. 106, 250404 (2011).

[23] F. Magniez et al., in Proceedings of the 33rd International
Colloquium on Automata, Languages and Programming,
(Springer, Berlin, 2006), p. 72.

[24] Specifically, the problem lies with Eqs. (3) and (A9) of the
Supplementary Information of Ref. [15] and with the final steps
leading to these equations.

[25] S. Fehr, R. Gelles, and C. Schaffner, Phys. Rev. A 87, 012335
(2013).

[26] U. Vazirani and T. Vidick, STOC’12 Proceedings of the 44th
Symposium on Theory of Computing (ACM, NY, 2012), p. 61.

[27] Note that previous versions of these results claimed security
against quantum side information, but both proofs were incor-
rect.

[28] V. Scarani and C. Kurtsiefer, arXiv:0906.4547.
[29] L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and

V. Makarov, Nat. Photonics 4, 686 (2010).
[30] Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, Phys.

Rev. A 78, 042333 (2008).
[31] F. Xu, B. Qi, and H.-K. Lo, New J. Phys. 12, 113026 (2010).
[32] Note in particular that it is highly unlikely that the attack reported

in Ref. [49] would spontaneously occur in nonmalicious devices.
[33] HotBits: Genuine random numbers, generated by radioactive

decay, http://www.fourmilab.ch/hotbits.
[34] Random.org, http://www.random.org.
[35] ENTROPYPOOL and ENTROPY FILTER,

http://random.hd.org/index.html.
[36] R. Shaltiel, An Introduction to Randomness Extractors,

Automata, Languages and Programming, Lecture Notes
in Computer Science, Vol. 6756 (Springer, Berlin, 2011),
p. 21.

012336-9

http://dx.doi.org/10.1063/1.1150518
http://dx.doi.org/10.1080/09500340008233380
http://dx.doi.org/10.1063/1.2961000
http://dx.doi.org/10.1063/1.2961000
http://dx.doi.org/10.1103/PhysRevA.75.032334
http://dx.doi.org/10.1364/OL.35.000312
http://dx.doi.org/10.1364/OL.35.000312
http://dx.doi.org/10.1364/OE.18.013029
http://dx.doi.org/10.1364/OE.18.009351
http://dx.doi.org/10.1016/S0375-9601(02)00438-3
http://dx.doi.org/10.1103/PhysRevLett.95.010503
http://dx.doi.org/10.1103/PhysRevLett.95.010503
http://dx.doi.org/10.1103/PhysRevA.73.012112
http://dx.doi.org/10.1103/PhysRevA.73.012112
http://dx.doi.org/10.1088/1751-8113/44/9/095305
http://dx.doi.org/10.1038/nature09008
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.97.120405
http://dx.doi.org/10.1103/PhysRevLett.97.120405
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://dx.doi.org/10.1103/PhysRevLett.106.220501
http://dx.doi.org/10.1103/PhysRevA.80.062327
http://dx.doi.org/10.1103/PhysRevLett.106.250404
http://dx.doi.org/10.1103/PhysRevLett.106.250404
http://dx.doi.org/10.1103/PhysRevA.87.012335
http://dx.doi.org/10.1103/PhysRevA.87.012335
http://arXiv.org/abs/arXiv:0906.4547
http://dx.doi.org/10.1038/nphoton.2010.214
http://dx.doi.org/10.1103/PhysRevA.78.042333
http://dx.doi.org/10.1103/PhysRevA.78.042333
http://dx.doi.org/10.1088/1367-2630/12/11/113026
http://www.fourmilab.ch/hotbits
http://www.random.org
http://random.hd.org/index.html


STEFANO PIRONIO AND SERGE MASSAR PHYSICAL REVIEW A 87, 012336 (2013)

[37] A. De, C. Portmann, T. Vidick, and R. Renner, SIAM J. Comput.
41, 915 (2012).

[38] Note that the definition of (classical) extractors does not usually
involve side information, but the definition given here and the
conventional one can be shown to be essentially equivalent [50].

[39] A. Acin, S. Massar, and S. Pironio, Phys. Rev. Lett. 108, 100402
(2012).

[40] M. Navascués, S. Pironio, and A. Acı́n, Phys. Rev. Lett. 98,
010401 (2007); New J. Phys. 10, 073013 (2008).

[41] S. Pironio, M. Navascues, and A. Acı́n, SIAM J. Optim. 20,
2157 (2010).

[42] This is the novel ingredient that fixes the issue in Ref. [15].
[43] G. Grimmett and D. Stirzaker, Probability and Random

Processes (Oxford University Press, Oxford, 2001).
[44] T. M. Cover and J. A. Thomas, Elements of Information Theory

(Wiley, New York, 1991), Chap. 5.12.

[45] D. Knuth and A. Yao, in Algorithms and Complexity: New
Directions and Recent Results (Academic Press, New York,
1976), p. 357.

[46] M. Ben-Or, M. Horodecki, D. W. Leung, D. Mayers, and
J. Oppenheim, The Universal Composable Security of Quantum
Key Distribution, Lecture Notes in Computer Science, Vol. 3378
(Springer, Berlin, 2005), pp. 386–406.

[47] M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, Nat.
Commun. 3, 634 (2012).

[48] Note, however, that even in a trusted provider situation, condition
(37) may fail if the adversary can modify the behavior of the
devices by controlling external parameters such as the power
supply of the devices.

[49] J. Barrett, R. Colbeck, and A. Kent, Phys. Rev. Lett. 110, 010503
(2013).

[50] R. Koenig and B. Terhal, IEEE Trans. Inf. Theory 54, 749 (2008).

012336-10

http://dx.doi.org/10.1103/PhysRevLett.108.100402
http://dx.doi.org/10.1103/PhysRevLett.108.100402
http://dx.doi.org/10.1103/PhysRevLett.98.010401
http://dx.doi.org/10.1103/PhysRevLett.98.010401
http://dx.doi.org/10.1088/1367-2630/10/7/073013
http://dx.doi.org/10.1137/090760155
http://dx.doi.org/10.1137/090760155
http://dx.doi.org/10.1103/PhysRevLett.110.010503
http://dx.doi.org/10.1103/PhysRevLett.110.010503

