
This is the author’s version of the work. It is posted at http://www.brucker.ch/bibliography/abstract/asim.
ea-policy-monitoring-2018 for your personal use. Not for redistribution. The definitive version was published in Journal of
Software: Evolution and Process, 2018, John Wiley & Sons, pp. 1–??, 2018, doi: 10.1002/smr.1944.

Security Policy Monitoring of BPMN-based Service
Compositions

Muhammad Asima, Artsiom Yautsiukhinb, Achim D. Bruckerc,*, Thar Bakerd ,Qi Shid, Brett Lempereurd

 aDepartment of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Pakistan
bIIT-CNR, via Moruzzi, 1, Pisa, Italy, 56124

 cDepartment of Computer Science, The University of Sheffield, Sheffield, UK
dDepartment of Computer Science, Liverpool John Moores University, Liverpool, UK

Abstract— Service composition is a key concept of Service-
Oriented Architecture that allows for combining loosely coupled
services that are offered and operated by different service
providers. Such environments are expected to dynamically
respond to changes that may occur at runtime, including changes
in the environment and individual services themselves.
Therefore, it is crucial to monitor these loosely-coupled services
throughout their lifetime. In this paper, we present a novel
framework for monitoring services at runtime and ensuring that
services behave as they have promised. In particular, we focus on
monitoring non-functional properties that are specified within an
agreed security contract. The novelty of our work is based on the
way in which monitoring information can be combined from
multiple dynamic services to automate the monitoring of business
processes and proactively report compliance violations. The
framework enables monitoring of both atomic and composite
services and provides a user friendly interface for specifying the
monitoring policy. We provide an information service case study
using a real composite service to demonstrate how we achieve
compliance monitoring. The transformation of security policy
into monitoring rules, which is done automatically, makes our
framework more flexible and accurate than existing techniques.

Index Terms— Service-Oriented Computing, Composite
services, Business process compliance, Compliance monitoring,
Security.

I. INTRODUCTION

Service-Oriented Architecture (SOA) allows software
components from different providers to be exported as services
for external use. A service itself is a unit that offers a certain
functionality. If no single service can satisfy the functionality
required by the user, then SOA allows multiple services to be
combined to form a larger application to fulfil the user
requirements. A SOA platform provides a foundation for
modeling and composing multiple services in an “ad-hoc”
manner. Service descriptions are published by service
developers and used by the potential users to discover services.
A service composer is a service provider that is responsible for
constructing service compositions and offering them to
consumers. Service discovery is based on matching user
requirements and security needs with the published service
descriptions. Typically, service composers will have different
needs and different requirements. They have varying business
goals and different expectations from a service; for example, in
terms of functionality, quality of service and security needs.
Thus, it is important to make sure that a service should deliver
what it promises and should match the user’s expectations.
However, SOA-based applications are highly dynamic and
liable to change heavily at runtime. These applications are
made out of services that are deployed and run independently,

and may change unpredictably after deployment. Thus,
changes may occur to services after deployment and at
runtime, which may lead to a situation where services fail to
deliver what has been promised. Traditional verification
techniques cannot foresee all of these changes as they are
mainly pre-deployment activities. These challenges call for
more effective approaches towards runtime monitoring of
services [1].[2].[3].[4].[5].[6]..

Service composition can be viewed in a process-oriented
perspective. This makes the composition not only easy to
understand but also the composition can be validated against
the desired rules and modified to suit the required operation. In
a process-oriented approach, service composition is described
by means of workflow languages and technologies. The
workflow composition defines the operations to invoke and the
execution order of the invocations [7].. A de-facto standard
Business Process Model and Notation (BPMN) [8]. are widely
used as a modeling notation for business processes [9]..

This paper focuses on our monitoring framework that is
based on the runtime monitoring of a service to ensure that the
service behaves in compliance with a predefined security
policy. We mainly concentrate on monitoring service behavior
throughout the service execution lifetime to ensure that
services behave as promised. Alerts regarding policy violations
are sent as notifications. Current monitoring methods applied
to service execution environments focus on generating alerts
for a specific set of pre-built event-types. The dynamic nature
of SOAs also extends to the end-user security requirements. An
ideal system might allow different users to be awarded the
opportunity to apply their own security policies enforced
through a combination of design time and runtime checks. This
might be the case even where multiple users are accessing the
same services simultaneously. The main contribution of our
framework is the focus on monitoring composite services and
checking their workflow, invoked sub-services, compound
properties, etc.

* Parts of this research were done while the author was a Security
Testing Strategist and Research Expert at SAP SE in Germany.

It also allows different user-specified policies to be monitored
simultaneously at runtime with the accuracy of a monitoring
system that links directly into the service execution
environment. Thus, the framework has the capability not only
to reveal the information predefined by the provider, but also to
be configured to allow users to specify the monitoring rules
(using the properties the service has to comply with). Finally,
taking into consideration the limitation of any formal-based

http://www.brucker.ch/bibliography/abstract/asim.ea-policy-monitoring-2018
http://www.brucker.ch/bibliography/abstract/asim.ea-policy-monitoring-2018
http://dx.doi.org/10.1002/smr.1944

enforcement approach, we provide a possibility to add custom
property checks for atomic services. These property checks can
be added to our framework without any modification of the
formal semantics of the language (ConSpec) and the
monitoring service itself. Due to this we can monitor a much
wider set of properties allowed by the formal language while
still enjoying its advantages.

The preliminary design of the monitoring framework and
the event model have been described in a previous work
[10].[11].. This paper amends and extends the monitoring
framework, addresses its limitations, and evaluates its
performance. In the previous work, the monitoring framework
was based on the use of Complex Event Processing (CEP). It
used one language for requirements specification, ConSpec
[12]., and another one, Drools Fusion [13]., for monitoring
these requirements. One major limitation of previous work was
a missing transformation engine required to translate
requirement specifications into monitoring rules. The
monitoring rules were defined manually through an external
interface. This introduced a lot of complexities, particularly for
dynamically changing service compositions, which indicated
the need for an automated operation. The work presented in
this paper uses one language for the requirement specification
and the actual monitoring. This provides a seamless and
uniform approach to service monitoring. Our contribution in
this paper differs from the existing work, e.g. [10]., as follows:
• A new approach has been proposed where only one

language (ConSpec) has been used for both the
requirements specification and monitoring rules. The
Policy Decision Point (PDP) is developed as a part of the
monitoring framework, which helps in translating
ConSpec policies into monitoring rules and decision-
making.

• The ConSpec policies can be used for expressing
temporal properties spawning across several atomic
services participating in a service composition. Moreover,
they can include meta-properties such as restricting the
service provider.

• The monitoring framework is developed as a software
module and allows straightforward integration with other
modules or platforms.

• We focus on monitoring non-functional properties (i.e.,
properties related to security and trust) that are specified
within an agreed security contract. An information
composite service case study (based on real services) has
been used to demonstrate the compliance monitoring with
a focus on two composite security properties.

• A ConSpec editor has been developed which provides a
graphical user interface for making and changing
ConSpec policies.

• The paper presents an in-depth performance evaluation to
show that our system is well-suited for highly dynamic
service compositions, which were missing in the previous
work.

The rest of the paper is organized as follows: Section 2
describes a motivating service composition example. A
discussion of the policy language is presented in Section 3.
Section 4 describes the event model we propose for the
monitoring framework. Our proposed monitoring framework is
explained in Section 5. Sec. 6 describes the implementation of
the proposed monitoring framework. Section 7 describes the
assessment of the monitoring framework using a case study.

Section 8 presents an in-depth performance evaluation to show
that our system is well-suited for highly dynamic service
compositions. Section 9 compares our approach with existing
work and Section 10 concludes the paper and indicates the
direction of our future work.

II. SECURE SERVICE COMPOSITION: AN EXAMPLE

We will illustrate our approach by using a running
example. Fig. 1 presents an overview of the InfoService case
study. In this example, we assume a small company that
designs, develops, and provides customized services to
customers. We also assume that customers want to have an
application that provides a location-based information service,
e.g., based on the current GPS coordinates of a mobile device
or after entering an address. The application should display
information such as the current weather or a map highlighting
various Points of Interest (PoI).

As there are many services available that already provide
such information, it is a quite natural approach to building this
new application based on already existing services, e.g.:

1. A GeoCoding type service, which takes a street
address as input and produces the associated
geographical coordinates;

2. A PointOfInterest type service that takes geographical
coordinates (output of GeoCoding service) as input
and returns the places that the end user can be
interested in;

3. A WeatherForecast type service that takes as input the
geographical coordinates and returns the information
about the weather predictions at the closest location to
the end user;

4. A Map type service that takes potential places of
interests originated by (2) as input and returns a map
showing the position and distance of the end user to
each of these places;

5. A WebPageInfoCollector type service takes a set of
information related to a location gained from (3) and
(4) as input, and returns a Web page that shows it.

The resulting composite service is named InfoService. Each
service in the InfoService composition is bound to a real Web
Service running in the background and registered with a
Marketplace (e.g., Aniketos Marketplace [14].). After
providing the street address of the user as input, the composite
service returns a Web page with some information related to
the user’s location.
 Operating even such a simple service composition raises
already a number of security (e.g., data privacy, access control,
see Brucker, et al. [15]. for a more detailed discussion),
trustworthiness (e.g., customers may trust different service
parties of a service composition to a different extend, see
Elshaafi et al. [16]. for a more detailed discussion), reliability
(i.e., services should deliver correct results), and availability
(e.g., services should always be available) concerns.

In our example, customers usually consider revealing their
current locations as a privacy violation. Thus, the GPS
coordinates should only be transferred to the services that
actually require such information for their operation. Moving
one step further, we see that the WeatherForecast requires an
approximation of the location (e.g., the city), while the

PointOfInterest service and Map service need the precise
location for producing more accurate and precise results.
Secondly, the service provider might need a separation of duty
of the PointOfInterest service and WeatherForecast service to
prevent fraud. In other words, a malicious provider offering
both the PointOfInterest and WeatherForecast services could
deliberately predict bad weather conditions for certain areas
(i.e., to harm it financially); hence, convinces users to visit
different places. Consequently, this threatens the repudiation of
the composed WebPageInfoCollector.

Fig. 1: Overview of InfoService Components.

These requirements need to be considered during the entire
lifecycle of the service composition (i.e., from the requirements
engineering, to the development, to the operation of the
application). Service composition based applications are highly
dynamic. Thus, specification and runtime enforcement of
security properties is not sufficient [17].. The security,
trustworthiness, reliability, and availability of atomic services
as well as composed services need to be monitored constantly
and, depending on the observations, necessary actions need to
be taken. For example, if the monitoring shows evidence that
the trustworthiness of a service falls below a certain threshold,
a dynamic re-composition should replace this service with
another service of a similar kind that satisfies the required
trustworthiness level.

III. POLICY LANGUAGE

We need a suitable policy language to specify what we
need to monitor. In general, this language should serve for
other purposes as well, e.g., it should specify the security
requirements for a service (either desired by a consumer or
advertised by a service provider). Naturally, we may use one
language for requirements specification and another one for
monitoring these requirements (as it is done in Asim et al.
[10].). In this case, there is a need for a transformation engine
between these languages. Thus, one language for both purposes
significantly reduces the complexity [18]..

We were looking for a language which could:
• Express security properties and policies for hierarchical

services;
• Be expressive enough, clear and simple in processing at

the same time;
• Be generated by both humans and software;
• Be able to express complex (security and privacy)

policies;
• Be used for requirements specification, matching,

monitoring and reasoning.

We considered several candidates, that are exploited by
current state of the art frameworks such as WS02
(https://www.ws02.com), for such kind of language. XACML
[19]. is a general-purpose policy language, but it is deemed
cruel to write policies with it and to reason about them.
Moreover, we will need to use the constraint part of policies in
a nonstandard way. Event Calculus [20]. is suitable for runtime
monitoring and representing policies in a dynamic
environment. On the other hand, the syntax of the language
becomes too complex for compound services. Furthermore,
considerable effort is required to automate generation and
runtime monitoring of such policies. The PROTUNE [21].
language has high expressivity and can be used to specify
complex policies in a distributed environment. The main
disadvantages of the method relates to its strength. Because of
such enormous expressivity the language is complex for policy
writing and reasoning.

Based on the above analysis, we select the ConSpec
language for our purposes. The ConSpec language has been
proposed by the University of Trento (UNITN) and Royal
Institute of Technology (KTH) in the scope of the Security of
Software and Services for Mobile Systems (S3MS) project
[22].. Briefly, we can see the language as follows1:

The tag RULE ID defines the id of the policy. The tag SCOPE
specifies whether the rule is applied to one specific execution
or to all executions of the service. The tag SECURITY STATE
defines the global variables and their initial values. Then,
several events are checked BEFORE or AFTER occurrence.

If an event occurred, we check guards one by one until we
find the one that is satisfactory. In this case, certain security
updates are performed. If no guards are fired for the event, then
the further execution is not permitted (and some further
security actions, like notifying the customer, are triggered). In
case no security updates are needed but the further execution is
allowed, there is a special action “skip”, which does not do
anything but continues the execution. There is also a possibility
of specifying an ELSE statement for the cases, when the further
execution should be allowed even if no guards are fired2.

Fig. 2: The Concrete Syntax of ConSpec.

1 We refer the reader to Aktug and Naliuka [8] for more details, and Fig. 2

2 We omitted this option here for simplicity

The ConSpec language can be straightforwardly mapped to
the ConSpec automata. This automata can be seen as A = (Q,
T, δ, q0), where Q is a set of states and q0 ∈ Q is an initial state,
T is a set of actions, and δ is a (partial) transition function δ : Q
× T → Q. A state can be seen simply as a specific assignment
to the variables defined in the SECURITY STATE part. Naturally,
the assignment defined in the SECURITY STATE part defines q0.
Actions are defined by the guarded events (specified between
BEFORE, AFTER, and PERFORM), i.e., by the name of the event
(class and method), the set of its parameters and possible
assignments for these parameters (in the AFTER case also the
results of the event are considered). Finally, the (partial)
transition functions join states with the parameters which fire
some of the specified guards and the states which are received
after the application of the corresponding updates.

There are a number of advantages of ConSpec. First, this
language was developed for security purposes and allows
guarding possible actions performed by a system. It represents
behavior in terms of different events that allow policies to be
checked at runtime. Policy written in ConSpec has a
comparatively simple semantics, and is simple to learn.

ConSpec is an automata-based language. Although this
feature slightly reduces its expressiveness (in comparison with
its predecessor PSLan Erlingsson [23]., or other declarative
languages as EventCalculus [20]., XACML [19]., PROTUNE
[21]., etc.), however, this feature allows automatic reasoning
on it. Thus, ConSpec permits defining complex policies, which
are necessary to specify security requirements, and provides an
efficient way to check them. In other words, next to simple
value checking policies (e.g., verifying that the trustworthiness
level of a service is higher than some threshold), ConSpec is
devised to monitor complex logical constructions (i.e., security
policies) without the need for an additional layer of logical
verification. In addition, ConSpec provides the embedded
facility to evaluate properties before/after the monitored events,
which is required particularly by Application security to
prevent potentially malicious events from happening.
Furthermore, the language is straightforward to define a policy
decision point for monitoring purposes if an automaton is
available. Also, ConSpec defines different scopes of its
application. Thus, we may define a policy for a single
execution of a service or multiple executions.

Being based on basic programming and logical rules,
ConSpec is an easy to learn language. Nevertheless, for most
common applications, the details could be even hidden from
the policy maker: an expert may define a template for a policy
(i.e., a ConSpec Rule, where only initial Security State should
be instantiated) and users will be required to simply provide the
required input. This capability is very important for services,
where the same security policy could be applied to any service
for some hierarchical piece of business process: the only thing
to be done is to instantiate the same selected template for low
level services.

IV. EVENT MODEL

The monitoring framework we propose is built around the
concept of events. It is an event-driven approach that allows
the monitoring system to analyze events and react to certain
situations as they occur. Any viable monitoring system must
have the ability to analyze and identify the correct events in a

timely manner. Fig. 3 displays a simplified version of our
proposed event model. This organizes different event types
allowing us to reason about and provide a generic way to deal
with them.

Event Listeners are embedded into the BPMN
specifications which are triggered by events during workflow
execution. These listeners can be configured at the Process
level, Activity level or Transition level to generate events.

Fig. 3: Event Model.

Our event model is based on two types of process variables;
Base Variables and Domain Specific Variables. Both types of
variable are available during the execution of a business
process and could be used for monitoring. The listeners have
access to these process variables and can create events
populated using their associated values, sending for analysis.
The Base Variables inherit common attributes from the process
itself, e.g., the process ID, process name, activity ID, activity
name, process start time, etc. However, the Domain Specific
Variables, declared in the SECURITY STATE section of
ConSpec rules, are user defined and may build upon the Base
Variables. For example, to analyse the load on a particular
service, we could accumulate all start processing events for that
service over the last hour. An alert message should be
generated if the number of requests is more than a threshold
value in the last hour. This threshold value is a user-defined
attribute falling within the Domain Specific Variables.

In the following discussion, we try to determine the
structure of events that should be received for analysis. In our
proposed framework, an overall process represents a composite
service and an activity represents a service component. Fig. 4
shows an example of events for the InfoService BPMN process
executed in a specific order.

In this example, the InfoService BPMN process comprises
five service tasks each with a Start and End event. The
monitoring of an activity may need only the process ID,
activity start and end events. The selection of start and end
events for listening is determined by the nature of the monitor.
With such events we can aggregate the data received so far and
analyze it before (after) execution of a specific activity. Thus,
we can prevent invocation of a service if it potentially can
violate the contract. Then, the alarm rule is fired and
appropriate reaction may be carried out, e.g., change the
service fulfilling the activity.

Fig. 4: Event Flow.

In our proposal, an event structure describes the data and
structure associated with an event. It helps in organizing the
data that is required for monitoring. Below we define the event
structure for our proposed monitoring framework.

1. Process level event
processName
eventLevel (processLevelEvent)
eventName (Start or End)
eventTime (Timestamp)
Variable 0 . . . n – domain specific variables

2. Activity level event
processName
activityName (name of the Service or User Task)
eventLevel (activityLevelEvent)
eventType (Service Task or User Task)
eventName (Start or End)
processFlow (used to construct a composition
work-flow)
eventTime (Timestamp)
Variable 0 . . . n – domain specific variables
eventDate (e.g., 2013/04/05)

V. THE SECURITY POLICY MONITORING
FRAMEWORK

Our monitoring framework is a software module that runs
in parallel to a BPMN process and observes its behavior by
intercepting the events that are produced by the processes. The
framework we describe is modular and allows a simple
integration with other modules or platforms. The components
of the monitoring framework are illustrated in Fig. 5 and a
description of each of the monitoring units follows.

A. Monitoring Policy
A monitoring policy is a set of requirements, defined using

the language ConSpec, which specifies what to monitor for a
particular BPMN process. These requirements can be specified
by a service provider as well as by a service consumer
(depending on the contract specification process).

B. Monitoring Rule Repository
It is a database of monitoring rules used for monitoring

services. The rules defined in the monitoring policy are
translated into monitoring rules by the monitoring module and
are stored in the Monitoring rule repository. An example of a
monitoring rule might specify that the trust value of a service

should be continuously monitored so that a notification is
generated as soon as the value falls below a given threshold.

C. Event Manager
This module gathers the events coming from the runtime

environment (running the BPMN processes) and passes them
to the Analyzer. The event manager is composed of an Event
Filter that filters relevant events for compliance monitoring.
The Event Filter relies on a filtering mechanism and acts as a
first step to reduce the number of events that must be
considered by the Analyzer.

D. Analyzer
Upon receiving events from the Event Manager, the

Analyzer analyses them by accessing rules from the repository.
It uses the monitoring policy to select the appropriate
monitoring rules for a particular process.

Every policy is analyzed according to the ConSpec
specification. In particular, if a policy has a Scope “Session”
the policy is initialized when a service is invoked. For “Multi-
Session” policies the initialization is performed when the
service is added/registered in the platform. On the level of
ConSpec initialization, it means that we start with the q0 state,
assigning initial values specified in the SECURITY STATE part of
the rule to the set of declared parameters.

The Policy Decision Point (PDP) is developed as a part of
the Analyzer. The PDP helps in translating ConSpec policies
into monitoring rules and decision making. It also uploads the
initial values of global variables (i.e., specified in the Security
State part of the policy) to the memory.

Upon receiving events from the Analyzer, the PDP
analyses them according to the order of the guard-update
statements specified in the policy. The first guard returning
“true” fires the corresponding update (i.e., actions, which have
to be performed before continuing of the execution) and
afterwards no more statements are checked. Thus, no conflicts
are allowed to occur. Firing “true” means that we move from a
previous state of the ConSpec automata to the state with the
updated values of the considered parameters.
If no guards resulted to “true” (and no updates for ELSE are
specified), this means a violation of the policy, i.e., we try to
make a transition which does not belong to the automata. If no
updates are necessary for some conditions, a special command
“skip” is envisaged. For example, a user might specify a
policy (Fig. 16 in the Appendix section) to monitor the Map
service for trustworthiness every time it is invoked. As
BEFORE statement states, the property is updated before an
activity starts and if the current activity is anyone but the one
we would like to check the trustworthiness value of
(“Payment” in the example) or the value is greater than the
defined threshold (“90” in the example) nothing happens (skip
command). The alarm is raised otherwise (i.e., when the
“Payment” service has trustworthiness less than 90). Note that
the property requires a special external function
(i#TrustworthinessPrediction) to be invoked, which is
supported by our framework subject to a proper declaration of
the function in the initialization file prior to invocation.
When the ConSpec policy is received by the monitoring
module, the Analyzer stores the policy as rules in the
repository (memory). When input (event) arrives, the PDP is
invoked to change its state and make a decision based on the
rules stored in the memory. In this example, if the event

corresponds to the invocation of the Map Service, the PDP
will be invoked to retrieve the trustworthiness value and check
it against the threshold stored in the memory. If the current
trustworthiness value falls below the threshold, a notification
will be generated.

The notification alerts are generally in the following
format:

alert("ServiceID", Type, Property); Where
ServiceID= “ID of the service involved”
Type=”the type of the notification i.e. Contract Violation”
Property=”the security property agreed to be monitored in

the agreed policy but the service failed to adhere i.e. separation
of duty”.

Fig. 5: Security Policy Monitoring Framework

VI. IMPLEMENTATION

We have implemented the monitoring module as an
independent service that can easily be integrated into different
service frameworks. As an example, we integrated the
monitoring module into the Aniketos platform [14]., where it is
a part of the Security Monitoring & Notification package. The
modules are running in Karaf [24]. as remote OSGI services.
Thus, our monitoring framework is not just a part of the overall
implementation of the project, but a stand-alone package,
which can be easily used in different service composition
frameworks such as [25]. or [26]., as long as its interfaces are
respected. The only dependency on the Aniketos platform,
which the monitoring package has, is verification of precise,
non-pure ConSpec, properties (e.g., trustworthiness). On the
other hand, our package contains a mechanism, which allows
for development of a custom verification module and binding it
with the monitoring capabilities. Thus, if one does not want to
use the standard Aniketos trustworthiness module but still
wants monitoring trustworthiness properties, he/she can use an
alternative implementation with a properly defined interface.
The source code for the monitoring module is available at
GitHub [27]..

As it has been discussed in Section V, the monitoring
module (or Security Monitoring & Notification package, as a
whole) requires ConSpec policies and the event of the running

service as input and produces notifications as output. Next, we
briefly describe the modules producing the input for a complete
description of the implementation tested in this paper.

Fig. 6: Service Composition Framework (SCF).

In our implementation ConSpec policies are produced by
the Service Composition Framework (SCF) using the
integrated ConSpec editor. In general, the SCF (shown in Fig.
6) is an Eclipse-based environment which enables service
designers to build executable composition plans and specify
their monitoring policies using the ConSpec editor. It allows
the modelling of service compositions in BPMN and their
deployment to the process execution engine (Activiti engine
[24]). The ConSpec properties can be specified by a service
provider or a service consumer (depending on the contract
specification process performed by SCF).

Fig. 7: ConSpec Editor.

We have created a ConSpec editor which provides a
graphical user interface for making and changing ConSpec

policies (Fig. 7). The tool also converts the policy to a
specified XML format, which simplifies policy processing by
the policy decision point (PDP) of the monitor (see Sec. 5).
The tool checks the correctness of the written policy and
notifies the writer about possible errors.

A Service Runtime Environment (SRE) is responsible for
the execution of services (with Activiti engine) and enforcing
rules specified by the service designer. SRE interacts with the
monitoring module and generates events for the running
service that are then analyzed by the monitoring module in
compliance with a contract (ConSpec rules).

Finally, SRE is also responsible for handling the
notifications generated by the monitoring module. A set of
rules can be defined to handle these alarms. For each rule, the
service designer can specify the constraints for the event to fire
the rule and the action to be performed once the rule is fired.
For example, an action could be a recomposition, from simply
replacing a single service with another one performing the
same task. The result of this action will be a different runnable
composition plan satisfying the same security requirements as
the substituted Web service. Fig. 8 shows the dialogue
available into the Service Composition Framework to allow the
definition of rules used by the SRE to manage the behavior of
the composite service at runtime. For example, if the separation
of duty requirement for both PointOfInterest service and the
WeatherForecast service is violated, the specified rule will
cause a re-composition by replacing the WeatherForcast
service with another functionally similar service offered by a
different provider. For more details about SRE and the
Aniketos platform, in general, we refer the interested reader
elsewhere [29]..

Fig. 8: Rule Editor.

VII. DEMONSTRATION THROUGH INFOSERVICE

In this section, we demonstrate our monitoring framework
using the InfoService example (recall Sec. 2) that has been
developed on the Aniketos platform. We consider the
separation of duty and binding of duty security requirements
for the demonstration below.

The way the atomic services are composed for the
InfoService (using the Service Composition Framework) is
shown in Fig. 6. The service designer specifies the monitoring
policy through the ConSpec editor and wants the following
compliance and security requirements for the “information
service” process:

1. Separation of duty: Both the PointOfInterest service
and the WeatherForecast service should be offered by different
service providers.

2. Binding of duty: The Map service and the
WeatherForcast service should belong to the same service

provider.
 Before service deployment, it is setup that if at runtime the
security requirements are not fulfilled then the composition has

to be recomposed (with an editor shown in Fig. 6). Finally the
composite service along with its monitoring policy is uploaded
to the Service Runtime Environment (SRE).

Fig. 9: Security policy for separation of duty.

Fig. 10: Security policy for binding of duty.

After service deployment, the runtime environment
forwards the monitoring policy to the monitoring module along
with information about the service to monitor, i.e., Service ID.
The monitoring policy is a zipped set of XML files, each of
which contains one security policy written with the ConSpec
language. In other words, a security policy is specified as
ConSpec rules in the form of an XML file. These policies state
the properties guaranteed by the composite service
specification and stated as rules. Each security policy
corresponds to a specific security property. For example, Fig. 9
and Fig. 10 show two security policies for both the separation
of duty and the binding of duty. Next to these two basic and
widely used security properties, a custom policy could be
devised with ConSpec. For instance, Fig. 11, shows a custom

policy that states that a user cannot invoke the same
PointOfInterest service more than two times (rotating the
providers should provide better privacy protection for the user).

Fig. 11: Custom policy example.

During the service execution, five Web Services are executed
and events are compiled based on the event model discussed in
Sec. 4. The events are then passed to the remote monitoring
module for analysis as shown in Fig. 12. The Event Manager
relies on a filtering mechanism and acts as a first step to reduce
the number of events to be taken into account. Indeed, only
events that are considered as relevant for a particular service
which needs to be monitored are selected by the Event
Manager. This selection has to be carried out according to a
particular type of event, the existence of an attribute in an event
or a particular value of an event attribute.

Fig. 12: The events received by the monitoring module.

The events are analyzed with the help of the ConSpec PDP
(discussed in Sec. 5). The monitoring module analyses these
events and triggers alerts to the Notification module in case of
any policy violation. In our InfoService case study, both the
PointOfInterest service and the WeatherForecast service are
offered by the same service provider (violating the separation
of duty requirement) and the Map service and the
WeatherForcast service are provided by different service
providers (violating the binding of duty requirement). This is

done deliberately to check if the monitoring framework detects
the violation of these security requirements.

Fig. 13: Notification broker console.

 While executing the InfoService process, the monitoring
module successfully detected the violation of both the security
requirements as shown in Fig. 13. The Notification broker
console is developed as a part of the Notification module to
monitor the alerts sent to the Notification module. According to
the rule set at design time (in case of Separation of duty
requirement), a recomposition is triggered and leads to the
substitution of the WeatherForcast service with another
WeatherForcast service offer by the provider other than the one
who provides the PointOfInterest service.

VIII. EVALUATION

This section intends to evaluate how the monitoring module
of the proposed framework behaves under high load and to
pragmatically infer the number of services that can be
monitored by one instance. The performance and scalability of
the monitoring framework is mainly influenced by two factors:
the complexity of the policy and the number of services being
monitored. Our framework can easily scale horizontally: we
can easily add as many instances of the monitoring module to
ensure that each monitoring module needs only to monitor a
“reasonable” number of services. Back to the main point, to
evaluate how a single monitoring module behaves under high
load and to practically infer how many services can be
monitored by one instance, we used the The Grinder3, a Java-
based load testing distributed framework. We implemented a
script for the load-testing platform that generated random
service identifiers, loaded a set of security policies, and sent a
pre-planned script of events to the compliance monitor. This
was executed by eight threads for a period of approximately
70-minutes. The logs produced during this test were then
processed using The Grinder Analyzer4.

3 http://grinder.sourceforge.net/
4 http://track.sourceforge.net/

Fig. 14: Graph of transactions per-second (upper plot) and mean
response times (lower plot) for the compliance monitor

implementation.

Fig. 14 shows the number of transactions processed per
second by the compliance monitor whilst under load from eight
clients. The number of transactions processed reflects (or at
least gives a rough indication on) the complexity of the
monitoring policy – the more transactions, the more complex
policy, and vice versa. This graph shows that the compliance
monitor is capable of handling heavy loads, responding for the
majority of the tests between 300-340 transactions per second
with response times that were generally under one-second. The
anomaly that occurs approximately fifty-minutes into the test,
shown in Fig. 14, is caused by periodic garbage collection of
many flyweight objects instantiated during the monitoring
process and will be corrected for later releases.

Table 1: Load-testing results

Table. 1 provides a breakdown of the performance information
by operation. The Web service interface of the compliance
monitor implementation supports three operations: creating a
monitor for a service and a set of security policies, destroying a
monitor when it is no longer required, and processing an event
generated by a service to verify its compliance to the policy.

The operations to create and destroy monitors were invoked
approximately 134,000 times during the load test, with the
discrepancy between creating and destroying monitors
explained by a combination of the 984 failed process event
operations and the manual termination of the load-test after
approximately 70-minutes. Significantly more invocations
were made to the process event operation, which in the overall
majority of cases responded in less than one-second. This also
includes a large number of events which were not in
compliance with the monitoring policy in place. These events
were ignored and did not cause any notifications to be
generated.

Out of the 984 failed tests, 500 customized tests were
conducted where the processing event attributes were not in the
correct order, or the values were incorrect. Thus, the

monitoring module was not in a position to process them and
resulted in failed process event operations. The remaining 484
of the 984 failed tests were caused by the testing tool as it
failed to process some events.

To conclude, a single instance of the monitoring module is
capable of monitoring many services in compliance with a pre-
defined security policy, and performs well even when the
monitoring instance is under heavy load. The framework
supports a rich collection of events and attributes that apply at
the level of services within a service composition.

IX. RELATED WORK

The business operations of today’s enterprises are heavily
influenced by the Business Process modeling of both internal
and external business events. Data collected during the
execution of business processes are used for identifying the key
performance indicators (KPI) that enable the continuous
monitoring and tracking of the process behavior and guarantee
its correct execution. A number of approaches exist in the
literature that focuses on how KPIs are modeled and
transferred into events by a model-driven approach
[30].[31].[32].[33].. The work of Ly et al. [34]. developed a
framework comparing approaches for monitoring business
process compliance based on a well-defined set of monitoring
functionalities. They emphasize that existing approaches do not
provide a solution that combines an expressive language with
full compliance.

SALMon [35]. is a generic framework for monitoring the
service-based system lifecycle. The framework is platform
independent and flexible. It is able to translate a SLA (e.g.,
written with the WS-Agreement standard) to the specific type
of document, called Monitoring Management Document,
which is needed in order to configure the monitor. The
measurements are provided to the platform with a push or pull
method and the values are checked against the constraints
specified in the SLA. In contrast to this work, our framework
does not require a translation of rules (since monitoring uses
the same ConSpec language) and is created to monitor complex
policies (which require more complex logic), followed by
checking the constraints for the values. Similar to SALMon,
our framework is able to add new measurement functions
without any modification of the engine, but by a simple
declaration of a new measurement.

In another work [36]., the authors incorporated an
Agreement Document Analysis (ADA) module into their
framework. This module was aimed to provide an explanation
to the monitored values. The rules for analysis are expressed as
a Constraint Satisfaction Problem (CSP), so the authors require
additional mapping, plus, the expressiveness of CSP rules is
bound with the languages used for SLA definition. This allows
the rules analyzed to be simple checks that the received values
are within the defined limits (at least, the authors do not
provide any more policies for analysis). The work of Calabro et
al. [37]. presents a framework for performance analysis and
optimization of a business process expressed in BPMN. It
concentrates on generating an event-based monitoring
approach that relies on the collection and evaluation of time
and cost-based parameters. Chen et al. [38]. proposed a Web
service runtime monitoring method based on a probe, which
uses aspect-oriented programming (AOP) to realize the
monitoring for Web service abnormalities, running time,
reliability and availability. The monitoring mechanism

involves capturing the information of services’ exceptions,
execution time and status events by inserting an AOP
monitoring probe in the original the Web service. The
exceptions belong to the Java object, captured by the Java
virtual machine once occurred in the running of Web service
code. Wu et al. [39]. proposed an AOP-based approach for
identifying patterns in BPEL processes. They use a stateful
aspect extension allowing the definition of behavior patterns
that should be identified. If identified, different actions can be
triggered. It also permits monitoring certain patterns by using
history-based point-cuts. However, monitoring is limited to
instances of a BPEL process. The work presented by Baresi et
al. [40].; Haiteng and Zhiqing [41].; Wu et al. [39]. is based on
how to monitor dynamic service compositions (BPEL
processes) with respect to contracts expressed via assertions on
services. Assertions are specified with a special-purpose
specification language called WSCoL (Web Service Constraint
Language), for applying constraints (monitoring rules) on the
service execution. In Haiteng and Zhiqing [41]., the authors
proposed a solution to the problem of monitoring Web service
instances implemented using BPEL. The solution used a
Monitoring Broker to access Web service runtime state
information and calculates the Quality of Service (QoS)
property values. The Monitoring Broker is devised with the
support of aspect-oriented programming that separates the
business logic of the Web service from its monitoring
functionality. Barnawi et al. [42]. presented a pattern-based
process to embed compliance monitoring logic within the
process definition. The approach targets BPMN based
processes to monitor runtime-related aspects such as timing
and resource assignment constraints. A compliance expert is
needed to visually specify the compliance rules, which are then
embedded within the definition of a business process. While
there are a number of related techniques, we believe our
framework is novel in its ability to monitor both atomic and
composite services. It does not require assertions to define
what has to be monitored using a proprietary language. Our
framework performs compliance monitoring of complex
security properties by using a non-intrusive AOP mechanism
and has direct access to the service execution environment.

Martín and Pimentel [43]. proposed using security
adaptation contracts, which can adapt service orchestration in a
secure way. The authors use several specific constructs to
express usual security requirements for services (derived from
a number of Web service security standards, like WS-
Security), check the process for possible violations and have
the main focus on adaptation of the orchestration in order to
avoid violation of contract terms. Ciancia et al. [44]. extended
the work with a richer specification language (CryptoCCS) and
provided transformation from BPMN to this language. Instead,
in our paper, we focus on monitoring of security properties,
define how and where monitoring actions must be performed,
and trigger the notification mechanism. Naturally, the
adaptation of a service composition is one of the possible
further steps, but this is not the main focus of this paper.

The work presented by Alhamazani et al. [45]. discussed
several monitoring tools developed for the cloud computing
environment. However, these tools have mainly focused on
monitoring the low level aspects of resources deployed in the
cloud (e.g., memory, CPU, disk) [42].. Our framework
considers the monitoring and compliance of the high level and
logical security aspects of the cloud computing business

process without relying on any external monitoring component
where the entire execution environment is mainly controlled by
the cloud providers. CloudWatch [46]. is a monitoring service
providing comprehensive monitoring for cloud resources and
applications run by customers on Amazon Web Services
(AWS). CloudWatch can collect and track metrics, collect and
monitor log files, set alarms, and react to changes in AWS
resources. Thus, Amazon CloudWatch is a useful monitoring
solution for Amazon Cloud users; however, the way, in which
monitoring data are gathered, collected and analyzed, is not
transparent. Further, it is restricted to AWS products. Nagios
[47]. is an open source-monitoring framework that allows
monitoring of IT infrastructure to ensure proper functioning of
systems, applications, and services. It is designed to utilise a
list of plug-ins that would be executed to monitor the target
system. However, Aceto et al. [48]. suggested that Nagios is
not suitable for a rapidly changing dynamic infrastructure (i.e.,
SOA-based applications are highly dynamic and liable to
change heavily at runtime) and is not suitable for as-is adoption
in Cloud scenarios. Plugins in Nagios can be easily developed
and leverage its flexibility in a way that could monitor virtually
any type of network [49].. Our framework could be seamlessly
integrated into Nagios as a plugin to perform the security
monitoring of BPMN-based services in compliance with a
predefined security policy written in ConSpec.

X. CONCLUSIONS

We have presented a monitoring framework for SOA-based
systems, which is particularly tailored for detecting security,
privacy, and trustworthiness violations of service
compositions. The monitoring framework ensures that the
service behaves in compliance with a predefined security
policy. The approach enables monitoring across multiple
composite services, and integrates dynamic changes from
various subsystems efficiently with high performance. This
monitoring framework is, of course, only one building block of
a holistic approach for the secure and trustworthy construction
and execution of service compositions: while we did not
discuss the related details in this paper, the presented
monitoring framework was integrated into the Aniketos
platform which supports the design-time and runtime aspects
of secure and trustworthy service compositions. Nevertheless,
it is implemented as a stand-alone package which can be
applied in diverse service orchestrating platforms.

Compared with other existing solutions, the monitoring
framework presented here offers flexibility as well as
applicability in the context of composite services. To achieve
this, the platform supports a rich collection of events and
attributes that apply at the level of services within a service
composition. We demonstrated this using a real composite
service invocation monitored against the user specified security
policy. Our proposed monitoring framework provides a user
friendly interface for service designers to specify their
monitoring policies as ConSpec rules. A policy written in
ConSpec is easily understandable by humans and the simplicity
of the language allows a comparatively simple semantics. This
enables the service designer to easily specify the monitoring
requirements for their processes and monitor them using the
framework. The novelty of our work stems from the way in
which monitoring information can be combined from multiple
dynamic services to automate the monitoring of business
processes and proactively report compliance violations.

Moreover, service users may specify their own properties
(using ConSpec) and include them into the contract for
monitoring. Generally, the service composition providers can
subscribe to different Alerts through the Notification module.
Alerts regarding policy violation are sent as notifications to
those who subscribed them, enabling verification and decision
making.

We see several lines of future work to increase the
applicability of our framework, including:

1. To increase the usability, we are investigating high-
level notations (e.g., SecureBPMN [14].[15].) for specifying
the properties that need to be monitored. On the one hand, our
monitoring framework is very flexible. On the other hand, it
results in runtime overheads that can be reduced if certain
properties can be guaranteed statically (e.g., based on a formal
analysis at design-time) and hence excluded from the
monitoring at runtime. We will investigate approaches that
allow deciding, on a case-by-case basis, if a property of a given
service composition should be validated statically or monitored
at runtime.

2. The violations of required properties should be not
only detected but also reacted (pro-actively) by an execution
framework for service compositions to minimize the overall
number of violations as well as ensure the availability. Thus,
we need to integrate techniques for dynamic service
replacements and service re-composition that require explicit
user consent or are completely hidden from the end users.

XI. BIBLIOGRAPHY

[1]. Zhou, B and Shi, Q and Yang, P. 2016. A Survey on Quantitative
Evaluation of Web Service Security. In: The 15th IEEE International
Conference on Trust, Security and Privacy in Computing and
Communications, 23 August 2016 - 26 August 2016, Tianjin, China.

[2]. Asim M, Zarzosa S, Shi Q, Zhou B. 2015. A Policy Specification
Language for Composite Services. The Fifth International Conference
on Advanced Collaborative Networks, Systems and Applications. St.
Julians, Malta.

[3]. Ghezzi, C., Guinea, S., 2007. Run-time monitoring in service-oriented
architectures. In: Baresi, L., Nitto, E. (Eds.), Test and Analysis of Web
Services. Springer Berlin Heidelberg, pp. 237–264.

[4]. Baker, Thar, Michael Mackay, Amjad Shaheed, and Bandar Aldawsari.
"Security-oriented cloud platform for soa-based scada." In Cluster,
Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM
International Symposium on, pp. 961-970. IEEE, 2015.

[5]. Karam, Yasir, Thar Baker, and Azzelarabe Taleb-Bendiab. "Security
Support for Intention Driven Elastic Cloud Computing." In Computer
Modeling and Simulation (EMS), 2012 Sixth UKSim/AMSS European
Symposium on, pp. 67-73. IEEE, 2012.

[6]. Al-Sharif, Sultan, Farkhund Iqbal, T. Baker, and A. Khattack. "White-
Hat Hacking Framework for Promoting Security Awareness." In New
Technologies, Mobility and Security (NTMS), 2016 8th IFIP
International Conference on, pp. 1-6. IEEE, 2016.

[7]. Lemos, A.L., Daniel, F. and Benatallah, B., 2016. Web service
composition: a survey of techniques and tools. ACM Computing
Surveys (CSUR), 48(3), p.33.

[8]. OMG, 2011. Business Process Model and Notation (BPMN) Version
2.0. Available via http://www.omg.org/spec/BPMN/2.0/ on 26/02/2015.

[9]. Skouradaki, M., Roller, D.H., Leymann, F., Ferme, V. and Pautasso, C.,
2015, January. On the road to benchmarking BPMN 2.0 workflow
engines. In Proceedings of the 6th ACM/SPEC International
Conference on Performance Engineering (pp. 301-304). ACM.

[10]. Asim, M., Llewellyn-Jones, D., Lempereur, B., Bo, Z., 2013. Event
driven monitoring of composite services. In: Proceedings of the 2013
International Conference on Social Computing (SocialCom). IEEE,
Alexandria, pp. 550 – 557.

[11]. Asim, M., Yautsiukhin, A., Brucker, A. D. Security Policy Monitoring
of Composite Services. In Secure and Trustworthy Service
Composition: The Aniketos Approach. No. 8900 in Lecture Notes in

Computer Science: State of the Art Surveys. Springer-Verlag,
Heidelberg, 2014; 192-202.

[12]. Aktug, I., Naliuka, K., 2008. Conspec: A formal language for policy
specification. Science of Computer Programming 74 (1–2), 2 – 12,
special Issue on Security and Trust.

[13]. Drools Fusion: http://drools.jboss.org/drools-fusion.html
[14]. Brucker, A. D., Dalpiaz, F., Giorgini, P., Meland, P. H., Rios, E. (Eds.),

2014. Secure and Trustworthy Service Composition: The Aniketos
Approach. No. 8900 in Lecture Notes in Computer Science: State of the
Art Surveys. Springer-Verlag, Heidelberg.

[15]. Brucker, A.D., 2013. Integrating security aspects into business process
models. it–Information Technology it–Information Technology, 55(6),
pp.239-246.

[16]. Elshaafi, H., and Botvich, D. 2016. Optimisation-based collaborative
determination of component trustworthiness in service compositions.
Security Comm. Networks, 9: 513–527. doi: 10.1002/sec.985.

[17]. Brucker, A. D., Hang, I., Lückemeyer, G., Ruparel, R., 2012.
Securebpmn: Modeling and enforcing access control requirements in
business processes. In: Proceedings of the 17th ACM Symposium on
Access Control Models and Technologies. SACMAT ’12. ACM, New
York, NY, USA, pp. 123–126.

[18]. Llewellyn-Jones, D and Asim, M., 2013. Requirements for Composite
Security Pattern Specification. In: Second International Workshop on
Cyberpatterns 2013: Unifying Design Patterns with Security, Attack
and Forensic Patterns, Abingdon, UK.

[19]. OASIS, 2013. eXtensible Access Control Markup Language (XACML)
Version 3.0. Available via http: //docs.oasis-open.org/xacml/3.0/xacml-
3. 0-core-spec-os-en.pdf on 26/02/2015.

[20]. Shanahan, M., 1999. The event calculus explained. In: Wooldridge, M.,
Veloso, M. (Eds.), Artificial Intelligence Today. Vol. 1600 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, pp. 409–430.

[21]. Bonatti, P. A., Coi, J. L. D., Olmedilla, D., Sauro, L., 2010.
PROTUNE: A Rule-based PROvisional TrUst NEgotiation Framework.

[22]. S3MS: Security of software services of mobile systems,
http://cordis.europa.eu/project/rcn/78380_en.html

[23]. Erlingsson, U., 2004. The inlined reference monitor approach to
security policy enforcement. Ph.D. thesis, Department of Computer
Science, Cornell University.

[24]. Apache Karaf: https://karaf.apache.org/
[25]. Lécué, F., Silva, E., Pires, L. F., 2008. A framework for dynamic web

services composition. In: Gschwind, T., Pautasso, C. (Eds.), Emerging
Web Services Technology, Volume II. Whitestein Series in Software
Agent Technologies and Autonomic Computing. Birkhäuser Basel, pp.
59–75.

[26]. Oster, Z. J., Ali, S. A., Santhanam, G. R., Basu, S., Roop, P. S., 2012. A
service composition framework based on goal-oriented requirements
engineering, model checking, and qualitative preference analysis. In:
Liu, C., Ludwig, H., Toumani, F., Yu, Q. (Eds.), Service-Oriented
Computing. Vol. 7636 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, pp. 283–297.

[27]. SPMM: https://github.com/AniketosEU/Security-Monitoring-and-
Notification/tree/master/aniketos-policymonitoring

[28]. Activiti engine: http://www.activiti.org
[29]. D’Errico, M., Malmignati, F., Andreotti, G. F., 2011. A platform for

secure and trustworthy service composition. In: In Proceedings of the
The Fifth International Conference on Cloud Computing, GRIDs, and
Vir-tualization (Cloud Computing 2014).

[30]. Koetter, F. and Kochanowski, M., 2015. A model-driven approach for
event-based business process monitoring. Information Systems and e-
Business Management, 13(1), pp.5-36.

[31]. Calabro, A., Lonetti, F. and Marchetti, E., 2015, August. Monitoring of
business process execution based on performance indicators. In
Software Engineering and Advanced Applications (SEAA), 2015 41st
Euromicro Conference on (pp. 255-258). IEEE.

[32]. Krumeich, J., Mehdiyev, N., Werth, D. and Loos, P., 2015, October.
Towards an extended metamodel of event-driven process chains to
model complex event patterns. In International Conference on
Conceptual Modeling (pp. 119-130). Springer International Publishing.

[33]. Krumeich, J., Weis, B., Werth, D. and Loos, P., 2014. Event-driven
business process management: where are we now? A comprehensive
synthesis and analysis of literature. Business Process Management
Journal, 20(4), pp.615-633.

[34]. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S. and van der Aalst,
W.M., 2015. Compliance monitoring in business processes:
Functionalities, application, and tool-support. Information systems, 54,
pp.209-234.

[35]. Oriol, M., Franch, X. and Marco, J., 2015. Monitoring the service-
based system lifecycle with SALMon. Expert Systems with
Applications, 42(19), pp.6507-6521.

[36]. Muller, C., Oriol, M., Franch, X., Marco, J., Resinas, M., Ruiz-Cortes,
A. and Rodriguez, M., 2014. Comprehensive explanation of SLA
violations at runtime. IEEE Transactions on Services Computing, 7(2),
pp.168-183.

[37]. Calabrò, A., Lonetti, F., Marchetti, E. and Spagnolo, G.O., 2016,
September. Enhancing Business Process Performance Analysis through
Coverage-Based Monitoring. In Quality of Information and
Communications Technology (QUATIC), 2016 10th International
Conference on the (pp. 35-43). IEEE.

[38]. Chen, L., Xiong, D., Wang, H. and Zou, P., 2016, June. Web service
run-time monitoring and visualization analysis based on probe. In Data
Science in Cyberspace (DSC), IEEE International Conference on (pp.
446-451). IEEE.

[39]. Wu, G., Wei, J., Huang, T., 2008. Flexible pattern monitoring for
wsbpel through stateful aspect extension. In: Proceedings of the 2008
IEEE International Conference on Web Services. ICWS ’08. IEEE
Computer Society, Washington, DC, USA, pp. 577–584.

[40]. Baresi, L., Guinea, S., Nano, O., Spanoudakis, G., May 2010.
Comprehensive monitoring of bpel processes. IEEE Internet Computing
14 (3), 50–57.

[41]. Haiteng, Z., Zhiqing, S., 2011. Runtime monitoring web services
implemented in bpel. In: Proceedings of the 2011 International
Conference on Uncertainty Reasoning and Knowledge Engineering
(URKE). Vol. 1. Bali, pp. 228 – 231.

[42]. Barnawi, A., Awad, A., Elgammal, A., El Shawi, R., Almalaise, A. and
Sakr, S., 2015. Runtime self-monitoring approach of business process
compliance in cloud environments. Cluster Computing, 18(4), pp.1503-
1526.

[43]. Martín, J.A. and Pimentel, E., 2011. Contracts for security adaptation.
The Journal of Logic and Algebraic Programming, 80(3-5), pp.154-179.

[44]. Ciancia, V., Martín, J. A., Martinelli, F., Matteucci, I., Petrocchi, M.,
Pimentel, E., 2014. Automated synthesis and ranking of secure BPMN
orchestrators. IJSSE 5 (2), 44–64.

[45]. Alhamazani, K., Ranjan, R., Mitra, K., Rabhi, F., Jayaraman, P.P.,
Khan, S.U., Guabtni, A. and Bhatnagar, V., 2015. An overview of the
commercial cloud monitoring tools: research dimensions, design issues,
and state-of-the-art. Computing, 97(4), pp.357-377.

[46]. Amazon CloudWatch. http://aws.amazon.com
[47]. Nagios. http://www.nagios.org
[48]. Aceto, G., Botta, A., De Donato, W. and Pescapè, A., 2013. Cloud

monitoring: A survey. Computer Networks, 57(9), pp.2093-2115.
[49]. Rodrigues, G.D.C., Calheiros, R.N. and Guimaraes, V.T., 2016. GL d.

Santos, MB de Carvalho, LZ Granville, LMR Tarouco, and R. Buyya,
Monitoring of cloud computing environments: Concepts, solutions,
trends, and future directions. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing, SAC (Vol. 16, pp. 378-383).

I. APPENDIX

No Delegation policy can be devised as is it written in Fig.
15.

Figure 15: No Delegation policy.

The same policy may be applied to all services in a
hierarchy if the policy is defined with a template. For example,
it is easy to see that in the Trustworthiness policy shown in Fig.
16, the two parameters that make it specific are: ServiceID and
Value. Thus, it is enough to devise a ConSpec template that
simply requires these two inputs. If we require all sub-services
to have the same property, we should simply change the
ServiceID parameter for all of them. This, however, is just a
facilitating procedure for policy making, and it does not affect
the monitoring features, since the property is to be defined as a
standalone ConSpec rule in the end. We implement the
template handling feature within our ConSpec Editor saving
the results as a separate xml file. When a user would like to
instantiate the policy, he/she are prompted for the required
inputs and the editor forms the policy automatically. Moreover,
our CSF is able to devise a policy per lower services in the
hierarchy automatically, using a similar procedure.

Figure 16: Trustworthiness

