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Security of quantum key distribution with entangled photons against individual attacks
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We investigate the security of quantum key distribution with entangled photons, focusing on the two-photon
variation of the Bennett-Brassard 1984~BB84! protocol proposed in 1992 by Bennett, Brasard, and Mermin
~BBM92!. We present a proof of security which applies to realistic sources, and to untrustable sources which
can be placed outside the labs of the two receivers. The proof is restricted to individual eavesdropping attacks,
and assumes that the detection apparatus is trustable. We find that the average collision probability for the
BBM92 protocol is the same as that of the BB84 protocol with an ideal single-photon source. This indicates
that there is no analog in BBM92 to photon splitting attacks, and that the source can be placed between the two
receivers without changing the form of the collision probability. We then compare the communication rate of
both protocols as a function of distance, and show that BBM92 has potential for much longer communication
distances, up to 170 km, in the presence of realistic experimental imperfections. Finally, we propose a scheme
based on entanglement swapping that can lead to even longer distance communication. The limiting factor in
this scheme is the channel loss, which imposes very slow communication rates at longer distances.

DOI: 10.1103/PhysRevA.65.052310 PACS number~s!: 03.67.Dd, 03.65.Ud, 03.67.2a
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I. INTRODUCTION

The field of quantum-information theory has brought t
potential to accomplish feats considered impossible
purely classical methods. One of these is the ability to tra
mit an unconditionally secure message between two par
known as quantum cryptography. The first full protocol f
quantum cryptography was proposed in 1984 by Bennett
Brassard using four nonorthogonal states of a quantum
tem @1#, and has since been known as BB84. Following
discovery of the BB84 protocol, other protocols based
nonorthogonal quantum states have been proposed@2,3#. The
security of all of these protocols relies on the impossibility
measuring the wave function of a quantum system with
imposing a backaction on the state. This backaction will u
ally result in an increase in errors across the communica
channel.

In 1991 it was proposed by Ekert that quantum key d
tribution could also be implemented using entanglement
tween quantum systems@4#. Two entangled quantum system
cannot lead to violations of Bell’s inequality if they are al
correlated to a local variable, which an eavesdropper
observe. A test of Bell’s inequality could then provide
statement of security against eavesdropping. The idea o
ing entangled photons for quantum cryptography was
tended by Bennett, Brassard, and Mermin@5# to the two-
photon variant of BB84. In this protocol, which we refer
as BBM92, both receivers measure their respective pho
randomly in two non-orthogonal bases. An eavesdrop
cannot maintain perfect correlations simultaneously in th
two incompatible bases while still learning information abo
the measurement results.

*Also at NTT Basic Research Laboratories, Atsugi, Kanaga
Japan.
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The experimental effort to perform quantum key distrib
tion evolved simultaneously as the theory was being form
Several groups reported implementations of the BB84 pro
col and other single-photon schemes@6–10#. Long distance
violations of Bell’s inequality have been demonstrated
@11#, and recently several proof-of-principle experiments u
ing entangled photons have also been performed@12–14#.
Any practical systems which implement quantum key dis
bution have a baseline error rate which cannot be dis
guished from tampering. A complete analysis of such s
tems must relate this finite error rate to the security of
transmission. Furthermore, practical systems handle er
by public discussion through two additional steps, error c
rection and privacy amplification. The error correction st
serves the dual purpose of correcting all erroneously rece
bits and giving an estimate of the error rate. Privacy am
fication is then used to distill a shorter key which can
made as secure as desired. A security analysis should
sider the effect of these two steps.

The security of quantum key distribution is a compl
subject with several open questions still remaining. Most t
oretical studies of security have dealt with the BB84 pro
col. Early work showed security against several restric
types of attacks@15,16#. Later, security was proved for th
most general individual attacks@17–19#, and these proofs
were extended to practical photon sources in@20#. In an in-
dividual attack the eavesdropper is restricted to measu
each quantum transmission independently, but is allowe
use any measurement which is not forbidden by quan
mechanics. A more general attack allows collective meas
ments which make use of the correlations introduced dur
error correction and privacy amplification by exchange
block parties. This information can be used to refine
eavesdropper’s quantum measurement. Security against
more general attacks has been shown in@21#. The most gen-
eral type of attack is known as a joint attack where the eav
dropper treats the entire quantum transmission as one sy
which she entangles with a probe of very large dimension
,
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ity. There are currently several proofs of security against
most general scenario@22–24#.

Entangled photon protocols have not been studied as t
oughly as the BB84 protocol. Several proofs of security ex
for entanglement-based protocols against enemies with
limited computational power. Some of these proofs requ
that the receivers process their qubits through some form
quantum computer@25,26#. Others apply to more standar
entangled photon protocols but require that the source g
erate only one photon for each receiver@27#. Although these
proofs represent important progress in the security of
tangled photon protocols, they cannot yet be used directl
analyze the security of practical systems.

In order to treat practical entangled photon system
proof of security must be extended to realistic sources. F
thermore, in most of these systems the source can be loc
in between the two receivers and is not trustable. An eav
dropper can replace it with a different source that may p
vide more information without changing the error rate. In t
worst case one must also consider the detection apparat
be untrustable, so that an eavesdropper can in some
modify the measurements made by the two communica
parties. The issue of untrustable source and detection a
ratus has previously been investigated by Mayers and
@28,29#. Mayers and Yao present a protocol in which tw
receiving parties measure their respective signals rando
in one of three nonorthogonal bases. It is proven that if
probabilities of the measurement results are consistent
those produced by a Bell state, then the security of the c
munication channel is ensured. An eavesdropper can
simulate these probabilities while learning a non-negligi
amount of information about the secret key, even if she
allowed to modify or control all aspects of the source a
detection apparatus~i.e., number of particles per pulse, me
surement bases, losses!. This proof has the potential to gua
antee security for realistic systems with virtually no assum
tions. However, at this point the proof considers only t
idealized limit where the probabilities are perfect, so it ca
not be applied to practical systems either. The extensio
this proof to imperfect probabilities due to effects such
imperfect state preparation and channel losses remain
important but difficult question.

In this paper we provide a proof of security for an e
tangled photon protocol which can be applied to practi
systems. This is done by extending the proof of Lu¨tkenhaus
for the BB84 protocol with realistic sources@20# to apply to
BBM92, the EPR variant of the BB84 protocol. The proof
security relies on two assumptions. The first is that all eav
dropping is restricted to individual attacks. The second
sumption is that the detection apparatus is trustable. T
means that we consider a specific model for the behavio
the detection apparatus, which includes losses, and ass
that the eavesdropper cannot modify the measurement a
ratus beyond this model. With these restrictions, we fin
quantitative relationship between the security of the final k
and experimentally measurable quantities such as the e
rate. This is achieved by finding an upper bound on the
erage collision probability, which is an important quantity
the analysis of privacy amplification. The proof works f
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realistic sources, and allows the source to be placed out
the labs of the two receivers. Although our proof makes
sumptions about the eavesdropper and the detection units
believe these assumptions to be realistic under many exp
mental conditions. Because the technology to perform c
lective and joint measurements does not exist, and may
for quite some time, the assumption of individual attacks
realistic for current systems. The assumption that the m
surement apparatus is reliable may also be argued as rea
able because the measurement systems are located in th
of the receivers. They can therefore be tested to make
they are operating according to expectation, and canno
physically manipulated by the eavesdropper. This is in c
trast to the source which is located somewhere between
two receivers and can easily be modified.

Deriving a bound on the collision probability allows us
make several interesting quantitative observations about
BBM92 protocol. We show that the collision probability fo
this protocol is the same as BB84 with an ideal single pho
source. This has two interesting implications. First, there
no analog in BBM92 to the photon splitting attacks whi
can be a severe security risk for the BB84 protocol. Seco
there is no advantage to keeping the source in the labs of
of the receivers. The source can be put in between the
receivers without changing the form of the collision pro
ability. We then show that there is actually a big advantage
putting the source midway between the two receivers. Su
configuration is significantly more robust in the presence
optical losses and detector dark counts, which leads po
tially to much longer communication distances. Since
proof applies to any source of entangled photons we
extend our analysis to more sophisticated methods of ge
ating entangled pairs, such as those based on entangle
swapping. In the final section we analyze a system base
a series of entanglement swaps using only linear optics.
show that this system can be even less sensitive to dete
dark counts and channel losses, which may lead to e
longer communication distances. The limiting factor in th
scheme is the channel loss which imposes unreasonably
communication rates at longer distances.

In Sec. II, we describe the BBM92 protocol and revie
the general theory behind quantum key distribution. We
state some important information theoretic results on e
correction, and privacy amplification. We then derive
method for handling the side information leaked during er
correction. This method allows us to account for the effect
error correction on the length of the final key. In Sec. III, w
derive a proof of security for the BBM92 protocol, and use
to calculate expected communication rates under prac
experimental conditions. These rates are compared to
BB84 protocol with ideal and Poissonian sources. Finally,
Sec. IV, we investigate an experimental configuration ba
on entanglement swapping, which can be more robus
channel loss and detector dark counts.

II. PRELIMINARIES

In this section we provide a review of important concep
in quantum key distribution~QKD!. We also derive some
0-2
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preliminary results which we will use in the upcoming se
tions. The standard participants in QKD are Alice, Bob, a
Eve. Alice would like to exchange a secret key with Bo
which can later be used to encode the actual message. T
this she uses both a quantum channel and a public cha
The enemy, Eve, can listen in on the public channel, bu
assumed incapable of altering the messages being
changed. Eve is also allowed to make any measurements
can on the quantum channel.

The secret key is formed in three steps. The first is the
quantum transmission, which uses both the quantum
public channel simultaneously. The next two steps, error c
rection and privacy amplification, make use of only the pu
lic channel. After privacy amplification Alice and Bob eac
possess a copy of the secret key, about which Eve kn
only a negligibly small amount of information.

A. Quantum transmission

In the BBM92 protocol Alice and Bob share a pair
photons from a source presumed to be somewhere in
tween both parties. In the ideal case the photon pair is
quantum-mechanically entangled state such as

uc&5
1

&
~ uxx&1uyy&), ~1!

wherex andy are two orthoganol states of the photon wa
function. For definiteness we assume thatx andy are polar-
ization states, but alternate implementations can usually
treated in a completely analogous way. The above state
plies that if both receivers measure their photon in thex-y
basis, their measurement results will be completely co
lated. However, we can define the alternate basis

uu&5
1

&
~ ux&1uy&),

uy&5
1

&
~ ux&2uy&).

Using this basis one can rewrite the above state in
equivalent form

uc&5
1

&
~ uuu&1uyy&). ~2!

Thus, if both receivers choose to measure in theu-y instead
of the x-y basis their measurement results will remain cor
lated. In BBM92 each receiver measures their respec
photon randomly in either thex-y or u-y basis. Later they
agree to keep only the instances in which the measurem
bases were the same, forming the ‘‘sifted’’ key.

B. Error correction

In any realistic communication system errors are bound
occur, and some form of error correction is required.
quantum cryptography the errors typically arise from tech
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logical imperfections in the optics and detectors, but can a
come from eavesdropping. In order to achieve noise-f
communication these errors must be corrected, and this
be done through public discussion.

Following the raw quantum transmission Alice, Bob, a
Eve each possess the stringsX, Y, and Z, respectively. In
order to correct the errors, Alice and Bob exchange an a
tional messageU such that knowledge of stringY and U
leave very little uncertainty about stringX. One way to math-
ematically express this is to use the Shannon entropy fu
tion @30#

H~X!52(
x

p~x!log2 p~x!. ~3!

The conditional entropy functionH(XuY5y) is defined
as above using the conditional probability distributio
p(xuY5y). The average conditional entropyH(XuY) is sim-
ply defined as

H~XuY!5(
y

p~y!H~XuY5y!. ~4!

The messageU should provide Bob with enough informatio
so thatH(XuYU)'0. Since stringU is publicly disclosed,
Eve may learn additional information as well, but good er
correction algorithm will reduce this information leakage
a minimum. Unfortunately, given the error ratee, a lower
bound exists on the minimum number of bits inU. This
limit, which is a variant of the Shannon noiseless codi
theorem can be stated as

lim
n→`

k

n
>h~e!, ~5!

wheren is the length of the string,k is the number of bits in
messageU, andh(e) is the conditional entropy of a singl
bit over a binary symmetric channel which is given by

h~e!52e log2 e2~12e!log2~12e!. ~6!

An error correction algorithm should ideally operate ve
close to this limit. At the same time the algorithm should
computationally efficient or the execution time may beco
prohibitively long.

Error correction algorithms can usually be divided in
two classes, unidirectional and bidirectional. In a unidire
tional algorithm information flows only from Alice to Bob
Alice provides Bob with an additional stringU which he
then uses to try to find his errors. This makes it difficult
design algorithms which are both computationally efficie
and operate near the Shannon limit@19,31#. In a bidirectional
algorithm information can flow both ways, and Alice can u
the feedback from Bob to determine what additional info
mation she should provide him. This makes it easier to
proach the Shannon limit. These two classes can be fur
subdivided into two subclasses, one for algorithms wh
discard errors and one for those which correct them. Disca
ing errors is usually done in order to prevent additional s
0-3
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information from leaking to Eve. By correcting the erro
one allows for this additional flow of side information, whic
can be accounted for during privacy amplification. Since p
vacy amplification is typically a very efficient process, alg
rithms which correct the errors tends to perform better.

Although our proof of security is independent of the ty
of error correction which is done, the communication rate
QKD strongly depends on this. For our calculations we w
work with the algorithm given in@31#, which is bidirectional
and corrects the errors. This algorithm works within abo
15–35% of the Shannon limit, even with rather substan
error rates.

C. Privacy amplification

After error correction, Alice and Bob share an error-fr
string X. Eve has also potentially obtained at least par
information about this string from attacks on the raw qua
tum transmission and side information leaked during er
correction. Thus,X cannot by itself be used as a key. How
ever, through the method of generalized privacy amplifi
tion @32#, the stringX can be compressed to a shorter stringK
over which any eavesdropper has only a negligible amo
of information. The amount of compression needed depe
on how much information may have been compromised d
ing the previous phases of the transmission.

To do privacy amplification Alice picks a functiong out
of a universal class of functionsG which map alln bit strings
to r bit strings wherer ,n ~see@32# for more details!. Once
g has been picked and publicly announced both parties
culate the stringK5g(X), which serves as the final key
This key is considered secure if Eve’s mutual information
K, defined as@30#

I E~K;GV!5H~K !2H~KuGV!, ~7!

is negligibly small, whereG is the random variable corre
sponding to the choice of functiong and V is all the infor-
mation available to Eve.

An important quantity in the analysis of privacy amplifi
cation is the collision probability defined as

Pc~X!5(
x

p2~x!. ~8!

One can show that the conditional entropyH(KuG) is
bounded by~@32# theorem 3!

H~KuG!>r 2
2r

ln 2
Pc~X!. ~9!

This theorem can be applied to conditional distributions
well, which leads to

H~KuG,Z5z!>r 2
2r

ln 2
Pc~XuZ5z!, ~10!

wherePc(XuZ5z) is just the collision probability of the dis
tribution p(xuZ5z). By averaging both sides of the abov
equation we get
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H~KuGZ!>r 2
2r

ln 2
^Pc~XuZ5z!&z , ~11!

where

^Pc~XuZ5z!&z5(
z

p~z!Pc~XuZ5z! ~12!

is the average collision probability. This is a quantity of ce
tral importance in privacy amplification. In the case of ind
vidual attacks, thei th bit in Z depends only on thei th bit in
X. Under these circumstances the average collision proba
ity factors into the product of the average collision probab
ity of each bit. Thus,

^Pc~XuZ5z!&z5~pc!
n, ~13!

wheren is the number of bits in stringX and

pc5 (
a50,1

(
b51

k
p2~a,b!

p~b!
. ~14!

In the above expressiona sums over the possible values of
single bit in Alice’s string andb sums over the possible
measurement outcomes of the probe, which are enumer
from 1 to k. Suppose that we are able to come up w
a bound of the form2 log2^Pc(XuZ5z)&z>c. If we set
r 5c2s, wheres is a security parameter chosen by Alice a
Bob, then Eq.~11! leads to

I E~X;Z!<22s/ ln 2. ~15!

Thus, a bound on the average collision probability allows
two parties to make Eve’s mutual information exponentia
small in s.

D. Handling side information from error correction

If the only information available to Eve comes from strin
Z, which is obtained from attacks on the quantum transm
sion, then the discussion in the previous section is suffici
But if Alice and Bob do error corrections Eve will also lea
an additional stringU which gives her more information
about Alice’s key. This side information must also be i
cluded in the calculation. We can apply the bound in Eq.~9!
to the conditional distributionp(xuU5u,Z5z), which leads
to

H~KuG,U5u,Z5z!>r 2
2r

ln 2
Pc~XuU5u,Z5z!.

~17!

We can then try to average both sides of the above exp
sion but doing this introduces additional complications. T
random variableU introduces correlations between differe
bits in stringsX andZ. Because of this the average collisio
probability no longer factors into the product of individu
bits, as in Eq.~13!. This makes the problem of finding
bound on the average collision probability significantly mo
difficult. This problem has been previously investigated
0-4
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SECURITY OF QUANTUM KEY DISTRIBUTION WITH . . . PHYSICAL REVIEW A65 052310
@33#, where several bounds on the collision probabil
Pc(XuZ5z,U5u) were derived as a function o
Pc(XuZ5z). The extension of this work to the average co
lision probability involves a few subtleties, which we de
with in Appendix A. In this appendix we show that if we s

r 5nt2k2t2s, ~18!

where

t52 log2 pc , ~19!

k is the number of bits in messageU, n is the length of the
error corrected key, and boths and t are security parameter
chosen by Alice and Bob, then

I E<22tr 1
22s

ln 2
. ~20!

This bound on Eve’s information is still exponentially sma
in the security parameters, and only involves the collis
probability averaged over her measurements on the quan
transmission.

III. SECURITY OF THE BBM92 PROTOCOL

In this section we give a proof of security for the BBM9
protocol. As shown in the previous section, this involv
finding an upper bound onpc given in Eq. ~14! using the
laws of quantum mechanics. We then calculate the com
nication rate in the presence of detector dark counts
channel losses for both an ideal source which creates ex
one entangled pair per clock cycle, as well as a more pra
cal source based on parametric down conversion.

A. Proof of security against individual attacks

In the BBM92 protocol Alice, Bob, and Eve observe o
thogonal Hilbert spacesHA , HB , andHE respectively. In the
most general case Eve can control which density matrixrabe
over the spaceHA^ HB^ HE she will share with Alice and
Bob. This density matrix can span all the photon num
states of the two receivers, and Eve’s measurable subs
which can have any number of dimensions. In practice E
can do this by blocking out the original source and substi
ing her own source which generates the desired state
maximizes her information on the final key. We derive
bound on the optimal density matrix, which serves as
upper bound, even if Eve is incapable of generating it
practice.

As mentioned previously, our proof assumes that Eve
restricted to individual attacks and that Alice and Bob’s d
tection apparatus is trustable. A trustable detection appar
is one whose components behave according to a kn
model which cannot be modified by Eve. In order to defi
this model we first have to specify the physical implemen
tion of the detection apparatus, which is shown in Fig. 1.
this detection scheme, a 50/50 beam splitter modulates
measurement basis by partitioning the photons and sen
them into one of the two polarizing beam splitters. Th
modulation technique is known as passive modulation,
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opposed to active modulation where the measurement b
for each receiver is switched using a rapid phase modula
We work with a passive modulation scheme because it s
plifies the proof of security and is easier to implement
practice.

In order to account for optical losses we place a be
splitter in front of the detection apparatus which reflects of
specified fraction of the light into a loss mode. All losses a
lumped into this beam splitter and the subsequent opt
components can be regarded as lossless. This model is
istic under two conditions. First, the use of a beam-split
model is valid if the loss is linear. A linear beam splitt
cannot effectively model loss due to nonlinear effects such
two-photon absorption. To incorporate such effects a m
complicated loss model is required. However, in real syst
multiphoton absorption is typically many orders of magn
tude weaker than linear absorption, so a beam-splitter
proximation is extremely good. Second, placing the be
splitter in front of the detection apparatus requires that
losses to each detector are equal. This is an important p
in passive modulation. A passive modulation scheme mus
constructed in such a way that a photon has the same p
ability of being detected regardless of which path it takes.
for example, one detector has higher quantum efficiency t
the other three, additional loss should be placed in front o
to make sure that the above property is satisfied.

Having modeled the loss, we can now define the opera
of the lossless components. For each detection unit we de
E(0) as the projector onto vacuum andEc

n as the projector
onto the state which hasn photons with polarizationc,
where cP$x,y,u,y%. The detection apparatus performs
positive operator valued measurement~POVM! whose ele-
ments corresponds to different combinations of detect
events from four photon counters. The elements of t
POVM can be broken up intoFvac , Fc , and FD which
correspond to no detections, one detection correspondin
polarization c, and more than one detection, respective
These operators are given by@19#

Fvac5E0, ~21!

Fc5 (
n51

` S 1

2D n

Ec
n , ~22!

FD5 (
n52

` H F1

2
2S 1

2D nG(
c

Ec
nJ

1
1

2 (
n,m51

`

Ex
nEy

m1Eu
nEy

m . ~23!

FIG. 1. Detection unit used by Alice and Bob.
0-5
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Multiple detection events, corresponding to the opera
FD , are possible if more than one photon is incident on
detection apparatus. These events should not be disca
because keeping track of them can prevent certain sec
loopholes. By incorporating the multiple detection events
the proof of security for the BB84 protocol, one can make
disadvantageous for Eve to add additional photons to Alic
signal @19#. We will show that monitoring these events ca
also significantly simplify the proof of security for th
BBM92 protocol. In order to incorporate multiple detectio
events into the proof of security we will use the disturban
parametere introduced in@19#. This parameter is given by

e5
nerr1wDnD

nrec
~24!

wherenerr , nD , andnrec are the number of error bits, dua
fire events, and number of bits that entered the er
corrected key, respectively, andwD is a weighting paramete
chosen by Alice and Bob. As part of the proof we will sho
thatwD51/2 is a sufficient number to ensure security for t
BBM92 protocol, just as it was for BB84@19#. Note that in
the limit that the dual fire rates are negligibly small the d
turbance parameter simplifies to the bit error rate.

Eve is allowed to pick any density matrixrabe which
represents some entangled state of her observable Hi
space and the signals transmitted to Alice and Bob. She
send any number of photons she wishes, or a coherent s
position of photon numbers. Our first step is to show that
most general density matrixrabe can be written as

rabe5 (
i , j 51

`

rabe
~ i j ! , ~25!

whererabe
( i j ) is the density operator over the subspace wh

Alice receivedi photons and Bob receivedj photons. This is
due to the fact that the detection units consist of only pas
linear optics with vacuum auxiliary modes and single-pho
counters. As can be seen by Eqs.~21!–~23!, a detection even
is represented by a projection operator which is diagona
the photon number basis. We defineEa

i as the projector onto
Alice’s i photon subspace, andEb

j as the projector onto Bob’s
j photon subspace. Suppose thatFa andFb are positive op-
erators which represent a measurement corresponding to
combination of detection events for Alice and Bob, resp
tively. Because these operators are diagonal in the ph
number basis they can be written equivalently as

Fa5(
i

Ea
i Fa

i Ea
i , ~26!

Fb5(
j

Eb
j Fb

j Eb
j . ~27!

Let Fe be the positive operator corresponding to Eve’s m
surement result on her own subspace. The joint probab
p(a,b,e) can be written as
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p~a,b,e!5Tr$rabeFaFbFe%

5(
i j

Tr$rabeEa
i Eb

j FaFbEa
i Eb

j Fe%

5(
i j

Tr$Ea
i Eb

j rabeEa
i Eb

j FaFbFe%.

The last step comes from the fact that the projectors co
mute with Eve’s measurement operator and the invaria
of the trace under cyclic permutation. If we defin
rabe

( i j )5Ea
i Eb

j rabeEa
i Eb

j we see that the joint probability doe
not change if we select a density matrix of the form given
Eq. ~25!.

The main consequence of the above result is that Eve
keep track of the number of photons she is sending to A
and Bob without changing the measurement results. Th
her collision probability can be broken up into different ph
ton number contributions as

pc5 (
i , j 51

` prec
~ i j !

prec
pc

~ i j ! , ~28!

where

pc
~ i j !5 (

mPM ~ i j !,c

1

prec
~ i j !

p2~c,m!

p~m!
. ~29!

The setM ( i j ) is defined as the set of all measurement res
on Eve’s probe if she senti photons to Alice andj to Bob,
and prec

( i j ) is the probability that the signal componentrabe
( i j )

enters the error-corrected key. We can similarly defineperr
( i j )

andpD
( i j ) as the probability that this signal component ent

the sifted key as an error or causes a dual fire event, res
tively. Using Eq.~24! we can break up the disturbance me
suree into different photon number contributions as

e5(
i j

prec
~ i j !

prec

perr
~ i j !1wDpD

~ i j !

prec
~ i j ! 5(

i j

prec
~ i j !

prec
e~ i j !. ~30!

Our next step is to investigate the termpc
(11) which is the

component corresponding to Alice and Bob each receiv
one photon. Instead of directly finding a bound on Ev
collision probability from this component, we show that a
bounds derived for the BB84 protocol on single photon sta
can also be applied to BBM92 when Alice and Bob ea
receive one photon. In the BB84 protocol Alice sends a p
ton in one of four nonorthogonal states to Bob. Eve perfor
a measurement on the photon and the backaction nois
the state can be described by a complete positive map
~CP map!

rb5(
k

AkraAk
† ~31!

wherera is the density matrix prepared by Alice, andrb is
the density matrix which Bob receives. The only restricti
on the operatorsAk is that they satisfy the condition
0-6
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(
k

Ak
†Ak5I . ~32!

In the BBM92 protocol Alice does not directly send Bob
density matrix. In the ideal case where both receivers sha
pure entangled pair, if Alice’s measurement correspond
the operatorFa she prepares Bob’s density matrix in the sta
Fa

T/Tr$Fa%. If one could show that, given Alice observesFa ,
any eavesdropping strategy incorporated by Eve could o
again be described by a CP map

rb5(
k

Ak

Fa
T

Tr$Fa%
Ak

† , ~33!

then this seemingly different situation is equivalent to t
BB84 protocol attack. Unfortunately, in the BBM92 protoc
there are many eavesdropping strategies which cannot b
scribed by such a mathematical formalism. However, in A
pendix B we show that there is always an optimal atta
which can be described by a CP map. Thus, any bou
which have been derived for the BB84 protocol using
POVM formalism on single-photon states can be direc
applied to BBM92 protocol when one photon is sent to ea
receiver. Several such bounds have already been der
@17–19#. Since we are interested in the average collis
probability, and since we are assuming the use of a bidi
tional error-correction algorithm which corrects rather th
discards errors, we can use the bound derived by Lu¨tkenhaus
~@19#, Appendix D!. This bound is given by

pc
~11!<

1

2
12e~11!22~e~11!!2. ~34!

In order to account for the components with more than o
photon for either receiver we show in Appendix C that, if t
weighting parameterwD in Eq. ~24! is set to 1/2, Eve’s op-
timal strategy is to only send one photon to Alice and Bo
This argument follows the same line as that given for
BB84 protocol in@19#. Given that this is the optimal strateg
one is led directly to the result

pc<
1
2 12e22e2, ~35!

which is exactly the same as the collision probability for t
BB84 protocol using a single-photon source.

The above result highlights two important points. Fir
one does not have to confine the source to either Alice’s
Bob’s lab. Allowing Eve to have total control of the sourc
does not effect the form of the collision probability. Secon
there is no analog to the photon splitting attack for t
BBM92 protocol since the collision probability bound wa
derived without assumptions on the source. The error
and dual fire rate are sufficient to determine how much
vacy amplification is necessary.
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B. Ideal entangled photon source

In this section we will calculate the expected communic
tion rate for an ideal entangled photon source. This sou
creates exactly one pair of photons per clock cycle, wh
quantum state is given by

uc1&5
1

&
~ uxx&1uyy&). ~36!

Although proposals for creating such a source exist@34#, we
do not know of any successful implementations of such p
posals to date. Nevertheless, this simplified analysis will
the groundwork for the analysis of practical sources based
parametric down conversion.

When doing two-photon experiments one is interested
coincidence events where the two receivers simultaneo
detect a photon. In all our calculations we will assume t
the dual fire rate is negligibly small, thus the disturban
parameter simplifies to the error rate. The channel is assu
to be an exponentially decaying function of distance. Th
the channel transmissionTF can be written as

TF5102~sL/10!, ~37!

wheres is the loss coefficient. We combine all losses to ea
receiver from the channel, detectors, and optics into
beam splitter with transmission

aL5hTF~L !, ~38!

whereh accounts for all distance independent losses in
system. We separate the coincidence probability into t
parts,ptrue is the probability of a true coincidence from
pair of entangled photons, andpf alse is the probability of a
false coincidence which, for an ideal source, can only oc
from a photon and dark count or two dark counts. In the lim
of negligible dual fire events we have

pcoin5ptrue1pf alse. ~39!

We need to decide where to put the source. Setting the so
a distancex from Alice andL2x from Bob we have

ptrue5axaL2x5haL ,

and

pf alse54axd14aL2xd116d2, ~40!

keeping only terms which are second order inax and d. It
can be seen that the probability of a true coincidence d
not change withx, but the false coincidence rate does.
simple optimization shows that the false coincidence r
achieves a minimum halfway between Alice and Bob, wh
is given by

pf alse58aL/2d116d2. ~41!

We definentot as the total number of signal pulses sent to
receivers, andnrec as the length of the error corrected ke
Thus,
0-7
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nrec5
ntotpclick

2
. ~42!

The error ratee is

e5
pf alse/21mptrue

pcoin
, ~43!

wherem is the baseline error rate of the signal. Using E
~18! we have

r 5nrecS t~e!2
k

nrec
D2t2s. ~44!

We define the asymptotic communication rate as

R5 lim
ntot→`

r

ntot
. ~45!

In order to incorporate the effect of the error-correction
gorithm we define the functionf (e) in the same way as wa
done in@20#. This function determines how far off from th
Shannon limit the algorithm is performing. An algorithm ca
be tested to determine the value off (e). For example, the
values given in Table I are for the error-correction algorith
given in @31#. Using this definition we have

lim
nrec→`

k

nrec
52 f ~e!@e log2~e!1~12e!log2~12e!#.

~46!

If we fix the value of Eve’s information on the final ke
given by Eq.~20!, thens is a constant andt varies roughly
logarithmically withntot , so both terms drop out in the limi
of large strings. This leads to an expression for the comm
nication rate

R5
pcoin

2
$t~e!1 f ~e!@e log2 e1~12e!log2~12e!#%.

~47!

The values ofpcoin ande can be calculated from Eqs.~39!
and ~43!.

C. Entangled photons from parametric down conversion

A more practical way of generating entangled photons
to use the spontaneous emission of a nondegenerate par
ric amplifier. This technique, known as parametric down c

TABLE I. Benchmark performance of error correctio
algorithm.

e f(e)

0.01 1.16
0.05 1.16
0.1 1.22
0.15 1.35
05231
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version, is extensively used to generate entanglement in
larization as well as other degrees of freedom such as en
and momentum. Parametric amplifiers exploit the seco
order nonlinearities of noncentrosymmetric materials. Th
nonlinearities couple three different modes of an electrom
netic field via the interaction Hamiltonian@35#

HI5 i\x~2!Vei ~v2va2vb!tâ†b̂†1H.c.,

where modesa and b are treated quantum mechanical
while the third modeVeivt is considered sufficiently strong
to be treated classically. The state of the field after the n
linear interaction is given by

uc&5expF 1

i\ E
0

T

HI~ t !dtG u0&.

We assume the energy conservation condition,v5va
1vb , which leads directly to

uc&5ex~ â†b̂†2âb̂!u0&,

where the parameterx depends on several factors includin
the nonlinear coefficientx (2), the pump energy, and the in
teraction time. Using the operator identity@35#

ex~ â†b̂†2âb̂!5eGâ†b̂†
e2g~ â†â1b̂†b̂11!e2Gâb̂, ~48!

where

G5tanhx ,

g5 ln coshx,

directly leads to the relation

uc&5
1

coshx (
n50

`

tanhn xun&aun&b . ~49!

The above equation makes it clear that whenever a photo
detected in one mode, the conjugate mode must also con
a photon. In order to generate entanglement in polariza
one needs to create a correlation between the polarizatio
these two modes. This is typically done using noncolline
Type II phase matching@36#, which leads to the slightly
more complicated interaction

HI5 i\x~2!Aeivt~ âx
†b̂y

†1ây
†b̂x

†!1H.c.,

wherex andy refer to the polarization of the photon. Sinc
all creation operators in the Hamiltonian commute, we c
apply Eq.~48! to both mode pairs which directly leads to

uc&5
etanhx~ âx

†b̂y
†
1ây

†b̂x
†
!

cosh2 x
u0&. ~50!

If x is sufficiently small that the above expression can
kept only to first order then a parametric down conver
creates a Bell state. Butx cannot be made small withou
sacrificing the rate of down conversion.
0-8
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We want to calculate the probabilitypcoin and the error
ratee as a function of the parameterx, as well as the optica
losses and dark counts of the detectors. We begin by defi
the field operator

ĉ5
etanhx~ âx

†b̂y
†
1ây

†b̂x
†
!

cosh2 x
. ~51!

The beam-splitter model that we have introduced previou
to account for the losses becomes very useful here. The b
splitters perform a unitary operation on the modes which
given by

âs→AaL/2âs1A12aL/2ĉs ,

b̂s→AaL/2b̂s1A12aL/2d̂s ,

wheres represents polarization and the modesc and d are
the reflected modes of the beam splitters. To determine
state of the photons after the loss we first apply this be
splitter transformation. To simplify the notation we defin
another field operator

crf5 r̂x
†f̂y

†1 r̂y
†f̂x

† ,

wherer and f are any two independent modes. Using th
definition, Eq.~51! is transformed by the two beam splitte
into

ĉ5
1

cosh2 x
exp@ tanhx~aL/2cab1AaL/2~12aL/2!

3~cad1cbc!1~12aL/2!ccd!#.

We can expand this expression in terms ofâ† and b̂† as

ĉ5
1

cosh2 x
exp@ tanhx~12aL/2!ccd#

3$11tanhxAaL/2~12aL/2!@cad1ccd#

1tanhxcab1tanh2 xaL/2~12aL/2!cabccd1cD%

wherecD is the wave operator which contains all the term
that create more than one photon in either modes. It is n
necessary to operate on the vacuum and trace out over m
c andd to get the final density matrix. As shown in Sec. III
we can ignore any off-diagonal terms that couple differ
photon number states because they do not contribute to
signal. We define the density-matrixrc1

as the two-photon
density matrix in which the photons are in the entangled s
uc1& given in Eq.~36!. The matricesr0

a andr0
b represent a

zero-photon vacuum state in modea andb, respectively. Fi-
nally we define the matricesru

a andru
b as

ru
a,b5

I

2
, ~52!

whereI is the identity matrix. The above matrices correspo
to an unpolarized photon in modea or b, respectively. After
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tracing out loss modesc and d and ignoring the coherenc
between different photon number states, the density ma
becomes

rAB5Arc1
1Br0

a
^ r0

b1C~ru
a

^ r0
b1r0

a
^ ru

b!

1Dru
a

^ ru
b1~12A2B22C2D !rD , ~53!

where rD is the matrix which represents all the possib
states in which more than one photon is in either modea and
b after the losses. The coefficientsA, B, C, andD are

A5
1

cosh4 x

2aL/2
2 tanh2 x

„12tanh2 x~12aL/2!
2
…

4 , ~54!

B5
1

cosh4 x

1

„12tanh2 x~12aL/2!
2
…

2 , ~55!

C5
1

cosh4 x

2aL/2~12aL/2!tanh2 x

„12tanh2 x~12aL/2!
2
…

3 , ~56!

D5
1

cosh4 x

4aL/2
2 ~12aL/2!

2 tanh4 x

„12tanh2 x~12aL/2!
2
…

4 . ~57!

In the above expression,A is the probability that Alice and
Bob share an entangled pair of photons. This componen
the signal will be defined as a true coincidence, becaus
leads to error-free transmission. The coefficientB is then the
probability that neither receiver gets a photon, either beca
the source failed to generate a pair or because all pho
were lost. Similarly,C is the probability that one of the two
receivers gets a photon but the other does not. In order
these signals to be factored into the key they must be acc
panied by dark counts. CoefficientD is the probability that
both receivers get a photon, but these photons are unp
ized and uncorrelated. Note thatD is at least fourth order in
tanhx, indicating that at least two pairs must be created
order for it to exist. The intuitive explanation for the pre
ence of this unpolarized component is that when higher-or
number states are created, and some of these photon
lost, the loss modesc andd play a similar role to Eve. The
photons in this mode can potentially carry some informat
about the quantum state of the other photons, and will t
result in decoherence. Since this component of the sig
causes a 50% error, we can lump it into the definition o
false coincidence. Hence,

ptrue5A,

pf alse516d2B18dC1D.

The communication rate can be calculated by simply pl
ging these expressions into Eqs.~39!, ~43!, and~47!.

D. Calculations

We now use the previously derived equation to calcul
the rate of communication using the BBM92 protocol. W
would also like to compare these rates to those of the BB
protocol with ideal and realistic sources. The equations
0-9
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the communication rate of the BB84 protocol against in
vidual attacks are given by@20#

RBB845
pclick

2
$bt~e/b!1 f ~e!@e log2 e1~12e!

log2~12e!#%. ~58!

The factort is again defined as Eq.~19!. The parameterb
accounts for the photon splitting attacks due to multipho
states emitted by the source, and is given by

b5
pclick2pm

pclick
. ~59!

In the above equationpm is the probability the source emit
a multiphoton state, andpclick is the probability that Bob
detects a photon. For an ideal sourcepm50, while for a
Poissonian light source it is given by

pm512~11n̄!e2n̄, ~60!

wheren̄ is the average number of photons per pulse. Bo
probability of detection can be broken up into a signal a
dark count component as

pclick5psignal1pdark , ~61!

where we again ignore simultaneous signal and dark co
events. These components are given by

psignal5aLn̄ ~62!

pdark54d. ~63!

For an ideal sourcen̄51, but for a Poissonian source it be
comes a free variable which should be optimized. Note t
the loss coefficient in~62! is nowaL instead ofaL/2 . This is
because in the BB84 protocol the photon starts in Alice’s
and must travel all the way to Bob, in contrast to the BBM
protocol where the photons start half way in between. T
error rate is given by

e5
pdark/21mpsignal

pclick
. ~64!

We perform simulations for fiber optical and free-spa
key distribution experiments. For the fiber-optical simulati
we look at the 1.5mm telecommunication window, while fo
free space communication we focus on the visible wa
lengths where single-photon counters tend to perform b
In free space communication the channel loss is no longe
exponential function of distance. Instead, it is a complica
function which results from atmospheric effects, beam d
fraction, and beam steering problems. Thus, for free sp
we are more interested in the rate as a function of the t
loss rather than distance.

Figure 2 shows the calculation results for both BB84 a
BBM92 protocols with ideal and realistic sources. In plot~a!
of the figure we show results for fiber optical channels. U
ing experimental values from@10# we set the detector quan
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tum efficiency to 0.18,d5531025, and the channel loss
s50.2 dB/km. We also set the baseline error ratem50.01,
and add an extra 1 dB of loss to account for losses in
receiver unit. The curves corresponding to the BBM92 p
tocol plot the distance from Alice to Bob, with the sourc
assumed halfway in between. Plot~b! shows calculations for
free space quantum key distribution. The communication r
is plotted as a function of the total loss, including the det
tor quantum efficiency. In the free-space curves for
BBM92 protocol we again put the source halfway betwe
Alice and Bob and plot the rate as a function of the total lo
in both arms. The dark counts of the detectors are set t
31028. In the curve for the BB84 protocol with a Poisso
light source the average photon numbern̄ is a free adjustable
parameter. Similarly with parametric down conversion w
are free to adjustx. For both cases we numerically optimiz
the communication rate at each point with respect to
adjustable parameter.

Each curve features a cutoff distance where the com
nication rate quickly drops to zero. This cutoff is due to t
dark counts, which begin to make a non-negligible contrib

FIG. 2. Comparison of communication rate for the BB84 a
BBM92 protocols. Plot~a! is for 1.5mm fiber optical communica-
tion experiment. In this wavelengthh50.18,d5531025, and the
channel losss is set to 0.2 dB/km. For the Ekert protocol th
distance is the total separation between Alice and Bob. Plot~b!
shows calculated values for free-space quantum key distribu
with visible photons. The rate is plotted as a function of the to
loss, including detector quantum efficiency. The detectors are
sumed to have a dark count rate ofd5531028. For the Ekert
protocol the loss is the total loss in both arms.
0-10
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SECURITY OF QUANTUM KEY DISTRIBUTION WITH . . . PHYSICAL REVIEW A65 052310
tion to the signal at some point. However the two curves
BBM92 feature a much longer cutoff distance than th
BB84 counterparts. This is due partially to the absence of
photon splitting attacks. But even when performing t
BB84 protocol with ideal single-photon sources, which
not suffer from photon splitting attacks either, the cutoff d
tance for BBM92 is still significantly longer. This is becau
in BBM92 a dark count alone cannot produce an error
must be accompanied by a photon or another dark coun
it is much less likely to contribute to the signal. The diffe
ence in rates between the ideal entangled photon source
the parametric down converter can be attributed to the in
play between coefficientA in Eq. ~55!, and coefficientD in
Eq. ~57!. TermA is the probability of a real coincidence, an
increases withx. Term D on the other hand contributes t
false coincidences and increases withx as well, but is of
higher order. One cannot makeA arbitrarily large without
getting an increased contribution fromD. This leads to an
optimum value forx which is less than one.

IV. ENTANGLEMENT SWAPPING

In this section we analyze a more complicated sche
based on entanglement swapping. Figure 3 gives a diag
of the proposed configuration. A series of entangled pho
sources, which we assume to be ideal sources, are sprea
an equal distance apart from Alice to Bob. The sources
clocked to simultaneously emit a single pair of entang
photons. Each of the pair is sent to a corresponding Bell s
analyzer, whose actions are to perform an entanglem
swap. If all the swaps have been successfully perform
Alice and Bob will share a pair of entangled photons. E
perimental demonstrations of a single entanglement s
can be found in@37#. Entanglement swapping is a key el
ment for quantum repeaters, which use entanglement pu
cation protocols to reliably exchange quantum correla
photons between two parties@38#. We show that even with-
out such protocols, using only linear optical elements, p
ton counters, and a clocked source of entangled phot
swapping can enhance the communication distance.

The key element to the scheme is the Bell analyzer. Si
we restrict ourselves to passive linear elements and vac
auxiliary states we cannot achieve a complete Bell meas
ment. It has recently been shown that Bell analyzers ba
on only these components cannot have better than a
efficiency@39#. One scheme which achieves this maximum

FIG. 3. Experimental setup for quantum key distribution w
entanglement swaps.
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shown in the inset of Fig. 3. This scheme will distingui
between the states

uc6&5
1

&
~ uxy&6uyx&), ~65!

but will register an inconclusive result if sent the states

uf6&5
1

&
~ uxx&6uyy&). ~66!

The state generated by the entangled photon source
assumed to beuc1&. Considering only a single swap, we ca
write

uc1&12uc1&345
1

2
@ uc1&23uc1&142uc2&23uc2&14

1uf1&23uc1&142uf2&23uf2&14]. ~67!

The above expression makes it clear that a Bell measurem
on photons 2 and 3 leaves photons 1 and 4 in an entan
state, and the measurement result tells which one. AfteN
such Bell measurements photon 1 and 2N will be entangled,
and theN Bell measurement results will allow Alice and Bo
to know which entangled state they share. Knowledge of
state allows them to perform the BBM92 protocol and int
pret their data correctly. Since our Bell analyzer has an e
ciency of only 50%, in the best possible case we will pay
price of 22N in communication rate.

Consider the single swap. We will definea to be the de-
tection probability for each photon. The probability that bo
photons 2 and 3 reach the Bell analyzer and are success
projected is

pswap
true 5 1

2 a2. ~68!

If a photon is lost in the fiber or due to detector inefficien
the Bell analyzer may still indicate that a Bell measurem
has been performed due to detector dark counts. The p
ability of this happening is

pswap
f alse56ad112d2. ~69!

Defining the factor

g5
pswap

true

pswap
true 1pswap

f alse, ~70!

it is straightforward to show that, given the Bell analyz
registered a successful Bell measurement, the density m
of photons 1 and 4 is given by

r145grc6
1~12g!

I

4
, ~71!

whererc6
is the pure stateuc1& or uc2& depending on the

measurement result.
For the case ofN entanglement swaps the detection pro

ability for each photon is
0-11
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a5h102 S sL
10~2N12! D , ~72!

where L is the distance from Alice to Bob. It is agai
straightforward to show that afterN swaps, the state of pho
tons 1 and 2N is

r1,2N5gNrc6
1~12gN!

I

4
, ~73!

and the probability that allN bell measurements registered
successful result is

pBell5~pswap
true 1pswap

f alse!N. ~74!

We then have

ptrue5pBellg
Na2,

pf alse5pBell~8ad116d21~12gN!a2!.

These can be plugged into Eqs.~43! and~47! to get the final
communication rate.

In Fig. 4 we show a comparison between the BBM
protocol with an ideal entangled photon source, a one-s
scheme, and a two-swap scheme using a fiber optic cha
at 1.5mm. The swaps result in a longer cutoff distance wh
can lead to longer communication ranges. It should be no
however that at these distances the natural fiber loss is
stantial and will lead to very slow communication rates. It
unclear whether swapping will lead to a practical form
quantum key distribution, but a single swap could be use
for very long distance QKD.

V. DISCUSSION

In this paper we provided a proof of security for quantu
key distribution with the entangled photon protocol propos
by Bennett, Brassard, and Mermin@5#, referred to as
BBM92. This proof is based on the assumptions that Ev

FIG. 4. Comparison of BBM92 protocol with regulated EP
source, one swap scheme, and two swap schemes. Fibers an
tectors are taken for the 1.5mm window.
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p
nel

d
b-

f
l

d

is

restricted to individual attacks and that the detection app
tus is trustable. With these assumptions a bound was der
on Eve’s average collision probability, and hence on her m
tual information as a function of the final key length.

Using the above results we compared the performanc
this protocol to the BB84 protocol for both ideal and prac
cal sources. We investigated fiber-optic as well as free-sp
key distribution scenarios. The BBM92 protocol was sho
to have significantly better performance at longer dista
provided that the source can be placed midway between
two communicating parties. This opens up the possibility
communication lengths of up to 170 km.

Finally, we analyzed a more complicated scheme base
entanglement swaps using only linear optical compone
photon counters, and a clocked source of entangled phot
Entanglement swapping can allow for even longer dista
secure communication, but at some point the natural los
the fiber becomes so severe that the communication ra
prohibitively slow.
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APPENDIX A: INFORMATION BOUNDS
ON EAVESDROPPING

In this appendix we show how to bound Eve’s expec
informationI E(K;GUZ) by the average collision probability

^pc~xuz!&z5(
z

p~z!Pc~XuZ5z!, ~A1!

where

Pc~XuZ5z!5(
x

p2~xuz!. ~A2!

Let U and Z be arbitrary, possibly correlated, random va
ables over alphabetsU andZ, respectively. Letu•u denote the
cardinality of a given set. Lett.0 be a security paramete
chosen by Alice and Bob and define setA as

A5H ~u,z!P~U,Z!:p~uuz!>
22t

uUu J . ~A3!

Defining Ac as the complement of setA we have

P~Ac!5 (
~u,z!PAc

p~u,z!5 (
~u,z!PAc

p~uuz!p~z!

<
22t

uUu (
uPU,zPZ

p~z!522t.

Thus with probability of at least 1222t the combined string
~U, Z! take a value inA. Then for another random variableX,

de-
0-12



nd

al

asis

er
re-

tion

ted
ors

by

state
its
nce
ure

nal.

SECURITY OF QUANTUM KEY DISTRIBUTION WITH . . . PHYSICAL REVIEW A65 052310
^Pc~XuZ5z!&z5 (
zPZ

p~z!(
x

p2~xuz!

5 (
zPZ

p~z!(
x

S (
uPU

p~uuz!p~xuuz! D 2

> (
zPZ

p~z!(
x

(
uPU

p2~uuz!p2~xuuz!

5 (
zPZ,uPU

p~u,z!p~uuz!(
x

p2~xuuz!

> (
~z,u!PA

p~uuz!p~u,z!(
x

p2~xuuz!

>
22t

uUu (
~z,u!PA

p~u,z!Pc~XuU5z,Z5z!.

Thus

(
~z,u!PA

p~u,z!Pc~XuU5z,Z5z!<2tuUu^Pc~XuZ5z!&z .

~A4!

We can now use this result to boundH(KuGUZ) as follows:

H~KuGUZ!5(
u,z

p~u,z!H~KuG,U5u,Z5z!

5 (
~u,z!PA

p~u,z!H~KuG,U5u,Z5z!

1 (
~u,z!PAc

p~u,z!H~KuG,U5u,Z5z!

> (
~u,z!PA

p~u,z!H~KuG,U5u,Z5z!,

using the positivity of the conditional entropy functions, a
the fact thatU andZ are independent ofG. Plugging Eq.~17!
into the above inequality leads to

H~KuGUZ!> (
~u,z!PA

p~u,z!

3S r 2
2r

ln 2
pc~XuU5u,Z5z! D

>~1222t!r 2
2r

ln 2
2tuUu^pc~XuZ5z!&z

5~1222t!r 22r 1t1 log2uUu1 log2~pc~XuZ5z!z,

as follows from Eq.~A4!. We can then set

r 52 log2^pc~XuZ5z!&z2t2k2s, ~A5!

wherek5 log2uUu is the number of bits in messageU ands is
another security parameter. This leads to the bound
05231
H~KuGUZ!>~1222t!r 2
22s

ln 2
. ~A6!

Eve’s mutual information can now be bounded by

I E~K;GUZ!5H~K !2H~KuGUZ!<22tr 1
22s

ln 2
.

Plugging Eqs.~13! into ~A5! leads directly to

r 5nt2t2k2s, ~A7!

wheret52 log2 pc .

APPENDIX B: ONE-PHOTON CONTRIBUTION

In this appendix we show that there is always an optim
eavesdropping strategy for the contribution fromrabe

(11) which
can be described by a set of complete projectorsAk . These
complete projectors may depend on the measurement b
used by Alice and Bob.

First consider the POVM which Alice performs on h
photon. Since we only look at the subspace where she
ceives exactly one photon, there can only be one detec
event. The four detectors map out to the four operators

Fx5 1
2 ux&^xu, ~B1!

Fy5 1
2 uy&^yu, ~B2!

Fu5 1
2 uu&^uu, ~B3!

Fy5 1
2 uy&^yu, ~B4!

where we use the shorthand notationux&, uy&, uu&, and uy& to
indicate one photon polarized along the direction indica
by the state. Note that for the above four operat
Fa

T/Tr$Fa% are the same as the density matrices prepared
Alice in the BB84 protocol.

Eve is allowed to choose any density-matrixrabe
(11) . We

can assume without loss of generality thatrabe
(11) is a pure state

because any mixed state can be generated by a pure
with a probe of higher dimensions by ignoring some of
degrees of freedom. Discarding information cannot enha
Eve’s knowledge on the final key. The most general p
state can be written as

ucabe&5uxx&uPxx&1uyy&uPyy&1uxy&uPxy1uyx&uPyx&,
~B5!

where uPxx&, uPyy&, uPxy&, and uPyx& are states of Eve’s
probe and are not assumed to be normalized or orthogo
Alternatively we can write this wave function in theu-y basis
as

ucabe&5uuu&uPuu&1uyy&uPyy&1uuy&uPuy&1uyu&uPyu&,
~B6!

where Eve’s probe states in theu-y are given by
0-13
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uPuu&5 1
2 ~ uPxx&1uPyy&1uPxy&1uPyx&), ~B7!

uPyy&5 1
2 ~ uPxx&1uPyy&2uPxy&2uPyx&), ~B8!

uPuy&5 1
2 ~ uPxx&2uPyy&2uPxy&1uPyx&), ~B9!

uPyu&5 1
2 ~ uPxx&2uPyy&1uPxy&2uPyx&). ~B10!

Throughout this discussion we will use dirac notation
terchangeably with the matrix notation

ux&5F10G ,
uy&5F01G .

Suppose that Alice measures the positive operatorFa with
the general form

Fa5F a b

b* cG . ~B11!

Then

rb5
Trae$ucabe&^cabeuFa%

Tr$ucabe&^cabeuFa%
. ~B12!

If we define the operator

Ak5A Tr$Fa%

Tr$ucabe&^cabeuFa%
F ^kuPxx& ^kuPyx&

^kuPxy& ^kuPyy&
G ,

then one can verify that

rb5(
k

Ak

Fa
T

Tr$Fa%
Ak

† .

In the ideal case, where Alice and Bob share a maxim
entangled pair of photons, we have

rb5
Fa

T

Tr$Fa%
.

The operatorsAk map the ideal channel to the noisy chann
We are not done yet. We must still show that the opera

satisfy the completeness relation

(
k

Ak
†Ak5I , ~B13!

and that they do not depend onFa . In the BB84 protocol
these conditions come naturally because Eve’s interac
with the signal must be unitary. In the BBM92 protocol the
are attacks which do not satisfy these conditions and t
cannot be described by a CP map. However, we will sh
that there is always an optimal attack which does sat
these two conditions, and can thus be characterized by su
map.
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Without loss of generality we can assume that the ope
torsAk are real matrices. If this is not true than one can wr
Ak as

Ak5Rk1 i I k ,

whereRk and I k are real matrices. The joint probability tha
Alice measuresFa and Eve measuresAk is

Tr$AkFaAk
†%5Tr$RkFaRk

T%1Tr$I kFaI k
T%.

Since there is no mixing between the real and imagin
parts Eve could break upAk into two real operatorsRk andI k
by adding one more dimension to her probe. This type
probability split can only enhance her final collision pro
ability ~@40#, Appendix E!.

Starting with Eq.~B13! we sum overk to get

(
k

Ak
†Ak

5
Tr$Fa%

Tr$ucabe&^cabeuFa%

3F ^PxxuPxx&1^PxyuPxy& ^PxxuPyx&1^PxyuPyy&

^PyxuPxx&1^PyyuPxy& ^PyyuPyy&1^PyxuPyx&
G .

~B14!

We now show that there is always an optimal attack wh
satisfies the following symmetry conditions:

^PxxuPxx&5^PyyuPyy&, ~B15!

^PxyuPxy&5^PyxuPyx&, ~B16!

^PuuuPuu&5^PuuuPuu&, ~B17!

^PuyuPuy&5^PyuuPyu&. ~B18!

Suppose that the wave function~B5! does not satisfy these
conditions. Eve can apply the following transformation
both Alice and Bob’s photon

ux&°uy&,uy&°ux&, ~B19!

and it can be shown that this does not effect the error rat
collision probability. She can also apply the transformatio

ux&°ux&,uy&°2uy&, ~B20!

which is the same as flippinguu& with uy&. This does not effect
the collision probability or the error rate either. Thus, E
can send any one of the four states below without chang
anything

~1! uxx&uPxx&1uyy&uPyy&1uxy&uPxy&1uyx&uPyx& ,

~2! uxx&uPyy&1uyy&uPxx&1uxy&uPyx&1uyx&uPxy& ,

~3! uxx&uPxx&1uyy&uPyy&2uxy&uPxy&2uyx&uPyx& ,

~4! uxx&uPyy&1uyy&uPxx&2uxy&uPyx&2uyx&uPxy& .
0-14
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The second state is obtained by applying Eq.~B19! to the
first state. The third state is obtained by applying Eq.~B20!
to the first state, and the fourth state is obtained by fi
applying Eq.~B19!, then Eq.~B20!. Eve could send an equa
mixture of all four states without altering the error rate
collision probability, and one can verify that this equal mi
ture would satisfy the desired symmetry conditions.

Condition ~B16!, along with the fact that, Eq.~B5! must
be normalized, amounts to

^PxxuPxx&1^PxyuPxy&5^PyyuPyy&1^PyxuPyx&51/2.
~B21!

Knowing thatAk is a real matrix, we then have from cond
tion ~B18!,

^PxxuPyx&1^PxyuPyy&50. ~B22!

These two relations immediately imply that

Tr$ucabe&^cabeuFa%5
Tr$Fa%

2
,

which means that

Ak5&F ^kuPxx& ^kuPyx&

^kuPxy& ^kuPyy&
G .

So Ak are independent fromFa and the completeness rela
tion ~B13! comes directly from Eqs.~B21! and ~B22!.

APPENDIX C: HIGHER-ORDER NUMBER
STATE CONTRIBUTIONS

Higher-order number states are taken into account by
ting wD sufficiently large so that Eve’s optimal strategy is
only use therabe

(11) component. First suppose Eve sends o
photon to Alice andj photons to Bob, wherej .1. Then
-
e

ev

, J

H.

P.
E

05231
t
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pD
~1 j !>2F1

2
2S 1

2D j GTr$rabe
~1 j !%, ~C1!

prec
~1 j !<2S 1

2D j

Tr$rabe
~1 j !%, ~C2!

which leads to

pD
~1 j !

prec
~1 j ! >

F1

2
2S 1

2D j G
S 1

2D j >1. ~C3!

The argument is completely equivalent if Eve sendsj pho-
tons to Alice and one photon to Bob. Now if Eve sendi
photons to Alice andj photons to Bob, wherei , j .1, then

pD
~ i j !>2F1

2
2S 1

2D i GF1

2
2S 1

2D j GTr$rabe
~ i j ! %, ~C4!

prec
~ i j !<2S 1

2D i S 1

2D j

Tr$rabe
~ i j ! %, ~C5!

which leads to

pD
~ i j !

prec
~ i j ! >

F1

2
2S 1

2D i G
S 1

2D i

F1

2
2S 1

2D j G
S 1

2D j >1. ~C6!

A disturbance of 1/2 already implies that Eve can obtain
entire string. So settingwD to 1/2 means that Eve can do
least as good by sending onlyrabe

(11) . Thus

pc>
1
2 12e22e2. ~C7!
A

A.

v.

P.

ev.

s,
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