
Security of Symmetric Encryption
in the Presence of Ciphertext Fragmentation∗

Alexandra Boldyreva1†, Jean Paul Degabriele2‡, Kenneth G. Paterson2§, and
Martijn Stam3

1 Georgia Institute of Technology
2 Royal Holloway, University of London

3 University of Bristol

Abstract. In recent years, a number of standardized symmetric encryp-
tion schemes have fallen foul of attacks exploiting the fact that in some
real world scenarios ciphertexts can be delivered in a fragmented fashion.
We initiate the first general and formal study of the security of symmet-
ric encryption against such attacks. We extend the SSH-specific work
of Paterson and Watson (Eurocrypt 2010) to develop security models
for the fragmented setting. We also develop security models to formalize
the additional desirable properties of ciphertext boundary hiding and
robustness against Denial-of-Service (DoS) attacks for schemes in this
setting. We illustrate the utility of each of our models via efficient con-
structions for schemes using only standard cryptographic components,
including constructions that simultaneously achieve confidentiality, ci-
phertext boundary hiding and DoS robustness.

1 Introduction

Despite the existence of proofs guaranteeing security, deployed schemes do get
compromised sometimes. Consider for example SSH, one of the most widely used
secure protocols. Bellare et al. [4] have formally analysed variants of SSH’s Bi-
nary Packet Protocol (BPP) and showed that these variants are secure. Yet a
few years later, Albrecht et al. [1] presented plaintext recovery attacks against
these provably secure SSH BPP variants. These attacks exploited the fact that
encrypted data can be delivered to the receiver in a fragmented, byte-by-byte
manner, and that the attacker can observe the receiver’s behaviour at each point
(in particular how long it takes to reject certain carefully crafted faulty cipher-
texts). On the other hand, formal security definitions, including the one used
∗ This work has been supported in part by the European Commission through the

ICT programme under contract ICT-2007-216676 ECRYPT II.
† This author is supported in part by NSF CAREER award 0545659 and NSF Cyber

Trust award 0831184.
‡ This author is supported by Vodafone Group Services Limited, a Thomas Holloway

Research Studentship, and the Strategic Educational Pathways Scholarship Scheme
(Malta), part-financed by the European Union European Social Fund.

§ This author is supported by EPSRC Leadership Fellowship EP/H005455/1.

to prove SSH secure, traditionally treat plaintexts and ciphertexts as atomic,
meaning that the entire ciphertext is offered for decryption and a plaintext (or
error symbol) is instantly returned.

To bridge this gap between theory and practice and to have schemes with
security guarantees that hold not only on paper but also in reality, one has to
design security definitions which are integrated better with the environments in
which the protocols are deployed. Paterson and Watson [14] recently took a first
step in this direction by showing that certain SSH BPP variants meet a newly
introduced security notion that takes the aforementioned attacks into account.
However, their security definition itself is heavily intertwined with the SSH BPP
specification and too complex to be extended easily to apply to different schemes.
We provide a more detailed critique of this precursor [14] in the full version [6].

Overview of Contributions. In this work we initiate a general study of secu-
rity of symmetric encryption schemes against fragmentation attacks. Our study
goes beyond just message privacy, and also includes length-hiding (or, more pre-
cisely, hiding ciphertext boundaries in a ciphertext stream) and the prevention
of fragmentation-enabled Denial-of-Service (DoS) attacks against the receiver.
These two properties have not been previously studied, partly because the cor-
responding threats are not present if encryption is treated as being atomic. The
framework we develop can be used to provide meaningful provable security anal-
yses of practical schemes when deployed in environments that permit ciphertext
fragmentation attacks (including but not limited to the ones from [14]).

We complement our new security definitions with efficient cryptographic con-
structions based on standard primitives meeting the new goals. While it may be
relatively easy to achieve each security goal independently, it transpires that
it is not straightforward to achieve two or three of the aforementioned goals
simultaneously and one of our schemes is the first to do so.

Let us now describe our focus and results in a little more detail.

Data fragmentation. Data sent over networks is often fragmented, meaning that
it is broken up into smaller pieces, or packets. If the data is encrypted, the
receiver first has to determine what constitutes a complete ciphertext in order
to decrypt it and obtain the underlying message. Reconstruction of the original
ciphertext by the receiver can be accomplished by various methods. For example,
SSH uses a length field that tells the receiver how many bytes are needed before
the complete ciphertext has arrived; this length field is encrypted, ostensibly to
increase the security of the protocol against traffic analysis.

During transmission, the packets can be accidentally delayed or delivered out
of order. But there also may be malicious tampering of legitimate fragmenta-
tion, such as breaking the encrypted data into adversarially selected packets, or
maliciously delaying their delivery. We already mentioned an attack of this kind
on SSH [1]. Another example is an attack by Degabriele and Paterson [8] on the
IPsec protocol. While fragmentation is used adversarially in both attacks, there
are some notable differences. In particular, in SSH for honest users, the cipher-
text can be effectively regarded as a bitstring (the result of say CBC-and-MAC)

2

and it is only the adversary who starts fragmenting this string. In IPsec, further
protocol layers already forcibly introduce fragmentation; on the one hand this
ties the adversary, but on the other hand the interaction of this protocol layer
with the cryptographic layer can offer new avenues of attack (as exploited by
the attack on IPsec [8]). Our treatment addresses both scenarios.

Syntax for encryption supporting fragmentation. We start our analysis with
defining encryption in the presence of fragmentation. A symmetric encryption
scheme supporting fragmentation is defined similarly to a regular atomic (frag-
mentation devoid) encryption scheme, except the decryption algorithm is always
stateful, mainly to model decryption algorithms that may, for example, combine
data coming from multiple ciphertext fragments before outputting any plaintext.
In addition to state, decryption takes input fragments, one-by-one. Depending
on the scheme, the minimal fragment length can be one bit, a byte or a block (of
some fixed length). The correctness requirement is defined more intricately than
that for atomic encryption. It requires that regardless of how one fragments the
ciphertexts, the original messages are returned, with correct message boundaries
indicated.

In this paper we focus on two subclasses of symmetric encryption schemes
for fragmented ciphertexts, for which we give separate security definitions. One
subclass, to which we will simply refer to as stateful, covers most practical en-
cryption schemes, whose encryption and decryption algorithms are both stateful.
For example, encryption and decryption can both use a counter that increases
depending on the number of messages or ciphertexts processed.

The other subclass we consider is an extension of standard (atomic) encryp-
tion schemes that makes handling fragmented ciphertexts possible. Namely, the
decryption algorithm is now stateful, but the state just models the buffer the
receiver keeps to store the ciphertext fragments before a complete ciphertext is
received (thus allowing the decryption oracle to perform operations on the entire
ciphertext, even if it arrives in fragments). We call such schemes stateless beyond
buffering (sbb). Because of space constraints, we focus here on the stateful case,
with details for the sbb case appearing in the full version [6].

Message privacy in the presence of fragmentation. We observe that fragmen-
tation becomes relevant for security only in the case of chosen-ciphertext at-
tacks (CCA). We extend the existing CCA security notions for regular atomic
(IND-CCA) and atomic and stateful (IND-sfCCA [4]) schemes to the case of ci-
phertext fragmentation (denoted CFA).

Recall that for IND-sfCCA there is no restriction on the decryption queries,
but if the adversary forwards the challenge ciphertexts returned by the left-
or-right encryption oracle to the decryption oracle in order, this is considered
in-sync, and the decryption output is suppressed. Otherwise, it is declared out-
of-sync, and the decryptions are returned to the adversary. This allows the ad-
versary to advance the state of both encryption and decryption algorithms to
potentially favourable values. When dealing with fragments, the challenge is to
decide when to enter the out-of-sync state. We found the need to declare part of

3

the fragment in-sync, and part of it out-of-sync and resolve the ambiguity with
regards to the exact boundary to use. We provide our IND-sfCFA definition and
more discussion in Section 3.2.

Ciphertext boundary hiding. It is conventional wisdom in cryptographic security
definitions that an encryption scheme is allowed to leak the length of the ci-
phertext; it is often regarded as inevitable. However, real schemes try to achieve
another goal as well: they try to hide the lengths of encrypted messages, with
a view to frustrating traffic analysis based on these lengths. This is generally
achieved in practice by two distinct mechanisms.

Firstly, an encryption scheme for which the ciphertext length does not deter-
ministically depend on the message length may be used (e.g. by using variable-
length padding). The SSH Binary Packet Protocol and the TLS Record Protocol
both adopt this approach. This mechanism has recently received attention from
differing perspectives [16, 18]. Secondly, an encryption scheme may be designed
in such a way that it is hard to distinguish where the boundaries between ci-
phertexts lie in a stream of ciphertexts. TLS, with its explicit length field in the
header of each TLS Record Protocol message, does not achieve this. But SSH’s
Binary Packet Protocol (BPP) does attempt to achieve boundary hiding. This
necessitated the introduction of an encrypted length field in SSH, which is used
by the receiver to determine how many bytes are required before a complete ci-
phertext has arrived and a MAC on the plaintext can be checked. However, this
design decision, coupled with the use of CBC mode encryption, is precisely what
enabled recent fragmentation attacks against SSH [1]. Thus having boundary
hiding as a security goal can act in opposition to achieving other, more standard
security goals.

In Section 4, we formalize the goal of boundary hiding for ciphertext streams.
We give definitions for both the passive and the active adversary cases, which
we call BH-CPA and BH-sfCFA. The passive case is very common in the traffic
analysis literature. Here the adversary merely monitors encrypted traffic and
tries to infer information from ciphertext lengths and other information such
as network packet timings, but without giving away its presence by actively
modifying network traffic. By hiding the ciphertext boundaries, the adversary no
longer has access to fine-grained ciphertext lengths (our solution of course does
not help to hide the total volume being sent). We also define boundary hiding
in the active case and find out that it is much more challenging to achieve.

Denial-of-Service. Next, we focus on the very important goal of preventing
fragmentation-related Denial-of-Service (DoS) attacks against the receiver. This
is, to the best of our knowledge, the first formal treatment of DoS prevention
as a property of encryption. For an example of such an attack, consider the
SSH-CTR scheme (see [14] for a description) and the adversary who changes
the length field that occupies the first 32 bits of plaintext by bit flipping in
the ciphertext. If the length is maliciously increased to a very large value (say,
232 − 1, the maximum possible value for a 32-bit field), then the receiver will
continue listening for ciphertext fragments awaiting message completion, until

4

Table 1. Stateful schemes and their security properties.

Scheme Ref. IND-sfCFA BH-CPA BH-sfCFA DOS-sfCFA

Prefix free (EC ◦ E) (Sec. 3.3) + × × ×
Keyed Prefix Free (KPF) (full version [6]) + + × ×

InterMAC (Sec. 5) + + + +

232 bytes of data have been received. Only then will SSH-CTR’s MAC verifica-
tion be conducted and the message rejected. The application (or user) receiving
data from the SSH connection experiences this as an SSH connection hang, a
form of Denial-of-Service.

We provide a security definition DOS-sfCFA for DoS attacks in Section 5 that
is sufficiently flexible to capture the SSH attack and others like it. Essentially,
we measure the attacker’s ability to create a sequence of ciphertext fragments
for which the decryption algorithm of a scheme does not output any message or
failure symbol within a reasonable timeframe, measured in terms of the number
of symbols submitted to a decryption oracle by the adversary.

Constructions and their security. So far, our emphasis has been on developing
security models and notions. However, as we proceed, we demonstrate how each
of the security notions we provide can be met in practice by efficient schemes
using only standard symmetric components. These constructions are illustrative
rather than definitive. Table 1 lists our main schemes for the stateful setting
and their properties; for definitions and further discussions, see the referenced
sections. We note that the scheme InterMAC is able to simultaneously achieve
all three of our active security notions IND-sfCFA, BH-sfCFA, and DOS-sfCFA.

Further Related Work. Our fragmented approach bears more than a pass-
ing resemblance to work on on-line encryption [2, 3, 7, 9, 10, 11, 12]. However,
whereas the on-line setting concerns a single continuous message and ciphertext,
with each block of plaintext leading to a block of ciphertext being output during
encryption (and vice-versa during decryption), our setting concerns atomic en-
cryption (reflecting how many secure protocols operate) but allows fragmented
decryption of ciphertexts. Moreover, we extensively treat the case of active ad-
versaries, a topic that has not achieved much attention in the on-line literature,
and we consider more than just confidentiality security notions. This said, our
ultimate construction, InterMAC, can be seen as a kind of online scheme with a
large block size.

2 Preliminaries

Since manipulating sequences of symbols (strings) in various ways will be cru-
cial to our later exposition, we begin with some standard and not-so-standard
definitions relating to strings.

5

Let B be a set and B∗ denote the set of finite strings with symbols from B
(including the empty string ε). Let B+ denote B∗ \{ε}. Denote by | · | : B∗ → Z

+

the length function which counts the number of symbols in a string. Typically we
will have that B is the set of bitstrings of some fixed length n, that is B = {0, 1}n,
leading to the usual notation of {0, 1}∗ for the set of all binary strings of finite
length. In this case, if X is a string, then |X| denotes its bit-length. If X is a
vector of strings, then |X| denotes the number of its components. Given two
strings X,Y ∈ B∗, we write X ‖ Y for the concatenation of the two strings.
Given a sequence of strings, we define the operator || that simply concatenates
all the constituent strings. For example, if X = (00) and Y = (11), then X ‖
Y = (0011) ∈ {0, 1}∗ and ||((00), (11)) = (0011) ∈ {0, 1}∗.

For two elements a, b ∈ B∗ we call a a prefix of b if there exists c ∈ B∗ such
that b = a ‖ c. For two elements a, b ∈ B∗ we denote with a ? b the greatest
common prefix of a and b and by a % b the remainder string of a with respect
to b (so in particular, a = (a ? b) ‖ (a% b) and b = (a ? b) ‖ (b% a)). A subset S
of B∗ is called prefix-free if for all distinct a, b ∈ S it holds that a is not a prefix
of b.

If A is finite, we can identify it with Z|A|. In the specific case of A = {0, 1}n
we use the notation 〈·〉n : Z2n → {0, 1}n for the corresponding mapping. We
extend this notion to a more general map from N to A∗ or A+.

3 Symmetric Encryption Supporting Fragmentation

3.1 Unified Syntax

Morphology. We extend the standard definition of symmetric encryption for
the case of fragmented ciphertexts. For fragmentation to make sense, we will
restrict our attention to ciphertexts that are strings, so CphSp = B∗ where
e.g. B = {0, 1} (bits), B = {0, 1}8 (bytes), or B = {0, 1}128 (blocks). Further-
more, we assume that the message space consists of strings, so MsgSp = B∗.
The move to fragmentation results in some complications. For instance, a single
ciphertext can be split up in multiple fragments or a single fragment can contain
multiple ciphertexts.

Definition 1. A symmetric encryption scheme supporting fragmentation SE =
(K, E ,D) with associated message space MsgSp = B∗, ciphertext space CphSp =
B∗ and error messages S⊥ is defined by three algorithms:

– The randomized key generation algorithm K returns a secret key K and
initial states σ0 and τ0.

– The randomized or stateful (or both) encryption algorithm

E : K ×MsgSp×Σ → CphSp×Σ

takes input the secret key K ∈ K, a plaintext m ∈ MsgSp, and optional
state σ ∈ Σ, and returns a ciphertext in CphSp together with an updated
state. For m = (m1, . . . ,m`) ∈ (B∗)∗ and c = (c1, c2, . . . , c`), we write

6

(c, σ) ← EK(m, σ0) as shorthand for (c1, σ1) ← EK(m1, σ0), (c2, σ2) ←
EK(m2, σ1), . . . (c`, σ`)← EK(m`, σ`−1) where σ = σ`.

– The deterministic and stateful decryption algorithm

D : K × B∗ ×Σ → (B ∪ {¶} ∪ S⊥)∗ ×Σ

takes the secret key K, a ciphertext fragment f ∈ B∗, and the current state
τ to return the corresponding plaintext fragment m (which can be the empty
string ε or an error from error space S⊥) and also the updated state τ . For
f = (f1, . . . , f`) ∈ (B∗)∗, we write (m, τ) ← DK(f , τ0) as shorthand for
(m1, τ1) ← DK(f1, τ0), (m2, τ2) ← DK(f2, τ1), . . . (m`, τ`) ← DK(f`, τ`−1),
where m = m1 ‖ . . . ‖ m` and τ = τ`.

This definition requires a little unpacking. Firstly, and in contrast to the usual
definitions, our decryption algorithm is stateful, mainly to model decryption
algorithms that may, for example, combine data coming from multiple ciphertext
fragments before outputting any plaintext.

Secondly, note that the decryption algorithm is assumed to be able to handle
ciphertexts which decrypt to multiple plaintext messages, or to a mixture of
plaintexts and error symbols, or possibly to nothing at all (perhaps because
the input ciphertext is insufficient to enable decryption to yet output anything,
giving a significant difference from the atomic setting where decryption always
outputs something). We use ¶ 6∈ B∪S⊥ to denote the end of plaintext messages,
enabling an application making use of the decryption algorithm to parse the
output uniquely into a sequence of elements of B∗ and errors from S⊥. Our
introduction of an explicit symbol ¶ to help delineate messages during decryption
seems novel. This is not because our solution is in any way innovative, but rather
because the problem does not arise in earlier works.

Thirdly, note that, when failing, the decryption algorithm can output one of
possibly many error messages from the set S⊥. This reflects the fact that real
schemes may fail in more than one way, with the different failure modes being
visible to both legitimate users and adversaries. Our definition is sufficiently
flexible to model schemes (such as those used in SSH and TLS) that tear down
secure sessions and destroy session keys as soon as an error is detected during
decryption, by having the decryption algorithm maintain an extra “abort” status
flag, setting the flag once a first error is encountered, and always outputting a
failure symbol once the flag is set. The definition can also handle schemes (such
as those used in IPsec and DTLS) which are more tolerant of errors.

While we enforce that from a decryption of a sequence of ciphertext frag-
ments, the corresponding message boundaries are easy to distinguish, we make
no such requirement for ciphertexts. Indeed, given a sequence of ciphertext frag-
ments, it will not be a priori clear what the constituent ciphertexts are (and in
fact, in Section 4, we want to model schemes which hide these boundaries as
a security goal). Looking ahead, the absence of clear ciphertext boundaries (in
a sequence of fragments) will cause challenging parsing problems for our CCA
definitions: in order to ‘forbid’ decryption of the challenge ciphertext, a prereq-

7

1 2 3 4′ 5′

Fig. 1. Two consecutive fragments f1 = (1) and f2 = (234′5′). The second fragment
completes the first ciphertext c1 = (12), so we expect that to be decrypted at this
point, even though ciphertext c2 = (345) in the second fragment has been modified to
produce a possibly invalid ciphertext.

uisite is that this challenge ciphertext can be located accurately in the sequence
of ciphertext fragments!

Correctness. If a single message is encrypted and the corresponding cipher-
text is subsequently decrypted, we expect that the message is returned. When
multiple messages are encrypted and the fragments correspond exactly to the
ciphertext, again we expect to retrieve the original messages. However, we ex-
pect something stronger, namely that regardless of how we fragment the ci-
phertext(s), the original message(s) are returned. Moreover, we require correct
decryption, even when an extra string B∗ is added to the original (string of)
ciphertexts. This forces correct decryption once a complete valid ciphertext has
been received, even if what intuitively might remain in the buffer is invalid.
For instance, in the situation depicted in Fig. 1 two ciphertexts c1 = (12) and
c2 = (345) are produced by the encryption oracle, the adversary subsequently
submits fragments f1 = (1) and f2 = (234′5′) to its decryption oracle, and we
still want to see the first ciphertext decrypted properly.

With this intuition in mind, we are almost ready to give our definition of
correctness for a symmetric encryption scheme with fragmented ciphertexts. We
first define a map ¶ : (B∗ ∪ S⊥)∗ → (B ∪ {¶} ∪ S⊥)∗ by ¶(m1, . . . ,m`) = m1 ‖
¶ ‖ . . .¶ ‖ m` ‖ ¶. Note that ¶ is injective but not surjective.

Definition 2 (Correctness Requirement). For all (K,σ0, τ0) that can be
output by K and for all m ∈ MsgSp∗ and f ∈ (B∗)∗, it holds (with probability
1) that if (c, σ) ← EK(m, σ0) and ||(c) prefixes ||(f), then (m′, τ) ← DK(f , τ0)
satisfies m′ is prefixed by ¶(m).

Stateful versus stateless schemes. As noted in the introduction, we mainly
study two subclasses of symmetric encryption schemes supporting fragmentation,
stateful, which covers most practical encryption schemes, and stateless beyond
buffering, an extension of standard (atomic), stateless encryption schemes that
makes handling fragmented ciphertexts possible. The former case is covered by
Definition 1 above. In the latter case, the decryption algorithm is still stateful,
but we impose that after receiving any valid ciphertext it returns to the original
state (output by key generation). More formally, we have:

8

ExpIND-sfCFA-b
SE (A):

C ← ε, F ← ε,M ← ε
C← (), M← (), i← 0, j ← 0
active← false

(K,σ, τ)
$← K

b′
$← ALoR(·,·),Dec(·)

return b′

LoR(m0,m1):
if |m0| 6= |m1| then return
(c, σ)← EK(mb, σ)
i← i+ 1
Ci ← c, Mi ← mb

return c

Dec(f):
(m, τ)← DK(f, τ)
F ← F ||f and M ←M ||m
if ¬active then

while C is a prefix of F and j < i
j ← j + 1
C ← C ‖ Cj

if F is prefix of C then
m← ε

else
active← true

determine m′ ← ¶(M1, . . . , Mj−1)
extract m←M %m′

return m

Fig. 2. The experiment defining the IND-sfCFA security notion for fragmented decryp-
tion of stateful schemes.

Definition 3. A symmetric encryption scheme with fragmented ciphertexts is
called stateless beyond buffering (or sbb for short) if it is correct (Definition 2)
and satisfies the additional conditions

1. The initial decryption state is empty, that is for all (K,σ0, τ0) that can be

output by K, τ0 = ε; for simplicity’s sake, we will often simply write (K,σ) $←
K for sbb schemes.

2. The decryption state is empty after decryption of each ciphertext obtained
from encryption, i.e. for all K that can be output by K, for all σ ∈ Σ, for
all m ∈ MsgSp, it holds (with probability 1) that if (c, σ) ← EK(m,σ) then
(m′, τ)← DK(c, ε) satisfies τ = ε.

3. The scheme satisfies literal decryption: for all K ∈ K and for all f =
(f1, . . . , f`), when f ′ = f1 ‖ . . . ‖ f`, then DK(f , ε) = DK(f ′, ε).

For schemes with literal decryption we assume, without loss of generality, that
the decryption algorithm only keeps a buffer ρ as state, where a buffer is un-
derstood to be a suffix of the stream of ciphertext fragments received so far.
Moreover, if the scheme is sbb as well, this buffer will be emptied after each
valid ciphertext. Essentially, the scheme is stateless beyond the necessary buffer-
ing (to keep track of the current ciphertext).

3.2 Security for Stateful Schemes

When discussing a security notion a scheme supporting fragmentation, the first
thing to note is that this only makes sense in the CCA setting: if there is no
decryption oracle, then whether decryption is fragmented or atomic is immaterial
to the security of the scheme. In the context of fragmentation, we will replace
the usual notion of chosen-ciphertext attacks by chosen-fragment attacks (CFA).
Our first notion, IND-sfCFA is tailored for stateful schemes and it is inspired by

9

Bellare et al.’s notion of IND-sfCCA (for atomic schemes) from [4]. Recall that
for IND-sfCCA, an adversary has unlimited access to the decryption oracle; there
are no ‘prohibited’ queries. Instead, to avoid trivial attacks (by the adversary
simply relaying its challenge ciphertext for decryption) a syncing mechanism is
used. Initially the decryption oracle is in-sync and its output (to the adversary)
will be suppressed. Only when the adversary causes the decryption oracle to be
out-of-sync (by deviating from the ciphertext stream output by the encryption
oracle) will the purported plaintexts (or error messages) be returned.

For atomic schemes, this is relatively straightforward to define, but for schemes
supporting fragmentation, some ambiguity arises. Consider again the scenario
sketched in Fig. 1. The first fragment is in-sync and its output will be suppressed.
In the second fragment a deviation from the challenge ciphertext stream occurs.
However, part of the fragment is still in-sync and certainly outputting the full
decryption would—mindful of the correctness requirement—reveal (part of) the
plaintext (12). We will need to formalize this by officially declaring part of the
fragment in-sync, and part of it out-of-sync. The ambiguity arises with regards
to the boundary we should use: is sync lost already at ‘3’ (being the first symbol
of a ciphertext that is not completed properly) or only at ‘4’ (being the first
symbol of the fragment that actually deviates)?

In our definition of IND-sfCFA (Definition 4) we opted for the strongest in-
terpretation, namely where synchronization is lost at the ciphertext boundary.
Since this results in synchronization potentially being lost earlier, the decryption
oracle consequently suppresses less of its output, making it the stronger option.

Definition 4. Let SE = (K, E ,D) be an encryption scheme supporting fragmen-
tation. For an adversary A and a bit b, define the experiments ExpIND-sfCFA-b

SE (A)
as depicted in Fig. 2.

In both experiments, first the key K is generated by K. The adversary A is
given access to two oracles. The first is the left-or-right encryption oracle LoR(·, ·)
that it can query on any pair of messages of equal length. The second oracle is the
stateful decryption oracle Dec(·) that it can query on any sequence of ciphertext
fragments, but for certain sequences the output is artificially suppressed.

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b,
and the experiment returns b′ as well. The IND-sfCFA advantage of an adversary
A is defined as:

AdvIND-sfCFA
SE (A) = Pr

[
ExpIND-sfCFA-1

SE (A) = 1
]
− Pr

[
ExpIND-sfCFA-0

SE (A) = 1
]
.

The scheme with fragmentation SE is said to be indistinguishable against chosen-
ciphertext-fragments attack or IND-sfCFA secure, if for every adversary A with
reasonable resources its IND-sfCFA advantage is small.

Security for Stateless Schemes. In the full version [6], we define security of
stateless beyond buffering encryption schemes by appropriately modifying the
standard notion of indistinguishability against chosen-ciphertext attacks (IND-
CCA). We also provide the details and discuss the subtleties regarding the defi-
nition.

10

Algorithm Kf :
ρ← ε

(K,σ, τ)
$← Ka

return (K,σ, (τ, ρ))

Algorithm E f
K(m,σ):

(c, σ′)← Ea
K(m,σ)

v ← EC(c)
return (v, σ′)

Algorithm Df
K(f, (τ, ρ)):

w ← f , m′ ← ε
ρ← ρ ‖ f
while (w 6= ε)

(w, ρ)← DC(ρ)
if (w 6= ε) then

(m, τ)← Da
K(w, τ)

m′ ← m′ ‖ m ‖ ¶
return (m′, (τ, ρ))

Fig. 3. Construction of encryption schemes supporting fragmentation.

3.3 Realizations and Non-realizations

In the full version [6], we simplify an attack by Albrecht et al. [1] to show that
schemes meeting traditional notions of security in the atomic setting can fail to
be secure in the fragmented setting. This establishes that our whole approach is
not vacuous.

Prefix-Free Postprocessing. Next we give a simple transformation that con-
verts any secure atomic scheme SEa with MsgSp = B∗ into a secure scheme
SEf supporting fragmentation. One of the challenges that has to be overcome is
ensuring correct decryption of the fragmented scheme. We solve this by encoding
ciphertexts (originating from SEa) using a prefix-free encoding scheme EC. This
allows the decrypting algorithm to correctly parse a concatenation of ciphertexts
into discrete ciphertexts which it can then decrypt in an atomic fashion.

A prefix-free encoding scheme EC : B+ → B+ is a (deterministic) function
whose image (viewed as a multiset) is prefix-free and that can be evaluated
efficiently. A useful property of a prefix-free encoding scheme is that an arbitrary
concatenation of encoded strings can be uniquely decoded, moreover this can
be done instantaneously and we will assume efficiently. This property, dubbed
instantaneous decodability, is defined below.

Definition 5. A prefix-free encoding scheme EC : B+ → B+ has instantaneous
decodability iff there exists an efficient deterministic algorithm DC : B∗ → B∗×
B∗ such that:

1. For all w ∈ B+ and all s ∈ B∗ it holds that if v ← EC(w) then (w, s) =
DC(v ‖ s).

2. For all x ∈ B∗, if no v ∈ EC(B+) is a prefix of x then (ε, x) = DC(x).

A prefix-free encoding scheme EC can be combined with an atomic encryp-
tion scheme with message space B∗ to yield an encryption scheme supporting
fragmentation as in Construction 6.

Construction 6 (Encrypt-then-prefix-free-encode). Let SEa = (Ka , Ea ,Da) be
an atomic encryption scheme with Ea : B∗ → B+ and let EC : B+ → B+ be a
prefix-free encoding scheme with associated (instantaneous) decoding algorithm

11

DC. Then Fig. 3 defines encryption scheme supporting fragmentation SE f =
(Kf , E f ,Df).

Proposition 7. Construction 6 provides an encryption scheme supporting frag-
mentation with message space MsgSp = B∗, ciphertext space CphSp = B+, the
same S⊥ as SEa and it satisfies the correctness requirement given by Definition 2
(assuming SEa itself is correct). Furthermore if Da is stateless, then Construc-
tion 6 is stateless beyond buffering.

Theorem 8. If SEa is IND-sfCCA secure then SE f from Construction 6 is IND-
sfCFA secure. More precisely, for any adversary AsfCFA there exists an equally
efficient adversary AsfCCA such that

AdvIND-sfCFA
SEf (AsfCFA) ≤ AdvIND-sfCCA

SEa (AsfCCA) .

Theorem 9. Let SEa have stateless decryption. If SEa is IND-CCA secure then
SE f from Construction 6 is IND-sbbCFA secure. More precisely, for any adver-
sary AsbbCFA there exists an equally efficient adversary ACCA such that

AdvIND-sbbCFA
SEf (AsbbCFA) ≤ AdvIND-CCA

SEa (ACCA) .

The proofs of these results (and the definition of IND-sbbCFA security) can
be found in the full version [6].

4 Boundary Hiding

In this section, we focus on formalizing the goal of boundary hiding for ciphertext
streams, giving security definitions and constructions achieving these definitions.
While the boundaries should be hidden to an adversary, they should of course not
lead to decryption problems: a stream (i.e. concatenation) of ciphertexts should
still lead to the correct sequence of plaintexts. The correctness requirement for an
encryption scheme with fragmented decryption already ensures that everything
goes well here.

Definition 10. Let SE = (K, E ,D) be an encryption scheme supporting frag-
mentation. For an adversary A and a bit b, define experiments ExpBH-sfCFA-b

SE (A)
as depicted in Fig. 4.

In these experiments, the adversary A is given access to a special left-or-
right oracle: on input two vectors of messages, either the left or the right result
is returned, but with the caveat that the concatenated ciphertext is returned only
if in both worlds the same length ciphertext is produced (but note that we do not
insist that the two vectors of messages contain the same number of components).
The adversary is also given access to a decryption oracle that is identical to the
one provided in the IND-sfCFA security experiment.

The adversary’s goal is to output a bit b′, as its guess of the challenge bit b,
and the experiment returns b′ as well. The BH-sfCFA advantage of an adversary
A is defined as:

AdvBH-sfCFA
SE (A) = Pr

[
ExpBH-sfCFA-1

SE (A) = 1
]
− Pr

[
ExpBH-sfCFA-0

SE (A) = 1
]
.

12

ExpBH-sfCFA-b
SE (A):

C ← ε, F ← ε,M ← ε
C← (), M← (), i← 0, j ← 0
active← false

(K,σ, τ)
$← K

b′
$← ALoR(·,·),Dec(·)

return b′

LoR(m0,m1):
σ0 ← σ, σ1 ← σ
(c0, σ0)← EK(m0, σ0)
(c1, σ1)← EK(m1, σ1)
c0 ← ||(c0), c1 ← ||(c1)
if |c0| 6= |c1| then return
σ ← σb
for ι = 1 to ι = |cb|

i← i+ 1
Ci ← cb(ι), Mi ←mb(ι)

return cb

Dec(f):
(m, τ)← DK(f, τ)
F ← F ||f and M ←M ||m
if ¬active then

while C is a prefix of F and j < i
j ← j + 1
C ← C ‖ Cj

if F is prefix of C then
m← ε

else
active← true

determine m′ ← ¶(M1, . . . , Mj−1)
extract m←M %m′

return m

Fig. 4. Experiment ExpBH-sfCFA-b
SE (A) for defining boundary hiding security for stateful

schemes and an active adversary.

We say that SE is boundary-hiding against chosen-ciphertext-fragments attack
or BH-sfCFA secure, if for every adversary A with reasonable resources its
BH-sfCFA advantage is small.

Boundary-hiding notions for the case of passive adversaries can be obtained
simply by removing the adversary’s access to the relevant decryption oracle.
In this case, we refer to BH-CPA security (this notion is implied by the notion
IND$-CPA as introduced by Rogaway [17], see the full version [6]). The notion of
boundary-hiding security for sbb schemes for active attacks BH-sbbCFA can also
be developed, by replacing the decryption oracle Dec in Fig. 4 by the decryption
oracle Dec from the corresponding sbb security game and by appropriately mod-
ifying how ciphertexts generated by queries to the encryption oracle are tracked.
The details are in the full version [6].

Constructions. In order to achieve BH-CPA security we extend Construction 6
by using keyed encoding schemes. The use of a key in the encoding scheme
enables the encryption algorithm to disguise the ciphertext boundaries from a
passive adversary. Details of this construction, dubbed KPF (Keyed Prefix Free),
can be found in the full version [6]. Achieving BH-sfCFA requires more work. We
show that this can be done at the same time as achieving DoS security in the next
section. In the sbb setting, however, we will only achieve BH-CPA security (we
show this and discuss the difficulty of meeting BH-sbbCFA security in the next
section as well). It remains an open problem to design a practical BH-sbbCFA
secure sbb scheme.

13

ExpN-DOS-sfCFA
SE (A):

C ← ε, F ← ε,M ← ε
C← (), M← (), i← 0, j ← 0
active← false

(K,σ, τ)
$← K

run AEnc(·),Dec(·)

return 1

Enc(m):
(c, σ)← EK(m,σ)
i← i+ 1
Ci ← c, Mi ← m
return c

Dec(f):
(m, τ)← DK(f, τ)
F ← F ||f and M ←M ||m
if ¬active then

while C is a prefix of F and j < i
j ← j + 1
C ← C ‖ Cj

if F is not a prefix of C then
active← true

m′ ← ¶(M1, . . . , Mj−1)
m←M %m′

if active then
if m 6= ε then

exit Exp with 0
else if |F % C| ≥ N then

exit Exp with 1
return m

Fig. 5. The experiment defining the N -DOS-sfCFA security notion for Denial of Service
attack against stateful schemes.

5 Denial-of-Service Attacks

In this section we study fragmentation-related Denial-of-Service (DoS) attacks.
In the introduction we mentioned an example of a fragmentation-related attack
that constitutes DoS. Here we provide formal definitions that are general enough
to capture all such attacks. We focus on the stateful setting.

Definition 11. Let SE = (K, E ,D) be a stateful encryption scheme with frag-
mented ciphertexts. For an adversary A and N ∈ N define the experiment
ExpN−DOS-sfCFA

SE (A) as in Fig. 5. In the experiment, A is given access to two
oracles. The first is a regular encryption oracle Enc(·) that it can query on any
message in the message space. The second oracle is a special stateful decryption
oracle Dec(·) that it can query on any string treated as a ciphertext fragment. The
adversary’s goal is to submit to the special decryption oracle Dec(·) a fragment
or a sequence of fragments of length at least N , which is not a valid replay of
legitimate ciphertexts and such that Dec(·) does not return a non-empty message
m or a failure symbol from S⊥. In this case the oracle exits the experiment with
a value 1. In other out-of-sync cases the oracle exits with 0. When decryption is
still in-sync, the oracle just returns the correct decryption m. The N-DOS-sfCFA
advantage of A is defined to be:

AdvN-DOS-sfCFA
SE (A) = Pr

[
ExpN-DOS-sfCFA

SE (A) = 1
]
.

The scheme SE is said to be N -DOS-sfCFA secure if for every legitimate adver-
sary A with reasonable resources, its N -DOS-sfCFA advantage is small.

Note that, to win the above game, the adversary need not make his attack in
the first out-of-sync query to Dec(·). Also note that in order to win the adversary

14

must submit at least N symbols after the longest common prefix with a valid
ciphertext stream obtained from the encryption oracle without provoking any
output from the decryption oracle.

The parameter N in the definition above measures the shortest fragment
length below which a DoS attack cannot be prevented by a scheme; since all
reasonable schemes that meet our other security notions must do some degree
of buffering before outputting any message symbols, we cannot hope to make N
as small as we please. Our objective then, when designing a scheme, is to make
the scheme N -DOS-sfCFA secure for N as small as possible.

We develop a similar definition for the sbb setting in the full version [6].

InterMAC: construction in the stateful case and its security. Our idea
for DoS prevention in the stateful setting is to break the ciphertexts into equal-
sized segments and authenticate all of them. We could use this idea to modify
an IND-sfCFA scheme, but we propose a more efficient construction that uses an
IND-CPA (possibly stateless) scheme and a SUF-CMA MAC. (We defer standard
definitions for syntax and security of MACs to the full version [6].) In our con-
struction, the sender and receiver keep a state which contains a message and a
segment number. The encryption algorithm MACs this state together with the
encryption of the segment, but the state does not have to be transmitted, as the
receiver maintains it for himself. Each segment uses a bit flag to indicate the
last segment in a message. We now provide the details.

Construction 12 (InterMAC). Let SE = (Ke, E ,D) be an encryption scheme
with associated message space MsgSpe and letMAC = (Kt, T ,V) be a message
authentication code with associated message space MsgSpt. Let N ∈ N be a
DoS parameter. We assume that MsgSpt = {0, 1}∗ and, for simplicity, that
MsgSpe = {{0, 1}N−el−1−tl}∗ where T always outputs tags of fixed length tl and
E always produces ciphertexts which are el bits longer than the messages. This
restriction on the message space can be relaxed by introducing an appropriate
padding scheme (such as abit padding, as analysed in [15]) but we omit this
detail for simplicity. Define a new stateful encryption scheme with fragmentation
SEf = (Kf , Ef ,Df) as in Figure 6.

It is not hard to check that the scheme is correct.
The proofs of the following two theorems are in the full version [6].

Theorem 13. IfMAC is SUF-CMA, then SEf constructed as per Construction
12 is N -DOS-sfCFA secure. More precisely, for any adversary A there exists an
equally efficient adversary A′ so that

Advuf-cma
MAC (A′) ≥ AdvN-DOS-sfCFA

SEf (A).

Theorem 14. If SE is IND$-CPA1 and MAC is SUF-CMA and PRF secure,
then SEf constructed as per Construction 12 is BH-sfCFA and IND-sfCFA secure.

We provide the concrete security statements in [6].
1 This notion captures indistinguishability of ciphertexts from random strings and is

introduced by Rogaway [17]. We recall the formal definition in [6].

15

Algorithm EfKe‖Kt,σ
(m;σ):

σ ← σ + 1
parse m as m1 ‖ . . . ‖ m`

where for each 1 ≤ i ≤ `,
|mi| = N − el − 1− tl

for j = 1 to ` do
if j = ` then

bmj ← 1 ‖ mj

else bmj ← 0 ‖ mj

cj ← EKe(bmj)
tj ← TKt(σ ‖ j ‖ cj)

c← c1 ‖ t1 . . . ‖ c` ‖ t`
return (c, σ)

Algorithm DfKe‖Kt
(f, τ):

parse τ as (im, is, bad,m, F)
if |F ‖ f | < N then

F ← F ‖ f
return (ε, (im, is, bad,m, F))

else parse F ‖ f as c1 ‖ t1 ‖ . . . ‖ c` ‖ t` ‖ s
where |s| < N and for each 1 ≤ i ≤ `,
|ci ‖ ti| = N and |ti| = tl

for j = 1 to ` do
is ← is + 1
if bad = 1 then

output ⊥
else if VKt(im ‖ is ‖ cj , tj) = 0 then

bad← 1 ; output ⊥
else

bmj ← DKe(cj) ; parse bmj as b ‖ mj

m← m ‖ mj

if b = 1 then
im ← im + 1; is ← 0
if bad = 0 then

output (m¶) ; m← ε
return(ε, (im, is, bad,m, s))

Fig. 6. The stateful construction SEf . Key generation Kf picks Ke
$← Ke,Kt

$← Kt,
sets σ ← 0 and τ = (im, is, bad,m, F)← (0, 0, 0, ε, ε), and returns (c, σ, τ).

Construction in the sbb case and its security. In the full version [6]
we provide an analogous scheme for the sbb setting. We also use the idea of
authenticating the ciphertext segments, however, the solution becomes more
complex as we cannot keep message and segment numbers as state and it is not
efficient to keep them as part of the segments. To prevent the re-ordering attacks
we need to authenticate the previous segments as well. To improve efficiency we
only authenticate the tags from the previous segments. The security results we
get are similar, but the sbb scheme does not provide BH-sbbCFA security.

The reason for the difficulty in achieving BH-sbbCFA security in the sbb
setting is as follows. An adversary can always query a valid ciphertext to the
stateful decryption oracle fragment by fragment and flip the last bit at the end.
Observing when the decryption algorithm returns ⊥ gives the adversary infor-
mation about the ciphertext boundary. Prohibiting the decryption algorithm to
ever return ⊥ is not very practical and is subject to DoS attacks. It is an open
question to provide a practical scheme with both BH-sbbCFA and DOS-sbbCFA
security.

16

6 Conclusions

In this paper, we have initiated the formal study of fragmentation attacks against
symmetric encryption schemes. We also developed security models to formalise
the additional desirable properties of ciphertext boundary-hiding and robustness
against Denial-of-Service (DoS) attacks for schemes in this setting. We illustrated
the utility of each of our models via efficient constructions for schemes using only
standard cryptographic components. This work raises many interesting open
questions, amongst which we list:

– We have focussed on confidentiality notions here, and suitable integrity no-
tions remain to be developed. Can such notions then be combined to provide
more general notions of security as seen in authenticated encryption?

– Some of our constructions build fragmented schemes from atomic schemes.
What general relationships are there between schemes in the two settings?

– In the sbb case, the properties of DoS resistance and ciphertext boundary
hiding appear to be in opposition to one another. Can this be formally
proven? Is there a fundamental reason (beyond the ability to keep state)
why this does not seem to arise in the stateful setting?

References

[1] M.R. Albrecht, K.G. Paterson, and G.J. Watson. Plaintext recovery attacks
against SSH. In IEEE Symposium on Security and Privacy, pages 16–26. IEEE
Computer Society, 2009.

[2] G.V. Bard. A challenging but feasible blockwise-adaptive chosen-plaintext attack
on SSL. In M. Malek, E. Fernandez-Medina and J. Hernando (eds.), SECRYPT,
pages 99–109. INSTICC Press, 2006.

[3] G.V. Bard. Blockwise-adaptive chosen-plaintext attack and online modes of en-
cryption. In S.D. Galbraith (ed.), IMA Int. Conf., volume 4887 of Lecture Notes
in Computer Science, pages 129–151. Springer, 2007.

[4] M. Bellare, T. Kohno, and C. Namprempre. Breaking and provably repairing the
SSH authenticated encryption scheme: A case study of the encode-then-encrypt-
and-MAC paradigm. ACM Transactions on Information and Systems Security,
7(2):206–241, 2004.

[5] M. Bellare and C. Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. In T. Okamoto (ed.),
ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages
531–545. Springer, 2000.

[6] A. Boldyreva, J. P. Degabriele, K. G. Paterson and M. Stam. Security of sym-
metric encryption in the presence of ciphertext fragmentation. Full version of this
paper. Available from Cryptology ePrint Archive http://eprint.iacr.org, 2012.

[7] A. Boldyreva and N. Taesombut. Online encryption schemes: New security notions
and constructions. In T. Okamoto (ed.), CT-RSA, volume 2964 of Lecture Notes
in Computer Science, pages 1–14. Springer, 2004.

[8] J.P. Degabriele and K.G. Paterson. On the (in)security of IPsec in MAC-then-
Encrypt configurations. In E. Al-Shaer, A.D. Keromytis and V. Shmatikov (eds.),
ACM Conference on Computer and Communications Security, pages 493–504,
ACM, 2010.

17

[9] P.-A. Fouque, A. Joux, G. Martinet and F. Valette. Authenticated on-line en-
cryption. In M. Matsui and R.J. Zuccherato (eds.), SAC, volume 3006 of Lecture
Notes in Computer Science, pages 145–159. Springer, 2003.

[10] P.-A. Fouque, A. Joux and G. Poupard. Blockwise adversarial model for on-line
ciphers and symmetric encryption schemes. In H. Handschuh and M.A. Hasan
(eds.), SAC, volume 3357 of Lecture Notes in Computer Science, pages 212–226.
Springer, 2004.

[11] P.-A. Fouque, G. Martinet and G. Poupard. Practical symmetric on-line encryp-
tion. In T. Johansson, ed., FSE, volume 2887 of Lecture Notes in Computer Sci-
ence, pages 362–375. Springer, 2003.

[12] A. Joux and G. Martinet and F. Valette Blockwise-Adaptive Attackers: Revis-
iting the (In)Security of Some Provably Secure Encryption Models: CBC, GEM,
IACBC. In M. Yung (ed.), CRYPTO 2001, volume 2442 of Lecture Notes in
Computer Science, pages 17–30, Springer, 2002.

[13] H. Krawczyk. The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In J. Kilian (ed.), CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 310–331. Springer, 2001.

[14] K.G. Paterson and G.J. Watson. Plaintext-dependent decryption: A formal se-
curity treatment of SSH-CTR. In H. Gilbert (ed.), EUROCRYPT 2010, volume
6110 of Lecture Notes in Computer Science, pages 345–361. Springer, 2010.

[15] K.G. Paterson and G.J. Watson. Immunising CBC Mode Against Padding Or-
acle Attacks: A Formal Security Treatment. In R. Ostrovsky, R. De Prisco and
I. Visconti (eds.), SCN 2008, volume 5229 of Lecture Notes in Computer Science,
pages 340–357, Springer, 2008.

[16] K.G. Paterson, T.E. Shrimpton and T. Ristenpart. Tag Size Does Matter: At-
tacks and Proofs for the TLS Record Protocol. In D.H. Lee and X. Wang (eds.),
ASIACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages
372–389, Springer, 2011.

[17] P. Rogaway. Nonce-based symmetric encryption. In B. Roy and W. Meier (eds.),
FSE 2004, volume 3017 of Lecture Notes in Computer Science, pages 348–359,
Springer 2004.

[18] C. Tezcan and S. Vaudenay. On Hiding a Plaintext Length by Preencryption. In
J. Lopez, G. Tsudik (eds.), ACNS 2011, volume 6715 of Lecture Notes in Computer
Science, pages 345–358, Springer, 2011.

18

