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We consider two quantum cryptographic schemes relying on encoding the key into qudits, i.e., quantum
states in a d-dimensional Hilbert space. The first cryptosystem uses two mutually unbiased bases (thereby
extending the BB84 scheme), while the second exploits all d 1 1 available such bases (extending the
six-state protocol for qubits). We derive the information gained by a potential eavesdropper applying a
cloning-based individual attack, along with an upper bound on the error rate that ensures unconditional
security against coherent attacks.
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Quantum key distribution is probably one of the most
promising concepts in quantum information theory, and
has been extensively studied both theoretically and experi-
mentally since its discovery by Bennett and Brassard in
1984 [1]. This cryptographic method allows two remote
parties to share a secret key by use of a quantum channel
supplemented with a public authenticated classical channel
(see, e.g., [2] for a review). The impossibility for an eaves-
dropper to tap the quantum channel without disturbing the
communicated data—in a way that can, in principle, be
detected using the classical channel —ensures the secu-
rity of the key distribution. Most of the research effort
to date has focused on quantum cryptosystems based on
two-dimensional quantum variables (qubits) carried, e.g.,
by the polarization state of individual photons. In par-
ticular, the optimal individual attack is now known both
for the BB84 protocol (using two mutually unbiased bases
[3]) and for the six-state protocol (using all three mutually
unbiased bases [4,5]). Strong bounds have also been de-
rived in the more general case of coherent attacks, which
are useful to assess the security of quantum cryptography
(see, e.g., [6–8]). For higher-dimensional systems, how-
ever, very few results have been obtained on the resistance
to eavesdropping of qudit-based schemes (i.e., schemes
based on encoding the key on d-level systems). The only
schemes that have been considered use either two bases for
a four-level system [9] or four bases for a qutrit [10], but
their security was investigated against simple nonoptimal
attacks only.

In this Letter, we investigate more general quantum
cryptosystems where the encoding is made into qudits with
arbitrary d, extending on an earlier study by some of us
that considered only simple individual attacks [11]. A first
protocol we study consists in using two mutually unbiased
bases, just as in the original BB84 scheme. The sender
Alice sends a basis state in one of these two bases chosen
at random, while the receiver Bob makes a measurement
in one of these two bases, again at random. The basis used

by each party is subsequently disclosed on the public chan-
nel, so that Alice and Bob obtain correlated d-ary random
variables if they used the same bases (and if there was no
disturbance on the channel), which happens with probabil-
ity 1�2. The use of mutually unbiased (or complementary)
bases implies that if Alice and Bob use different bases,
Bob’s measurement yields a random number that is uncor-
related with Alice’s state. The raw secret key is then made
out of the correlated data (discarding the uncorrelated data
is known as the sifting procedure). This procedure ensures
that any attempt by an eavesdropper Eve (oblivious of the
chosen basis) to gain information on Alice’s state induces
errors in the transmission, which can then be detected by
the legitimate parties. In the second qudit-based protocol
that we study, Alice and Bob choose their basis at random
among all d 1 1 mutually unbiased bases that are avail-
able in a d-dimensional Hilbert space, much in the same
way as in the six-state protocol for qubits. Note that these
bases are only known for d being a power of a prime num-
ber [12], so the protocol is only defined then. This second
protocol clearly has a lower yield than the first one since
the sifting procedure only keeps one transmission out of
d 1 1 (instead of 1�2). However, as we shall see, it is
more secure against individual attacks in the sense that a
slightly higher error rate is acceptable.

In what follows, we will analyze the security of these
two cryptographic protocols against individual attacks
(where Eve monitors the qudits separately) as well as
coherent attacks (where Eve monitors several qudits
jointly). For the individual case, we consider a fairly
general class of eavesdropping attacks that are based on
(not necessarily universal) quantum cloning machines. It
is known for qubits that such a cloning-based attack is
the optimal eavesdropping strategy, that is, the best Eve
can do is to clone (imperfectly) Alice’s qubit and keep a
copy while sending the original to Bob. An appropriate
measurement of the clone (and the ancilla system) after
disclosure of the basis enables Eve to gain the maximum
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possible information on Alice’s key bit. Extending this

cloning-based attack to higher dimensions results in a

lower bound on the information accessible to Eve for a
given error rate. Hence, this yields an upper bound on

the error rate, which is a necessary condition for security

against individual attacks (higher error rates cannot permit

one to establish a secret key using one-way communi-

cation). We argue that applying the optimal cloner is
actually the best strategy for Eve in any dimension, so

that this bound is tight. For coherent attacks, we consider

a situation where Eve interacts with a qudit sequence

of arbitrary (but finite) length and then uses the basis

information to extract key information. In particular, we
make use of an information uncertainty principle to derive

a lower bound on Bob’s information, or, equivalently, an

upper bound on the error rate. It is a sufficient condition

for the protocol to be guaranteed to generate a nonzero

net key rate for all finite-length attacks.

Let us consider first an individual eavesdropping based
on the use of a quantum cloning machine for qudits. The

particular cloning machine that is best to use depends on

whether the protocol uses two bases or d 1 1 bases. We

focus on the case of two bases first, for which we need

to use a cloner that copies equally well two mutually
unbiased bases, e.g., the computational basis �jk��, with

k � 0, . . . , d 2 1, and its dual under a Fourier transform

jl� �

1p
d

d21
X

k�0

e2pi�kl�d�jk� , (1)

with l � 0, . . . , d 2 1. We use a general class of cloning

transformations as defined in [13]. If Alice sends the state
jc�, the transformation reads

jc�A !
d21
X

m,n�0

am,nUm,njc�BjBm,2n�E,E0 , (2)

where A, B, E, and E0 stand for Alice’s qudit, Bob’s clone,
Eve’s clone, and the cloning machine, respectively. Here,

the amplitudes am,n (with
P

d21
m,n�0 jam,nj2 � 1) character-

ize the cloner, while the states jBm,n�EE 0 are d-dimensional

Bell states, that is, a set of d2 orthonormal maximally en-

tangled states of two qudits,

jBm,n�EE 0 �

1p
d

N21
X

k�0

e2pi�kn�d�jk�E jk 1 m�E 0 (3)

with m, n � 0, . . . , d 2 1. Note that the kets must be

taken modulo d here. The operators Um,n defined as

Um,n �

d21
X

k�0

e2pi�kn�d�jk 1 m� �kj (4)

form a group of qudit error operators, generalizing the

Pauli matrices for qubits: m labels the shift errors (ex-
tending the bit flip sx), while n labels the phase errors

(extending the phase flip sz). Tracing the output joint state

of Eq. (2) over EE0 implies that Alice’s state jc�A is trans-

formed, at Bob’s station, into the mixture

rB �

d21
X

m,n�0

jam,nj2Um,njc� �cjUy
m,n . (5)

Thus, the state undergoes a Um,n error with probability

jam,nj2. If Alice sends any state jk� in the computational

basis, the phase errors �n fi 0� clearly do not play any role

in the above mixture since Um,njk� � e2pi�kn�d�jk 1 m�,
so Bob’s fidelity can be expressed as

F � �kjrBjk� �

d21
X

n�0

ja0,nj2. (6)

In the complementary basis, we have Um,njl� �

e22pi�l1n�m�djl 1 n�, so the shift errors �m fi 0� do

not play any role and Bob’s fidelity becomes

F � �ljrBjl� �

d21
X

m�0

jam,0j2. (7)

For the cloner to copy equally well the states of both bases,
we choose a d 3 d amplitude matrix of the form

a �

0

B

B

B

B

@

y x · · · x

x y · · · y
...

...
. . .

...

x y · · · y

1

C

C

C

C

A

, (8)

with x, y, and y being real variables satisfying the nor-
malization condition y2 1 2�d 2 1�x2 1 �d 2 1�2y2

�

1. Thus, Bob’s fidelity is F � y2 1 �d 2 1�x2 in both

bases, and the corresponding mutual information between

Alice and Bob (if the latter measures his clone in the good

basis) is given by

IAB � log2d 1 F log2F 1 �1 2 F� log2

µ

1 2 F

d 2 1

∂

(9)

since the d 2 1 possible errors are equiprobable.

The clone kept by Eve can be shown to be in a state given

by an expression similar to Eq. (5) but with the amplitudes

am,n replaced by their Fourier transform [13]

bm,n �

1

d

d21
X

m0,n0
�0

e2pi�nm02mn0��dam0,n0 . (10)

This corresponds to a matrix similar to Eq. (8) but with

x ! x0
� �y 1 �d 2 2�x 1 �1 2 d�y	�d ,

y ! y0
� �y 2 2x 1 y��d ,

y ! y0
� �y 1 2�d 2 1�x 1 �d 2 1�2y	�d , (11)

resulting in a cloning fidelity for Eve given by FE � y02 1
�d 2 1�x02. Maximizing Eve’s fidelity FE for a given

value of Bob’s fidelity F (using the normalization relation)

yields the optimal cloner:

x �

s

F�1 2 F�

d 2 1
, y �

1 2 F

d 2 1
, y � F . (12)

The corresponding optimal fidelity for Eve is
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FE �

F

d
1

�d 2 1� �1 2 F�

d

1
2

d

q

�d 2 1�F�1 2 F� . (13)

Let us see how Eve can maximize her information on Al-

ice’s state. If Alice sends the state jk�, then it is clear
from Eq. (2) that Eve can obtain Bob’s error m simply by

performing a partial Bell measurement (measuring only

the m index) on EE0. Then, it appears from Eqs. (8) and

(12) that, in order to infer Alice’s state, Eve must dis-

tinguish between d nonorthogonal states (corresponding
to all possible values of k) with a same scalar product

�dF 2 1���d 2 1� for all pairs of states, regardless of the

measured value of m. Consequently, Eve’s information

IAE is simply given by the same expression as Eq. (9) but

replacing F by FE. As a result, Bob’s and Eve’s informa-

tion curves intersect exactly where the fidelities coincide,
that is, at

F � FE �

1

2

µ

1 1
1p
d

∂

. (14)

We now use a theorem due to Csiszár and Körner [14],

which provides a lower bound on the secret key rate, that is,

the rate R at which Alice and Bob can generate secret key

bits via privacy amplification: if Alice, Bob, and Eve share

many independent realizations of a probability distribution
p�a, b, e�, then there exists a protocol that generates a

number of key bits per realization satisfying

R $ max�IAB 2 IAE, IAB 2 IBE� . (15)

It is therefore sufficient that IAB . IAE in order to establish

a secret key with a nonzero rate. If we restrict ourselves

to one-way communication on the classical channel, this

actually is also a necessary condition. Consequently, the

quantum cryptographic protocol above ceases to generate
secret key bits precisely at the point where Eve’s informa-

tion attains Bob’s information. In Table I, we have com-

puted the disturbance D � 1 2 F (or error rate) at which

IAB � IAE (or F � FE), that is, above which Alice and

Bob cannot distill a secret key any more by use of one-way
privacy amplification protocols. Strictly speaking, since

we only conjectured here that the cloning-based attack is

optimal for all d, D
ind
2 is actually only an upper bound

on D that cannot be exceeded to generate secret key bits

with one-way protocols. Interestingly, we note that D
ind
2

increases with the dimension d, suggesting that a cryp-

tosystem based on qudits is more secure for large d.

Now, we consider the second protocol where all d 1 1

bases are used for d being a power of any prime num-

ber. The cloner that must be used then is an asymmetric
universal cloner [13], characterized by an amplitude ma-

trix of the same form as (8) but with x � y, the normal-

ization relation becoming y2 1 �d2 2 1�x2
� 1. Here,

Bob’s fidelity is given by F � y2 1 �d 2 1�x2
� 1 2

d�d 2 1�x2, so that the cloner is characterized by

TABLE I. Disturbance D � 1 2 F (or error rate) as a func-
tion of the dimension d. The columns D

ind
2 and D

ind
d11 display

the values of D at which IAB � IAE for a cloning-based indi-
vidual attack with the two-bases or �d 1 1�-bases protocol, re-
spectively. The column Dcoh corresponds to an upper bound on
D that guarantees security against coherent attacks.

d D
ind
2 (%) D

ind
d11 (%) Dcoh (%)

2 14.64 15.64 11.00

3 21.13 22.67 15.95

4 25 26.66 18.93

5 27.64 29.23 20.99

8 32.32 33.44 24.70

x2
�

1 2 F

d�d 2 1�
, y2

�

�d 1 1�F 2 1

d
. (16)

As before, Bob’s information is given by Eq. (9). Eve’s
clone is characterized by a matrix of the same form, with

x ! x0
� �y 2 x��d

y ! y0
� �y 1 �d2 2 1�x	�d , (17)

so the corresponding fidelity is FE � y02 1 �d 2 1�x02
�

1 2 d�d 2 1�x02. For deriving Eve’s information, we

need first to rewrite the cloning transformation as

jk�A ! y 2 xp
d

jk�B

d21
X

l�0

jl�Ejl�E 0

1 x
p

d

d21
X

m�0

jk 1 m�Bjk�E jk 1 m�E 0 . (18)

After the basis is disclosed, Eve’s strategy is first to mea-

sure both E and E0, the difference (modulo d) of the

outcomes simply giving Bob’s error m. Making use of

y 2 x � x0d and expressing x and x0 as functions of F

and FE , it is easy to check that the best Eve can do then is

to use the state of her clone E as an estimate of Alice’s
state jk�. If Bob makes no error �m � 0�, which hap-

pens with probability F, then this yields the correct value

of k with probability �F 1 FE 2 1��F, while it yields

any other of the d 2 1 possibilities l fi k with probabil-

ity �1 2 FE����d 2 1�F	. In contrast, if Bob makes an
error �m fi 0�, then Eve obtains the right k with proba-

bility one. Consequently, the average mutual information

between Alice and Eve conditionally on Bob’s error m can

be written as

IAE � log2d 1 �F 1 FE 2 1� log2

µ

F 1 FE 2 1

F

∂

1 �1 2 FE� log2

µ

1 2 FE

�d 2 1�F

∂

. (19)

One can check that, for a given F, IAE is slightly lower

here than for the two-bases protocol, which is consistent

with the stronger requirement that we put on the cloner.

Therefore, the fidelity F at which IAB � IAE is slightly
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lower, and the corresponding disturbance D � 1 2 F is

slightly higher. In Table I, we have shown the correspond-

ing upper bound D
ind
d11 for several values of d, illustrating

that there is a slight advantage in using all d 1 1 bases, as

for the six-state protocol for qubits [4,5].
Our last result concerns an eavesdropping strategy that

consists in applying a coherent attack on a qudit sequence

of arbitrary but finite length n. Actually, our reasoning is

simpler to state with a single qudit �n � 1�, but it remains

valid for n . 1 [15]. We use here an uncertainty principle

due to Hall [16] that puts a limit on the sum of Bob’s and
Eve’s information when both parties measure a same quan-

tum system: if B̂ and Ê are Bob’s and Eve’s observables

applied on the qudit sent by Alice, then

IAB 1 IAE # 2 log2�d max
i,j

j�bijej �j� , (20)

where jbi� and jej� are the eigenstates of B̂ and Ê, re-

spectively. This inequality holds with IAB and IAE being

information on the qudit without knowledge of the basis

chosen by Alice. However, by symmetry, it can be shown

that Bob and Eve get the same average information when

measuring the good or wrong basis, so that Eq. (20) also
holds with information conditional on the chosen basis, as

needed in a quantum cryptographic context [6]. Thus, one

gets the tighter possible upper bound on IAE for a given

IAB by assuming that Eve measures an observable Ê com-

plementary to B̂ (i.e. j�bijej�j � d21�2, ;i, j):

IAB 1 IAE # log2�d� . (21)

According to the discussion following Eq. (15), we con-

clude that IAB . log2�d��2 is a sufficient condition to war-
rant security against coherent attacks if the key is made out

of a large number of independent realizations of n-qudit

sequences (i.e., if the key is much longer than n). Us-

ing Eq. (9), this translates into a lower bound on F, or,

equivalently, an upper bound on D

F log2

µ

1

F

∂

1 �1 2 F� log2

µ

d 2 1

1 2 F

∂

,
log2d

2
, (22)

which guarantees that one can distill secret key bits. This
bound, shown in Table I, exactly coincides with the well-

known 11% security threshold for unlimited-length coher-

ent attacks on qubits �d � 2� [8].

In summary, we have extended standard quantum cryp-

tography to protocols where the key is carried by quantum

states in a space of arbitrary dimension d. We have used
a general model of quantum cloning in order to calculate

the information accessible to an eavesdropper monitoring

the qudits individually. This provides an upper bound

on the error rate above which the legitimate parties cannot

distill a secret key by use of one-way privacy amplifica-
tion protocols (since IAB , IAE). Our analysis also sug-

gested that the two-bases protocol should be preferred to

a �d 1 1�-bases one since its maximum acceptable error

rate is only slightly lower, while the corresponding secret

key rate is much larger. Finally, we have derived a very

simple security proof of quantum cryptography with qudits

that exploits an intuitive information inequality constrain-

ing the simultaneous measurement of conjugate observ-
ables. This results in an upper bound on the acceptable

error rate that is more restrictive than the previous one,

but guarantees that a nonzero secret key rate can be pro-

duced even with coherent attacks on qudit sequences of

finite length. In the region between these two bounds, it
is unknown whether the security is guaranteed or not. It

should be stressed that all the bounds on D discussed above

tend to 1�2 for d ! `, reflecting the advantage of using

higher-dimensional spaces. Another context where using

high d might be advantageous is key growing, where an
initially shared key is used to choose between two bases,

the outcomes generating a longer key. However, practi-

cal limitations might be more severe in realistic high-d

cryptosystems, in particular the influence of the detector’s
quantum efficiency and dark count rate. This is discussed

in a related paper [15].
Work supported in part by Projects QuComm and

EQUIP (EU-IST-FET Programme) and the ESF.

Note added.—After completion of this work, it was

proven in an independent paper [17] that the optimal indi-

vidual attack for qutrits �d � 3� when using all four mu-
tually unbiased bases exactly coincides with our results.
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